3300 MHz Dipole Calibration Certificate Calibration Laboratory of Schmid & Partner **Engineering AG** Zeughausstrasse 43, 8004 Zurich, Switzerland Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura **Swiss Calibration Service** Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Client CTTL Calibration date: Certificate No. D3300V2-1011_Jun23 ## CALIBRATION CERTIFICATE D3300V2 - SN:1011 Object QA CAL-22.v7 Calibration procedure(s) Calibration Procedure for SAR Validation Sources between 3-10 GHz This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. June 21, 2023 All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) | Primary Standards | ID# | Cal Date (Certificate No.) | Scheduled Calibration | |---------------------------------|--------------------|-----------------------------------|------------------------| | Power meter NRP2 | SN: 104778 | 30-Mar-23 (No. 217-03804/03805) | Mar-24 | | Power sensor NRP-Z91 | SN: 103244 | 30-Mar-23 (No. 217-03804) | Mar-24 | | Power sensor NRP-Z91 | SN: 103245 | 30-Mar-23 (No. 217-03805) | Mar-24 | | Reference 20 dB Attenuator | SN: BH9394 (20k) | 30-Mar-23 (No. 217-03809) | Mar-24 | | Type-N mismatch combination | SN: 310982 / 06327 | 30-Mar-23 (No. 217-03810) | Mar-24 | | Reference Probe EX3DV4 | SN: 3503 | 07-Mar-23 (No. EX3-3503_Mar23) | Mar-24 | | DAE4 | SN: 601 | 19-Dec-22 (No. DAE4-601_Dec22) | Dec-23 | | Secondary Standards | ID# | Check Date (in house) | Scheduled Check | | Power meter E4419B | SN: GB39512475 | 30-Oct-14 (in house check Oct-22) | In house check: Oct-24 | | Power sensor HP 8481A | SN: US37292783 | 07-Oct-15 (in house check Oct-22) | In house check: Oct-24 | | Power sensor HP 8481A | SN: MY41093315 | 07-Oct-15 (in house check Oct-22) | In house check: Oct-24 | | RF generator R&S SMT-06 | SN: 100972 | 15-Jun-15 (in house check Oct-22) | In house check: Oct-24 | | Network Analyzer Agilent E8358A | SN: US41080477 | 31-Mar-14 (in house check Oct-22) | In house check: Oct-24 | | | Name | Function | Signature / | | Calibrated by: | Krešimir Franjić | Laboratory Technician | The second second | | Approved by: | Sven Kühn | Technical Manager | 54 | Certificate No: D3300V2-1011_Jun23 Page 1 of 6 This calibration certificate shall not be reproduced except in full without written approval of the laboratory. Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland C Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Glossary: TSL tissue simulating liquid ConvF N/A sensitivity in TSL / NORM x,y,z not applicable or not measured Calibration is Performed According to the Following Standards: a) IEC/IEEE 62209-1528, "Measurement Procedure For The Assessment Of Specific Absorption Rate Of Human Exposure To Radio Frequency Fields From Hand-Held And Body-Worn Wireless Communication Devices - Part 1528: Human Models, Instrumentation And Procedures (Frequency Range of 4 MHz to 10 GHz)", October 2020. b) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz" #### **Additional Documentation:** c) DASY System Handbook ## Methods Applied and Interpretation of Parameters: - Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. - Antenna Parameters with TSL: The source is mounted in a touch configuration below the center marking of the flat phantom. - Return Loss: This parameter is measured with the source positioned under the liquid filled phantom (as described in the measurement condition clause). The Return Loss ensures low reflected power. No uncertainty required. - SAR measured: SAR measured at the stated antenna input power. - SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector. - SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result. The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%. Certificate No: D3300V2-1011_Jun23 Page 2 of 6 ## **Measurement Conditions** DASY system configuration, as far as not given on page 1. | DASY Version | DASY52 | V52.10.4 | |------------------------------|----------------------------|----------------------------------| | Extrapolation | Advanced Extrapolation | | | Phantom | Modular Flat Phantom | | | Distance Dipole Center - TSL | 10 mm | with Spacer | | Zoom Scan Resolution | dx, dy = 4 mm, dz = 1.4 mm | Graded Ratio = 1.4 (Z direction) | | Frequency | 3300 MHz ± 1 MHz | | ## **Head TSL parameters** The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 38.2 | 2.71 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 