

RADIO TEST REPORT

Report ID Project ID

REP089539 PRJ0076072

Type of assessment:

MPE Calculation report

Manufacturer:

Geotab Inc.

Product Marketing Name (PMN): Model number:

Telematics Device GDSAA2

FCC identifier:

2AV57GDSAA2

Specification:

- FCC 47 CFR Part 1 Subpart I, §1.1307, §1.1310
- FCC 47 CFR Part 2 Subpart J, §2.1091
- FCC KDB 447498 D01 General RF Exposure Guidance v06
- EN IEC 62311: 2020

Date of issue: April 25, 2025

Alvin Liu, EMC/RF Specialist

Prepared by

lac-M

Signature

Lab and test locations

Company name	Nemko Canada Inc.		
Facilities	Ottawa site: 303 River Road Ottawa, Ontario Canada K1V 1H2	Montréal site: 292 Labrosse Avenue Pointe-Claire, Québec Canada H9R 5L8	Cambridge site: 1-130 Saltsman Drive Cambridge, Ontario Canada N3E 0B2
	Tel: +1 613 737 9680 Fax: +1 613 737 9691	Tel: +1 514 694 2684 Fax: +1 514 694 3528	Tel: +1 519 650 4811
Test site identifier	CA2040 (Ottawa)CA2041 (Montreal)CA0101 (Cambridge)		
Website	www.nemko.com		

Limits of responsibility

Note that the results contained in this report relate only to the items tested and were obtained in the period between the date of initial receipt of samples and the date of issue of the report.

This test report has been completed in accordance with the requirements of ISO/IEC 17025. All results contained in this report are within Nemko Canada's ISO/IEC 17025 accreditation.

Copyright notification

Nemko Canada Inc. authorizes the applicant to reproduce this report provided it is reproduced in its entirety and for use by the company's employees only. Any use which a third party makes of this report, or any reliance on or decisions to be made based on it, are the responsibility of such third parties.

Nemko Canada Inc. accepts no responsibility for damages, if any, suffered by any third party as a result of decisions made or actions based on this report.

© Nemko Canada Inc.

Section 1 Evaluation summary

1.1 MPE calculation for standalone transmission

1.1.1 References, definitions and limits

FCC §2.1091(d)

(2) For operations within the frequency range of 300 kHz and 6 GHz (inclusive), the limits for maximum permissible exposure (MPE), derived from whole-body SAR limits and listed in Table 1 in paragraph (e)(1) of this section, may be used instead of whole-body SAR limits as set forth in paragraphs (a) through (c) of this section to evaluate the environmental impact of human exposure to RF radiation as specified in §1.1307(b) of this part, except for portable devices as defined in §2.1093 of this chapter as these evaluations shall be performed according to the SAR provisions in §2.1093.

Table 1.1-1: Table 1 to §1.1310(e)(1) — Limits for Maximum Permissible Exposure (MPE)

Frequency range	Electric field strength	Magnetic field strength	Power density	Averaging time
(MHz)	(V/m)	(A/m)	(mW/cm²)	(minutes)
	(i) Limit	ts for Occupational/Controlled Ex	posure	
0.3-3.0	614	1.63	*(100)	≤6
3.0–30	1842 / f	4.89 / f	*(900 / f ²)	<6
30–300	61.4	0.163	1.0	<6
300–1500			f/300	<6
1500-100000			5	<6
	(ii) Limits fo	r General Population/Uncontrolle	d Exposure	
0.3-1.34	614	1.63	*(100)	<30
1.34-30	824 / f	2.19 / f	*(180 / f ²)	<30
30–300	27.5	0.073	0.2	<30
300-1500			f / 1500	<30
1500-100000			1.0	<30

Notes: f = frequency in MHz. * = Plane-wave equivalent power density.

EN 62311

Limits used are from Table 7 of ICNIRP Guidelines for limiting exposure to time-varying electric, magnetic and electromagnetic fields (up to 300 GHz)
 (Published in: HEALTH PHYSICS 74 (4):494-522; 1998)

Table 1.1-2: Table 7. Reference levels for general public exposure to time-varying electric and magnetic fields (unperturbed rms values).

Frequency range (f)	E-field strength (V/m)	H-field strength (A/m)	B-field (μT)	Equivalent plane wave power density Seq (W/m²)
Up to 1 Hz	-	3.2 × 10 ⁴	4 × 10 ⁴	-
1–8 Hz	10,000	$3.2 \times 10^4/f^2$	$4 \times 10^4/f^2$	_
8–25 Hz	10,000	4,000/f	5,000/f	-
0.025–0.8 kHz	250/f	4/f	5/ <i>f</i>	_
0.8–3 kHz	250/f	5	6.25	-
3–150 kHz	87	5	6.25	-
0.15–1 MHz	87	0.73/f	0.92/f	-
1–10 MHz	87/ <i>f</i> ^{1/2}	0.73/f	0.92/f	_
10–400 MHz	28	0.073	0.092	2
400–2,000 MHz	1.375 <i>f</i> ^{1/2}	$0.0037f^{1/2}$	$0.0046f^{1/2}$	<i>f</i> /200
2–300 GHz	61	0.16	0.20	10

Notes: None

Report reference ID: REP089539

References, definitions and limits, continued

Equation from page 18 of OET Bulletin 65, Edition 97-01

$$S = \frac{PG}{4\pi R^2}$$

where: $S = power density (mW/cm^2 or W/m^2)$

P = power input to the antenna (mW or W)

G = power gain of the antenna in the direction of interest relative to an isotropic radiator

R = distance to the center of radiation of the antenna (cm or m)

