

For

RF TEST REPORT

Shenzhen Buzz Tech CO.,LTD

Product Name: Smart watch

Test Model(s).: S81

Report Reference No. : DACE241119010RL001

FCC ID : 2AGFWS81

Applicant's Name : Shenzhen Buzz Tech CO.,LTD

Address 10th Floor, Guang Chang Bldg,74#,BaoMin 1st Rd, Bao An Shenzhen,

Guangdong,China

Testing Laboratory: Shenzhen DACE Testing Technology Co., Ltd.

102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park,

Address : Tangtou Community, Shiyan Subdistrict, Bao'an District, Shenzhen,

Guangdong, China

Test Specification Standard : 47 CFR Part 15.247

Date of Receipt : November 19, 2024

Date of Test : November 19, 2024 to November 28, 2024

Data of Issue : November 28, 2024

Result : Pass

Note: This report shall not be reproduced except in full, without the written approval of Shenzhen DACE Testing Technology Co., Ltd. This document may be altered or revised by Shenzhen DACE Testing Technology Co., Ltd. personnel only, and shall be noted in the revision section of the document. The test results in the report only apply to the tested sample

Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com Page 1 of 63

Apply for company information

Applicant's Name	:	Shenzhen Buzz Tech CO.,LTD			
Address	:	0th Floor, Guang Chang Bldg,74#,BaoMin 1st Rd, Bao An Shenzhen, Guangdong,China			
Product Name	:	Smart watch			
Test Model(s)	:	S81			
Series Model(s)		\$96,\$97,\$98,\$99,P145,P146,P147,P150,P151,P152,Y10,Y11,Y12,Y13,Y14, Y15,Y16,Y17,Y18,Y19			
Test Specification Standard(s)	:	47 CFR Part 15.247			

NOTE1:

The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards.

Compiled by:

Keren Huang

Keren Huang / Test Engineer

November 28, 2024

Supervised by:

Ben Tang

Ben Tang / Project Engineer

November 28, 2024

Approved by:

Report No.: DACE241119010RL001

Machael MJ

Machael Mo / Manager

November 28, 2024

102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park, Tangtou Community, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, China

Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com Page 2 of 63

DAG

Revision History Of Report

Report No.: DACE241119010RL001

Version	Description	REPORT No.	Issue Date
V1.0	Original	DACE241119010RL001	November 28, 2024
1			
	6		

Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com Page 3 of 63

DAG

V1.0

CONTENTS

•	1 TEST SUMMARY	6
	1.1 Test Standards	
2	2 GENERAL INFORMATION	7
	2.1 CLIENT INFORMATION	7 8 8 9
	2.8 Announcement	11
;	3 EVALUATION RESULTS (EVALUATION)	12
	3.1 ANTENNA REQUIREMENT	12
	3.1.1 Conclusion:	12
7	4 RADIO SPECTRUM MATTER TEST RESULTS (RF)	13
	4.1 CONDUCTED EMISSION AT AC POWER LINE	
	4.1.1 E.U.T. Operation:	
	4.1.2 Test Setup Diagram:	13
	4.1.3 Test Data:	
	4.2 6dB Bandwidth	16
	4.2.1 E.U.T. Operation:	16
	4.2.2 Test Setup Diagram:	16
	4.2.3 Test Data:	
	4.3 MAXIMUM CONDUCTED OUTPUT POWER	17
	4.3.1 E.U.T. Operation:	17
	4.3.2 Test Setup Diagram:	
	4.3.3 Test Data:	
	4.4 Power Spectral Density	19
	4.4.1 E.U.T. Operation:	19
	4.4.2 Test Setup Diagram:	
	4.4.3 Test Data:	
	4.5 EMISSIONS IN NON-RESTRICTED FREQUENCY BANDS	
	4.5.1 E.U.T. Operation:	
	4.5.2 Test Setup Diagram:	
	4.5.3 Test Data:	
	4.6.1 E.U.T. Operation:	
	4.6.2 Test Data:	
	4.7 EMISSIONS IN FREQUENCY BANDS (BELOW 1GHz)	
	4.7.1 E.U.T. Operation:	
	4.7.1 E.0.1. Operation.	
	4.8 EMISSIONS IN FREQUENCY BANDS (ABOVE 1GHz)	
	4.8.1 E.U.T. Operation:	
	4.8.2 Test Data:	

DAG

5 TEST SETUP PHOTOS	36
6 PHOTOS OF THE EUT	
APPENDIX	
16DB BANDWIDTH	49
2. 99% OCCUPIED BANDWIDTH	
3. DUTY CYCLE	
4. PEAK OUTPUT POWER	
5. Power Spectral Density	
6. BANDEDGE	59
7 Spudious Emission	61

Report No.: DACE241119010RL001

Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com Page 5 of 63

DAG

1 TEST SUMMARY

1.1 Test Standards

The tests were performed according to following standards:

47 CFR Part 15.247: Operation within the bands 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz

1.2 Summary of Test Result

Item	Standard	Method	Requirement	Result
Antenna requirement	47 CFR Part 15.247		47 CFR 15.203	Pass
Conducted Emission at AC power line	47 CFR Part 15.247	ANSI C63.10-2013 section 6.2	47 CFR 15.207(a)	Pass
6dB Bandwidth	47 CFR Part 15.247	ANSI C63.10-2013, section 11.8 KDB 558074 D01 15.247 Meas Guidance v05r02	47 CFR 15.247(a)(2)	Pass
Maximum Conducted Output Power	47 CFR Part 15.247	ANSI C63.10-2013, section 11.9.1 KDB 558074 D01 15.247 Meas Guidance v05r02	47 CFR 15.247(b)(3)	Pass
Power Spectral Density	47 CFR Part 15.247	ANSI C63.10-2013, section 11.10 KDB 558074 D01 15.247 Meas Guidance v05r02	47 CFR 15.247(e)	Pass
Emissions in non-restricted frequency bands	47 CFR Part 15.247	ANSI C63.10-2013 section 11.11 KDB 558074 D01 15.247 Meas Guidance v05r02	47 CFR 15.247(d), 15.209, 15.205	Pass
Band edge emissions (Radiated)	47 CFR Part 15.247	ANSI C63.10-2013 section 6.10 KDB 558074 D01 15.247 Meas Guidance v05r02	47 CFR 15.247(d), 15.209, 15.205	Pass
Emissions in frequency bands (below 1GHz)	47 CFR Part 15.247	ANSI C63.10-2013 section 6.6.4 KDB 558074 D01 15.247 Meas Guidance v05r02	47 CFR 15.247(d), 15.209, 15.205	Pass
Emissions in frequency bands (above 1GHz)	47 CFR Part 15.247	ANSI C63.10-2013 section 6.6.4 KDB 558074 D01 15.247 Meas Guidance v05r02	47 CFR 15.247(d), 15.209, 15.205	Pass

102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park, Tangtou Community, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, China

Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com Page 6 of 63

2 GENERAL INFORMATION

2.1 Client Information

Applicant's Name : Shenzhen Buzz Tech CO.,LTD

Address : 10th Floor, Guang Chang Bldg,74#,BaoMin 1st Rd, Bao An Shenzhen,

Guangdong, China

Manufacturer : Shenzhen Buzz Tech CO.,LTD

Address : 10th Floor, Guang Chang Bldg,74#,BaoMin 1st Rd, Bao An Shenzhen,

Guangdong, China

2.2 Description of Device (EUT)

Product Name:	Smart watch
Model/Type reference:	S81
Series Model:	\$96,\$97,\$98,\$99,P145,P146,P147,P150,P151,P152,Y10,Y11,Y12,Y13,Y14, Y15,Y16,Y17,Y18,Y19
Model Difference:	The product has many models, only the model name, Appearance and color is different, and the other parts such as the circuit principle, pcb and electrical structure are the same.
Trade Mark:	N/A
Power Supply:	DC 5V/1A from adapter Battery:DC3.7V 300mAh
Operation Frequency:	2402MHz to 2480MHz
Number of Channels:	40
Modulation Type:	GFSK
Antenna Type:	Internal antenna
Antenna Gain:	-5.09dBi
Hardware Version:	V1.0
Software Version:	V1.0

(Remark:The Antenna Gain is supplied by the customer.DACE is not responsible for This data and the related calculations associated with it)

Operation	Operation Frequency each of channel							
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency	
1	2402 MHz	11	2422 MHz	21	2442 MHz	31	2462 MHz	
2	2404 MHz	12	2424 MHz	22	2444 MHz	32	2464 MHz	
3	2406 MHz	13	2426 MHz	23	2446 MHz	33	2466 MHz	
4	2408 MHz	14	2428 MHz	24	2448 MHz	34	2468 MHz	
5	2410 MHz	15	2430 MHz	25	2450 MHz	35	2470 MHz	
6	2412 MHz	16	2432 MHz	26	2452 MHz	36	2472 MHz	
7	2414 MHz	17	2434 MHz	27	2454 MHz	37	2474 MHz	
8	2416 MHz	18	2436 MHz	28	2456 MHz	38	2476 MHz	
9	2418 MHz	19	2438 MHz	29	2458 MHz	39	2478 MHz	
10	2420 MHz	20	2440 MHz	30	2460 MHz	40	2480 MHz	

102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park, Tangtou Community, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, China

Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com Page 7 of 63

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

Report No.: DACE241119010RL001

Test channel	Frequency (MHz)
rest channel	BLE
Lowest channel	2402MHz
Middle channel	2440MHz
Highest channel	2480MHz
Remark:Only the data of the worst mod	le would be recorded in this report.

2.3 Description of Test Modes

No	Title	Description		
TM1 Lowest channel		Keep the EUT connect to AC power line and works in continuously transmitting mode with GFSK modulation.		
TM2	Middle channel	Keep the EUT connect to AC power line and works in continuously transmitting mode with GFSK modulation.		
TM3 Highest channel		Keep the EUT connect to AC power line and works in continuously transmitting mode with GFSK modulation.		