38.1 ± 6 % | 2.79 mho/m ± 6 % | | Head TSL temperature change during test | < 0.5 °C | | | ## SAR result with Head TSL | SAR averaged over 1 cm ³ (1 g) of Head TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 100 mW input power | 6.67 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 66.1 W/kg ± 19.9 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Head TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 100 mW input power | 2.56 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 25.5 W/kg ± 19.5 % (k=2) | Certificate No: D3300V2-1011_Jun23 Page 3 of 6 ## Appendix (Additional assessments outside the scope of SCS 0108) ## Antenna Parameters with Head TSL | Impedance, transformed to feed point | 53.8 Ω - 8.0 jΩ | | |--------------------------------------|-----------------|--| | Return Loss | - 21.4 dB | | ## General Antenna Parameters and Design | Electrical Delay (one direction) | Electrical Delay (one direction) | 1.124 ns | |----------------------------------|----------------------------------|----------| |----------------------------------|----------------------------------|----------| After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged. #### **Additional EUT Data** | SPEAG | |-------| | | Certificate No: D3300V2-1011_Jun23 Page 4 of 6 #### **DASY5 Validation Report for Head TSL** Date: 21.06.2023 Test Laboratory: SPEAG, Zurich, Switzerland DUT: Dipole 3300 MHz; Type: D3300V2; Serial: D3300V2 - SN:1011 Communication System: UID 0 - CW; Frequency: 3300 MHz Medium parameters used: f = 3300 MHz; $\sigma = 2.79$ S/m; $\varepsilon_r = 38.1$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011) #### DASY52 Configuration: Probe: EX3DV4 - SN3503; ConvF(7.97, 7.97, 7.97) @ 3300 MHz; Calibrated: 07.03.2023 Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn601; Calibrated: 19.12.2022 Phantom: Flat Phantom 5.0 (front); Type: QD 000 P50 AA; Serial: 1001 DASY52 52.10.4(1535); SEMCAD X 14.6.14(7501) Dipole Calibration for Head Tissue/Pin=100 mW, d=10mm, f=3300MHz/Zoom Scan, dist=1.4mm (8x8x8)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 70.47 V/m; Power Drift = -0.02 dB Peak SAR (extrapolated) = 17.4 W/kg SAR(1 g) = 6.67 W/kg; SAR(10 g) = 2.56 W/kg Smallest distance from peaks to all points 3 dB below = 8.2 mm Ratio of SAR at M2 to SAR at M1 = 75.7% Maximum value of SAR (measured) = 12.5 W/kg 0 dB = 12.5 W/kg = 10.96 dBW/kg ## Impedance Measurement Plot for Head TSL Certificate No: D3300V2-1011_Jun23 ## 3500 MHz Dipole Calibration Certificate Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Glossary: TSL tissue simulating liquid ConvF sensitivity in TSL / NORM x,y,z N/A not applicable or not measured ## Calibration is Performed According to the Following Standards: - a) IEC/IEEE 62209-1528, "Measurement Procedure For The Assessment Of Specific Absorption Rate Of Human Exposure To Radio Frequency Fields From Hand-Held And Body-Worn Wireless Communication Devices - Part 1528: Human Models, Instrumentation And Procedures (Frequency Range of 4 MHz to 10 GHz)", October 2020. - b) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz" #### **Additional Documentation:** c) DASY System Handbook ## Methods Applied and Interpretation of Parameters: - Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. - Antenna Parameters with TSL: The source is mounted in a touch configuration below the center marking of the flat phantom. - Return Loss: This parameter is measured with the source positioned under the liquid filled phantom (as described in the measurement condition clause). The Return Loss ensures low reflected power. No uncertainty required. - SAR measured: SAR measured at the stated antenna input power. - SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector. - SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result. The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%. | Certificate No: D3500V2-1016_Jun23 | Page 2 of 8 | | |------------------------------------|-------------|--| **Measurement Conditions** | DASV system | configuration | as far as | not given | on page 1 | |---------------|----------------|-----------|-----------|-----------| | DASV system (| configuration. | as far as | not given | on page | | DASY Version DASY52 | | V52.10.4 | |------------------------------|--|----------------------------------| | DASY Version Extrapolation | Advanced Extrapolation | | | Phantom | Modular Flat Phantom V5.0 | | | Distance Dipole Center - TSL | 10 mm | with Spacer | | Zoom Scan Resolution | dx, $dy = 4.0$ mm, $dz = 1.4$ mm | Graded Ratio = 1.4 (Z direction) | | Frequency | 3400 MHz ± 1 MHz
