Page 1 of 84

Report No.: D210525006-1

TEST REPORT

Applicant:	Guangzhou Rantion Technology Co., Ltd
Address of Applicant:	Building D, Kengkou digital base, No. 9 Huaxi Road, Liwan District, Guangzhou, China
Manufacturer:	Guangzhou Rantion Technology Co., Ltd
Address of Manufacturer:	Building D, Kengkou digital base, No. 9 Huaxi Road, Liwan District, Guangzhou, China
Product name:	Electric Drum Amplifier
Model:	DDA-80
Rating(s):	110-230V AC 50/60Hz
Trademark:	→ DONNER [™]
Standards:	47 CFR PART 15 Subpart C: 2020 section 15.247
FCC ID:	2AV7N-DDA-80
Data of Receipt:	2021-04-15
Date of Test:	2021-04-15~2021-05-31
Date of Issue:	2021-05-31
Test Result	Pass*

^{*} In the configuration tested, the test item complied with the standards specified above.

Authorized for issue by:

Test by:

May. 31, 2021 Eleven Liang

Project Engineer

Name/Position Signature May. 31, 2021

Project Manager

Signature

Date

Date

Name/Position

Report No.: D210525006-1

Dos	sible	toet	0260	vord	licte:
FOS	SIDIE	TEST	CASE	VELO	IIC:TS-

test case does not apply to the test object ..: N/A

test object does meet the requirement P (Pass)

test object does not meet the requirement ..: F (Fail)

Testing Laboratory information:

Testing Laboratory Name: ITL Co., Ltd

Address_____: No. 8 Jinqianling Street 5, Huangjiang Town, Dongguan,

Guangdong, 523757 P.R.C.

Testing location : Same as above

Tel : 0086-769-39001678

Fax : 0086-20-62824387

E-mail : itl@i-testlab.com

General remarks:

The test results presented in this report relate only to the object tested.

The results contained in this report reflect the results for this particular model and serial number. It is the responsibility of the manufacturer to ensure that all production models meet the intent of the requirements detailed within this report.

This report would be invalid test report without all the signatures of testing technician and approver.

This report shall not be reproduced, except in full, without the written approval of the Issuing testing laboratory.

General product information:

/

Page 3 of 84 Report No.: D210525006-1

1 Test Summary

Test	Test Requirement	Test method	Result
	FCC PART 15 C	FCC PART 15 C	
Antenna Requirement	section 15.247 (c) and Section 15.203	section 15.247 (c) and Section 15.203	PASS
Occupied Bandwidth	FCC PART 15 C	ANSI C63.10:2013	PASS
(-20dB)	section 15.247 (a)(1);	ANSI C03. 10.2013	
Carrier Frequencies Separated	FCC PART 15 C	ANSI C63.10:2013	PASS
oamer rrequencies ocparated	section 15.247(a)(1);	ANOI 000.10.2010	17,00
Hopping Channel Number	FCC PART 15 C	ANSI C63.10:2013	PASS
Hopping Chamile Number	section 15.247(a)(1)(iii)	ANOI 003.10.2013	1 700
Dwell Time	FCC PART 15 C	ANSI C63.10:2013	PASS
Dwell fillie	section 15.247(a)(1)(iii);	ANSI C03. 10.2013	PASS
Maximum Peak Output Power	FCC PART 15 C	44101 000 40 0040	PASS
Maximum Feak Output Fower	section 15.247(b)(1);	ANSI C63.10:2013	PASS
Conducted Spurious Emission	FCC PART 15 C	ANIOL 000 40 0040	PASS
(30 MHz to 25 GHz)	section 15.247(d);	ANSI C63.10:2013	1 700
Radiated Spurious Emission	FCC PART 15 C	ANGLOGO 40,0040	PASS
(9 kHz to 25 GHz)	section 15.247(d);	ANSI C63.10:2013	1 700
	FCC PART 15 C		
Band Edges Measurement	section 15.247 (d)	ANSI C63.10:2013	PASS
	&15.205		
Conducted Emissions at Mains	FCC PART 15 C	ANSI C63.10:2013	PASS
Terminals	section 15.207;	ANOI 000. 10.2010	
Radiated Emissions which fall	FCC PART 15 C	ANSI C63.10:2013	PASS
in the restricted bands	section 15.209	71101 000.10.2010	. 7.00
Pseudorandom Frequency	47 CFR Part 15, Subpart C	ANICI CC2 40-0042	D4.00
Hopping Sequence	Section 5.247(b)(4)&TCB Exclusion List	ANSI C63.10:2013	PASS

Remark:

N/A: not applicable. Refer to the relative section for the details.

EUT: In this whole report EUT means Equipment Under Test.

Tx: In this whole report Tx (or tx) means Transmitter.

Rx: In this whole report Rx (or rx) means Receiver.

RF: In this whole report RF means Radio Frequency.

ANSI C63.10:2013 the detail version is ANSI C63.10:2013 in the whole report.

Report No.: D210525006-1

ITL

2 Contents

		Page
EST RE	PORT	1
TES	T SUMMARY	3
CON	NTENTS	1
GEN	NERAL INFORMATION	5
3.1	CLIENT INFORMATION	
3.2	GENERAL DESCRIPTION OF E.U.T.	5
3.3	DETAILS OF E.U.T.	
3.4		
_		
INS	TRUMENTS USED DURING TEST	7
TES	T RESULTS	8
5.1	FILT TEST CONDITIONS	Q
_		
		
5.4		
5.5	HOPPING CHANNEL NUMBER	
5.6	DWELL TIME	29
5.7	MAXIMUM PEAK OUTPUT POWER	
•		
5.12 5.13	OTHER REQUIREMENTS FREQUENCY HOPPING SPREAD SPECTRUM SYSTEM	
	TES CON GEN 3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8 3.9 3.10 INS 5.1 5.2 5.3 5.4 5.5 5.6 5.7 5.8 5.9 5.10 5.11 5.12 5.12 5.12 5.12 5.13 5.14 5.15 5.16 5.16 5.16 5.16 5.16 5.16 5.16	3.2 GENERAL DESCRIPTION OF E.U.T. 3.3 DETAILS OF E.U.T. 3.4 DESCRIPTION OF SUPPORT UNITS 3.5 TEST LOCATION. 3.6 DEVIATION FROM STANDARDS. 3.7 ABNORMALITIES FROM STANDARD CONDITIONS. 3.8 OTHER INFORMATION REQUESTED BY THE CUSTOMER. 3.9 TEST FACILITY. 3.10 MEASUREMENT UNCERTAINTY. INSTRUMENTS USED DURING TEST. TEST RESULTS. 5.1 E.U.T. TEST CONDITIONS 5.2 ANTENNA REQUIREMENT 5.3 OCCUPIED BANDWIDTH. 5.4 CARRIER FREQUENCIES SEPARATED. 5.5 HOPPING CHANNEL NUMBER. 5.6 DWELL TIME. 5.7 MAXIMUM PEAK OUTPUT POWER 5.8 CONDUCTED SPURIOUS EMISSIONS 5.9 RADIATED SPURIOUS EMISSIONS 5.9.1 Harmonic and other spurious emissions. 5.10 RADIATED EMISSIONS WHICH FALL IN THE RESTRICTED BANDS 5.11 BAND EDGES REQUIREMENT 5.12 CONDUCTED EMISSIONS AT MAINS TERMINALS 150 KHZ TO 30 MHZ. 5.12.1 Measurement Data.

 ITL Page 5 of 84 Report No.: D210525006-1

3 General Information

3.1 Client Information

Applicant: Guangzhou Rantion Technology Co., Ltd

Building D, Kengkou digital base, No. 9 Huaxi Road, Liwan District, Address of Applicant:

Guangzhou, China

3.2 General Description of E.U.T.

Electric Drum Amplifier Name:

Model No.: **DDA-80**

₩ DONNER

Operating Frequency: 2402 MHz to 2480 MHz for Bluetooth.

Channels: 79 channels with 1MHz step for Bluetooth

5.0

Bluetooth Version:

Trade Mark:

This report is for classic mode.

Modulation Technique: Frequency Hopping Spread Spectrum (FHSS)

Type of Modulation GFSK, (π/4) DQPSK, 8DPSK for Bluetooth

Per channel is less than 0.4s. Dwell time

Antenna Type PCB Antenna Antenna gain: 3.38 dBi

Function: **Electric Drum Amplifier**

3.3 Details of E.U.T.

120V~ **EUT Power Supply:**

The program used to control the EUT for staying in continuous transmitting and Test mode:

receiving mode is programmed. Channel lowest (2402MHz), middle

(2441MHz) and highest (2480MHz) are chosen for Bluetooth full testing. Normal mode: the Bluetooth has been tested on the Modulation of GFSK;

EDR mode: the Bluetooth has been tested on the Modulation of $(\pi/4)DQPSK$ and 8DPSK, compliance test and record the worst case on (π/4)DQPSK and

8DPSK

Power cord:

3.4 Description of Support Units

The EUT has been tested as an independent unit for fixed frequency by testing lab.

Page 6 of 84 Report No.: D210525006-1

Details of Support Equipment(s)

Description	Manufacturer	Model No.	Connection	Working state
1	1	1	1	1

3.5 Test Location

All tests were performed at:

ITL Co., Ltd

No. 8 Jinqianling Street 5, Huangjiang Town, Dongguan, Guangdong, 523757 P.R.C.

0086-769-39001678

itl@i-testlab.com

No tests were sub-contracted.

3.6 Deviation from Standards

Biconical and log periodic antennas were used instead of dipole antennas.

3.7 Abnormalities from Standard Conditions

None.

3.8 Other Information Requested by the Customer

None.

3.9 Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

• CNAS Lab code:L9342

• FCC Designation No.:CN5035

IC Registration NO.: 12593A

• NVLAP LAB CODE: 600199-0

3.10 Measurement Uncertainty

The below measurement uncertainties given below are based on a 95% confidence level (base on a coverage factor (k=2).)

Parameter	Uncertainty
Radio frequency	2.25%
total RF power, conducted	±1.34 dB
RF power density , conducted	±1.49 dB
All emissions, radiated	±2.72 dB
Temperature	±5.02 dB
Humidity	±0.8°C
DC and low frequency voltages	±1.5 %

ITL Page 7 of 84 Report No.: D210525006-1

4 Instruments Used during Test

No.	Test Equipment	Manufacturer	Model	Serial No.	Last Cal.	Cal. Due
ITL-114	Spectrum Analyzer	Agilent	N9010A	MY51250936	2021/01/20	2022/01/19
ITL-154	EMI test receiver 9kHz to 26.5GHz	R&S	ESR26	101257	2021/01/20	2022/01/19
ITL-116	Pre Amplifier	HP	8447F	3113A05905	2021/01/20	2022/01/19
ITL-117	Wideband Amplifier Super Ultra	Mini-circuits	ZVA-183- S+	469101134	2021/01/20	2022/01/19
ITL-164	Trilog-Broadband Antenna	Schwarzbeck	VULB 9168	9168-0844	2020/06/19	2022/06/18
ITL-110	Horn Antenna	A-INFOMW	JXTXLB- 10180-N	J2031090612 133	2021/01/20	2022/01/19
ITL-163	Active Loop Antenna	Schwarzbeck	FMZB151 9B	1519B-062	2020/06/19	2022/06/18
ITL-125	EMI Test receiver	R&S	ESCI	100910	2020/06/17	2021/06/16
ITL-103	Two-line v- network	R&S	ENV216	100120	2020/08/04	2021/08/03
ITL-115	50Ω Coaxial Cable	Mini-circuits	CBL	C001	2020/06/18	2021/06/17
ITL-100	Semi-Anechoic chamber	ETS•Lindgren	FACT3 2.0	CT09015	2019/10/15	2022/10/14
ITL-101	Shielded Room	ETS•Lindgren	8*4*3	CT09010	2021/01/22	2024/01/21
ITL-165	Power Meter	R&S	NRVS	838246/026	2021/01/20	2022/01/19