1.1.2 EUT technical information

Transmitter details	2G (Band 5)	3G (Band 2)	LTE (Band 7)
Prediction frequency	836.6 MHz	2535.3 MHz	1880.5 MHz
Antenna type	WWAN PIFA antenna	WWAN PIFA antenna	WWAN PIFA antenna
Antenna gain	-2.94 dBi	-1.54 dBi	-1.76 dBi
Maximum transmitter radiated power	26.82 dBm	29.46 dBm	25.14 dBm
Maximum transmitter conducted power	29.76 dBm	31.00 dBm	26.90 dBm
Prediction distance (declared)	20 cm	20 cm	20 cm

1.1.3 MPE calculation – FCC

Fundamental transmit (prediction) frequency:	836.6	MHz	2535.3	MHz	1880.5	MHz
Maximum measured conducted peak output power:	29.76	dBm	31.0	dBm	26.9	dBm
Cable and/or jumper loss:	0	dB	0	dB	0	dB
Maximum peak power at antenna input terminal:	29.76	dBm	31.0	dBm	26.9	dBm
Tx On time:	1.000	ms	1.000	ms	1.000	ms
Tx period time:	1.000	ms	1.000	ms	1.000	ms
Average factor:	100	%	100	%	100	%
Vaximum calculated average power at antenna input terminal:	946.237	mW	1258.925	mW	489.779	mW
Single Antenna gain (typical):	-2.94		-1.54	dBi	-1.76	dBi
Number of antennae:	1	-	1		1	
Total system gain:	-2.94	dBi	-1.54	dBi	-1.76	dBi
MPE limit for uncontrolled exposure at prediction frequency:	0.558	mW/cm²	1.000	mW/cm²	1.000	mW/cm²
MPE limit for uncontrolled exposure at prediction frequency:		mW/cm²		mW/cm²		mW/cm²
MPE limit for uncontrolled exposure at prediction frequency: Minimum calculated prediction distance for compliance:	5.577	mW/cm² W/m² cm	10.000		10.000	
_	5.577 20	W/m²	10.000	W/m ²	10.000	W/m ²
Minimum calculated prediction distance for compliance:	5.577 20 20	W/m² cm	10.000 20 20	W/m² cm	10.000 20 20	W/m² cm
Minimum calculated prediction distance for compliance: _ Typical (declared) distance: _	5.577 20 20 0.096	W/m ² cm	10.000 20 20	W/m ² cm cm mW/cm ²	10.000 20 20	W/m ² cm cm mW/cm ²
Minimum calculated prediction distance for compliance: _ Typical (declared) distance: _	5.577 20 20 0.096	w/m² cm cm mw/cm²	10.000 20 20 0.176	W/m ² cm cm mW/cm ² W/m ²	10.000 20 20 0.065	W/m ² cm cm mW/cm ² W/m ²

1.1.4 MPE calculation – EN 62311

926.6	NALL 2	2525.2	NALL-	1000 E	NALL-2
	,				
					dB
-2.94	dBi	-1.54	dBi	-1.76	dBi
1		1		1	
-2.94	dBi	-1.54	dBi	-1.76	dBi
0.419		1 000		0.040	
20	cm	20	cm	20	cm
20	cm	20	cm	20	cm
0.096	mW/cm²	0.176	mW/cm²	0.065	mW/cm²
0.957	W/m ²	1.757	W/m ²	0.650	W/m ²
6.41	dB	7.55	dB	11.61	dB
			-		
	29.76 0 29.76 1.000 1.000 100 946.237 -2.94 1 -2.94 0.418 4.183 20 20 0.096	836.6 MHz 29.76 dBm 0 dB 29.76 dBm 1.000 ms 1.000 ms 1.000 dB 946.237 mW -2.94 dBi -2.94 dBi 0.418 mw/cm² 4.183 W/m² 20 cm 0.096 mw/cm² 0.957 W/m² 6.41 dB	29.76 dBm 31 0 dB 0 29.76 dBm 31 1.000 ms 1.000 100 % 100 946.237 mW 1258.925 -2.94 dBi -1.54 1 1 -2.94 dBi -1.54 0.418 mW/cm² 1.000 4.183 W/m² 10.000 20 cm 20 0.096 mW/cm² 0.176 0.957 W/m² 1.757	29.76 dBm 31 dBm 0 dB 0 dB 29.76 dBm 31 dBm 1.000 ms 1.000 ms 1.000 ms 1.000 ms 100 % 100 % 946.237 mW 1258.925 mW -2.94 dBi -1.54 dBi 1 -1.54 dBi 0.418 mW/cm² 1.000 mW/cm² 4.183 W/m² 10.000 W/m² 20 cm 20 cm 0.096 mW/cm² 0.176 mW/cm² 0.957 W/m² 1.757 W/m²	29.76 dBm 31 dBm 26.9 0 dB 0 dB 0 29.76 dBm 31 dBm 26.9 1.000 ms 1.000 ms 1.000 1.000 ms 1.000 ms 1.000 100 % 100 100 946.237 mW 1258.925 mW 489.779 -2.94 dBi -1.54 dBi -1.76 1 1 1 -2.94 dBi -1.54 dBi -1.76 0.418 mW/cm² 1.000 mW/cm² 0.940 4.183 W/m² 10.000 W/m² 9.403 20 cm 20 cm 20 20 cm 20 cm 20 0.096 mW/cm² 0.176 mW/cm² 0.065 0.957 W/m² 1.757 W/m² 0.650

1.1.5 Verdict

The calculation is below the limit; therefore, the product is passing the RF Exposure requirements for the declared distance.

End of the test report