3500 MHz ± 1 MHz
3600 MHz ± 1 MHz | | Head TSL parameters at 3400 MHz The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 38.0 | 2.81 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 37.9 ± 6 % | 2.86 mho/m ± 6 % | | Head TSL temperature change during test | < 0.5 °C | | | ## SAR result with Head TSL at 3400 MHz | SAR averaged over 1 cm ³ (1 g) of Head TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 100 mW input power | 6.79 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 67.6 W/kg ± 19.9 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Head TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 100 mW input power | 2.54 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 25.4 W/kg ± 19.5 % (k=2) | Head TSL parameters at 3500 MHz The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 37.9 | 2.91 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 37.8 ± 6 % | 2.93 mho/m ± 6 % | | Head TSL temperature change during test | < 0.5 °C | | | #### SAR result with Head TSL at 3500 MHz | SAR averaged over 1 cm ³ (1 g) of Head TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 100 mW input power | 6.71 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 66.9 W/kg ± 19.9 % (k=2) | | SAR averaged over 10 cm³ (10 g) of Head TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 100 mW input power | 2.53 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 25.2 W/kg ± 19.5 % (k=2) | Certificate No: D3500V2-1016_Jun23 Page 3 of 8 ## Head TSL parameters at 3600 MHz The following parameters and calculations were applied. | the following parameters and dated attent were appropriate | Temperature | Permittivity | Conductivity | |--|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 37.8 | 3.02 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 37.7 ± 6 % | 3.01 mho/m ± 6 % | | Head TSL temperature change during test | < 0.5 °C | | | ## SAR result with Head TSL at 3600 MHz | SAR averaged over 1 cm ³ (1 g) of Head TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 100 mW input power | 6.62 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 66.2 W/kg ± 19.9 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Head TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 100 mW input power | 2.47 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 24.7 W/kg ± 19.5 % (k=2) | Certificate No: D3500V2-1016_Jun23 ## Appendix (Additional assessments outside the scope of SCS 0108) #### Antenna Parameters with Head TSL at 3400 MHz | Impedance, transformed to feed point | 45.3 Ω - 8.1 jΩ | | |--------------------------------------|-----------------|--| | Return Loss | - 20.2 dB | | #### Antenna Parameters with Head TSL at 3500 MHz | Impedance, transformed to feed point | 54.5 Ω - 2.5 jΩ | |--------------------------------------|-----------------| | Return Loss | - 26.1 dB | #### Antenna Parameters with Head TSL at 3600 MHz | Impedance, transformed to feed point | 58.6 Ω - 0.4 jΩ | |--------------------------------------|-----------------| | Return Loss | - 22.0 dB | ## **General Antenna Parameters and Design** | Electrical Delay (one direction) | 1.137 ns | |----------------------------------|----------| After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged. #### **Additional EUT Data** | Manufactured by | SPEAG | | |-----------------|-------|--| |-----------------|-------|--| Certificate No: D3500V2-1016_Jun23 Page 5 of 8 #### **DASY5 Validation Report for Head TSL** Date: 21.06.2023 Test Laboratory: SPEAG, Zurich, Switzerland DUT: Dipole 3500 MHz; Type: D3500V2; Serial: D3500V2 - SN:1016 Communication System: UID 0 - CW; Frequency: 3500 MHz, Frequency: 3400 MHz, Frequency: 3600 MHz Medium parameters used: f = 3500 MHz; $\sigma = 2.93$ S/m; $\epsilon_r = 37.8$; $\rho = 1000$ kg/m³ Medium parameters used: f = 3400 MHz; $\sigma = 2.86$ S/m; $\epsilon_r = 37.9$; $\rho = 1000$ kg/m³ Medium parameters used: f = 3600 MHz; $\sigma = 3.01$ S/m; $\epsilon_r = 37.7$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011) DASY52 Configuration: Probe: EX3DV4 - SN3503; ConvF(7.91, 7.91, 7.91) @ 3500 MHz, ConvF(7.91, 7.91, 7.91) @ 3400 MHz, ConvF(7.91, 7.91, 7.91) @ 3600 MHz; Calibrated: 07.03.2023 