Page 8 of 84 Report No.: D210525006-1

5 Test Results

5.1 E.U.T. test conditions

Test Voltage: 120V∼

 Temperature:
 20.0 -25.0 °C

 Humidity:
 38-50 % RH

Atmospheric Pressure: 1000 -1010 mbar

Test frequencies and frequency range:

According to the 15.31(m) Measurements on intentional radiators or receivers, other than TV broadcast receivers, shall be performed and, if required, reported for each band in which the device can be operated with the device operating at the number of frequencies in each band

specified in the following table:

According to the 15.33 (a) For an intentional radiator, the spectrum shall be investigated from the lowest radio frequency signal generated in the device, without going below 9 kHz, up to at least the frequency shown in the following table:

Number of fundamental frequencies to be tested in EUT transmit band

Frequency range in which	Number of frequencies	Location in frequency range of operation
1 MHz or less	1	Middle
1 MHz to 10 MHz	2	1 near top and 1 near bottom
More than 10 MHz	3	1 near top, 1 near middle and 1 near bottom

Frequency range of radiated emission measurements

Lowest frequency generated	Upper frequency range of measurement
9 kHz to below 10 GHz	10th harmonic of highest fundamental frequency or to 40 GHz,
At or above 10 GHz to below	5th harmonic of highest fundamental frequency or to 100 GHz,
At or above 30 GHz	5th harmonic of highest fundamental frequency or to 200 GHz,

Page 9 of 84 Report No.: D210525006-1

ITL

EUT channels and frequencies list for Bluetooth:

Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)
0	2402	11	2413	22	2424
1	2403	12	2414	23	2425
2	2404	13	2415	24	2426
3	2405	14	2416	25	2427
4	2406	15	2417	26	2428
5	2407	16	2418	27	2429
6	2408	17	2419	28	2430
7	2409	18	2420	29	2431
8	2410	19	2421	30	2432
9	2411	20	2422	31	2433
10	2412	21	2423	32	2434
33	2435	49	2451	65	2467
34	2436	50	2452	66	2468
35	2437	51	2453	67	2469
36	2438	52	2454	68	2470
37	2439	53	2455	69	2471
38	2440	54	2456	70	2472
39	2441	55	2457	71	2473
40	2442	56	2458	72	2474
41	2443	57	2459	73	2475
42	2444	58	2460	74	2476
43	2445	59	2461	75	2477
44	2446	60	2462	76	2478
45	2447	61	2463	77	2479
46	2448	62	2464	78	2480
47	2449	63	2465		
48	2450	64	2466		

Test frequencies are the lowest channel: 0 channel (2402 MHz), middle channel: 39 channel (2441 MHz) and highest channel: 78 channel (2480 MHz)

Page 10 of 84 Report No.: D210525006-1

5.2 Antenna requirement

Standard requirement

15.203 requirement:

For intentional device. According to 15.203. an intentional radiator shall be designed to Ensure that no antenna other than that furnished by the responsible party shall be used with the device.

15.247(c) (1)(i) requirement:

(i) Systems operating in the 2400-2483.5 MHz bands that are used exclusively for fixed. Point-to-point operations may employ transmitting antennas with directional gain greater than 6 dBi provided the maximum conducted output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6 dBi.

EUT Antenna

The antenna is a PCB Antenna and no consideration of replacement. The best case gain of the antenna is 3.38dBi.

Test result: The unit does meet the FCC requirements.

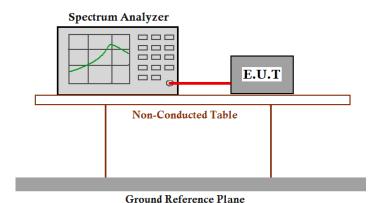
Page 11 of 84 Report No.: D210525006-1

5.3 Occupied Bandwidth

Test Requirement: FCC Part 15 C section 15.247

(a)(1) Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater. Alternatively, frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW.

Test Method: ANSI C63.10:2013


Test Status: Pre-test the EUT in continuous transmitting mode at the lowest, middle

and highest channel with different data package. Compliance test in normal mode (DH5), EDR mode (2DH5) and EDR mode (3DH5) as the

worst case was found.

Test Configuration:

Test Procedure:

- 1. Remove the antenna from the EUT and then connect a low RF cable from the antenna port to the spectrum;
- 2. Set the spectrum analyzer: Span = approximately 2 to 3 times the 20dB bandwidth, centring on a hopping channel;
- 3. Set the spectrum analyzer: RBW >= 1% of the 20dB bandwidth VBW >= RBW. Sweep = auto; Detector Function = Peak. Trace = Max Hold.
- 4. Mark the peak frequency and -20dB points bandwidth.

Report No.: D210525006-1

Test result (-20dB bandwidth), For Bluetooth

Normal mode:

Test Channel	Bandwidth(MHz)	2/3 bandwidth(MHz)
Lowest	0.933	0.622
Middle	0.933	0.622
Highest	0.933	0.622

EDR mode (2DH5):

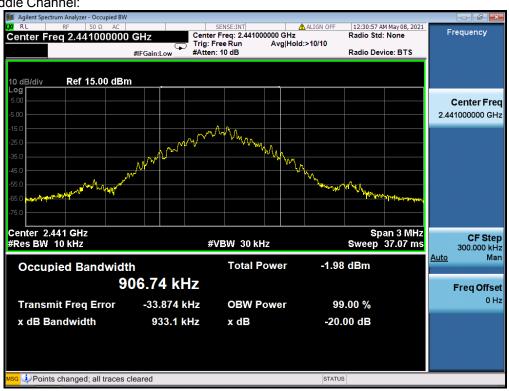
Test Channel	Bandwidth(MHz)	2/3 bandwidth(MHz)
Lowest	1.364	0.909
Middle	1.352	0.901
Highest	1.364	0.909

EDR mode (3DH5):

Test Channel	Bandwidth(MHz)	2/3 bandwidth(MHz)
Lowest	1.351	0.901
Middle	1.343	0.895
Highest	1.350	0.900

Page 13 of 84 Report No.: D210525006-1

For Bluetooth


Result plot as follows:

DH5:

Lowest Channel:

Middle Channel:

Page 14 of 84 Report No.: D210525006-1

ITL

Highest Channel:

2DH5:


Lowest channel:

Page 15 of 84 Report No.: D210525006-1

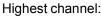
ITL

Middle channel:

Highest channel:

Page 16 of 84 Report No.: D210525006-1

3DH5:


Lowest channel:

Middle channel:

Page 17 of 84 Report No.: D210525006-1

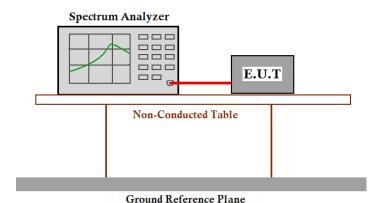
ITL

Page 18 of 84 Report No.: D210525006-1

5.4 Carrier Frequencies Separated

Test Requirement: FCC Part 15 C section 15.247

(a),(1) Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater. Alternatively, frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW.


Test Method: ANSI C63.10:2013

Test Status: Pre-test the EUT in continuous transmitting mode at the lowest,

middle and highest channel with different data package. Compliance test in normal mode (DH5), EDR mode (2DH5) and

EDR mode (3DH5) as the worst case was found.

Test Configuration:

Test Procedure:

- 1. Remove the antenna from the EUT and then connect a low attenuation RF cable from the antenna port to the spectrum.
- 2. Set the spectrum analyzer: RBW >= 1% of the span, VBW >= RBW, Sweep = auto; Detector Function = Peak. Trace = Max, hold.
- 3. Allow the trace to stabilize. Use the marker-delta function to determine the separation between the peaks of the adjacent channels. The limit is specified in one of the subparagraphs of this Section. Submit this plot.

ITL Page 19 of 84 Report No.: D210525006-1

Test result:

For Bluetooth

DH5

Test Channel	Carrier Frequencies Separated	Pass/Fail
Lower Channels (channel 0 and channel 1)	1.00MHz	Pass
Middle Channels (channel 39 and channel 40)	1.00MHz	Pass
Upper Channels (channel 77 and channel 78)	1.00MHz	Pass

Remark:

The limit is maximum two-thirds of the 20 dB bandwidth: 0.622 MHz

2DH5

Test Channel	Carrier Frequencies Separated	Pass/Fail
Lower Channels (channel 0 and channel 1)	1.00MHz	Pass
Middle Channels (channel 39 and channel 40)	1.00MHz	Pass
Upper Channels (channel 77 and channel 78)	1.00MHz	Pass

Remark:

The limit is maximum two-thirds of the 20 dB bandwidth: 0.909 MHz

ITL Page 20 of 84 Report No.: D210525006-1

3DH5

Test Channel	Carrier Frequencies Separated	Pass/Fail
Lower Channels (channel 0 and channel 1)	1.00MHz	Pass
Middle Channels (channel 39 and channel 40)	1.00MHz	Pass
Upper Channels (channel 77 and channel 78)	1.00MHz	Pass

Remark:

The limit is maximum two-thirds of the 20 dB bandwidth: 0.901 MHz

Page 21 of 84 Report No.: D210525006-1

ITL

For Bluetooth Carrier Frequencies Separated plot: DH5

1. Lowest Channels:

2. Middle Channels:

Page 22 of 84 Report No.: D210525006-1

ITL

3. Highest Channels

2DH5

1. Lowest Channels:

Page 23 of 84 Report No.: D210525006-1

ITL

2. Middle Channels:

3. Highest Channels

Page 24 of 84 Report No.: D210525006-1

ITL

3DH5

1. Lowest Channels:

2. Middle Channels:

Page 25 of 84 Report No.: D210525006-1

3. Highest Channels

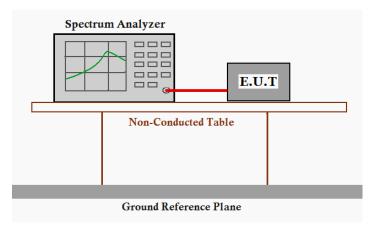
ITL Page 26 of 84 Report No.: D210525006-1

5.5 Hopping Channel Number

Test Requirement: FCC Part15 C section 15.247

(a)(1)(iii) Frequency hopping systems in the 2400-2483.5 MHz band shall use

at least 15 channels.


Test Method: ANSI C63.10:2013

Test Status: Pre-test the EUT in hopping mode with different data packet. Compliance test

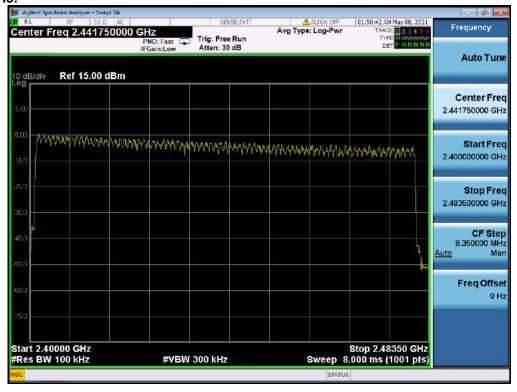
in hopping with normal mode (DH5), EDR mode (2DH5) and EDR mode

(3DH5) as the worst case was found.

Test Configuration:


Test Procedure:

- 1. Remove the antenna from the EUT and then connect a low attenuation RF cable from the antenna port to the spectrum.
- 2. Set the spectrum analyzer: RBW = 100 kHz. VBW = 300 kHz. Sweep = auto; Detector Function = Peak. Trace = Max hold.
- 3. Allow the trace to stabilize. It may prove necessary to break the span up to sections. in order to clearly show all of the hopping frequencies. The limit is specified in one of the subparagraphs of this Section.
- 4. Set the spectrum analyzer: start frequency = 2400 MHz. stop frequency = 2483.5 MHz. Submit the test result graph.