2.4 Description of Support Units

Title	Manufacturer	Model No.	Serial No.
AC-DC adapter	HUAWEI TECHNOLOGY	HW100400C01	

102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park, Tangtou Community, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, China

Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com Page 8 of 63

2.5 Equipments Used During The Test

Conducted Emission at AC power line						
Equipment	Manufacturer	Model No	Inventory No	Cal Date	Cal Due Date	
Power absorbing clamp	SCHWARZ BECK	MESS- ELEKTRONIK	1	2024-03-25	2025-03-24	
Electric Network	SCHWARZ BECK	CAT5 8158	CAT5 8158#207	1	1	
Cable	SCHWARZ BECK	104	1	2024-03-20	2025-03-19	
Pulse Limiter	SCHWARZ BECK	VTSD 9561-F Pulse limiter 10dB Attenuation	561-G071	2023-12-12	2024-12-11	
50ΩCoaxial Switch	Anritsu	MP59B	M20531	/	1	
Test Receiver	Rohde & Schwarz	ESPI TEST RECEIVER	ID:1164.6607K 03-102109- MH	2024-06-12	2025-06-11	
L.I.S.N	R&S	ESH3-Z5	831.5518.52	2023-12-12	2025-12-11	
L.I.S.N	SCHWARZ BECK	NSLK 8126	05055	2024-06-14	2025-06-13	
Pulse Limiter	CYBERTEK	EM5010A	1	2024-09-27	2025-09-26	
EMI test software	EZ -EMC	EZ	V1.1.42	1	1	

6dB Bandwidth

Maximum Conducted Output Power

Power Spectral Density

Emissions in non-restricted frequency bands

Equipment	Manufacturer	Model No	Inventory No	Cal Date	Cal Due Date
Equipment	wanuacturer	WIOGEI NO	inventory NO	Cai Date	Cai Due Date
RF Test Software	Tachoy Information Technology(she nzhen) Co.,Ltd.	RTS-01	V1.0.0	1	1
Power divider	MIDEWEST	PWD-2533	SMA-79	2023-05-11	2026-05-10
RF Sensor Unit	Tachoy Information Technology(she nzhen) Co.,Ltd.	TR1029-2	000001	1	1
Wideband radio communication tester	R&S	CMW500	113410	2024-06-12	2025-06-11
Vector Signal Generator	Keysight	N5181A	MY50143455	2023-12-11	2024-12-10
Signal Generator	Keysight	N5182A	MY48180415	2023-12-12	2024-12-11
Spectrum Analyzer	Keysight	N9020A	MY53420323	2023-12-12	2024-12-11

102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park, Tangtou Community, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, China

Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com Page 9 of 63

Band edge emissions (Radiated)
Emissions in frequency bands (below 1GHz)
Emissions in frequency bands (above 1GHz)

Emissions in frequency bands (above 1912)								
Equipment	Manufacturer	Model No	Inventory No	Cal Date	Cal Due Date			
EMI Test software	Farad	EZ -EMC	V1.1.42	1	/			
Positioning Controller	MF	MF-7802	61	1	1			
Amplifier(18-40G)	COM-POWER	AH-1840	10100008-1	2022-04-05	2025-04-04			
Horn antenna	COM-POWER	AH-1840 (18-40G)	10100008	2023-04-05	2025-04-04			
Loop antenna	ZHINAN	ZN30900C	ZN30900C	2024-06-14	2026-06-13			
Cable(LF)#2	Schwarzbeck	1	1	2024-02-19	2025-02-18			
Cable(LF)#1	Schwarzbeck	1	1	2024-02-19	2025-02-18			
Cable(HF)#2	Schwarzbeck	AK9515E	96250	2024-03-20	2025-03-19			
Cable(HF)#1	Schwarzbeck	SYV-50-3-1		2024-03-20	2025-03-19			
Power amplifier(LF)	Schwarzbeck	BBV9743	9743-151	2024-06-12	2025-06-11			
Power amplifier(HF)	Schwarzbeck	BBV9718	9718-282	2024-06-12	2025-06-11			
Wideband radio communication tester	R&S	CMW500	113410	2024-06-12	2025-06-11			
Spectrum Analyzer	R&S	FSP30	1321.3008K40 -101729-jR	2024-06-12	2025-06-11			
Test Receiver	R&S	ESCI 3	1166.5950K03 -101431-Jq	2024-06-13	2025-06-12			
Horn Antenna	Sunol Sciences	DRH-118	A091114	2023-05-13	2025-05-12			
Broadband Antenna	Sunol Sciences	JB6 Antenna	A090414	2024-09-28	2026-09-27			

Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com Page 10 of 63

2.6 Statement Of The Measurement Uncertainty

Test Item		Measurement Uncertainty
Conducted Disturbance (0.15~30MHz)	V	±3.41dB
Occupied Bandwidth		±3.63%
RF conducted power		±0.733dB
RF power density		±0.234%
Conducted Spurious emissions		±1.98dB
Radiated Emission (Above 1GHz)	J	±5.46dB
Radiated Emission (Below 1GHz)		±5.79dB

Note: (1) This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

2.7 Identification of Testing Laboratory

Company Name:	Shenzhen DACE Testing Technology Co., Ltd.				
Address:	102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park, Tangtou Connunity, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, China				
Phone Number:	+86-13267178997				
Fax Number:	86-755-29113252				

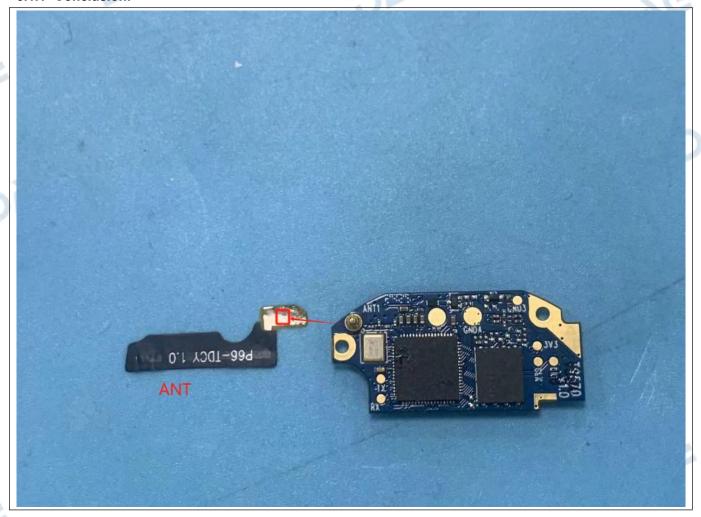
Identification of the Responsible Testing Location

Company Name:	Shenzhen DACE Testing Technology Co., Ltd.
Address:	102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park, Tangtou Connunity, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, China
Phone Number:	+86-13267178997
Fax Number:	86-755-29113252
FCC Registration Number:	0032847402
Designation Number:	CN1342
Test Firm Registration Number:	778666
A2LA Certificate Number:	6270.01

2.8 Announcement

- (1) The test report reference to the report template version v0.
- (2) The test report is invalid if not marked with the signatures of the persons responsible for preparing, reviewing and approving the test report.
- (3) The test report is invalid if there is any evidence and/or falsification.
- (4) This document may not be altered or revised in any way unless done so by DACE and all revisions are duly noted in the revisions section.
- (5) Content of the test report, in part or in full, cannot be used for publicity and/or promotional purposes without prior written approval from the laboratory.
- (6) The laboratory is only responsible for the data released by the laboratory, except for the part provided by the applicant.

Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com Page 11 of 63


Evaluation Results (Evaluation)

3.1 Antenna requirement

Test Requirement:

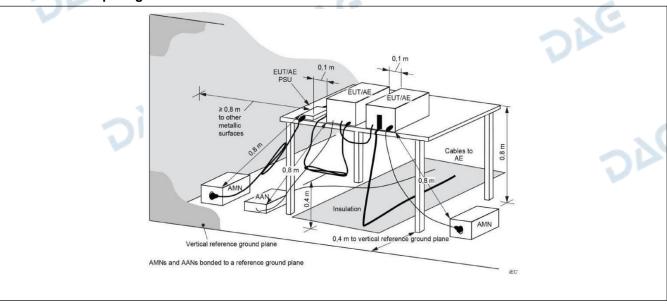
Refer to 47 CFR Part 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section.

3.1.1 Conclusion:

102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park, Tangtou Community, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, China

Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com Page 12 of 63

4 Radio Spectrum Matter Test Results (RF)


4.1 Conducted Emission at AC power line

Test Requirement:	Refer to 47 CFR 15.207(a), Except a section, for an intentional radiator thutility (AC) power line, the radio freq AC power line on any frequency or f MHz, shall not exceed the limits in the pH/50 ohms line impedance stabilized	at is designed to be conne uency voltage that is cond requencies, within the ban ne following table, as meas	cted to the public ucted back onto the d 150 kHz to 30
Test Limit:	Frequency of emission (MHz)	Conducted limit (dBµV)	
		Quasi-peak	Average
	0.15-0.5	66 to 56*	56 to 46*
	0.5-5	56	46
	5-30	60	50
\	*Decreases with the logarithm of the	frequency.	
Test Method:	ANSI C63.10-2013 section 6.2	V	4
Procedure:	Refer to ANSI C63.10-2013 section conducted emissions from unlicense		for ac power-line

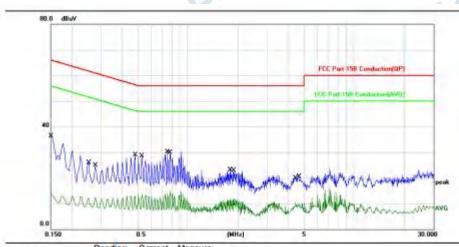
4.1.1 E.U.T. Operation:

Operating Environment:							
Temperature:	22.6 °C		Humidity:	48 %		Atmospheric Pressure:	102 kPa
Pretest mode: TM1			TM2,TM3				
Final test mode:		TM1					

4.1.2 Test Setup Diagram:

Web: http://www.dace-lab.com

Tel: +86-755-23010613


E-mail: service@dace-lab.com

Page 13 of 63

4.1.3 Test Data:

TM1 / Line: Line / Band: 2400-2483.5 MHz / BW: 1 / CH: L

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
		MHz	dBuV	dB	dBuV	dBuV	dB	Detect or	Comment
1		0.1500	26.20	10.13	36.33	65.99	-29.66	QP	
2		0.1500	4.39	10.13	14.52	55.99	-41.47	AVG	
3		0.2540	15.71	10.10	25.81	61.62	-35.81	QP	
4		0.2779	2.34	10.10	12.44	50.88	-38.44	AVG	
5		0.4820	18.81	10.09	28.90	56.30	-27.40	QP	
6		0.5299	3.56	10.09	13.65	46.00	-32.35	AVG	
7	٠	0.7580	20.06	10.09	30.15	56.00	-25.85	QP	
8		0.7820	4.59	10.09	14.68	46.00	-31.32	AVG	
9		1.7940	13.00	10.01	23.01	56.00	-32.99	QP	
10		1.8700	1.72	10.01	11.73	46.00	-34.27	AVG	
11		4.4460	0.19	10.17	10.36	46.00	-35.64	AVG	
12		4.6700	10.27	10.17	20.44	56.00	-35.56	QP	

Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com Page 14 of 63

6.9460

7.4020

23.2900

29.6020

10

3.56

11.40

12.84

-1.49

10.22

10.23

10.68

11.06

13.78

21.63

23.52

9.57

50.00 -36.22

60.00 -38.37

60.00 -36.48

50.00 -40.43

AVG

QP

QP

AVG

Report No.: DACE241119010RL001

TM1 / Line: Neutral / Band: 2400-2483.5 MHz / BW: 1 / CH: L 80.0 d8₄V Reading Correct Measure-Limit Over No. Mk. Freq. Level Factor ment MHz Detect or 0.1500 5.30 10.13 15.43 55.99 -40.56 AVG OP 0.1516 25.95 10.13 36.08 65.91 -29.83 QP 0.1780 23.54 10.12 33.66 -30.91 64.57 0.1780 3.37 10.12 13.49 54.57 -41.08 AVG 0.8860 19.63 10.10 29.73 56.00 -26.27 QP 0.8860 5.19 10.10 15.29 46.00 -30.71 AVG 4.5700 8.23 10.17 18.40 56.00 -37.60 5.3500 -1.98 10.20 8.22 50.00 -41.78 AVG

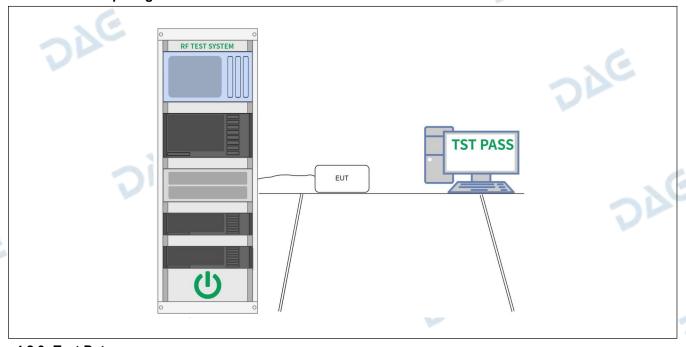
102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park, Tangtou Community, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, China

Web: http://www.dace-lab.com

Tel: +86-755-23010613

E-mail: service@dace-lab.com

Page 15 of 63


4.2 6dB Bandwidth

Test Requirement:	47 CFR 15.247(a)(2)
Test Limit:	Refer to 47 CFR 15.247(a)(2), Systems using digital modulation techniques may operate in the 902-928 MHz, and 2400-2483.5 MHz bands. The minimum 6 dB bandwidth shall be at least 500 kHz.
Test Method:	ANSI C63.10-2013, section 11.8 KDB 558074 D01 15.247 Meas Guidance v05r02
Procedure:	a) Set RBW = 100 kHz. b) Set the VBW >= [3 × RBW]. c) Detector = peak. d) Trace mode = max hold. e) Sweep = auto couple. f) Allow the trace to stabilize. g) Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission.

4.2.1 E.U.T. Operation:

Operating Environment:						
Temperature:	22.6 °C		Humidity:	48 %	Atmospheric Pressure:	102 kPa
Pretest mode: TM1, TM		TM2, TM3			6	
Final test mode: TM1, TM2,			TM2, TM3			

4.2.2 Test Setup Diagram:

4.2.3 Test Data:

Please Refer to Appendix for Details.

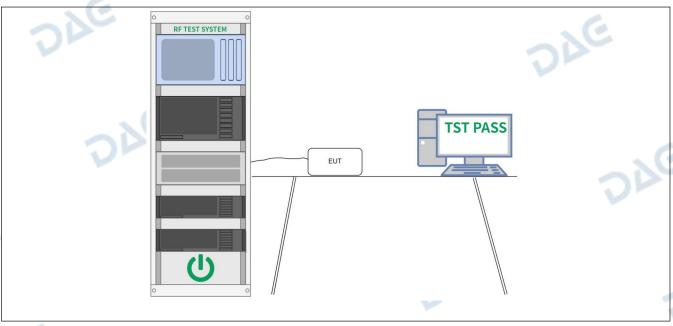
102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park, Tangtou Community, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, China
Web: http://www.dace-lab.com
Tel: +86-755-23010613
E-mail: service@dace-lab.com
Page 16 of 63

4.3 Maximum Conducted Output Power

Test Requirement:	47 CFR 15.247(b)(3)
Test Limit:	Refer to 47 CFR 15.247(b)(3), For systems using digital modulation in the 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz bands: 1 Watt. As an alternative to a peak power measurement, compliance with the one Watt limit can be based on a measurement of the maximum conducted output power. Maximum Conducted Output Power is defined as the total transmit power delivered to all antennas and antenna elements averaged across all symbols in the signaling alphabet when the transmitter is operating at its maximum power control level. Power must be summed across all antennas and antenna elements. The average must not include any time intervals during which the transmitter is off or is transmitting at a reduced power level. If multiple modes of operation are possible (e.g., alternative modulation methods), the maximum conducted output power is the highest total transmit power occurring in any mode.
Test Method:	ANSI C63.10-2013, section 11.9.1 KDB 558074 D01 15.247 Meas Guidance v05r02
Procedure:	ANSI C63.10-2013, section 11.9.1 Maximum peak conducted output power Note: Per ANSI C63.10-2013, if there are two or more antnnas, the conducted powers at Core 0, Core 1,, Core i were first measured separately, as shown in the section above(this product olny have one antenna). The measured values were then summed in linear power units then converted back to dBm. Per ANSI C63.10-2013 Section 14.4.3.2.3, the directional gain is calculated using the following formula, where GN is the gain of the nth antenna and NANT, the total number of antennas used. For correlated unequal antenna gain Directional gain = 10*log[(10G1/20 + 10G2/20 + + 10GN/20)2 / NANT] dBi For completely uncorrelated unequal antenna gain Directional gain = 10*log[(10G1/10 + 10G2/10 + + 10GN/10)/ NANT] dBi Sample Multiple antennas Calculation: Core 0 + Core 1 +Core i. = MIMO/CDD (i is the number of antennas) (#VALUE! mW + mW) = #VALUE! mW = dBm Sample e.i.r.p. Calculation: e.i.r.p. (dBm) = Conducted Power (dBm) + Ant gain (dBi)

Report No.: DACE241119010RL001

4.3.1 E.U.T. Operation:


Operating Environment:								
Temperature:	22.6 °C		Humidity:	48 %	-	Atmospheric Pressure:	102 kPa	- 2/
Pretest mode:		TM1,	TM2, TM3					SIL
Final test mode:		TM1,	TM2, TM3	-				

4.3.2 Test Setup Diagram:

102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park, Tangtou Community, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, China
Web: http://www.dace-lab.com
Tel: +86-755-23010613
E-mail: service@dace-lab.com
Page 17 of 63

DAG

DAG

DAG

4.3.3 Test Data:

DAG

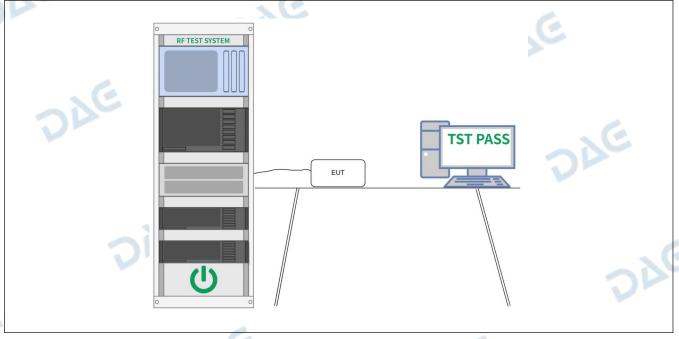
DAG

Please Refer to Appendix for Details.

DAG

Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com Page 18 of 63

4.4 Power Spectral Density


Test Requirement:	47 CFR 15.247(e)
Test Limit:	Refer to 47 CFR 15.247(e), For digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission. This power spectral density shall be determined in accordance with the provisions of paragraph (b) of this section. The same method of determining the conducted output power shall be used to determine the power spectral density.
Test Method:	ANSI C63.10-2013, section 11.10 KDB 558074 D01 15.247 Meas Guidance v05r02
Procedure:	ANSI C63.10-2013, section 11.10, Maximum power spectral density level in the fundamental emission

Report No.: DACE241119010RL001

4.4.1 E.U.T. Operation:

Operating Enviro	Operating Environment:									
Temperature:	22.6 °C		Humidity:	48 %	Atmospheric Pressure:	102 kPa				
Pretest mode:		TM1,	TM2, TM3		V	4				
Final test mode:		TM1,	TM2, TM3							

4.4.2 Test Setup Diagram:

4.4.3 Test Data:

Please Refer to Appendix for Details.

102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park, Tangtou Community, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, China

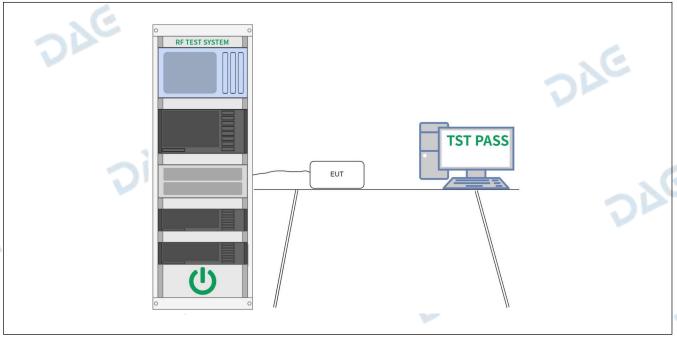
Web: http://www.dace-lab.com

Tel: +86-755-23010613

E-mail: service@dace-lab.com

Page 19 of 63

4.5 Emissions in non-restricted frequency bands


Test Requirement:	47 CFR 15.247(d), 15.209, 15.205
Test Limit:	Refer to 47 CFR 15.247(d), In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in § 15.209(a) is not required.
Test Method:	ANSI C63.10-2013 section 11.11 KDB 558074 D01 15.247 Meas Guidance v05r02
Procedure:	ANSI C63.10-2013 Section 11.11.1, Section 11.11.2, Section 11.11.3

Report No.: DACE241119010RL001

4.5.1 E.U.T. Operation:

Operating Environment:									
Temperature:	22.6 °C		Humidity:	48 %	Atmospheric Pressure:	102 kPa			
Pretest mode:		TM1,	TM2, TM3			Co			
Final test mode:		TM1,	TM2, TM3						

4.5.2 Test Setup Diagram:

4.5.3 Test Data:

Please Refer to Appendix for Details.