Sensor-Surface: 1.4mm (Mechanical Surface Detection) • Electronics: DAE4 Sn601; Calibrated: 19.12.2022 Phantom: Flat Phantom 5.0 (front); Type: QD 000 P50 AA; Serial: 1001 DASY52 52.10.4(1535); SEMCAD X 14.6.14(7501) Dipole Calibration for Head Tissue/Pin=100 mW, d=10mm, f=3500MHz/Zoom Scan, dist=1.4mm (8x8x8)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 69.74 V/m; Power Drift = 0.01 dB Peak SAR (extrapolated) = 18.0 W/kg SAR(1 g) = 6.71 W/kg; SAR(10 g) = 2.53 W/kg Smallest distance from peaks to all points 3 dB below = 8 mm Ratio of SAR at M2 to SAR at M1 = 74.9% Maximum value of SAR (measured) = 12.9 W/kg Dipole Calibration for Head Tissue/Pin=100 mW, d=10mm, f=3400MHz/Zoom Scan, dist=1.4mm (8x8x8)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 70.34 V/m; Power Drift = 0.01 dB Peak SAR (extrapolated) = 18.1 W/kg SAR(1 g) = 6.79 W/kg; SAR(10 g) = 2.54 W/kg Smallest distance from peaks to all points 3 dB below = 8 mm Ratio of SAR at M2 to SAR at M1 = 75.3% Maximum value of SAR (measured) = 13.1 W/kg Certificate No: D3500V2-1016_Jun23 Page 6 of 8 ## Dipole Calibration for Head Tissue/Pin=100 mW, d=10mm, f=3600MHz/Zoom Scan, dist=1.4mm (8x8x8)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 68.24 V/m; Power Drift = -0.00 dB Peak SAR (extrapolated) = 18.3 W/kg SAR(1 g) = 6.62 W/kg; SAR(10 g) = 2.47 W/kg Smallest distance from peaks to all points 3 dB below = 8 mm Ratio of SAR at M2 to SAR at M1 = 74.2% Maximum value of SAR (measured) = 13.0 W/kg 0 dB = 13.1 W/kg = 11.18 dBW/kg ## Impedance Measurement Plot for Head TSL Certificate No: D3500V2-1016_Jun23 Page 8 of 8 ## 3700 MHz Dipole Calibration Certificate ## Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura **Swiss Calibration Service** Accreditation No.: SCS 0108 | lent CTTL
Beijing | | Certificate No. | D3700V2-1004_Jun23 | |--|--|--|--| | ALIBRATION C | ERTIFICATE | | | | bject | D3700V2 - SN:10 | 004 | | | alibration procedure(s) | QA CAL-22.v7
Calibration Proce | dure for SAR Validation Sources | s between 3-10 GHz | | alibration date: | June 21, 2023 | | | | his calibration certificate docume | ents the traceability to nation | orial standards, willon realize the physical dis | its of measurements (51). | | he measurements and the uncer | rtainties with confidence pr | robability are given on the following pages are y facility: environment temperature $(22 \pm 3)^{\circ}$ | nd are part of the certificate. | | the measurements and the uncer | rtainties with confidence protected in the closed laborator (E critical for calibration) | robability are given on the following pages an
y facility: environment temperature (22 ± 3)%
Cal Date (Certificate No.) | nd are part of the certificate. C and humidity < 70%. Scheduled Calibration | | The measurements and the uncertainty calibrations have been conducted all calibration Equipment used (M&T Primary Standards | rtainties with confidence protected in the closed laborator TE critical for calibration) ID # SN: 104778 | robability are given on the following pages are y facility: environment temperature (22 ± 3)% Cal Date (Certificate No.) 30-Mar-23 (No. 217-03804/03805) | and are part of the certificate. C and humidity < 70%. Scheduled Calibration Mar-24 | | The measurements and the uncertainty calibrations have been conducted all calibration Equipment used (M&T Primary Standards Power meter NRP2 Power sensor NRP-Z91 | ted in the closed laborator E critical for calibration) ID # SN: 104778 SN: 103244 | robability are given on the following pages are y facility: environment temperature (22 ± 3)% Cal Date (Certificate No.) 30-Mar-23 (No. 217-03804/03805) 30-Mar-23 (No. 217-03804) | and are part of the certificate. C and humidity < 70%. Scheduled Calibration Mar-24 Mar-24 | | The measurements and the uncertainty a | rtainties with confidence protected in the closed laborator (E critical for calibration) ID # SN: 104778 SN: 103244 SN: 103245 | cobability are given on the following pages are y facility: environment temperature (22 ± 3)% Cal Date (Certificate No.) 30-Mar-23 (No. 217-03804) 30-Mar-23 (No. 217-03805) | C and humidity < 70%. Scheduled Calibration Mar-24 Mar-24 Mar-24 Mar-24 | | The measurements and the uncertainty calibrations have been conducted. Calibration Equipment used (M&T) Primary Standards Power meter NRP2 Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator | rtainties with confidence