Page 27 of 84 Report No.: D210525006-1

For Bluetooth

Test result: Total channels are 79 channels. **DH5:**

2DH5:

Page 28 of 84 Report No.: D210525006-1

3DH5:

ITL

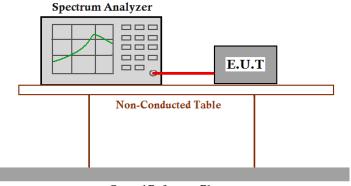
Test result: The unit does meet the FCC requirements.

Page 29 of 84 Report No.: D210525006-1

5.6 Dwell Time

Test Requirement: FCC Part 15 C section 15.247

(a)(1)(iii) Frequency hopping systems in the 2400-2483.5 MHz band shall use at least 15 channels. The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed. Frequency hopping systems may avoid or suppress transmissions on a particular hopping frequency provided that a minimum of 15 channels are used.


Test Method: ANSI C63.10:2013

Test Status: Pre-test the EUT in continuous transmitting mode at the lowest, middle and

highest channel with different data packet. Compliance test in hopping with Normal mode (DH1, DH3 and DH5) and EDR mode (2DH1, 2DH3

and 2DH5; 3DH1, 3DH3 and 3DH5) as the worst case was found.

Test Configuration:

Ground Reference Plane

Test Procedure:

- 1.Remove the antenna from the EUT and then connect a low attenuation RF cable from the antenna port to the spectrum.
- 2. Set spectrum analyzer span = 0. centered on a hopping channel;
- 3.Set RBW = 1 MHz and VBW = 3 MHz. Sweep = as necessary to capture the entire dwell time per hopping channel. Detector Function = Peak. Trace = View;
- 4. Use the marker-delta function to determine the dwell time. If this value varies with different modes of operation (e.g., data rate, modulation format, etc.). Repeat this test for each variation. The limit is specified in one of the subparagraphs of this Section. Submit this plot(s). An oscilloscope may be used instead of a spectrum analyzer.

TL Page 30 of 84

Report No.: D210525006-1

Test Result:

For Bluetooth

The test period: T= 0.4 Second/Channel x 79 Channel = 31.6 s

1. Channel 0: 2.402GHz

DH1 time slot = 0.405(ms) * (1600/(2*79)) * 31.6 = 129.6ms DH3 time slot = 1.662 (ms) * (1600/(4*79)) * 31.6 = 265.9ms DH5 time slot = 2.927 (ms) * (1600/(6*79)) * 31.6 = 312.2ms

2. Channel 39: 2.441GHz

DH1 time slot = 0.403(ms) * (1600/(2*79)) * 31.6 = 129.0ms DH3 time slot = 1.663(ms) * (1600/(4*79)) * 31.6 = 266.1ms DH5 time slot = 2.938 (ms) * (1600/(6*79)) * 31.6 = 313.4ms

3. Channel 78: 2.480GHz

DH1 time slot = 0.386(ms) * (1600/(2*79)) * 31.6 = 123.5ms DH3 time slot = 1.663(ms) * (1600/(4*79)) * 31.6 = 266.1ms DH5 time slot = 2.942 (ms) * (1600/(6*79)) * 31.6 = 313.8ms

4. Channel 0: 2.402GHz

3DH1 time slot = 0.382(ms) * (1600/(2*79)) * 31.6 = 122.2ms3DH3 time slot = 1.662 (ms) * (1600/(4*79)) * 31.6 = 265.9ms3DH5 time slot = 2.937 (ms) * (1600/(6*79)) * 31.6 = 313.3ms

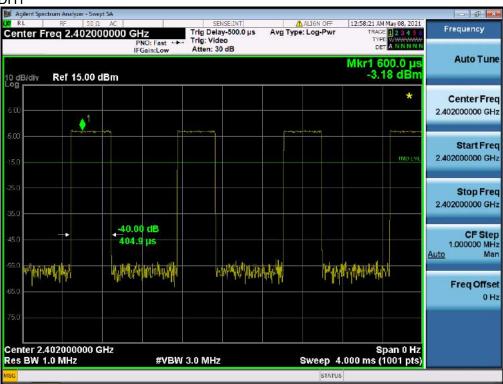
5. **Channel 39:** 2.441GHz

3DH1 time slot = 0.382(ms) * (1600/(2*79)) * 31.6 = 122.2ms3DH3 time slot = 1.662(ms) * (1600/(4*79)) * 31.6 = 265.9ms3DH5 time slot = 2.939 (ms) * (1600/(6*79)) * 31.6 = 313.5ms

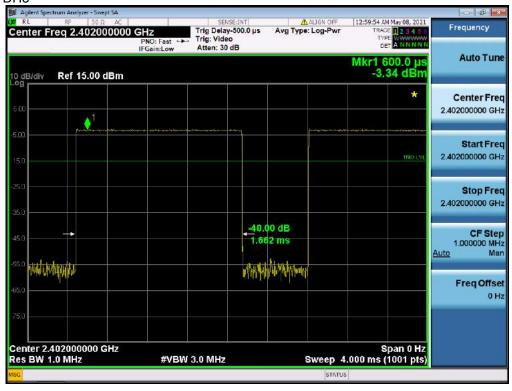
6. Channel 78: 2.480GHz

3DH1 time slot = 0.386(ms) * (1600/(2*79)) * 31.6 = 123.5ms 3DH3 time slot = 1.663 (ms) * (1600/(4*79)) * 31.6 = 266.1ms 3DH5 time slot = 2.939 (ms) * (1600/(6*79)) * 31.6 = 313.5ms

The results are not greater than 0.4 seconds


The unit does meet the FCC requirements.

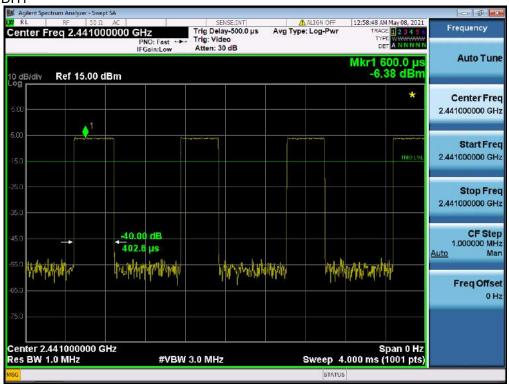
ITL


For Bluetooth

Please refer the graph as below:

- 1. Lowest channel (2.402 GHz):
- (1) DH1

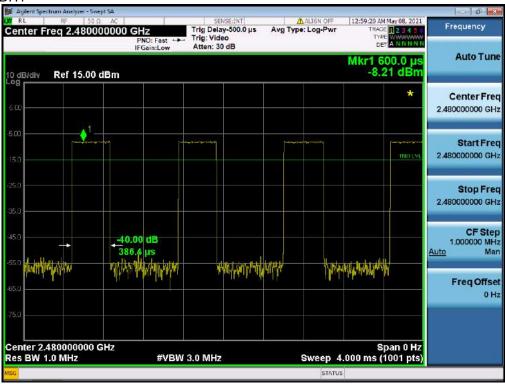
(2) DH3


ITL

(3) DH5

2. Middle channel (2.441 GHz):

(1) DH1



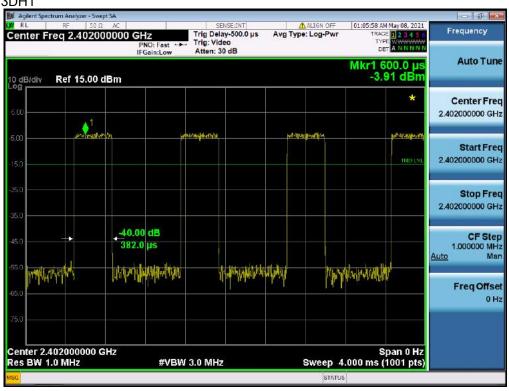
(3) DH5

ITL

- 3. Highest channel (2.480 GHz):
- (1) DH1

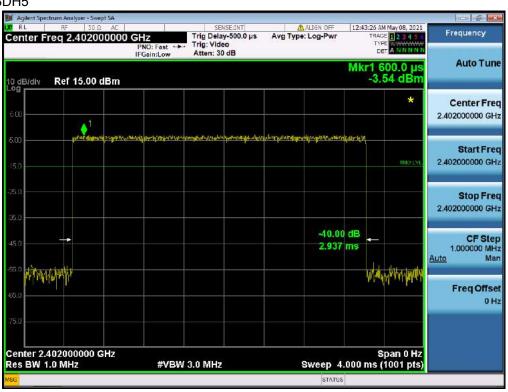
(2) DH3

ITL


Report No.: D210525006-1

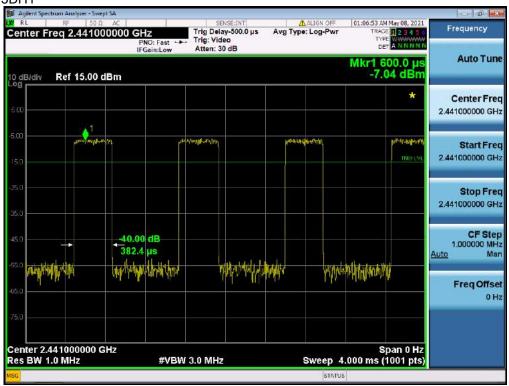
4. Lowest channel (2.402 GHz):

(1) 3DH1

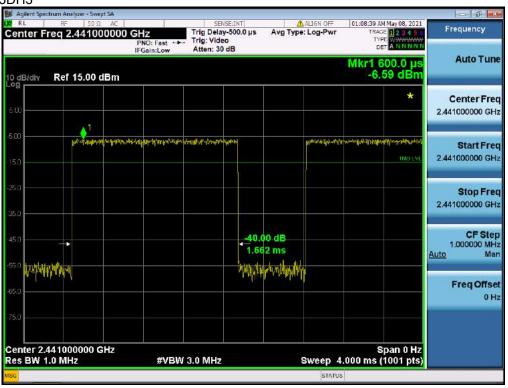


(2) 3DH3

(3) 3DH5



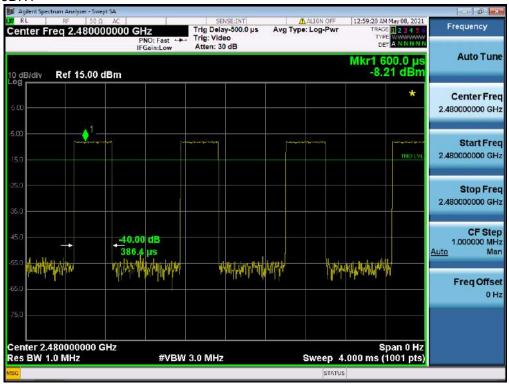
Page 37 of 84 Report No.: D210525006-1


5. Middle channel (2.441 GHz):

(1) 3DH1

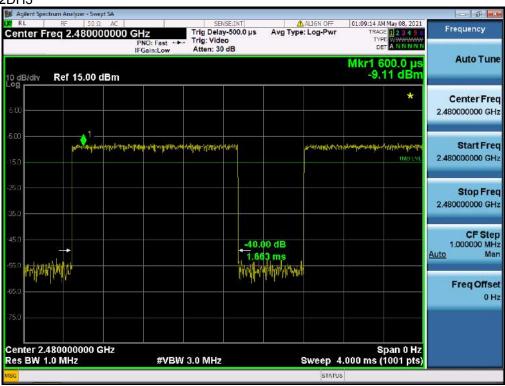
ITL

(2) 3DH3



ITL

(3) 3DH5



- 6. Highest channel (2.480 GHz):
- (1) 3DH1



(3) 2DH5

ITL

Remark:

In communication data link mode (expect inquiry or page mode) the hopping rate is 1600 per second, the 79 channels will be randomly selected for RF channel, and each channel have equal probability to be selected. The hop selection scheme is defined in Clause 2.6 of Part B of Volume

2 of core specification of Bluetooth.