102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park, Tangtou Community, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, China

Web: http://www.dace-lab.com

Tel: +86-755-23010613

E-mail: service@dace-lab.com

Page 20 of 63

4.6 Band edge emissions (Radiated)

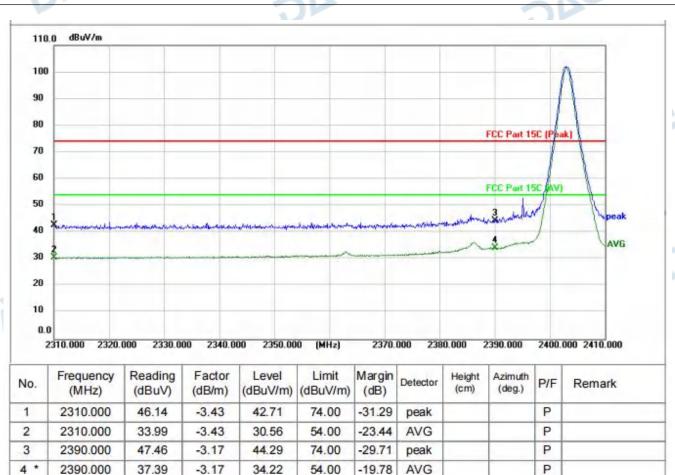
	, ,		
Test Requirement:	restricted bands, as def	7(d), In addition, radiated emission ined in § 15.205(a), must also co d in § 15.209(a)(see § 15.205(c)	omply with the radiated
Test Limit:	Frequency (MHz)	Field strength (microvolts/meter)	Measurement distance (meters)
OP.	0.009-0.490	2400/F(kHz)	300
	0.490-1.705	24000/F(kHz)	30
	1.705-30.0	30	30
	30-88	100 **	3
	88-216	150 **	3
	216-960	200 **	3
	Above 960	500	3
J.C	radiators operating undo 54-72 MHz, 76-88 MHz these frequency bands and 15.241. In the emission table ab The emission limits sho employing a CISPR qua 110–490 kHz and above	n paragraph (g), fundamental emer this section shall not be located, 174-216 MHz or 470-806 MHz is permitted under other sections ove, the tighter limit applies at the wn in the above table are based asi-peak detector except for the second MHz. Radiated emission nents employing an average det	ed in the frequency bands However, operation within s of this part, e.g., §§ 15.231 he band edges. on measurements frequency bands 9–90 kHz, limits in these three bands
Test Method:	ANSI C63.10-2013 sect KDB 558074 D01 15.24	tion 6.10 7 Meas Guidance v05r02	
Procedure:	ANSI C63.10-2013 sect	tion 6.10.5.2	1C

4.6.1 E.U.T. Operation:

Operating Environment:									
Temperature:	22.6 °C	-	Humidity:	48 %	Atmospheri	c Pressure:	102 kPa		
Pretest mode: TM1,TM2,TM3									
Final test mode: TM1,TM3									

Web: http://www.dace-lab.com

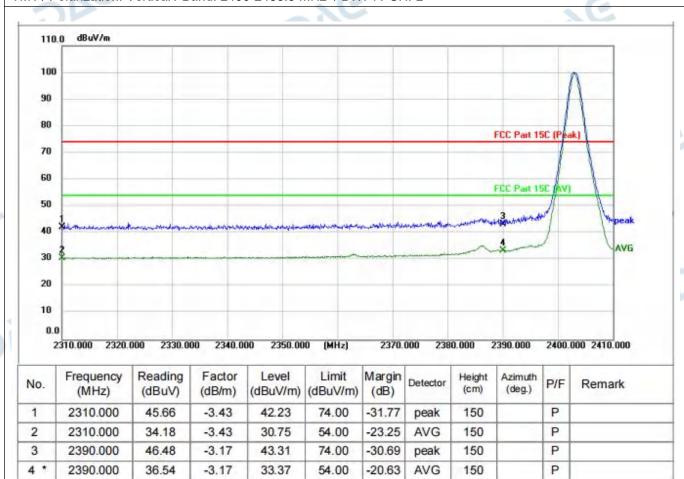
Tel: +86-755-23010613


E-mail: service@dace-lab.com

Page 21 of 63

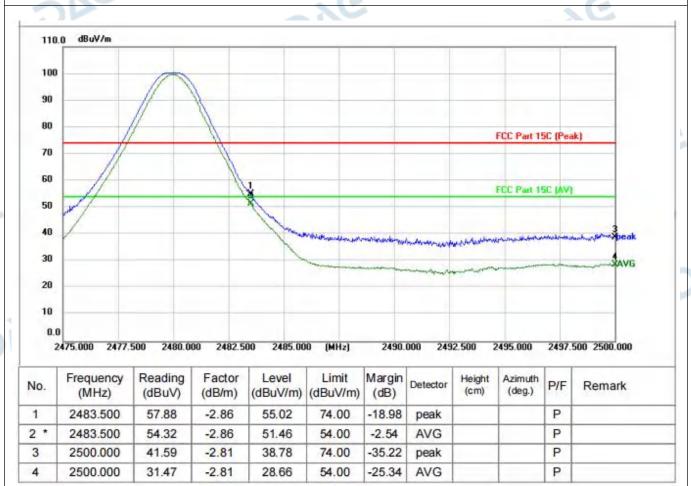
4.6.2 Test Data:

TM1 / Polarization: Horizontal / Band: 2400-2483.5 MHz / BW: 1 / CH: L



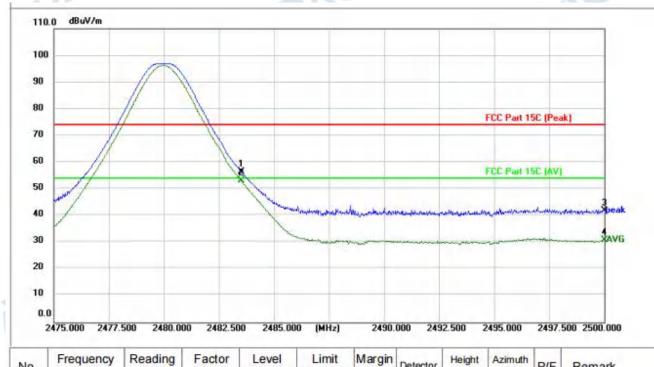
DAG

Report No.: DACE241119010RL001


TM1 / Polarization: Vertical / Band: 2400-2483.5 MHz / BW: 1 / CH: L

Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com Page 23 of 63

TM3 / Polarization: Horizontal / Band: 2400-2483.5 MHz / BW: 1 / CH: H


Web: http://www.dace-lab.com Tel: +86-755-23010613

E-mail: service@dace-lab.com

Page 24 of 63

TM3 / Polarization: Vertical / Band: 2400-2483.5 MHz / BW: 1 / CH: H

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector	Height (cm)	Azimuth (deg.)	P/F	Remark
1	2483.500	59.40	-2.86	56.54	74.00	-17.46	peak	150		Р	
2 *	2483.500	56.20	-2.86	53.34	54.00	-0.66	AVG	150		Р	
3	2500.000	44.86	-2.81	42.05	74.00	-31.95	peak	150		Р	
4	2500.000	33.64	-2.81	30.83	54.00	-23.17	AVG	150		Р	

4.7 Emissions in frequency bands (below 1GHz)

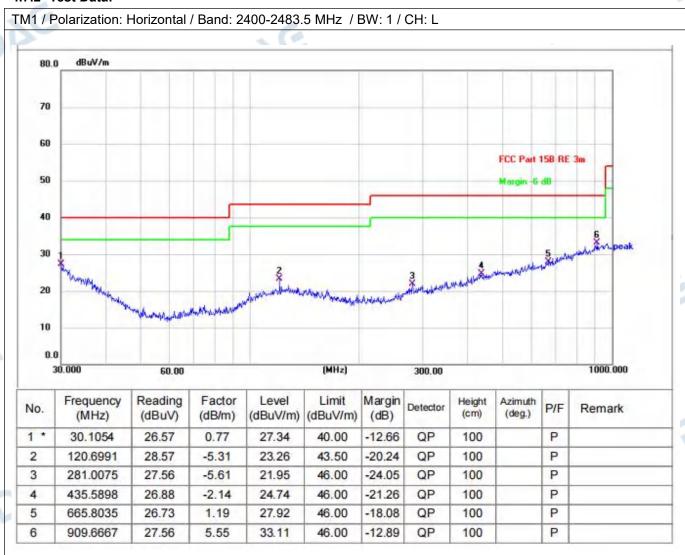
Test Requirement:		(d), In addition, radiated emissions							
		restricted bands, as defined in § 15.205(a), must also comply with the radiated emission limits specified in § 15.209(a)(see § 15.205(c)).`							
Test Limit:	Frequency (MHz)								
	0.009-0.490	2400/F(kHz)	300						
	0.490-1.705	24000/F(kHz)	30						
	1.705-30.0	30	30						
	30-88	100 **	3						
	88-216	150 **	3						
	216-960	200 **	3						
	Above 960	500	3						
	and 15.241. In the emission table about the emission limits show employing a CISPR quare 110–490 kHz and above	ove, the tighter limit applies at the wn in the above table are based or isi-peak detector except for the free 1000 MHz. Radiated emission limited the employing an average detector.	band edges. n measurements quency bands 9–90 kHz, nits in these three bands						
Test Method:	ANSI C63.10-2013 secti								
Procedure:	above the ground at a 3 360 degrees to determine b. For above 1GHz, the above the ground at a 3 degrees to determine the c. The EUT was set 3 or which was mounted on the d. The antenna height is	EUT was placed on the top of a ro or 10 meter semi-anechoic chamber the position of the highest radia EUT was placed on the top of a rometer fully-anechoic chamber. The position of the highest radiation. To meters away from the interference the top of a variable-height antennes varied from one meter to four me	ber. The table was rotated tion. otating table 1.5 meters e table was rotated 360 ence-receiving antenna, a tower. ters above the ground to						
	polarizations of the ante e. For each suspected e the antenna was tuned t below 30MHz, the anten was turned from 0 degree f. The test-receiver system Bandwidth with Maximum g. If the emission level of	n value of the field strength. Both he man are set to make the measurer emission, the EUT was arranged to to heights from 1 meter to 4 meters and was tuned to heights 1 meter) sees to 360 degrees to find the maxem was set to Peak Detect Function Hold Mode. If the EUT in peak mode was 10dE ould be stopped and the peak value.	ment. o its worst case and then s (for the test frequency c and the rotatable table timum reading. on and Specified 3 lower than the limit						
	reported. Otherwise the emissions that did not have 10dB margin would be retested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet. h. Test the EUT in the lowest channel, the middle channel, the Highest channel. i. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is the worst case. j. Repeat above procedures until all frequencies measured was complete. Remark: 1) For emission below 1GHz, through pre-scan found the worst case is the lowest								

