## Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland





Schweizerischer Kalibrierdienst
Service suisse d'étalonnage
Servizio svizzero di taratura
Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

Certificate No: D3700V2-1076\_Jun23

Accreditation No.: SCS 0108

Client

Morlab (Auden)

CALIDRATION OFFICIOATE

CALIBRATION CERTIFICATE

Object D3700V2 - SN:1076

Calibration procedure(s) QA CAL-22.v4

Calibration Procedure for SAR Validation Sources between 3-6 GHz

Calibration date: June 03, 2023

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

| ID#                | Cal Date (Certificate No.)                                                                                                                                                              | Scheduled Calibration  |
|--------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|
| SN: 104778         | 01-Apr-23 (No. 217-03100/03101)                                                                                                                                                         | Apr-24                 |
| SN: 103244         | 01-Apr-23 (No. 217-03100)                                                                                                                                                               | Apr-24                 |
| SN: 103245         | 01-Apr-23 (No. 217-03101)                                                                                                                                                               | Apr-24                 |
| SN: BH9394 (20k)   | 31-Mar-23 (No. 217-03106)                                                                                                                                                               | Apr-24                 |
| SN: 310982 / 06327 | 31-Mar-23 (No. 217-03104)                                                                                                                                                               | Apr-24                 |
| SN: 3503           | 31-Dec-22 (No. EX3-3503_Dec22)                                                                                                                                                          | Dec-23                 |
| SN: 601            | 27-Dec-22 (No. DAE4-601_Dec22)                                                                                                                                                          | Dec-23                 |
|                    |                                                                                                                                                                                         |                        |
| ID#                | Check Date (in house)                                                                                                                                                                   | Scheduled Check        |
| SN: GB39512475     | 30-Oct-17 (in house check Feb-22)                                                                                                                                                       | In house check: Oct-23 |
| SN: US37292783     | 07-Oct-18 (in house check Oct-21)                                                                                                                                                       | In house check: Oct-23 |
| SN: MY41092317     | 07-Oct-18 (in house check Oct-21)                                                                                                                                                       | In house check: Oct-23 |
| SN: 100972         | 15-Jun-18 (in house check Oct-21)                                                                                                                                                       | In house check: Oct-23 |
| SN: US41080477     | 31-Mar-17 (in house check Oct-22)                                                                                                                                                       | In house check: Oct-23 |
| Name               | Function                                                                                                                                                                                | Signature              |
| Jeton Kastrati     | Laboratory Technician                                                                                                                                                                   | ALL                    |
| Katja Pokovic      | Technical Manager                                                                                                                                                                       | Much                   |
|                    | SN: 104778 SN: 103244 SN: 103245 SN: BH9394 (20k) SN: 310982 / 06327 SN: 3503 SN: 601  ID # SN: GB39512475 SN: US37292783 SN: MY41092317 SN: 100972 SN: US41080477  Name Jeton Kastrati | SN: 104778             |

Issued: June 3, 2023

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

# Calibration Laboratory of

Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland





Schweizerischer Kalibrierdienst S Service suisse d'étalonnage C Servizio svizzero di taratura Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

#### Glossary:

tissue simulating liquid TSL

sensitivity in TSL / NORM x,y,z ConvF not applicable or not measured N/A

# Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from hand-held and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016
- c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
- d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

#### **Additional Documentation:**

e) DASY4/5 System Handbook

#### **Methods Applied and Interpretation of Parameters:**

- Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Page 2 of 6

#### **Measurement Conditions**

DASY system configuration, as far as not given on page 1.

| A31 System configuration, as far as not given on page 1. |                              |                                  |
|----------------------------------------------------------|------------------------------|----------------------------------|
| DASY Version                                             | DASY5                        | V52.10.4                         |
| Extrapolation                                            | Advanced Extrapolation       |                                  |
| Phantom                                                  | Modular Flat Phantom         |                                  |
| Distance Dipole Center - TSL                             | 10 mm                        | with Spacer                      |
| Zoom Scan Resolution                                     | dx, dy = 4  mm, dz = 1.4  mm | Graded Ratio = 1.4 (Z direction) |
| Frequency                                                | 3700 MHz ± 1 MHz             |                                  |

