TEST REPORT of FCC Part 15 Subpart C

Limited Modular Approval

 \square New Application; \square Class I PC; \square Class II PC

Product :	UHD Set-Top Box
Brand:	AirTies
Model:	Air7415B
Model Difference:	N/A
FCC ID:	Z3WAIR7415B
FCC Rule Part:	§15.247, Cat: DTS
Applicant:	AirTies Wireless Networks
Address:	Mithat Uluünlü Sok. No:23, Esentepe Şişli, İs-
	tanbul/Turkey

Test Performed by: International Standards Laboratory

<LT Lab.> *Site Registration No. BSMI: SL2-IN-E-0013; MRA TW1036; TAF: 0997; IC: IC4067B-3; *Address: No. 120, Lane 180, Hsin Ho Rd. Lung-Tan Dist., Tao Yuan City 325, Taiwan *Tel : 886-3-407-1718; Fax: 886-3-407-1738

Report No.: ISL-18LR100FCDTS Issue Date : 2018/09/04

Test results given in this report apply only to the specific sample(s) tested and are traceable to national or international standard through calibration of the equipment and evaluating measurement uncertainty herein.

This report MUST not be used to claim product endorsement by TAF, NVLAP or any agency of the Government.

This test report shall not be reproduced except in full, without the written approval of International Standards Laboratory.

VERIFICATION OF COMPLIANCE

Applicant:	AirTies Wireless Networks
Product Description:	UHD Set-Top Box
Brand Name:	AirTies
Model No.:	Air7415B
Model Difference:	N/A
Date of test:	$2018/03/01 \sim 2018/04/24$
Date of EUT Received:	2018/03/01

We hereby certify that:

All the tests in this report have been performed and recorded in accordance with the standards described above and performed by an independent electromagnetic compatibility consultant, International Standards Laboratory.

The test results contained in this report accurately represent the measurements of the characteristics and the energy generated by sample equipment under test at the time of the test. The sample equipment tested as described in this report is in compliance with the limits of above standards.

Test By:	Barry Lee	Date:	2018/09/04
	Barry Lee / Sr. Engineer		
Prepared By:	Elise Chen	Date:	2018/09/04
	Elisa Chen / Sr. Engineer		
Approved By:	DinoChen	Date:	2018/09/04

Dino Chen / Sr. Engineer

Version

Version No.	Date	Description
00	2018/04/27	Initial creation of document
01	2018/09/04	Adding new adapter

Uncertainty of Measurement

Description Of Test	Uncertainty	
Conducted Emission (AC power line)	2.586 dB	
	<=30MHz: 2.96dB	
Field Strength of Spurious Radiation	30-1GHz: 4.22 dB	
	1-40 GHz: 4.08 dB	
Conducted Power	2.412 GHz: 1.30 dB	
Conducted Power	5.805 GHz: 1.55 dB	
Deres Develter	2.412 GHz:1.30 dB	
Power Density	5.805 GHz: 1.67 dB	
Frequency	0.0032%	
Time	0.01%	
DC Voltage	1%	

Table of Contents

1	GENERAL INFORMATION	6
1.1		
1.2		
1.3		
1.4	•	
1.5	-	
2	SYSTEM TEST CONFIGURATION	8
2.1	EUT Configuration	8
2.2	2 EUT Exercise	8
2.3	3 Test Procedure	8
2.4	Configuration of Tested System	9
3	SUMMARY OF TEST RESULTS	
4	DESCRIPTION OF TEST MODES	
5	CONDUCTED EMISSION TEST	
5.1	Standard Applicable:	
5.2	2. Measurement Equipment Used:	
5.3		
5.4	Measurement Procedure:	12
5.5	Measurement Result:	12
6	PEAK /AVERAGE OUTPUT POWER MEASUREMENT	15
6.1	Standard Applicable:	15
6.2	2 Measurement Equipment Used:	16
6.3	B Test Set-up:	16
6.4		
6.5	Measurement Result:	16
7	6dB Bandwidth	17
7.1	Standard Applicable:	17
7.2	2 Measurement Equipment Used:	17
7.3	B Test Set-up:	17
7.4	Measurement Procedure:	17
7.5	Measurement Result:	17
8	100kHz BANDWIDTH OF BAND EDGES MEASUREMENT	
8.1	11	
8.2		
8.3		
8.4		
8.5	8	
8.6		
9	SPURIOUS RADIATED EMISSION TEST	
9.1		
9.2		
9.3		
9.4		
9.5	8	
9.6	6 Measurement Result:	29

10 Pea	ak Power Spectral Density	
10.1		
10.2	Measurement Equipment Used:	
10.3	Test Set-up:	
10.4	Measurement Procedure:	
10.5	Measurement Result:	
11 AN	TENNA REQUIREMENT	
11.1	Standard Applicable	
11.2	Antenna Connected Construction	