102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park, Tangtou Community, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, China

Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com Page 26 of 63

channel. Only the worst case is recorded in the report.

2) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows: Final Test Level =Receiver Reading + Antenna Factor + Cable Factor "C Preamplifier Factor


Report No.: DACE241119010RL001

3) Scan from 9kHz to 25GHz, the disturbance above 12.75GHz and below 30MHz was very low. The points marked on above plots are the highest emissions could be found when testing, so only above points had been displayed. The amplitude of spurious emissions from the radiator which are attenuated more than 20dB below the limit need not be reported. Fundamental frequency is blocked by filter, and only spurious emission is shown.

4.7.1 E.U.T. Operation:

Operating Environment:								
Temperature: 22.6 °C Humidity: 48 % Atmospheric Pressure: 102 kPa						102 kPa		
Pretest mode:	Pretest mode: TM1,TM2,TM3							
Final test mode: TM1								

4.7.2 Test Data:

Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com Page 27 of 63

TM1 / Polarization: Vertical / Band: 2400-2483.5 MHz / BW: 1 / CH: L

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Height (cm)	Azimuth (deg.)	P/F	Remark
1 *	31.1798	27.23	0.05	27.28	40.00	-12.72	QP	100		Р	
2	83.2298	33.95	-11.65	22.30	40.00	-17.70	QP	100		Р	
3	116.9495	27.15	-5.56	21.59	43.50	-21.91	QP	100		Р	
4	357.9287	27.29	-4.53	22.76	46.00	-23.24	QP	100		Р	
5	482.2156	27.51	-1.21	26.30	46.00	-19.70	QP	100		Р	
6	955.4381	27.53	5.71	33.24	46.00	-12.76	QP	100		Р	

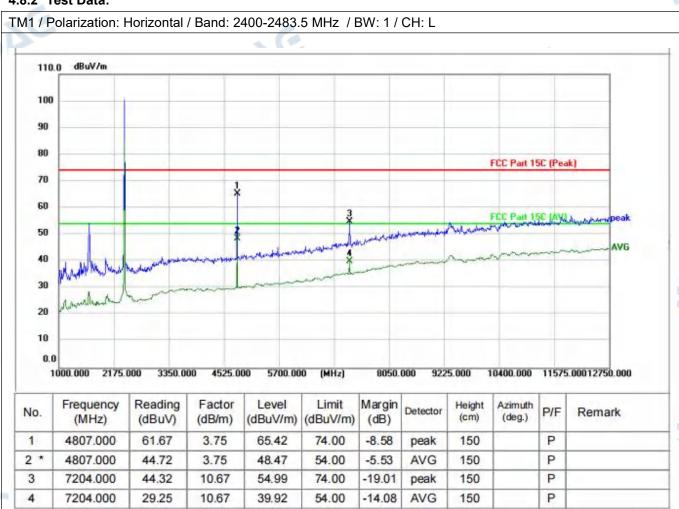
4.8 Emissions in frequency bands (above 1GHz)

Test Requirement:		ons which fall in the restricted bar y with the radiated emission limits			
Test Limit:	Frequency (MHz)	Field strength (microvolts/meter)	Measurement distance (meters)		
	0.009-0.490	2400/F(kHz)	300		
	0.490-1.705	24000/F(kHz)	30		
	1.705-30.0	30	30		
	30-88	100 **	3		
	88-216	150 **	3		
	216-960	200 **	3		
	Above 960	500	3		
	The emission limits shown employing a CISPR quasi-p 110–490 kHz and above 10	, the tighter limit applies at the bain the above table are based on neak detector except for the frequition 00 MHz. Radiated emission limits are employing an average detector	neasurements ency bands 9–90 kHz, s in these three bands		
Test Method:	ANSI C63.10-2013 section KDB 558074 D01 15.247 M	6.6.4			
Procedure:	above the ground at a 3 or 360 degrees to determine the b. For above 1GHz, the EU above the ground at a 3 medegrees to determine the post. The EUT was set 3 or 10 which was mounted on the d. The antenna height is varied determine the maximum varied polarizations of the antenna e. For each suspected emist the antenna was tuned to helow 30MHz, the antenna	T was placed on the top of a rotal 10 meter semi-anechoic chamber he position of the highest radiation. T was placed on the top of a rotal ster fully-anechoic chamber. The tosition of the highest radiation. The meters away from the interference top of a variable-height antennation of the field strength. Both horist are set to make the measurements in the EUT was arranged to its eights from 1 meter to 4 meters (was tuned to heights 1 meter) and the position of the field to the field	r. The table was rotated n. ting table 1.5 meters table was rotated 360 ce-receiving antenna, tower. It is above the ground to izontal and vertical int. It is worst case and then for the test frequency of the rotatable table		
	f. The test-receiver system Bandwidth with Maximum H g. If the emission level of th specified, then testing could reported. Otherwise the em tested one by one using pe reported in a data sheet. h. Test the EUT in the lower i. The radiation measureme Transmitting mode, and fou j. Repeat above procedures Remark:	to 360 degrees to find the maxim was set to Peak Detect Function fold Mode. e EUT in peak mode was 10dB to be stopped and the peak values issions that did not have 10dB mak, quasi-peak or average methost channel, the middle channel, the nts are performed in X, Y, Z axis and the X axis positioning which it is until all frequencies measured was, through pre-scan found the wo	and Specified ower than the limit s of the EUT would be argin would be re- d as specified and then he Highest channel. positioning for is the worst case. was complete.		

102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park, Tangtou Community, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, China

Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com Page 29 of 63

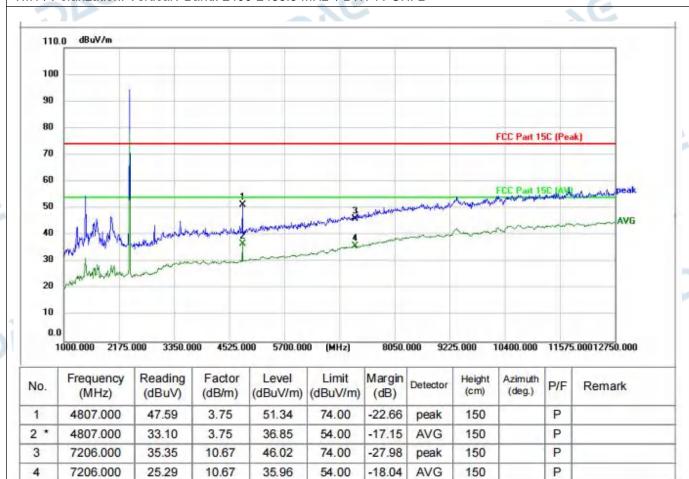
channel. Only the worst case is recorded in the report.


2) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows: Final Test Level =Receiver Reading + Antenna Factor + Cable Factor "C Preamplifier Factor

3) Scan from 9kHz to 25GHz, the disturbance above 12.75GHz and below 30MHz was very low. The points marked on above plots are the highest emissions could be found when testing, so only above points had been displayed. The amplitude of spurious emissions from the radiator which are attenuated more than 20dB below the limit need not be reported. Fundamental frequency is blocked by filter, and only spurious emission is shown.

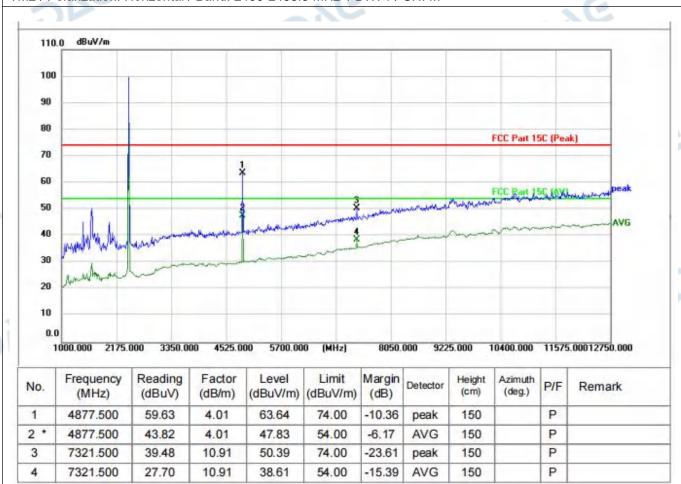
4.8.1 E.U.T. Operation:

Operating Environment:								
Temperature:	22.6 °C	_ >	Humidity:	48 %	Atmospheric Pressure:	102 kPa		
Pretest mode:	Pretest mode: TM1, TM2, TM3							
Final test mode:	TM1,	TM2, TM3		270				