**Head TSL parameters**The following parameters and calculations were applied.

|                                         | Temperature     | Permittivity | Conductivity     |
|-----------------------------------------|-----------------|--------------|------------------|
| Nominal Head TSL parameters             | 22.0 °C         | 37.7         | 3.12 mho/m       |
| Measured Head TSL parameters            | (22.0 ± 0.2) °C | 37.5 ± 6 %   | 3.05 mho/m ± 6 % |
| Head TSL temperature change during test | < 0.5 °C        |              |                  |

# SAR result with Head TSL

| SAR averaged over 1 cm <sup>3</sup> (1 g) of Head TSL | Condition          |                          |
|-------------------------------------------------------|--------------------|--------------------------|
| SAR measured                                          | 100 mW input power | 6.72 W/kg                |
| SAR for nominal Head TSL parameters                   | normalized to 1W   | 67.5 W/kg ± 19.9 % (k=2) |

| SAR averaged over 10 cm <sup>3</sup> (10 g) of Head TSL | condition          |                          |
|---------------------------------------------------------|--------------------|--------------------------|
| SAR measured                                            | 100 mW input power | 2.42 W/kg                |
| SAR for nominal Head TSL parameters                     | normalized to 1W   | 24.2 W/kg ± 19.5 % (k=2) |

Certificate No: D3700V2-1076\_Jun23

# Appendix (Additional assessments outside the scope of SCS 0108)

## **Antenna Parameters with Head TSL**

| The state of the s |                             |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|
| Impedance, transformed to feed point                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $47.0 \Omega + 1.2 j\Omega$ |
| Return Loss                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | - 29.5 dB                   |

# **General Antenna Parameters and Design**

| Electrical Delay (one direction) | 1.133 ns |
|----------------------------------|----------|

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

#### **Additional EUT Data**

| Manufactured by | SPEAG |
|-----------------|-------|

Certificate No: D3700V2-1076\_Jun23 Page 4 of 6

# **DASY5 Validation Report for Head TSL**

Date: 03.06.2023

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 3700 MHz; Type: D3700V2; Serial: D3700V2 - SN: 1076

Communication System: UID 0 - CW; Frequency: 3700 MHz

Medium parameters used: f = 3700 MHz;  $\sigma = 3.05 \text{ S/m}$ ;  $\varepsilon_r = 37.5$ ;  $\rho = 1000 \text{ kg/m}^3$ 

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

#### DASY52 Configuration:

Probe: EX3DV4 - SN3503; ConvF(7.73, 7.73, 7.73) @ 3700 MHz; Calibrated: 31.12.2022

• Sensor-Surface: 1.4mm (Mechanical Surface Detection)

• Electronics: DAE4 Sn601; Calibrated: 27.12.2022

• Phantom: Flat Phantom 5.0 (front); Type: QD 000 P50 AA; Serial: 1001

DASY52 52.10.4(1527); SEMCAD X 14.6.14(7483)

# Dipole Calibration for Head Tissue/Pin=100 mW, d=10mm, f=3700MHz/Zoom Scan,

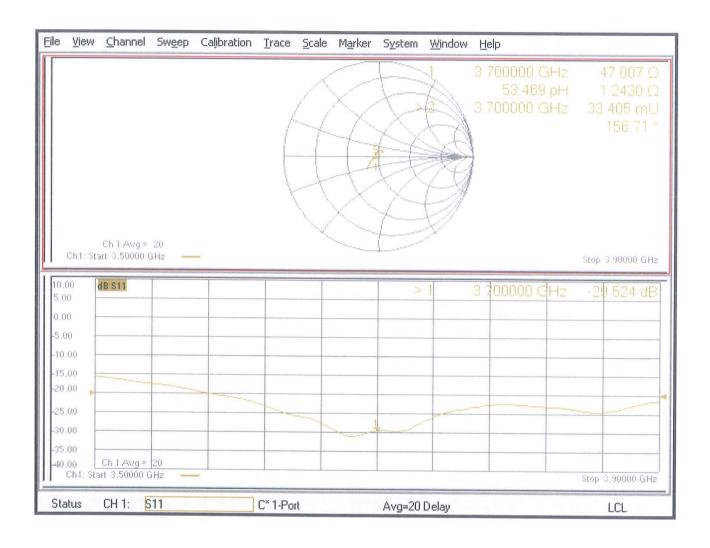
dist=1.4mm (8x8x8)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 71.10 V/m; Power Drift = -0.05 dB