The Dwell time must be calculated via following formula:

Dwell time = Pulse wide x (Hopping rate / Number of channels) x Period

Period = 0.4 (seconds/ channel) x 79 (channel) = 31.6 seconds

So

Dwell time DH1= slot time * (1600/2/79) * 31.6

Dwell time DH3= slot time * (1600/4/79) * 31.6

Dwell time DH5= slot time * (1600/6/79) * 31.6

The RF channel will remain fixed for duration of a packet, that means for DH3 packet the RF frequency will remain unchanged during 3 slots (1slot=1/1600=625us), and for DH5 packet the RF frequency will remain unchanged during 5 slots, illustrated the principle as below:

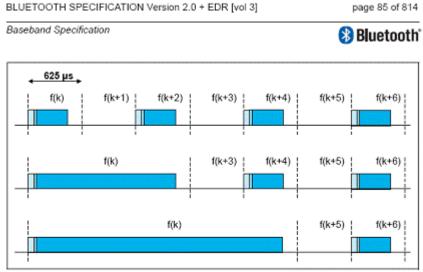


Figure 2.14: Single- and multi-slot packets.

Therefore, in a certain period for different packet types, the quantities of hops (not hopping rate 1600) are different, accurately, the quantity of hops for DH1 is double of DH3's and triple of DH5's. "for DH1 packet, 1 hop in 1 slot; for DH3 packet, ½ hop in 1 slot; for DH5 packet, 1/3 hop in 1 slot.", explained as below:

From the illustrated hopping scheme:

For DH1, in two slots, there are two hops, i.e. f(k) in Slot(k), f(k+1) in Slot(k+1), means DH1 1 hop in 1 slot;

For DH3, in four slots, there are two hops, i.e. f(k) in Slot(k) & Slot(k+1) & Slot(k+2), f(k+3) in

Slot(k+3), means DH3 2 hops in four slots -> $\frac{1}{2}$ hop in 1 slot; For DH5, in six slots, there are two hops, i.e. f(k) in Slot(k) & Slot(k+1) & Slot(k+2) & Slot(k+3) & Slot(k+4), f(k+5) in Slot(k+5), means DH3 2 hops in six slots -> $\frac{1}{3}$ hop in 1 slot.

The Hopping rate in the formula should not be fixed value, for DH1, it is 1600/2; for DH3, it is

1600/4; for DH5, it is 1600/6.

To calculate Dwell time of data transmission of Bluetooth system, the worst case is for Bluetooth PICONET that contains two devices only (although Bluetooth PICONET can support up to eight devices), and for Bluetooth data transmission, after device A sending a packet to device B, device A must get response packet from device B to continue data transmission;

For DH1 packet: assume device A is EUT, the worst case is after device A sending a DH1 packet to device B, device A gets a DH1 response packet from device B, that means device A needs 1 time slot for transmitting and 1 time slot for receiving, therefore, the actual hopping rate of device A is half of 1600, i.e. 800 hops per second for EUT;

For DH3 packet: assume device A is EUT, the worst case is after device A sending a DH3 packet to device B, device A gets a DH1 response packet from device B, that means device A needs 3 time slots for transmitting and 1 time slot for receiving, therefore, the actual hopping rate of device A is quarter of 1600, i.e. 400 hops per second for EUT;

For DH5 packet: assume device A is EUT, the worst case is after device A sending a DH5 packet to device B, device A gets a DH1 response packet from device B, that means device A needs 5 time slots for transmitting and 1 time slot for receiving, therefore, the actual hopping rate of device A is sixth of 1600, i.e. 1600/6=266.7 hops per second for EUT;

Page 42 of 84 Report No.: D210525006-1

5.7 Maximum Peak Output Power

Test Requirement: FCC Part 15 C section 15.247

(b)(1)For frequency hopping systems operating in the 2400-2483.5 MHz band employing at least 75 non-overlapping hopping channels, and all frequency hopping systems in the 5725-5850 MHz band: 1 watt. For all other frequency hopping systems in the 2400-

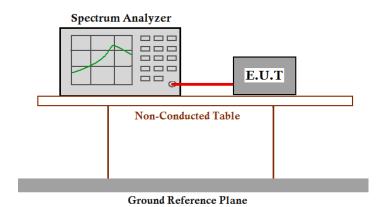
2483.5 MHz band: 0.125W

Refer to the result "Hopping channel number" of this

document. The 1 watt (30.0 dBm) limit applies.

Test Method: ANSI C63.10:2013

Test Limit:


Test mode: Pre-test the EUT in continuous transmitting mode at the

lowest, middle and highest channel with different data packet.

Compliance test in continuous transmitting mode with normal (DH5), EDR mode (2DH5) and EDR mode (3DH5) as the worst

case was found.

Test Configuration:

Test Procedure:

- 1. Remove the antenna from the EUT and then connect a low attenuation RF cable from the antenna port to the spectrum.
- 2. Set the spectrum analyzer: RBW = 1 MHz. VBW = 3 MHz. Sweep = auto; Detector Function = Peak.
- 3. Keep the EUT in transmitting at lowest, medium and highest channel individually. Record the max value.

Test result plot as follows:

Page 43 of 84 Report No.: D210525006-1

IIL		Page 43 of 84	Repo	ort No.: D210525
Test Result: (For	Bluetooth)			
Normal mode(DH	15) :			
Test Channel	Fundamental Frequency (MHz)	Output Power (dBm)	Limit (dBm)	Result
Lowest	2402	0.19	30.0	Pass
Middle	2441	-2.26	30.0	Pass
Highest	2480	-4.26	30.0	Pass
EDR mode(2DH5) :			
Test Channel	Fundamental Frequency (MHz)	Output Power (dBm)	Limit (dBm)	Result
Lowest	2402	0.91	21.0	Pass
Middle	2441	-1.56	21.0	Pass
Highest	2480	-3.64	21.0	Pass
EDR mode(3DH5):			
Test Channel	Fundamental Frequency	Output Power (dBm)	Limit (dBm)	Result
Lowest	2402	2.63	21.0	Pass
Middle	2441	-0.43	21.0	Pass
Highest	2480	-2.34	21.0	Pass
Remark: cable lo	se=3.0dB; Output po	ower= Reading Peak Pov	ver+ Cable loss	
Test result: The un	it does meet the FCC r	equirements.		

ITL

. age .. c.

For Bluetooth

Normal mode(DH5):

Lowest Channel:

Middle Channel:

ITL

Highest Channel:

EDR mode (2DH5): Lowest Channel:

ITL

Middle Channel:

Highest Channel:

Page 47 of 84

Report No.: D210525006-1

ITL

EDR mode (3DH5): Lowest Channel:

Middle Channel:

Page 48 of 84 Report No.: D210525006-1

ITL

Highest Channel:

Page 49 of 84 Report No.: D210525006-1

5.8 Conducted Spurious Emissions

Test Requirement: FCC Part15 C section 15.247

(d) In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating. The radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power. Based on either an RF conducted or a radiated measurement. Provided the transmitter demonstrates compliance with the peak conducted power limits.


Test Method: ANSI C63.10:2013

Test Status: Pre-test the EUT in continuous transmitting mode at the lowest,

middle and highest channel with different data packet. Compliance test in continuous transmitting mode with normal (DH5), EDR mode (2DH5) and EDR mode (3DH5) as the worst

case was found.

Test Configuration:

Test Procedure:

- 1. Remove the antenna from the EUT and then connect a low attenuation RF cable from the antenna port to the spectrum.
- 2. Set the spectrum analyzer: RBW = 100 kHz. VBW >= RBW. Sweep = auto; Detector Function = Peak (Max. hold).

Page 50 of 84 Report No.: D210525006-1

ITL

For Bluetooth

Test result plot as follows (Normal mode DH5):

Middle Channel

Test result plot as follows (EDR mode-2DH5):

Highest channel

ITL

Report No.: D210525006-1

Test result plot as follows (EDR mode-3DH5): **Lowest Channel:**

Middle Channel

ITL Page 54 of 84 Report No.: D210525006-1

Stop 25.00 GHz Sweep 2.386 s (1001 pts)

#VBW 300 kHz

Start 30 MHz #Res BW 100 kHz Page 55 of 84 Report No.: D210525006-1

5.9 Radiated Spurious Emissions

Test Requirement: FCC Part15 C section 15.247

(d) In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating. The radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that Contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, and provided the transmitter demonstrates compliance with the peak conducted power limits.

Test Method: ANSI C63.10:2013

Test Status: Pre-test the EUT in continuous transmitting mode at the

lowest, middle and highest channel with different data packet. Compliance test in continuous transmitting mode with normal

mode (DH5) as the worst case was found.

Detector: For PK value:

RBW = 1 MHz for $f \ge 1$ GHz, 100 kHz for f < 1 GHz, 9kHz for

<30MHz

VBW ≥ RBW Sweep = auto
Detector function = peak

Trace = max hold

For AV value:

RBW = 1 MHz for $f \ge 1$ GHz, 100 kHz for f < 1 GHz, 9kHz for

<30MHz

VBW = 10 Hz

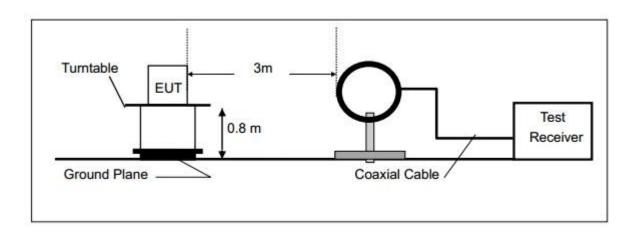
Sweep = auto

Detector function = peak

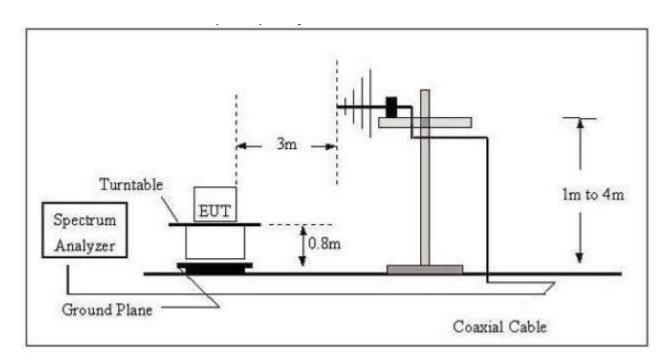
Trace = max hold

15.209 Limit:

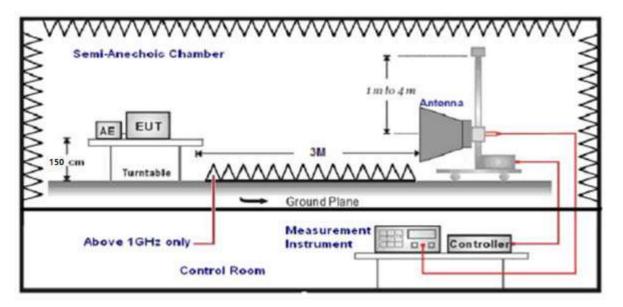
Frequency (MHz)	Field Strength (microvolts/meter)	Measurement Distance (meters)
0.009 - 0.490	2400/F(kHz)	300
0.490 - 1.705	24000/F(kHz)	30
1.705 - 30.0	30	30
30 - 88	100	3


ITL

Page 56 of 84


	Pag	ge 56 of 84	Report No.: D210525006-1
88 - 216	150	3	
216 - 960	200	3	
Above 960	500	3	

Test Configuration:


1) 9kHz to 30MHz emissions:

30 MHz to 1 GHz emissions: 2)

3) 1 GHz to 40 GHz emissions:

Test Procedure: The receiver was scanned from 9kHz to 25GHz. When an emission was found, the table was rotated to produce the maximum signal strength. An initial pre-scan was performed for in peak detection mode using the receiver. The EUT was measured for both the Horizontal and Vertical polarities and performed a pre-test three orthogonal planes. For intentional radiators, measurements of the variation of the input power or the radiated signal level of the fundamental frequency component of the emission, as appropriate, shall be performed with the supply voltage varied between 85% and 115% of the nominal rated supply voltage. After pre-test, it was found that the worse radiation emission was get at the X position. So the data shown was the X position only. The worst case emissions were reported.