4.8.2 Test Data:

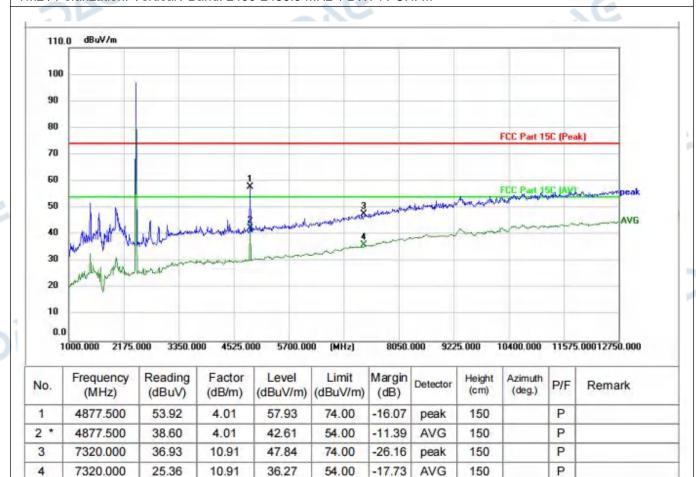
Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com Page 30 of 63

TM1 / Polarization: Vertical / Band: 2400-2483.5 MHz / BW: 1 / CH: L

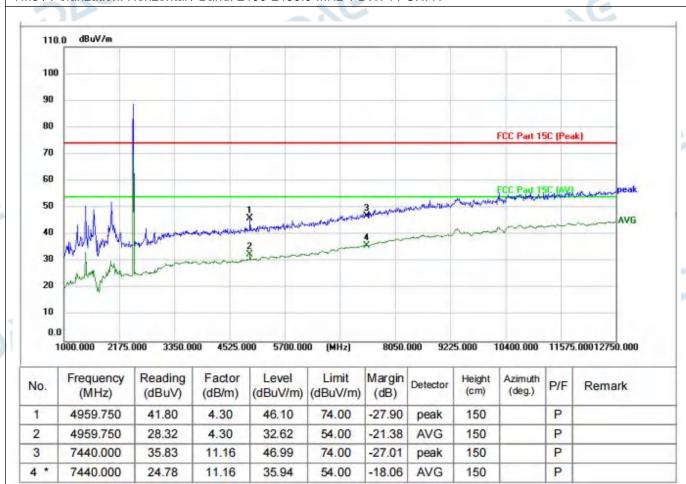

Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com Page 31 of 63

DAG

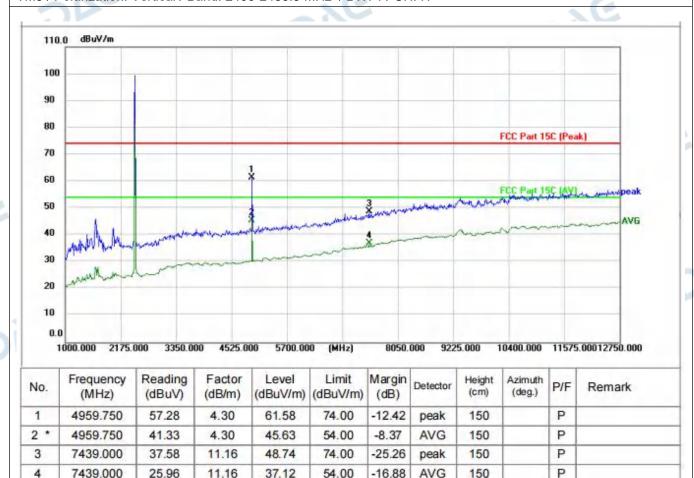
Report No.: DACE241119010RL001


TM2 / Polarization: Horizontal / Band: 2400-2483.5 MHz / BW: 1 / CH: M

DAG


TM2 / Polarization: Vertical / Band: 2400-2483.5 MHz / BW: 1 / CH: M

Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com Page 33 of 63


TM3 / Polarization: Horizontal / Band: 2400-2483.5 MHz / BW: 1 / CH: H

Web: http://www.dace-lab.com Tel: +86-755-23010613 Page 34 of 63

TM3 / Polarization: Vertical / Band: 2400-2483.5 MHz / BW: 1 / CH: H

DAG

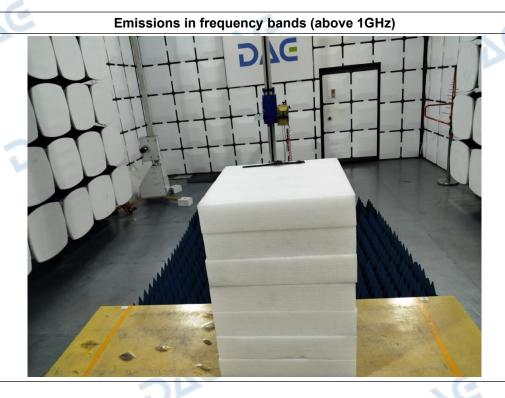


5 TEST SETUP PHOTOS

Conducted Emission at AC power line

Emissions in frequency bands (below 1GHz)

102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park, Tangtou Community, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, China


Web: http://www.dace-lab.com

Tel: +86-755-23010613

E-mail: service@dace-lab.com

Page 36 of 63

DAG

DAG

DAG

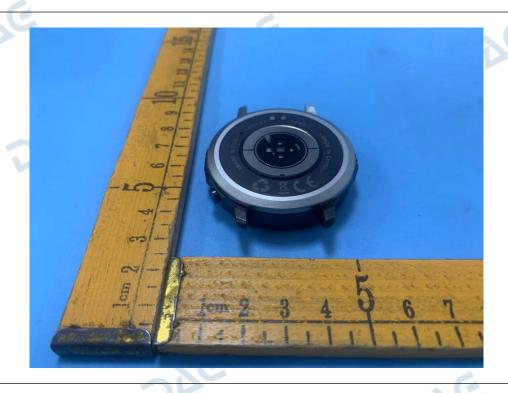
Report No.: DACE241119010RL001

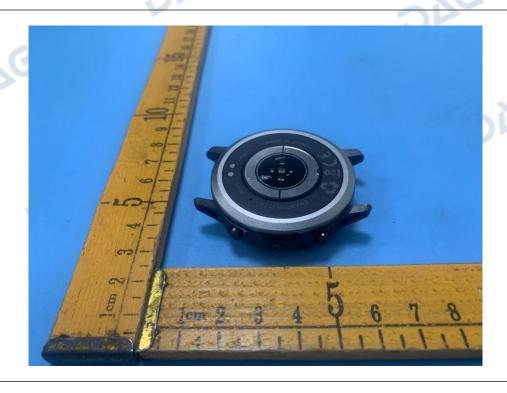
PHOTOS OF THE EUT

Tel: +86-755-23010613 Page 38 of 63 Web: http://www.dace-lab.com E-mail: service@dace-lab.com

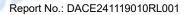
102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park, Tangtou Community, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, China

Web: http://www.dace-lab.com

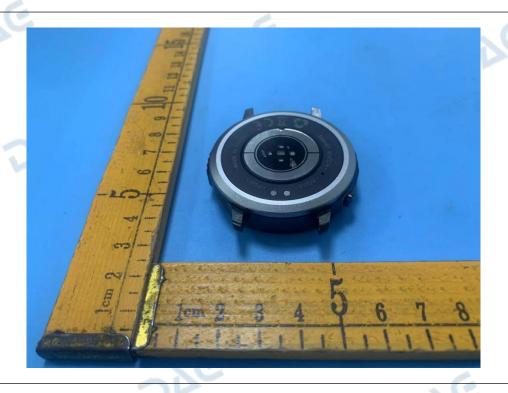

Tel: +86-755-23010613


E-mail: service@dace-lab.com

Page 39 of 63


102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park, Tangtou Community, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, China

Web: http://www.dace-lab.com


Tel: +86-755-23010613

E-mail: service@dace-lab.com

Page 40 of 63

102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park, Tangtou Community, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, China

Web: http://www.dace-lab.com

Tel: +86-755-23010613

E-mail: service@dace-lab.com

Page 41 of 63

V1.0

Report No.: DACE241119010RL001

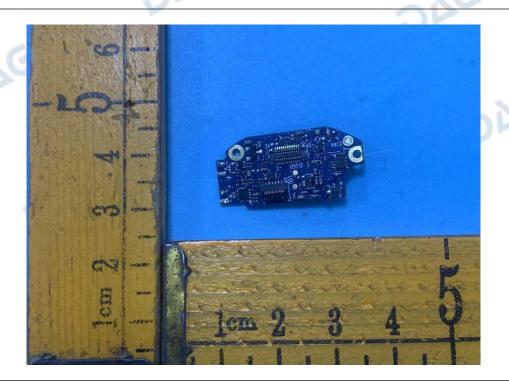
Web: http://www.dace-lab.com

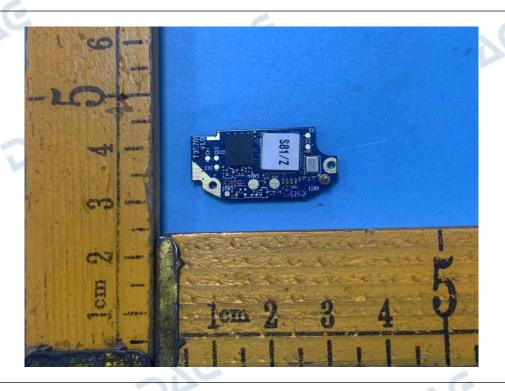
Tel: +86-755-23010613

E-mail: service@dace-lab.com

Page 42 of 63

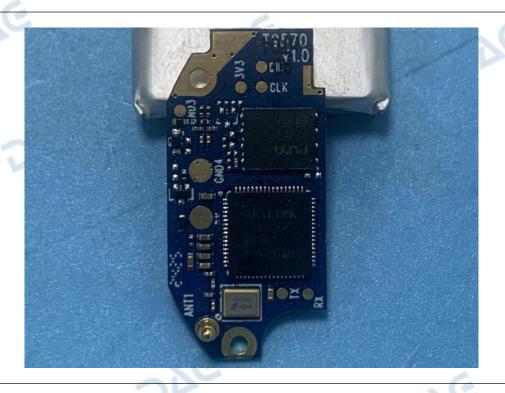
Internal

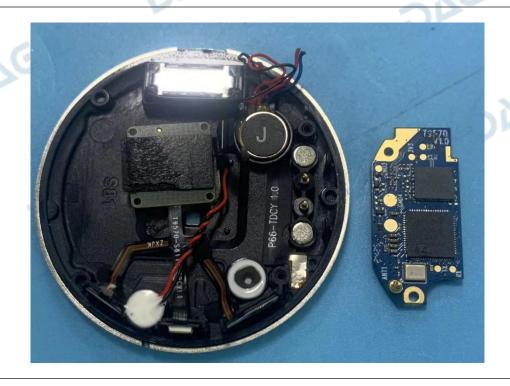




102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park, Tangtou Community, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, China