protected in the closed laborator TE critical for calibration) ID # SN: 104778 SN: 103244 SN: 103245 SN: BH9394 (20k) | Cal Date (Certificate No.) 30-Mar-23 (No. 217-03804) 30-Mar-23 (No. 217-03805) 30-Mar-23 (No. 217-03809) | C and humidity < 70%. Scheduled Calibration Mar-24 Mar-24 Mar-24 Mar-24 Mar-24 Mar-24 | | The measurements and the uncertainty calibrations have been conducted. Calibration Equipment used (M&T) Primary Standards Power meter NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination | rtainties with confidence protected in the closed laborator TE critical for calibration) ID # SN: 104778 SN: 103244 SN: 103245 SN: BH9394 (20k) SN: 310982 / 06327 | Cal Date (Certificate No.) 30-Mar-23 (No. 217-03804) 30-Mar-23 (No. 217-03805) 30-Mar-23 (No. 217-03805) 30-Mar-23 (No. 217-03805) 30-Mar-23 (No. 217-03805) 30-Mar-23 (No. 217-03809) 30-Mar-23 (No. 217-03810) | Scheduled Calibration Mar-24 Mar-24 Mar-24 Mar-24 Mar-24 Mar-24 Mar-24 Mar-24 Mar-24 | | The measurements and the uncertainty calibrations have been conducted. Calibration Equipment used (M&T) calibration Equipment used (M&T) calibration Equipment used (M&T) calibration Equipment used (M&T) calibration NRP-Z91 Cover sensor NRP- | ted in the closed laborator TE critical for calibration) ID # SN: 104778 SN: 103244 SN: 103245 SN: BH9394 (20k) SN: 310982 / 06327 SN: 3503 | Cal Date (Certificate No.) 30-Mar-23 (No. 217-03804) 30-Mar-23 (No. 217-03804) 30-Mar-23 (No. 217-03805) 30-Mar-23 (No. 217-03805) 30-Mar-23 (No. 217-03805) 30-Mar-23 (No. 217-03809) 30-Mar-23 (No. 217-03810) 07-Mar-23 (No. EX3-3503_Mar23) | Scheduled Calibration Mar-24 | | The measurements and the uncertainty calibrations have been conducted. Calibration Equipment used (M&T) Primary Standards Power meter NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination | rtainties with confidence protected in the closed laborator TE critical for calibration) ID # SN: 104778 SN: 103244 SN: 103245 SN: BH9394 (20k) SN: 310982 / 06327 | Cal Date (Certificate No.) 30-Mar-23 (No. 217-03804) 30-Mar-23 (No. 217-03805) 30-Mar-23 (No. 217-03805) 30-Mar-23 (No. 217-03805) 30-Mar-23 (No. 217-03805) 30-Mar-23 (No. 217-03809) 30-Mar-23 (No. 217-03810) | Scheduled Calibration Mar-24 Mar-24 Mar-24 Mar-24 Mar-24 Mar-24 Mar-24 Mar-24 Mar-24 | | The measurements and the uncertainty calibrations have been conducted. Calibration Equipment used (M&T) calibration Equipment used (M&T) calibration Equipment used (M&T) calibration Equipment used (M&T) calibration NRP-Z91 Cover sensor NRP- | ted in the closed laborator TE critical for calibration) ID # SN: 104778 SN: 103244 SN: 103245 SN: BH9394 (20k) SN: 310982 / 06327 SN: 3503 | Cal Date (Certificate No.) 30-Mar-23 (No. 217-03804) 30-Mar-23 (No. 217-03804) 30-Mar-23 (No. 217-03805) 30-Mar-23 (No. 217-03805) 30-Mar-23 (No. 217-03805) 30-Mar-23 (No. 217-03809) 30-Mar-23 (No. 217-03810) 07-Mar-23 (No. EX3-3503_Mar23) | Scheduled Calibration Mar-24 | | The measurements and the uncertainty calibrations have been conducted in the calibration of the conducted in the calibration of | rtainties with confidence protected in the closed laborator TE critical for calibration) ID # SN: 104778 SN: 103244 SN: 103245 SN: BH9394 (20k) SN: 310982 / 06327 SN: 3503 SN: 601 | Cal Date (Certificate No.) 30-Mar-23 (No. 217-03804/03805) 30-Mar-23 (No. 217-03804) 30-Mar-23 (No. 217-03805) 30-Mar-23 (No. 217-03809) 30-Mar-23 (No. 217-03809) 30-Mar-23 (No. 217-03810) 07-Mar-23 (No. EX3-3503_Mar23) 19-Dec-22 (No. DAE4-601_Dec22) | Scheduled Calibration Mar-24 Mar-24 Mar-24 Mar-24 Mar-24 Mar-24 Mar-24 Mar-24 Mar-24 Dec-23 | | The measurements and the uncertainty calibrations have been conducted. Calibration Equipment used (M&T u | rtainties with confidence protected in the closed laborator TE critical for calibration) ID # SN: 104778 SN: 103244 SN: 103245 SN: BH9394 (20k) SN: 310982 / 06327 SN: 3503 SN: 601 ID # | Cal Date (Certificate No.) 30-Mar-23 (No. 217-03804/03805) 30-Mar-23 (No. 217-03804) 30-Mar-23 (No. 217-03805) 30-Mar-23 (No. 217-03805) 30-Mar-23 (No. 217-03805) 30-Mar-23 (No. 217-03805) 30-Mar-23 (No. 217-03810) 07-Mar-23 (No. EX3-3503_Mar23) 19-Dec-22 (No. DAE4-601_Dec22) Check Date (in house) | Scheduled Calibration Mar-24 Mar-24 Mar-24 Mar-24 Mar-24 Mar-24 Mar-24 Mar-24 Scheduled Calibration | | The measurements and the uncertainty calibrations have been conducted. Calibration Equipment