Now set the VBW to 10 Hz, while maintaining all of the other instrument settings. This peak level, once corrected, must comply with the limit specified in Section 15.209. If the dwell time per channel of the hopping signal is less than 100 ms, then the reading obtained with the 10 Hz VBW may be further adjusted by a "duty cycle correction factor", derived from 20log (dwell time/100 ms), in an effort to demonstrate compliance with the 15.209 limit. Submit this data.

For the radiated emission test above 1GHz:

Place the measurement antenna away from each area of the EUT determined to be a source of emissions at the specified measurement distance, while keeping the measurement antenna aimed at the source of emissions at each frequency of significant emissions, with polarization oriented for maximum response. The measurement antenna may have to be higher or lower than the EUT, depending on the radiation pattern of the emission and staying aimed at the emission source for receiving the maximum signal. The final measurement antenna elevation shall be that which maximizes the emissions.

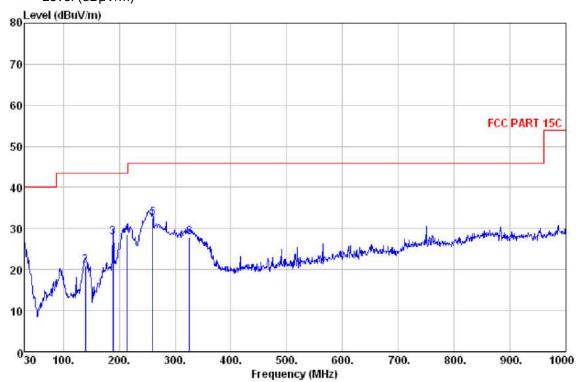
The measurement antenna elevation for maximum emissions shall be restricted to a range of heights of from 1 m to 4 m above the ground or reference ground plane.

5.9.1 Harmonic and other spurious emissions

Worst case mode DH5

Test at low Channel in transmitting status

9kHz~30MHz Test result


The Low frequency, which started from 9kHz to 30MHz, was pre-scanned and the result which was 20dB lower than the limit line per 15.31(o) was not report

30 MHz~1 GHz Spurious Emissions. Quasi-Peak Measurement

Horizontal:

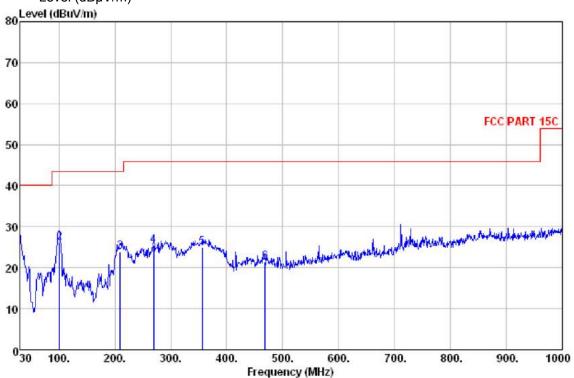
Peak scan

Level (dBµV/m)

Quasi-peak measurement

No.	Freq MHz	Read Level dBuV			Preamp Factor dB		Limit Line dBuV/m	Limit		Remark
_										
1	30.000	26.24	27.09	0.63	28.50	25.46	40.00 -	14.54	HORIZONTAL	. QP
2 1	39.610	35.78	12.05	1.41	28.21	21.03	43.50 - 3	22.47	HORIZONTAL	. QP
3 1	89.080	40.04	13.76	1.66	27.62	27.84	43.50 -	15.66	HORIZONTAL	. QP
4 2	214.300	40.32	13.96	1.77	27.63	28.42	43.50 -	15.08	HORIZONTAL	. QP
5 2	259.890	42.46	15.70	1.97	27.60	32.53	46.00 -	13.47	HORIZONTAL	. QP
6 3	325.850	36.71	16.53	2.21	27.49	27.96	46.00 -	18.04	HORIZONTAL	. QP

Page 59 of 84 Report No.: D210525006-1


Test at low Channel in transmitting status

30 MHz~1 GHz Spurious Emissions .Quasi-Peak Measurement

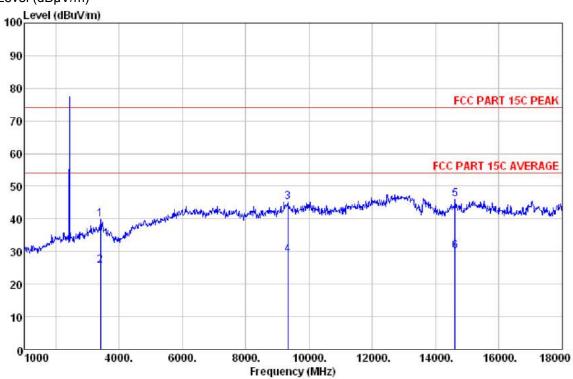
Vertical:

Peak scan

Level (dBµV/m)

Quasi-peak measurement

No	. Freq MHz		Factor		Preamp Factor dB			Limit	Pol/ Phase	Remark
_										
3 4 5	30.000 100.810 209.450 269.590 355.920 468.440	40.96 35.98 35.05 33.15	15.50	1.75 2.01 2.30	28.50 28.78 27.52 27.22 27.57 28.45	26.87 25.97 23.87 25.34 24.98 21.45	40.00 -1 43.50 -1 43.50 -1 46.00 -2 46.00 -2	17.53 19.63 20.66 21.02	VERTICAL VERTICAL VERTICAL VERTICAL VERTICAL VERTICAL	QP QP QP QP QP



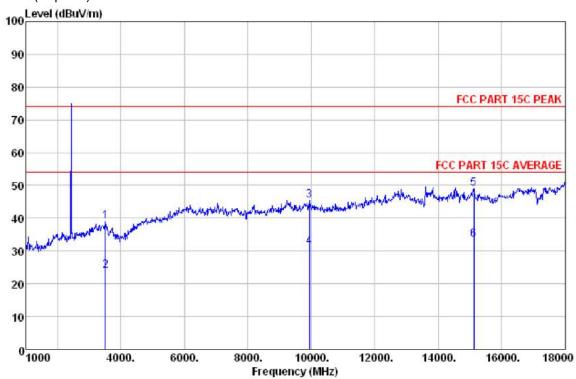
Spurious emissions above 1GHz

Horizontal:

Peak scan

Level (dBµV/m)

No. Freq MHz	Read Level dBuV	Antenn: Factor dB		Preamp Factor dB	Level dBuV/m	Limit Over Line Limit dBuV/m dB		Remark
13414.000	36.54	31.11	0.00	27.83	39.82	74.00 -34.18	HORIZONTAL	. Peak
23414.000	22.40	31.11	0.00	27.83	25.68	54.00 -28.32	HORIZONTAL	. Average
39330.000	33.62	38.80	0.00	27.17	45.25	74.00 -28.75	HORIZONTAL	. Peak
49330.000	17.27	38.80	0.00	27.17	28.90	54.00 -25.10	HORIZONTAL	. Average
14617.000	32.24	39.79	0.00	26.13	45.90	74.00 -28.10	HORIZONTAL	. Peak
14617.000	16.40	39.79	0.00	26.13	30.06	54.00 -23.94	HORIZONTAL	. Average


Note: The emission above limit is fundamental emission, which is not subject to the limit.

Page 61 of 84 Report No.: D210525006-1

Vertical:

Peak scan

Level (dBµV/m)

Read Level			Preamp Factor	Level		Pol/ Phase	Remark
dBu∀	dΒ	dВ	dВ	dBuV/m	dBuV/m dB		
35.44	31.34	0.00	27.83	38.95	74.00 -35.05	VERTICAL	Peak
20.36			27.83	23.87	54.00 -30.13	VERTICAL	Average
33.54	38.98	0.00	27.11	45.41	74.00 -28.59	VERTICAL	Peak
19.38	38.98	0.00	27.11	31.25	54.00 -22.75	VERTICAL	Average
35.06	39.95	0.00	26.05	48.96	74.00 -25.04	VERTICAL	Peak
19.64	39.95	0.00	26.05	33.54	54.00 -20.46	VERTICAL	Average
	Level dBuV 35.44 20.36 33.54 19.38 35.06	Level Factor dBuV dB 35.44 31.34 20.36 31.34 33.54 38.98 19.38 38.98 35.06 39.95	Level Factor Loss dBuV dB dB 35.44 31.34 0.00 20.36 31.34 0.00 33.54 38.98 0.00 19.38 38.98 0.00 35.06 39.95 0.00	Level Factor Loss Factor dBuV dB dB dB 35.44 31.34 0.00 27.83 20.36 31.34 0.00 27.83 33.54 38.98 0.00 27.11 19.38 38.98 0.00 27.11 35.06 39.95 0.00 26.05	Level Factor Loss Factor dBuV dB dB dB dB dBuV/m 35.44 31.34 0.00 27.83 38.95 20.36 31.34 0.00 27.83 23.87 33.54 38.98 0.00 27.11 45.41 19.38 38.98 0.00 27.11 31.25 35.06 39.95 0.00 26.05 48.96	Level Factor dBuV Loss dB Factor dBuV/m Line dBuV/m dB Line dBuV/m dB 35.44 31.34 0.00 27.83 38.95 74.00 -35.05 20.36 31.34 0.00 27.83 23.87 54.00 -30.13 33.54 38.98 0.00 27.11 45.41 74.00 -28.59 19.38 38.98 0.00 27.11 31.25 54.00 -22.75 35.06 39.95 0.00 26.05 48.96 74.00 -25.04	Level Factor Loss Factor Line Limit Phase dBuV dB dB dBuV/m dBuV/m dBuV/m dB 35.44 31.34 0.00 27.83 38.95 74.00 -35.05 VERTICAL 20.36 31.34 0.00 27.83 23.87 54.00 -30.13 VERTICAL 33.54 38.98 0.00 27.11 45.41 74.00 -28.59 VERTICAL 19.38 38.98 0.00 27.11 31.25 54.00 -22.75 VERTICAL 35.06 39.95 0.00 26.05 48.96 74.00 -25.04 VERTICAL

Note: The emission above limit is fundamental emission, which is not subject to the limit.