Web: http://www.dace-lab.com

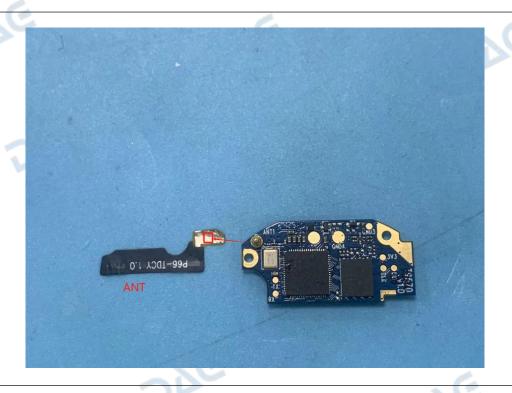

Tel: +86-755-23010613

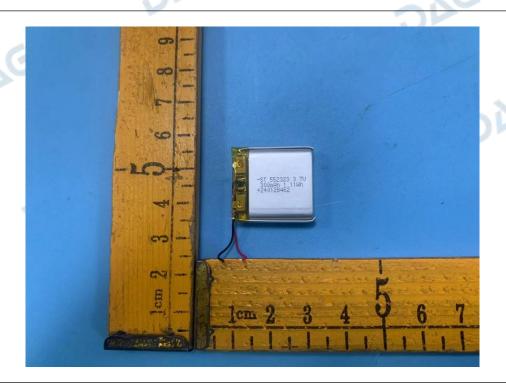

E-mail: service@dace-lab.com

Page 45 of 63

102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park, Tangtou Community, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, China

Web: http://www.dace-lab.com


Tel: +86-755-23010613


E-mail: service@dace-lab.com

Page 46 of 63

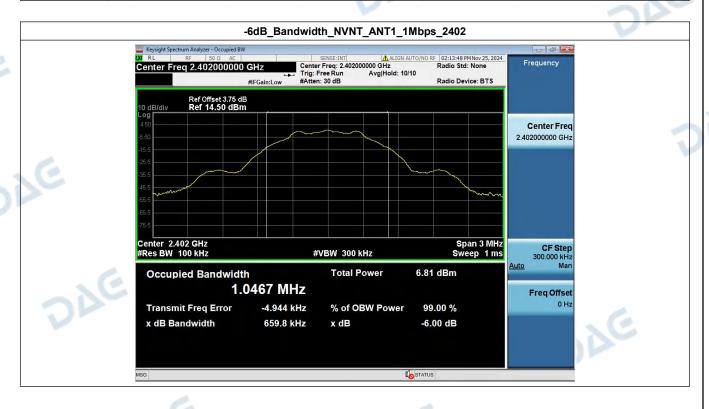
V1.0

DAG

Report No.: DACE241119010RL001

Appendix

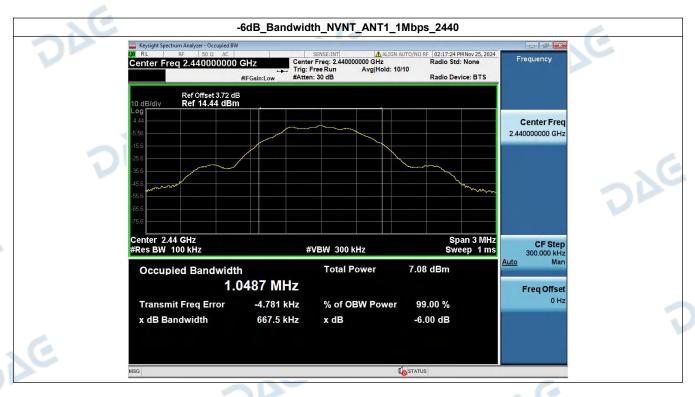
DAG

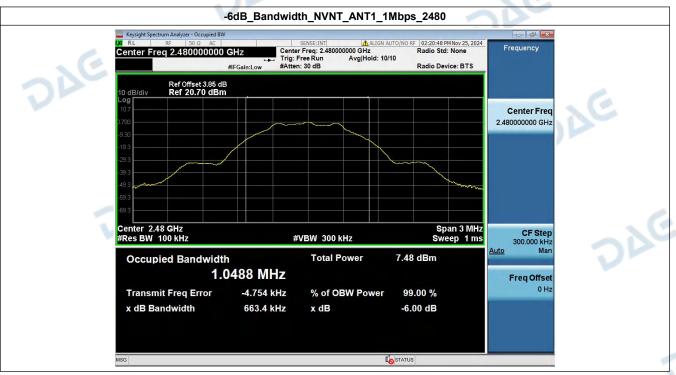


HT241119013--S81--BLE--FCC FCC_BLE (Part15.247) Test Data

1. -6dB Bandwidth

V1.0

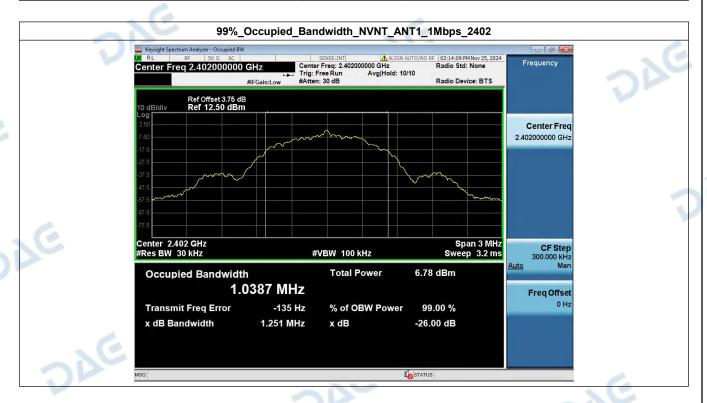

Condition	Antenna	Rate	Frequency (MHz)	-6dB BW(kHz)	limit(kHz)	Result
NVNT	ANT1	1Mbps	2402.00	659.77	500	Pass
NVNT	ANT1	1Mbps	2440.00	667.54	500	Pass
NVNT	ANT1	1Mbps	2480.00	663.41	500	Pass

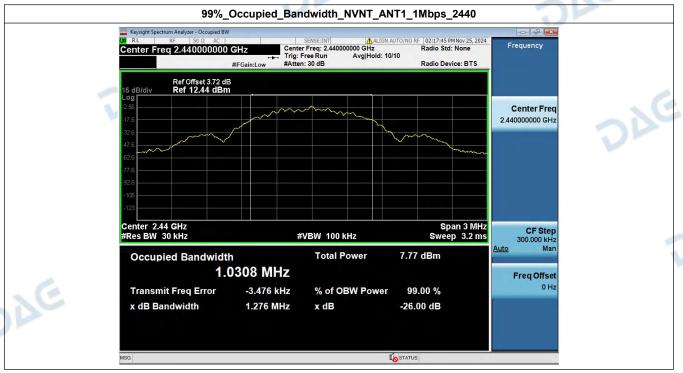


Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com Page 49 of 63

V1.0

Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com Page 50 of 63

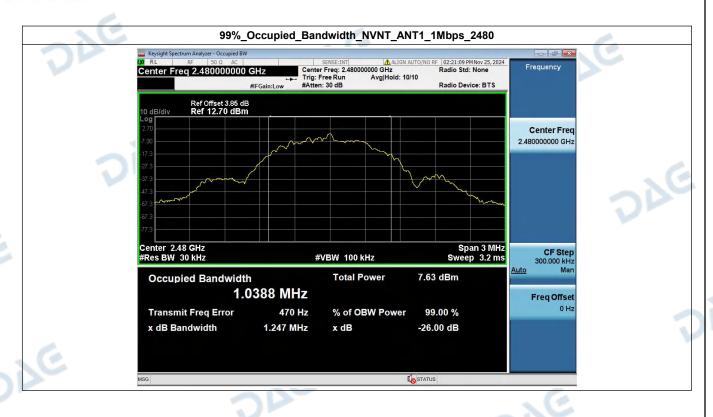



2. 99% Occupied Bandwidth

V1.0

Condition	Antenna	Rate	Frequency (MHz)	99%%BW(MHz)
NVNT	ANT1	1Mbps	2402.00	1.039
NVNT	ANT1	1Mbps	2440.00	1.031
NVNT	ANT1	1Mbps	2480.00	1.039