used (M&T u | ted in the closed laborator (E critical for calibration) ID # | Cal Date (Certificate No.) 30-Mar-23 (No. 217-03804) 30-Mar-23 (No. 217-03804) 30-Mar-23 (No. 217-03805) 30-Mar-23 (No. 217-03805) 30-Mar-23 (No. 217-03809) 30-Mar-23 (No. 217-03810) 07-Mar-23 (No. EX3-3503_Mar23) 19-Dec-22 (No. DAE4-601_Dec22) Check Date (in house) 30-Oct-14 (in house check Oct-22) | Scheduled Calibration Mar-24 Dec-23 Scheduled Check In house check: Oct-24 | | Calibrations have been conducted and calibration and the uncertainty calibration and the uncertainty calibration and calibration are calibration and calibration and calibration and calibration and calibration are calibration and calibration are calibration and calibration and calibration are calibration and calibration and calibration are calibration and calibration and calibration and calibration and calibration and calibration are calibration and calibrati | rtainties with confidence protected in the closed laborator TE critical for calibration) ID # | Cal Date (Certificate No.) 30-Mar-23 (No. 217-03804/03805) 30-Mar-23 (No. 217-03804) 30-Mar-23 (No. 217-03805) 30-Mar-23 (No. 217-03805) 30-Mar-23 (No. 217-03809) 30-Mar-23 (No. 217-03810) 07-Mar-23 (No. EX3-3503_Mar23) 19-Dec-22 (No. DAE4-601_Dec22) Check Date (in house) 30-Oct-14 (in house check Oct-22) 07-Oct-15 (in house check Oct-22) | Scheduled Calibration Mar-24 Mar-24 Mar-24 Mar-24 Mar-24 Mar-24 Mar-24 Mar-24 Mar-24 Loec-23 Scheduled Check In house check: Oct-24 In house check: Oct-24 | Approved by: Calibrated by: Sven Kühn Technical Manager Issued: June 22, 2023 This calibration certificate shall not be reproduced except in full without written approval of the laboratory. Krešimir Franjić Certificate No: D3700V2-1004_Jun23 Page 1 of 7 Function Laboratory Technician #### Calibration Laboratory of Schmid & Partner **Engineering AG** Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura **Swiss Calibration Service** Accreditation No.: SCS 0108 Zeughausstrasse 43, 8004 Zurich, Switzerland Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Glossary: TSL tissue simulating liquid ConvF N/A sensitivity in TSL / NORM x.v.z not applicable or not measured ## Calibration is Performed According to the Following Standards: - a) IEC/IEEE 62209-1528, "Measurement Procedure For The Assessment Of Specific Absorption Rate Of Human Exposure To Radio Frequency Fields From Hand-Held And Body-Worn Wireless Communication Devices - Part 1528: Human Models, Instrumentation And Procedures (Frequency Range of 4 MHz to 10 GHz)", October 2020. - b) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz" #### Additional Documentation: c) DASY System Handbook #### Methods Applied and Interpretation of Parameters: - Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. - Antenna Parameters with TSL: The source is mounted in a touch configuration below the center marking of the flat phantom. - Return Loss: This parameter is measured with the source positioned under the liquid filled phantom (as described in the measurement condition clause). The Return Loss ensures low reflected power. No uncertainty required. - SAR measured: SAR measured at the stated antenna input power. - SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector. - SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result. The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%. Certificate No: D3700V2-1004_Jun23 Page 2 of 7 #### **Measurement Conditions** DASY system configuration, as far as not given on page 1. | DASY Version | DASY52 | V52.10.4 | |------------------------------|--------------------------------------|----------------------------------| | Extrapolation | Advanced Extrapolation | | | Phantom | Modular Flat Phantom V5.0 | | | Distance Dipole Center - TSL | 10 mm | with Spacer | | Zoom Scan Resolution | dx, dy = 4.0 mm, dz = 1.4 mm | Graded Ratio = 1.4 (Z direction) | | Frequency | 3700 MHz ± 1 MHz