Peak SAR (extrapolated) = 19.3 W/kg

SAR(1 g) = 6.72 W/kg; SAR(10 g) = 2.42 W/kg

Smallest distance from peaks to all points 3 dB below = 7.9 mm


Ratio of SAR at M2 to SAR at M1 = 73.2%

Maximum value of SAR (measured) = 13.0 W/kg



0 dB = 13.0 W/kg = 11.15 dBW/kg

# Impedance Measurement Plot for Head TSL





# **Appendix Annual validation for Test Lab.**

#### **General calibration information**

| Date               | 2024.05.21                                          |
|--------------------|-----------------------------------------------------|
| Test Laboratory    | ShenZhen Morlab Communications Technology Co., Ltd. |
| Antenna serial No. | D3700V2-SN:1076                                     |

#### **Antenna Parameters with Head TSL**

| Impedance, transformed to feed point | 49.085 Ω +0.608j Ω |
|--------------------------------------|--------------------|
| Return Loss                          | -39.103dB          |

#### **General Antenna Parameters and Design**

| Electrical Delay (one direction) | 1.276 ns |
|----------------------------------|----------|
|----------------------------------|----------|

After long term use with 100W radiated power, only a slight warming of the dipole near the feed point can be measured

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard No excessive force must be applied to the dipole arm, because they might bend or the soldered connections near the feed point may be damaged.



Test Laboratory: Shenzhen Morlab Communications Technology Co., Ltd. Date: 2024/5/21

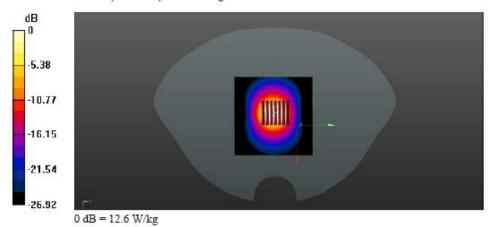
#### System Check 3700MHz Head

Communication System: UID 0, CW (0); Frequency: 3700 MHz; Duty Cycle: 1:1

Medium: HSL 3700 Medium parameters used: f = 3700 MHz;  $\sigma$  = 3.051 S/m;  $\epsilon_r$  = 37.663;  $\rho$  = 1000 kg/m<sup>3</sup> Ambient Temperature : 23.2 °C; Liquid Temperature : 22.4 °C

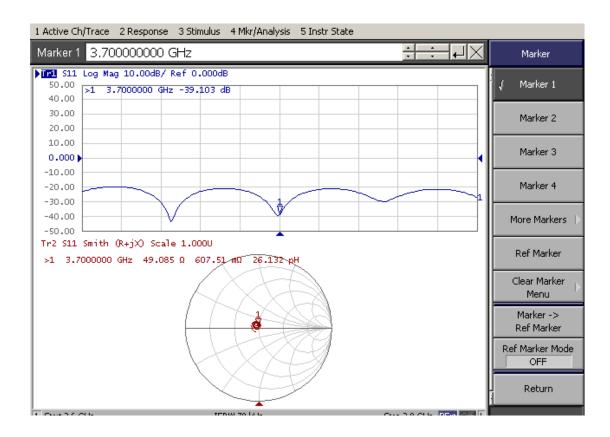
#### DASY5 Configuration:

- Probe: EX3DV4 SN7608; ConvF(6.24, 6.29, 5.87) @ 3700 MHz; Calibrated: 2024/3/21
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1643; Calibrated: 2024/3/27
- Phantom: SAM 2; Type: QD000P40CC; Serial: TP:1464
- Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7501)


CW3700/Area Scan (81x81x1): Interpolated grid: dx=1.200 mm, dy=1.200 mm Maximum value of SAR (interpolated) = 12.6 W/kg

CW3700/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 51.42 V/m; Power Drift = -0.04 dB


Peak SAR (extrapolated) = 20.1 W/kg

SAR(1 g) = 7.19 W/kg; SAR(10 g) = 2.35 W/kgMaximum value of SAR (measured) = 12.6 W/kg





## **Appendix Impedance Measurement Plot for Head TSL**