Report No.: DACE241119010RL001

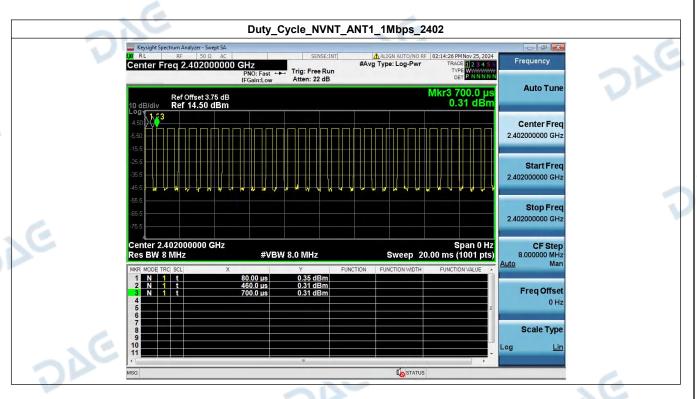

Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com Page 51 of 63

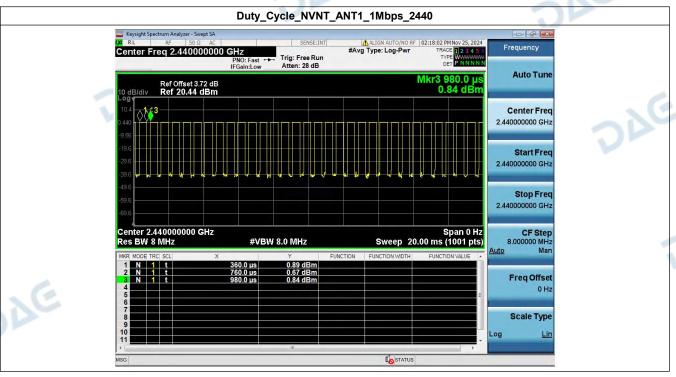
DAG

DAG

V1.0

Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com Page 52 of 63


DAG

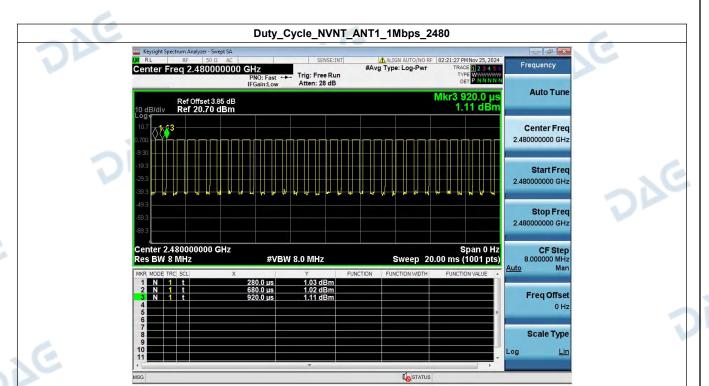


V1.0

3. Duty Cycle

Condition	Antenna	Rate	Frequency (MHz)	Dutycycle(%)	Duty_factor
NVNT	ANT1	1Mbps	2402.00	61.29	2.13
NVNT	ANT1	1Mbps	2440.00	67.74	1.69
NVNT	ANT1	1Mbps	2480.00	65.63	1.83

Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com Page 53 of 63 V1.0



DAG

DAG

DAG

DAG

DAG

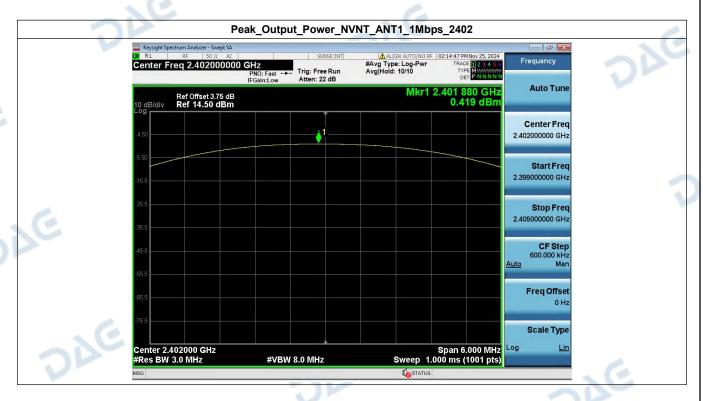
DAG

DIE

DAG

Report No.: DACE241119010RL001

DAG

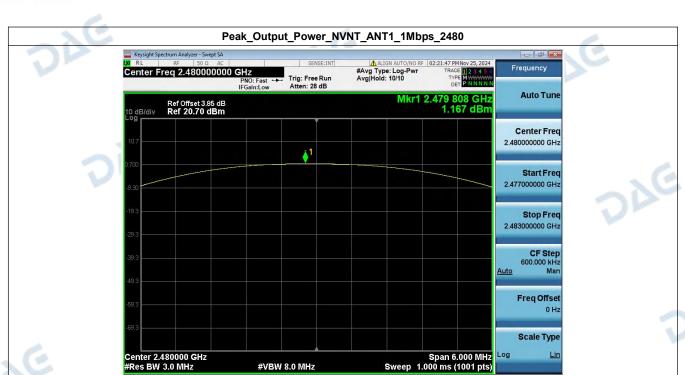

Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com Page 54 of 63



4. Peak Output Power

V1.0

Condition	Antenna	Rate	Frequency (MHz)	Max. Conducted Power(dBm)	Max. Conducted Power(mW)	Limit(mW)	Result
NVNT	ANT1	1Mbps	2402.00	0.42	1.10	1000	Pass
NVNT	ANT1	1Mbps	2440.00	0.90	1.23	1000	Pass
NVNT	ANT1	1Mbps	2480.00	1.17	1.31	1000	Pass



DAG

DAG

DAG

DAG

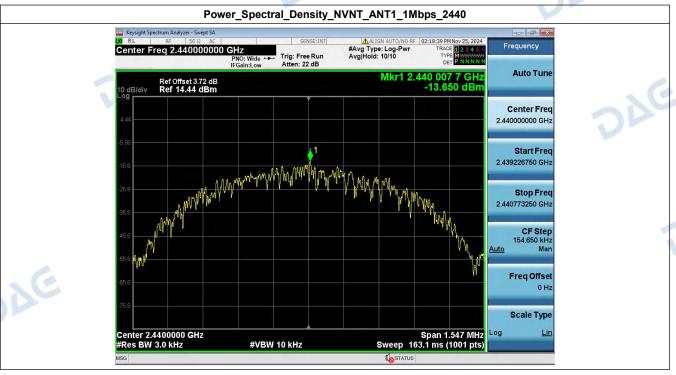
DAG

DAG

Report No.: DACE241119010RL001

DAG

Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com Page 56 of 63



5. Power Spectral Density

V1.0

Condition	Antenna	Rate	Frequency (MHz)	Power Spectral Density(dBm/3kHz)	Limit(dBm/3kHz)	Result
NVNT	ANT1	1Mbps	2402.00	-15.79	8	Pass
NVNT	ANT1	1Mbps	2440.00	-13.65	8	Pass
NVNT	ANT1	1Mbps	2480.00	-14.95	8	Pass



DAG

DAG

DAG

DAG

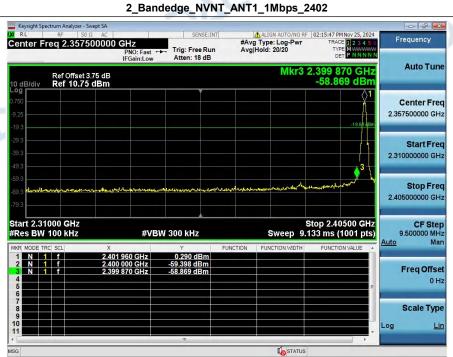
DAG

DAG

DAG

DAG

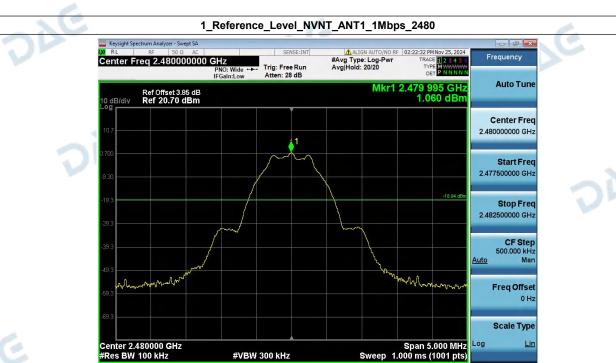
Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com Page 58 of 63

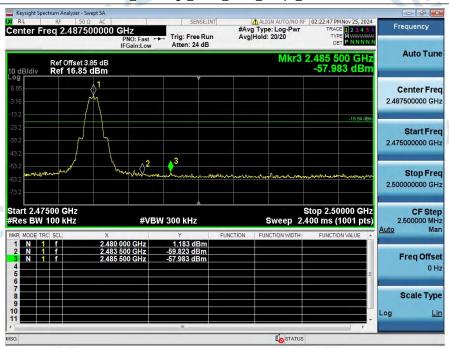

6. Bandedge

V1.0

Condition	Antenna	Rate	TX_Frequency (MHz)	Max. Mark Frequency (MHz)	Spurious level(dBm)	limit(dBm)	Result
NVNT	ANT1	1Mbps	2402.00	2399.870	-58.869	-19.688	Pass
NVNT	ANT1	1Mbps	2480.00	2485.500	-57.983	-18.940	Pass

Report No.: DACE241119010RL001



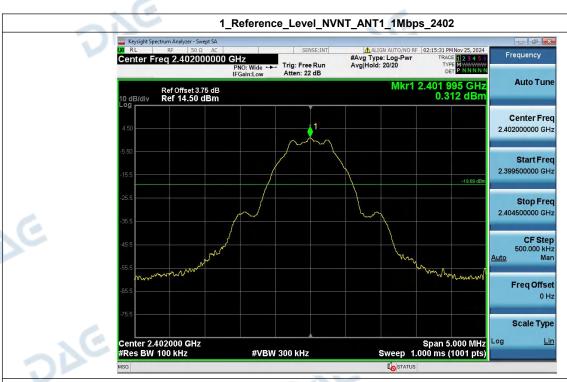

4

V1.0

2_Bandedge_NVNT_ANT1_1Mbps_2480

#VBW 300 kHz

Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com Page 60 of 63


DAG

7. Spurious Emission

V1.0

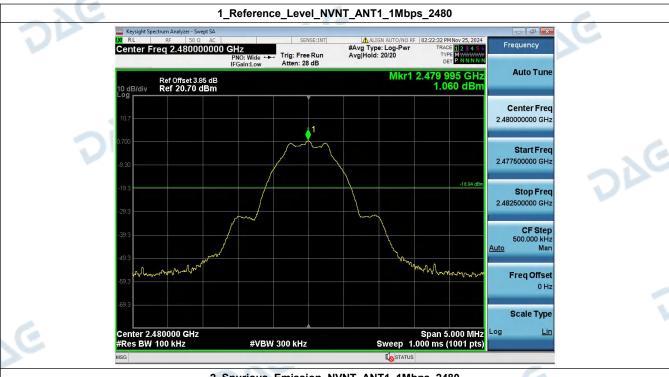
Condition	Antenna	Rate	TX_Frequency(MHz)	Spurious MAX.Value(dBm)	Limit	Result
NVNT	ANT1	1Mbps	2402.00	-46.665	-19.688	Pass
NVNT	ANT1	1Mbps	2440.00	-46.170	-19.136	Pass
NVNT	ANT1	1Mbps	2480.00	-45.207	-18.940	Pass

Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com Page 61 of 63


4

V1.0

2_Spurious_Emission_NVNT_ANT1_1Mbps_2440



Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com Page 62 of 63

DAG

4

Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com Page 63 of 63