3800 MHz ± 1 MHz | | ## Head TSL parameters at 3700 MHz The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 37.7 | 3.12 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 37.6 ± 6 % | 3.08 mho/m ± 6 % | | Head TSL temperature change during test | < 0.5 °C | | | #### SAR result with Head TSL at 3700 MHz | SAR averaged over 1 cm ³ (1 g) of Head TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 100 mW input power | 6.76 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 67.8 W/kg ± 19.9 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Head TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 100 mW input power | 2.47 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 24.7 W/kg ± 19.5 % (k=2) | #### Head TSL parameters at 3800 MHz The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 37.6 | 3.22 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 37.5 ± 6 % | 3.16 mho/m ± 6 % | | Head TSL temperature change during test | < 0.5 °C | | | #### SAR result with Head TSL at 3800 MHz | SAR averaged over 1 cm ³ (1 g) of Head TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 100 mW input power | 6.44 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 64.6 W/kg ± 19.9 % (k=2) | | SAR averaged over 10 cm³ (10 g) of Head TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 100 mW input power | 2.36 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 23.6 W/kg ± 19.5 % (k=2) | Certificate No: D3700V2-1004_Jun23 Page 3 of 7 ## Appendix (Additional assessments outside the scope of SCS 0108) ## Antenna Parameters with Head TSL at 3700 MHz | Impedance, transformed to feed point | 49.6 Ω - 6.3 jΩ | | |--------------------------------------|-----------------|--| | Return Loss | - 24.0 dB | | ## Antenna Parameters with Head TSL at 3800 MHz | Impedance, transformed to feed point | 56.7 Ω - 4.6 jΩ | | |--------------------------------------|-----------------|--| | Return Loss | - 22.4 dB | | ## General Antenna Parameters and Design | 1.139 ns | |----------| | | After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged. #### **Additional EUT Data** | Manufactured by | SPEAG | |-----------------|-------| | manada ay | | Certificate No: D3700V2-1004_Jun23 Page 4 of 7 #### **DASY5 Validation Report for Head TSL** Date: 21.06.2023 Test Laboratory: SPEAG, Zurich, Switzerland DUT: Dipole 3700 MHz; Type: D3700V2; Serial: D3700V2 - SN:1004 Communication System: UID 0 - CW; Frequency: 3700 MHz, Frequency: 3800 MHz Medium parameters used: f = 3700 MHz; $\sigma = 3.08$ S/m; $\epsilon_r = 37.6$; $\rho = 1000$ kg/m³ Medium parameters used: f = 3800 MHz; $\sigma = 3.16$ S/m; $\epsilon_r = 37.5$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011) DASY52 Configuration: Probe: EX3DV4 - SN3503; ConvF(7.73, 7.73, 7.73) @ 3700 MHz, ConvF(7.73, 7.73, 7.73) @ 3800 MHz; Calibrated: 07.03.2023 · Sensor-Surface: 1.4mm (Mechanical Surface Detection) • Electronics: DAE4 Sn601; Calibrated: 19.12.2022 Phantom: Flat Phantom 5.0 (front); Type: QD 000 P50 AA; Serial: 1001 DASY52 52.10.4(1535); SEMCAD X 14.6.14(7501) Dipole Calibration for Head Tissue/Pin=100 mW, d=10mm, f=3700MHz/Zoom Scan, dist=1.4mm (8x8x8)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 68.84 V/m; Power Drift = -0.00 dB Peak SAR (extrapolated) = 19.0 W/kg SAR(1 g) = 6.76 W/kg; SAR(10 g) = 2.47 W/kg Smallest distance from peaks to all points 3 dB below = 8 mm Ratio of SAR at M2 to SAR at M1 = 74.2% Maximum value of SAR (measured) = 13.3 W/kg Dipole Calibration for Head Tissue/Pin=100 mW, d=10mm, f=3800MHz/Zoom Scan, dist=1.4mm (8x8x8)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 67.41 V/m; Power Drift = 0.02 dB Peak SAR (extrapolated) = 17.5 W/kg SAR(1 g) = 6.44 W/kg; SAR(10 g) = 2.36 W/kg Smallest distance from peaks to all points 3 dB below = 8.4 mm Ratio of SAR at M2 to SAR at M1 = 75.1% Maximum value of SAR (measured) = 12.6 W/kg Certificate No: D3700V2-1004 Jun23 Page 5 of 7 0 dB = 13.3 W/kg = 11.25 dBW/kg ## Impedance Measurement Plot for Head TSL ## 3900 MHz Dipole Calibration Certificate Certificate No: D3900V2-1024_Jun23 Page 1 of 8 Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Glossary: TSL tissue simulating liquid ConvF sensitivity in TSL / NORM x,y,z N/A not applicable or not measured ## Calibration is Performed According to the Following Standards: - a) IEC/IEEE 62209-1528, "Measurement Procedure For The Assessment Of Specific Absorption Rate Of Human Exposure To Radio Frequency Fields From Hand-Held And Body-Worn Wireless Communication Devices - Part 1528: Human Models, Instrumentation And Procedures (Frequency Range of 4 MHz to 10 GHz)", October 2020. - b) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz" #### **Additional Documentation:** c) DASY System Handbook ## Methods Applied and Interpretation of Parameters: - Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. - Antenna