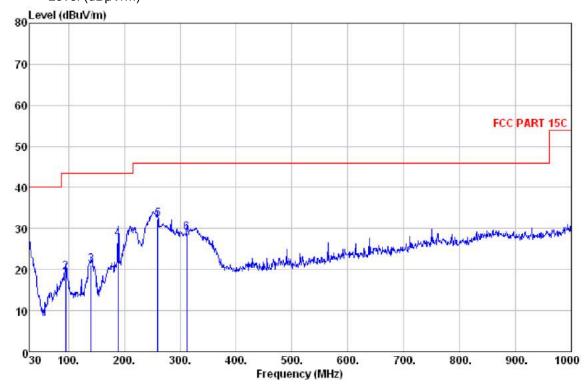
Page 62 of 84

Report No.: D210525006-1

Test at Middle Channel in transmitting status

Worst case mode DH5

9kHz~30MHz Test result


The Low frequency, which started from 9kHz to 30MHz, was pre-scanned and the result which was 20dB lower than the limit line per 15.31(o) was not report

30 MHz~1 GHz Spurious Emissions .Quasi-Peak Measurement

Horizontal:

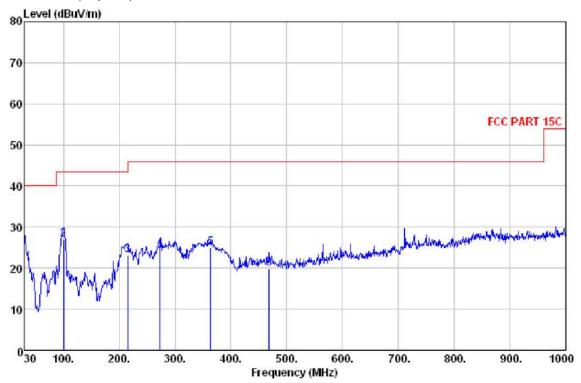
Peak scan

Level (dBµV/m)

Quasi-peak measurement

No	. Freq MHz				Preamp Factor dB			Limit	Pol/ Phase	Remark
_										
1	30.000	26.39	27.09	0.63	28.50	25.61	40.00 -	14.39	HORIZONTAL	. QP
2	94.990	34.31	12.55	1.14	28.60	19.40	43.50 -	24.10	HORIZONTAL	. QP
3	140.580	36.10	11.96	1.41	28.22	21.25	43.50 -	22.25	HORIZONTAL	. QP
4	189.080	39.72	13.76	1.66	27.62	27.52	43.50 -	15.98	HORIZONTAL	. QP
5	259.890	42.28	15.70	1.97	27.60	32.35	46.00 -	13.65	HORIZONTAL	. QP
6	312.270	38.10	16.24	2.17	27.55	28.96	46.00 -	17.04	HORIZONTAL	. QP

Page 63 of 84 Report No.: D210525006-1


Test at Middle Channel in transmitting status

30 MHz~1 GHz Spurious Emissions .Quasi-Peak Measurement

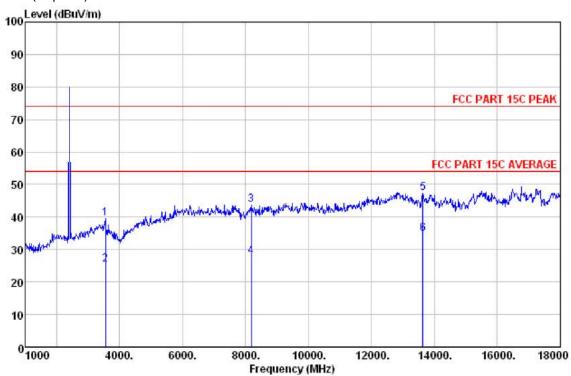
Vertical:

Peak scan

Level (dBµV/m)

Quasi-peak measurement

No	. Freq MHz		Factor		Factor		Limit Line dBuV/m	Limit	Pol/ Phase	Remark
_										
1	30.000	26.07	27.09	0.63	28.50	25.29	40.00 -	14.71	VERTICAL	QP
2	99.840	41.97	12.57	1.17	28.79	26.92	43.50 -	16.58	VERTICAL	QP
3	215.270	34.96	14.02	1.77	27.66	23.09	43.50 - 3	20.41	VERTICAL	QP
4	273.470	34.51	15.57	2.02	27.38	24.72	46.00 - 3		VERTICAL	QP
5	363.680	33.21	17.25	2.32	27.91	24.87	46.00 - 3	21.13	VERTICAL	QP
6	468.440	26.96	18.72	2.68	28.45	19.91	46.00 -	26.09	VERTICAL	QP



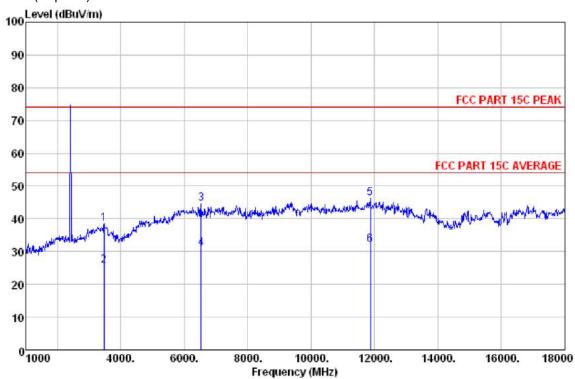
Spurious emissions above 1GHz

Horizontal:

Peak scan

Level (dBµV/m)

No. Freq MHz	Read Level dBuV	Antenna Factor dB	a Cable Loss dB	Preamp Factor dB		Limit Ove Line Lim dBuV/m dB	it Phase	Remark
13550.000	36.13	31.21	0.00	27.82	39.52	74.00 -34.4	8 HORIZONTAL	L Peak
23550.000	21.82	31.21	0.00	27.82	25.21	54.00 -28.7	9 HORIZONTAI	. Average
38191.000	33.64	37.31	0.00	27.28	43.67	74.00 -30.3	3 HORIZONTAL	L Peak
48191.000	17.96	37.31	0.00	27.28	27.99	54.00 -26.0	1 HORIZONTAL	. Average
13631.000	33.98	39.79	0.00	26.29	47.48	74.00 -26.5	2 HORIZONTAL	L Peak
13631.000	21.28	39.79	0.00	26.29	34.78	54.00 -19.2	2 HORIZONTAL	L Average


Note: The emission above limit is fundamental emission, which is not subject to the limit.

Page 65 of 84

Vertical:

Peak scan

Level (dBµV/m)

Report No.: D210525006-1

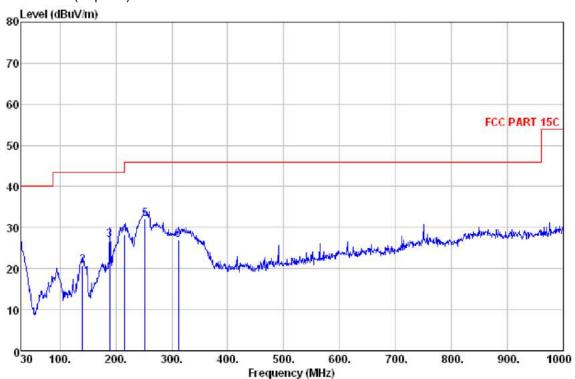
No. Freq	Read Level	Antenn: Factor		Preamp Factor	Level	Limit Over Line Limit	Pol/ Phase	Remark
\mathtt{MHz}	dBu∀	dΒ	dΒ	dВ	dBuV/m	dBuV/m dB		
13465.000		31.28	0.00	27.83	38.57	74.00 -35.43	VERTICAL	Peak
23465.000	22.24	31.28	0.00	27.83	25.69	54.00 -28.31	VERTICAL	Average
36525.000		35.54	0.00	27.37	44.60	74.00 -29.40	VERTICAL	Peak
46525.000	22.69	35.54	0.00	27.37	30.86	54.00 -23.14	VERTICAL	Average
11863.000		39.60	0.00	26.88	46.25	74.00 -27.75	VERTICAL	Peak
11863.000	19.30	39.60	0.00	26.88	32.02	54.00 -21.98	VERTICAL	Average

Note: The emission above limit is fundamental emission, which is not subject to the limit.

Test at high Channel in transmitting status

Worst case mode DH5

9kHz~30MHz Test result


The Low frequency, which started from 9kHz to 30MHz, was pre-scanned and the result which was 20dB lower than the limit line per 15.31(o) was not report

30 MHz~1 GHz Spurious Emissions .Quasi-Peak Measurement

Horizontal:

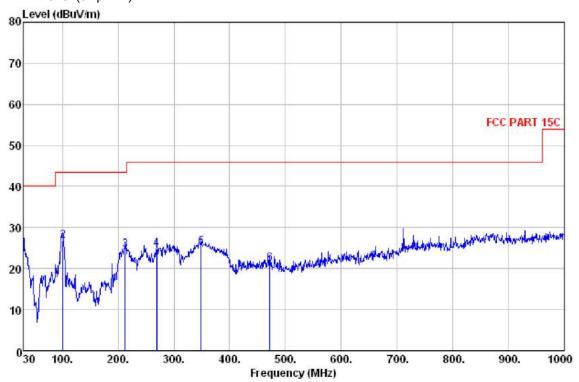
Peak scan

Level (dBµV/m)

Quasi-peak measurement

No. Freq MHz				Preamp Factor dB		Limit Line dBuV/m	Limit		Remark
1 30.000 2 140.580 3 189.080 4 216.240 5 252.130 6 312.270	35.48 39.11 40.09 41.45	14.08 15.99	0.63 1.41 1.66 1.78 1.94	28.50 28.22 27.62 27.69 27.36 27.55	24.78 20.63 26.91 28.26 32.02 27.00		22.87 16.59 17.74 13.98	HORIZONTAL HORIZONTAL HORIZONTAL HORIZONTAL HORIZONTAL HORIZONTAL	. QP . QP . QP . QP

Page 67 of 84 Report No.: D210525006-1


Test at High Channel in transmitting status

30 MHz~1 GHz Spurious Emissions .Quasi-Peak Measurement

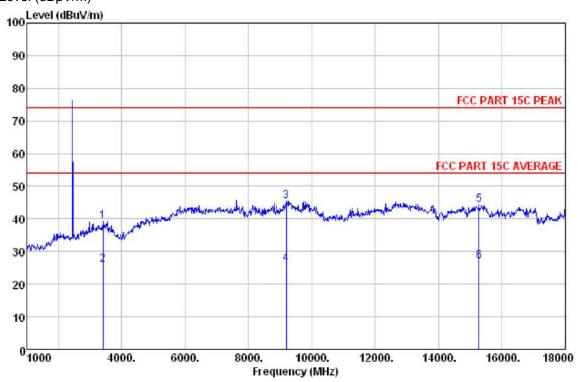
Vertical:

Peak scan

Level (dBµV/m)

Quasi-peak measurement

No	. Freq MHz	Read Level dBuV	Antenn: Factor dB		Preamp Factor dB		Limit Over Line Limit dBuV/m dB	Pol/ Phase	Remark
_									
1	30.000	27.07	27.09	0.63	28.50	26.29	40.00 -13.71	VERTICAL	QP
2	100.810	41.79	12.61	1.18	28.78	26.80	43.50 -16.70	VERTICAL	QP
3	212.360	36.39	13.84	1.76	27.57	24.42	43.50 -19.08	VERTICAL	QP
4	269.590	34.46	15.50	2.01	27.22	24.75	46.00 -21.25	VERTICAL	QP
5	349.130	33.29	17.00	2.28	27.31	25.26	46.00 -20.74	VERTICAL	QP
6	472.320	28.21	18.80	2.69	28.42	21.28	46.00 -24.72	VERTICAL	QP



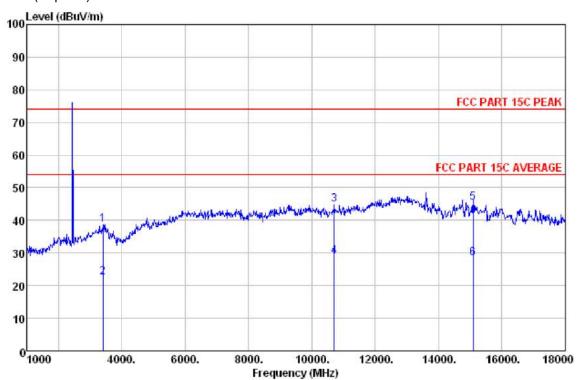
Spurious emissions above 1GHz

Horizontal:

Peak scan

Level (dBµV/m)

No.	Freq MHz		Antenna Factor dB	a Cable Loss dB	Preamp Factor dB	Level dBuV/m	Limit Over Line Limit dBuV/m dB		Remark
_									
234	14.000 14.000	22.61	31.11	0.00 0.00	27.83 27.83	39.39 25.89	74.00 -34.61 54.00 -28.11	HORIZONTAL HORIZONTAL	Average
391	94.000	33.92	38.80	0.00	27.19	45.53	74.00 -28.47	HORIZONTAL	Peak
491	94.000	14.71	38.80	0.00	27.19	26.32	54.00 -27.68	HORIZONTAL	Average
	80.000 80.000			0.00 0.00	26.03 26.03	44.21 27.12	74.00 -29.79 54.00 -26.88	HORIZONTAL HORIZONTAL	


Note: The emission above limit is fundamental emission, which is not subject to the limit.

Vertical:

Peak scan

Level (dBµV/m)

No. Freq MHz		Antenna Factor dB	a Cable Loss dB	Factor	Level dBuV/m	Limit Over Line Limi dBuV/m dB		Remark
								
13414.000 : 23414.000 10707.000 : 10707.000 15093.000 : 15093.000	19.16 32.99 17.10 31.62	31.11 31.11 38.85 38.85 39.97 39.97	0.00 0.00 0.00 0.00 0.00	27.83 27.05 27.05 26.06	38.84 22.44 44.79 28.90 45.53 28.31	74.00 -35.16 54.00 -31.56 74.00 -29.21 54.00 -25.10 74.00 -28.47 54.00 -25.69	VERTICAL VERTICAL VERTICAL VERTICAL	Peak Average Peak Average Peak Average

Note: The emission above limit is fundamental emission, which is not subject to the limit.

Remark:

- The field strength is calculated by adding the Antenna Factor. Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:
 Final Test Level = Receiver Reading + Antenna Factor + Cable Loss – Preamplifier Factor.
- 2). As shown in Section, for frequencies above 1000 MHz. the above field strength limits are based on average limits. However, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation.
- 3). The test only perform the EUT in transmitting status since the test frequencies were over 1GHz only required transmitting status.

Test result: The unit does meet the FCC requirements.

Page 70 of 84 Report No.: D210525006-1

5.10 Radiated Emissions which fall in the restricted bands

Test Requirement: FCC Part15 C Section 15.247

(d) In addition, radiated emissions which fall in the restricted bands. as defined in Section 15.205(a), must also comply with the radiated emission limits specified in

Section 15.209(a) (see Section 15.205(c)).

Test Method: ANSI C63.10:2013 Clause 6.4, 6.5 and 6.6

Test Status: Pre-test the EUT in continuous transmitting mode at the lowest

(2402MHz), middle (2441 MHz) and highest (2480 MHz) channel with different data packet. Compliance test in continuous transmitting mode with normal mode (DH5) as

the worst case was found.

Measurement Distance: 3m (Semi-Anechoic Chamber)

Limit: Section 15.209(a)

Frequency (MHz)	Field Strength (microvolts/meter)	Measurement Distance (meters)
0.009 - 0.490	2400/F(kHz)	300
0.490 - 1.705	24000/F(kHz)	30
1.705 - 30.0	30	30
30 - 88	100	3
88 - 216	150	3
216 - 960	200	3
Above 960	500	3

Detector: For PK value:

RBW = 1 MHz for f ≥ 1 GHz, 100 kHz for f < 1 GHz

VBW ≥ RBW Sweep = auto
Detector function = peak

Trace = max hold

For AV value:

RBW = 1 MHz for $f \ge 1$ GHz, 100 kHz for f < 1 GHz

VBW =10 Hz

Sweep = auto

Detector function = peak

Trace = max hold

ITL Page 71 of 84 Report No.: D210525006-1

Test Result:

For Bluetooth

Pre-test was performed in all modes to find the worst case; compliance test was conducted in DH5 mode as the worst case.

Test mode: DH5

Frequency (MHz)	Reading Level (dBµV/m)	Correct (dB/m)	Emission Level (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Antenna polarizatio n	Detector			
Low Channel										
2310.000	32.48	6.54	39.02	74.00	-34.98	Н	PK			
2310.000	12.78	6.54	19.32	54.00	-34.68	Н	AV			
2390.000	36.76	6.61	43.37	74.00	-30.63	V	PK			
2390.000	10.63	6.61	17.24	54.00	-46.76	V	AV			
High Channel										
2483.500	31.20	6.70	37.90	74.00	-36.10	Н	PK			
2483.500	13.10	6.70	19.80	54.00	-34.20	Н	AV			
2500.000	39.60	6.72	46.32	74.00	-27.68	V	PK			
2500.000	18.88	6.72	25.60	54.00	-28.40	٧	AV			

Remark: No any other emission which falls in restricted bands can be detected and be reported.

Test result: The unit does meet the FCC requirements.

 ITL Page 72 of 84 Report No.: D210525006-1

5.11 Band Edges Requirement

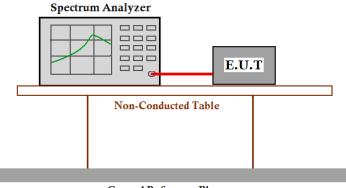
Test Requirement: FCC Part15 C section 15.247

> (d) In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement. provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in Section 15.209(a) is not required. In addition, radiated emissions

> which fall in the restricted bands, as defined in Section 15.205(a), must also comply with the radiated emission limits

specified in Section 15.209(a) (see Section

15.205(c)).


Frequency Band: 2400 MHz to 2483.5 MHz

Test Method: ANSI C63.10:2013 Clause 6.9

Test Status: Pre-test the EUT in continuous transmitting mode at the

> lowest (2402 MHz), and highest (2480 MHz) channel and hopping mode with different data packet. Compliance test in continuous transmitting mode with normal (DH5) EDR mode (2DH5) and EDR mode (3DH5) as the worst case was found.

Test Configuration:

Ground Reference Plane

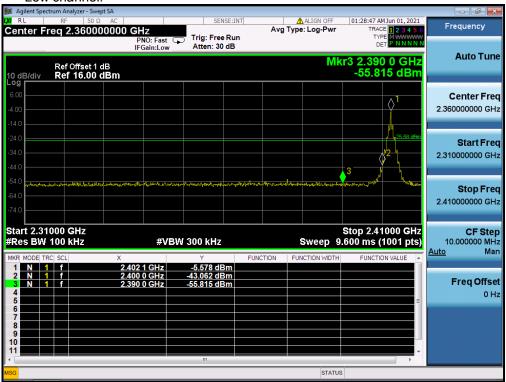
Test Procedure:

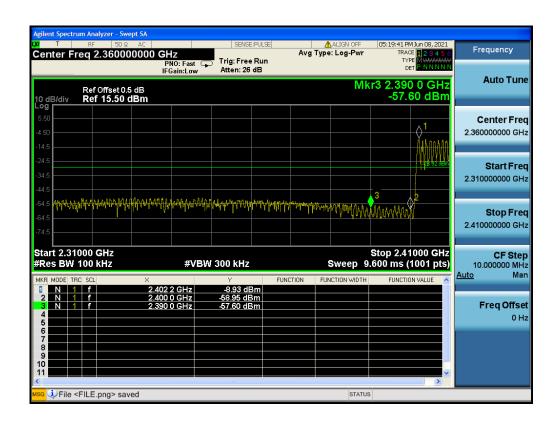
Set RBW of spectrum analyzer to 100 kHz and VBW of spectrum analyzer to 300 kHz with suitable frequency span including 10MHz bandwidth from band edge.

The band edges was measured and recorded Result:

The Lower Edges attenuated more than 20dB.

The Upper Edges attenuated more than 20dB.

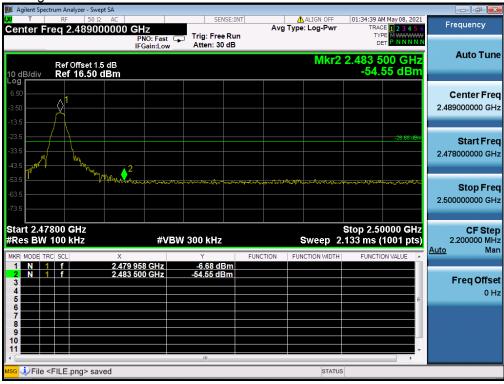

Page 73 of 84 Report No.: D210525006-1

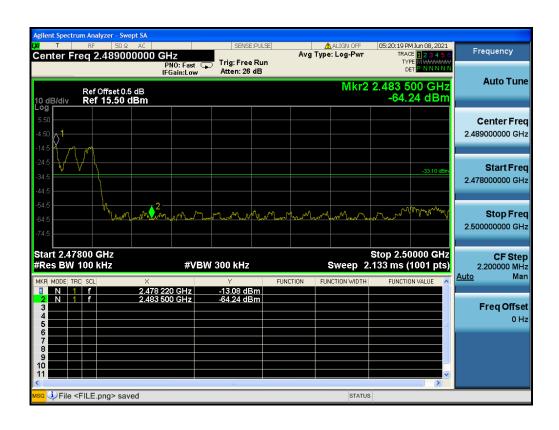

The graph as below. Represents the emissions take for this device.

For Bluetooth

DH5:

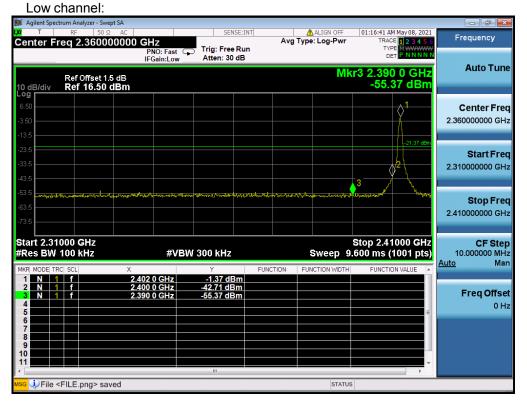
Low channel:

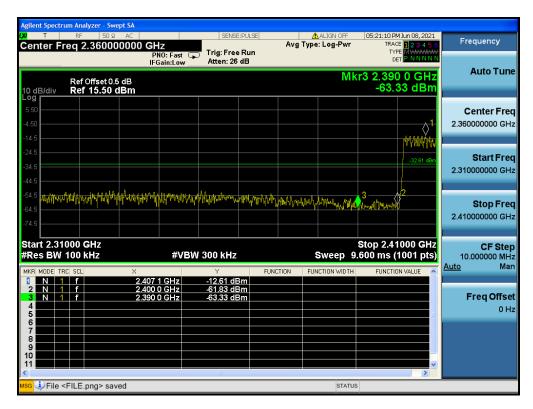




ITL

Report No.: D210525006-1

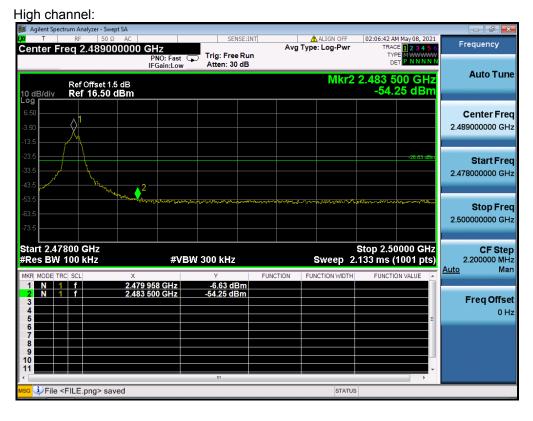


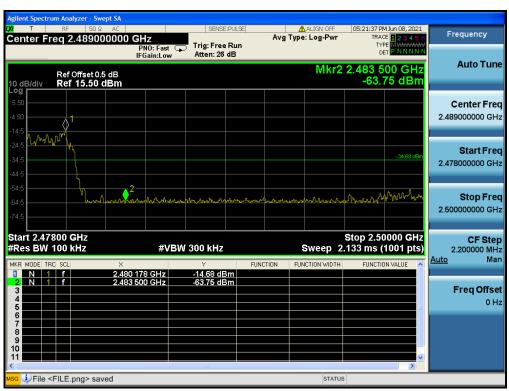


Page 75 of 84 Report No.: D210525006-1

2DH5:

ITL

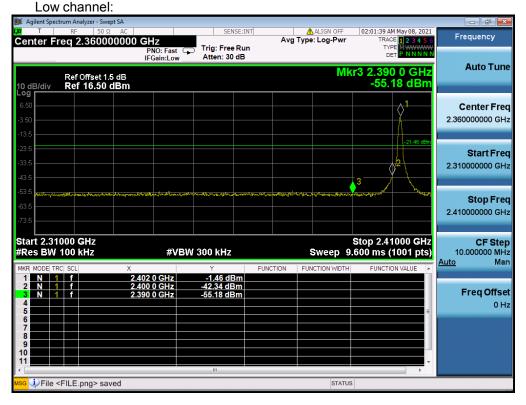


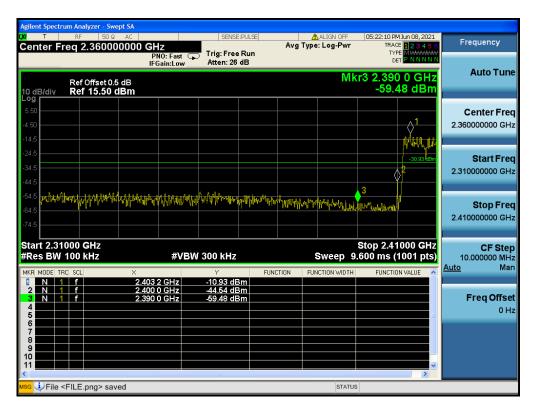


Report No.: D210525006-1

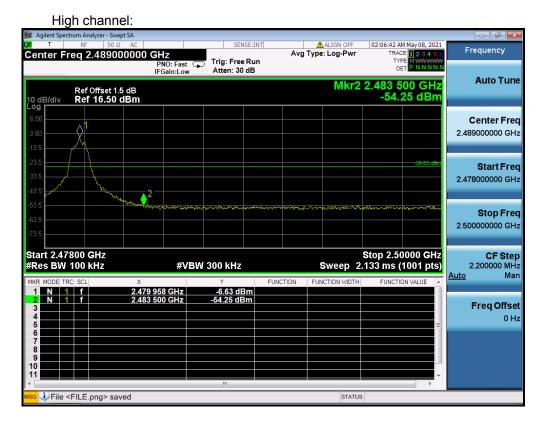
ITL

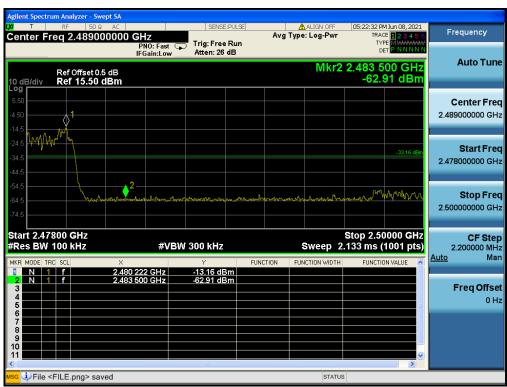
•





Report No.: D210525006-1


ITL


3DH5:

ITL

Page 79 of 84 Report No.: D210525006-1

5.12 Conducted Emissions at Mains Terminals 150 kHz to 30 MHz

Test Requirement: FCC Part 15 C section 15.207

Test Method: ANSI C63.10:2013 Clause 6.2

Test Voltage: 120Vac 60Hz

Frequency Range: 150 kHz to 30 MHz

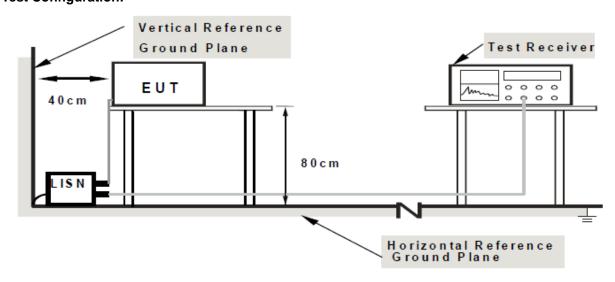
Detector: Peak for pre-scan (9 kHz Resolution Bandwidth)

Test Limit

Limits for conducted disturbance at the mains ports of class B

- Fraguency Bongo	Class B Limit dB(µV)		
Frequency Range	Quasi-peak	Average	
0.15 to 0.50	66 to 56	56 to 46	
0.50 to 5	56	46	
5 to 30	60	50	

NOTE 1 The limit decreases linearly with the logarithm of the frequency in the range 0,15 MHz to 0,50 MHz.


EUT Operation:

Test in normal operating mode. For intentional radiators, measurements of the variation of the input power or the radiated signal level of the fundamental frequency component of the emission, as appropriate, shall be performed with the supply voltage varied between 85% and 115% of the nominal rated supply voltage.

Pre-Scan has been conducted to determine the worstcase mode from all possible combinations between available modulations, data rates and antenna ports (if EUT with antenna diversity architecture).

Test Configuration:

ITL

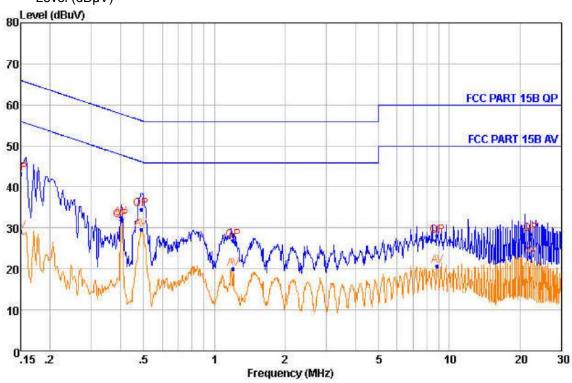
Note: 1.Support units were connected to second LISN.

2.Both of LISNs (AMN) are 80 cm from EUT and at least 80 from other units and other metal planes

Test procedure:

- 1. The mains terminal disturbance voltage test was conducted in a shielded room.
- 2. The tabletop EUT was placed upon a non-metallic table 0.8m above the ground reference plane. And for floor-standing arrangement, the EUT was placed on the horizontal ground reference plane, but separated from metallic contact with the ground reference plane by 0.1m of insulation.

Report No.: D210525006-1


5.12.1 Measurement Data

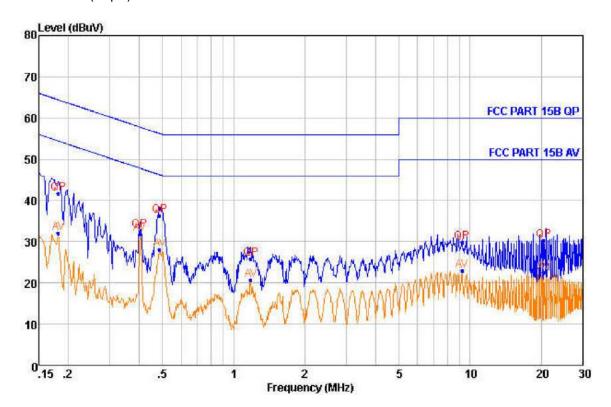
An initial pre-scan was performed on the live and neutral lines with peak detector. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission were detected. For EUT the communicating was worst case mode.

The following Quasi-Peak and Average measurements were performed on the EUT Live line

Peak Scan:

Quasi-peak and Average measurement

NO.	Freq MHz	Level dBuV	Remark	LISN Factor dB	Cable Loss dB	Limit Line dBuV	Over Limit dB
1	0.150	43.24	QP	9.70	0.20	66.00	-22.76
2	0.150	29.26	Average	9.70	0.20	56.00	-26.74
2	0.402	31.76	QP	9.66	0.26	57.81	-26.05
4	0.402	32.49	Average	9.66	0.26	47.81	-15.32
4 5 6	0.489	34.57	QP	9.65	0.27	56.19	-21.62
6	0.489	29.72	Average	9.65	0.27	46.19	-16.47
7	1.203	26.92	QP	9.66	0.32	56.00	-29.08
8	1.203	20.10	Average	9.66	0.32	46.00	-25.90
9	8.869	28.07	QP	9.67	0.43	60.00	-31.93
8 9 10	8.869	20.67	Average	9.67	0.43	50.00	-29.33
11	22.180	28.42	QP	9.68	0.48	60.00	-31.58
12	22.180	22.88	Average	9.68	0.48	50.00	-27.12


Page 82 of 84 Report No.: D210525006-1

ITL

Neutral Line

Peak Scan:

Level (dBµV)

Quasi-peak and Average measurement

NO.	Freq MHz	Level dBuV	Remark	LISN Factor dB	Cable Loss dB	Limit Line dBuV	Over Limit dB
1	0.182	41.68	QP	9.66	0.21	64.42	-22.74
2	0.182	32.18	Average	9.66	0.21	54.42	-22.24
3	0.402	32.66	QP	9.66	0.26	57.81	-25.15
4	0.402	31.97	Average	9.66	0.26	47.81	-15.84
5	0.486	36.43	QP	9.67	0.27	56.23	-19.80
6	0.486	28.11	Average	9.67	0.27	46.23	-18.12
7	1.184	25.76	QP	9.63	0.32	56.00	-30.24
8 9	1.184	20.62	Average	9.63	0.32	46.00	-25.38
9	9.253	29.85	QP	9.62	0.43	60.00	-30.15
10	9.253	22.86	Average	9.62	0.43	50.00	-27.14
11	20.486	30.21	QP	9.62	0.48	60.00	-29.79
12	20.486	22.46	Average	9.62	0.48	50.00	-27.54

5.13 Other requirements Frequency Hopping Spread Spectrum System

Test Requirement: 47 CFR Part 15C Section 15.247 (a)(1), (h) requirement

The system shall hop to channel frequencies that are selected at the system hopping rate from a Pseudorandom ordered list of hopping frequencies. Each frequency must be used equally

on the average by each transmitter. The system receivers shall have input bandwidths that match the

hopping channel bandwidths of their corresponding transmitters and shall shift frequencies in synchronization with the transmitted signals.

Frequency hopping spread spectrum systems are not required to employ all available hopping channels during each transmission. However, the system, consisting of both the transmitter and the

receiver, must be designed to comply with all of the regulations in this section should the transmitter be presented with a continuous data (or information) stream. In addition, a system employing short transmission bursts must comply with the definition of a frequency hopping system

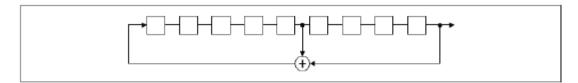
and must distribute its transmissions over the minimum number of hopping channels specified in this section.

The incorporation of intelligence within a frequency hopping spread spectrum system that permits the system to recognize other users within the spectrum band so that it individually and independently chooses and adapts its hopsets to avoid hopping on occupied channels is permitted.

The coordination of frequency hopping systems in any other manner for the express purpose of avoiding the simultaneous occupancy of individual hopping frequencies by multiple transmitters is not permitted.

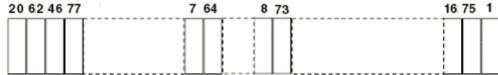
Compliance for section 15.247(a)(1)

According to Bluetooth Core Specification, the pseudorandom sequence may be generated in a nine stage


shift register whose 5th and 9th stage

outputs are added in a modulo-two addition stage. And the result is fed back to the input of the first

stage. The sequence begins with the first ONE of 9 consecutive ONEs; i.e. the shift register is initialized


with nine ones.

- Number of shift register stages: 9
- Length of pseudo-random sequence: 29-1 = 511 bits
- · Longest sequence of zeros: 8 (non-inverted signal)

Linear Feedback Shift Register for Generation of the PRBS sequence

An example of Pseudorandom Frequency Hopping Sequence as follow:

Each frequency used equally on the average by each transmitter.

ITL

Page 84 of 84

Report No.: D210525006-1

According to Bluetooth Core Specification, Bluetooth receivers are designed to have input and IF bandwidths that match the hopping channel bandwidths of any Bluetooth transmitters and shift frequencies in synchronization with the transmitted signals.

Compliance for section 15.247(g)

According to Bluetooth Core Specification, the Bluetooth system transmits the packet with the pseudorandom hopping frequency with a continuous data and the short burst transmission from the

Bluetooth system is also transmitted under the frequency hopping system with the pseudorandom hopping frequency system.

Compliance for section 15.247(h)

According to Bluetooth Core specification, the Bluetooth system incorporates with an adaptive system to detect other user within the spectrum band so that it individually and independently to avoid hopping on the occupied channels.

According to the Bluetooth Core specification, the Bluetooth system is designed not have the ability

to coordinated with other FHSS System in an effort to avoid the simultaneous occupancy of individual

hopping frequencies by multiple transmitter.

-- End of Report--