Parameters with TSL: The source is mounted in a touch configuration below the center marking of the flat phantom. - Return Loss: This parameter is measured with the source positioned under the liquid filled phantom (as described in the measurement condition clause). The Return Loss ensures low reflected power. No uncertainty required. - SAR measured: SAR measured at the stated antenna input power. - SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector. - SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result. The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%. Certificate No: D3900V2-1024_Jun23 Page 2 of 8 #### **Measurement Conditions** DASY system configuration, as far as not given on page 1. | DASY Version | DASY52 | V52.10.4 | |------------------------------|--|----------------------------------| | Extrapolation | Advanced Extrapolation | | | Phantom | Modular Flat Phantom V5.0 | | | Distance Dipole Center - TSL | 10 mm | with Spacer | | Zoom Scan Resolution | dx, dy = 4.0 mm, dz = 1.4 mm | Graded Ratio = 1.4 (Z direction) | | Frequency | 3900 MHz ± 1 MHz
4000 MHz ± 1 MHz
4100 MHz ± 1 MHz | | ## Head TSL parameters at 3900 MHz The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 37.5 | 3.32 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 37.4 ± 6 % | 3.25 mho/m ± 6 % | | Head TSL temperature change during test | < 0.5 °C | | | #### SAR result with Head TSL at 3900 MHz | SAR averaged over 1 cm ³ (1 g) of Head TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 100 mW input power | 6.97 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 69.9 W/kg ± 19.9 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Head TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 100 mW input power | 2.42 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 24.2 W/kg ± 19.5 % (k=2) | #### Head TSL parameters at 4000 MHz The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 37.4 | 3.43 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 37.3 ± 6 % | 3.33 mho/m ± 6 % | | Head TSL temperature change during test | < 0.5 °C | | | #### SAR result with Head TSL at 4000 MHz | SAR averaged over 1 cm ³ (1 g) of Head TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 100 mW input power | 6.84 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 68.7 W/kg ± 19.9 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Head TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 100 mW input power | 2.38 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 23.8 W/kg ± 19.5 % (k=2) | Certificate No: D3900V2-1024_Jun23 Page 3 of 8 # Head TSL parameters at 4100 MHz The following parameters and calculations were applied. | - | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 37.2 | 3.53 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 37.1 ± 6 % | 3.42 mho/m ± 6 % | | Head TSL temperature change during test | < 0.5 °C | | | #### SAR result with Head TSL at 4100 MHz | SAR averaged over 1 cm ³ (1 g) of Head TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 100 mW input power | 6.83 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 68.6 W/kg ± 19.9 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Head TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 100 mW input power | 2.38 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 23.8 W/kg ± 19.5 % (k=2) | Certificate No: D3900V2-1024_Jun23 ## Appendix (Additional assessments outside the scope of SCS 0108) ## Antenna Parameters with Head TSL at 3900 MHz | Impedance, transformed to feed point | 46.3 $Ω$ - 5.4 j $Ω$ | | |--------------------------------------|----------------------|--| | Return Loss | - 23.4 dB | | #### Antenna Parameters with Head TSL at 4000 MHz | Impedance, transformed to feed point | 51.8 Ω - 2.7 jΩ | | |--------------------------------------|-----------------|--| | Return Loss | - 29.8 dB | | ## Antenna Parameters with Head TSL at 4100 MHz | Impedance, transformed to feed point | 59.2 Ω - 0.8 jΩ | | |--------------------------------------|-----------------|--| | Return Loss | - 21.5 dB | | ## General Antenna Parameters and Design | T | | |----------------------------------|----------| | Electrical Delay (one direction) | 1.107 ns | After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged. ## **Additional EUT Data** | Manufactured by | SPEAG | |-----------------|-------| Certificate No: D3900V2-1024_Jun23 Page 5 of 8