1 GENERAL INFORMATION

General:

Product Name:	UHD Set-Top Box			
Brand:	AirTies			
Model:	Air7415B			
Model different:	N/A			
	12Vdc from AC	/DC adapter		
Power Supply:	ModelMSA-C1000CS12-12A-DEModelMSA-C1000CS12.0-12A-US			
USB port	1			
Gigabit LAN	1			
S/PDIF	1			
HDMI	1			
AV Out	1	1		

Bluetooth:

Frequency Range:	2402 – 2480MHz		
Bluetooth Version:	V2.1 V4.1		
Channel number:	79 channels, 1MHz step	40 channels, 2MHz step	
Modulation type:	GFSK	GFSK	
Tune-up power	11.01 dBm	8.40 dBm	
Power Tolerance:	+/- 2.0 dBm		
Dwell Time:	N/A		
Antenna Designation:	Printed Antenna, -5.7 dBi		

The EUT is compliance with BT2.1 and BLE Standard.

The Test report is applied for BT 4.1 (BLE).

Remark: The above DUT's information was declared by manufacturer. Please refer to the specifications or user's manual for more detailed description.

1.1 Related Submittal(s) / Grant (s)

This submittal(s) (test report) is intended for FCC ID: <u>Z3WAIR7415B</u> filing to comply with Section 15.247 of the FCC Part 15, Subpart C Rules.

1.2 Test Methodology

Both conducted and radiated testing were performed according to the procedures in ANSI C63.10: 2013. Radiated testing was performed at an antenna to EUT distance 3 meters.

KDB Document: 558074 D01 DTS Meas Guidance v04

1.3 Test Facility

The measurement facilities used to collect the 3m Radiated Emission and AC power line conducted data are located on the address of **International Standards Laboratory** <LT Lab.> No. 120, Lane 180, Hsin Ho Rd., Lung-Tan Dist., Tao Yuan City 325, Taiwan which are constructed and calibrated to meet the FCC requirements in documents, ANSI C63.10: 2013. FCC Registration Number is: 872200; Designation Number is: TW1036, Canada Registration Number: 4067B-3.

1.4 Special Accessories

Not available for this EUT intended for grant.

1.5 Equipment Modifications

Not available for this EUT intended for grant.

2 SYSTEM TEST CONFIGURATION

2.1 EUT Configuration

The EUT configuration for testing is installed on RF field strength measurement to meet the Commissions requirement and operating in a manner which intends to maximize its emission characteristics in a continuous normal application.

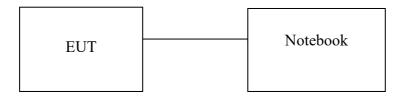
2.2 EUT Exercise

The EUT (Transmitter) was operated in the engineering mode to fix the Tx frequency that was for the purpose of the measurements.

2.3 Test Procedure

2.3.1 Conducted Emissions

The EUT is a placed on as turn table which is 0.8 m above ground plane. According to the requirements in Section 5 and 7 of ANSI C63.10: 2013..Conducted emissions from the EUT measured in the frequency range between 0.15 MHz and 30MHz using CISPR 16-1-1 Quasi-Peak and Average detector mode.


2.3.2 Radiated Emissions

The EUT is a placed on as turn table which is 0.8 m/1.5m(Frequency above 1GHz) above ground plane. The turn table shall rotate 360 degrees to determine the position of maximum emission level. EUT is set 3m away from the receiving antenna which varied from 1m to 4m to find out the highest emission. And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical. In order to find out the max. emission, the relative positions of this hand-held transmitter(EUT) was rotated through three orthogonal axes according to the requirements in Section 6 and 11 of ANSI C63.10: 2013.

2.4 Configuration of Tested System

Fig. 1 Radiated/Conducted Emission Configuration

Table 1 Equipment Used in Tested System

Item	Equipment	Mfr/Brand	Model/ Type No.	Series No.	Data Cable	Power Cord
1	NB	HP	440i	NA	Non-shielded	Non-shielded

3 SUMMARY OF TEST RESULTS

FCC Rules	Description Of Test	Result	
§15.207(a)	AC Power Line Conducted Emission	Compliant	
§15.247(b) (3),(4)	Peak Output Power	Compliant	
	6dB Bandwidth		
§15.247(a)(2)	&	Compliant	
	99% Power Bandwidth		
§15.247(d)	100 kHz Bandwidth Of	Compliant	
§15.247(d)	Frequency Band Edges		
§15.247(d)	Spurious Emission	Compliant	
§15.247(e)	Peak Power Density Comp		
§15.203	Antenna Requirement Complian		

4 DESCRIPTION OF TEST MODES

The EUT has been tested under engineering operating condition. Test program used to control the EUT for staying in continuous transmitting mode is programmed.

BT LE mode: Channel low (2402MHz), mid (2442MHz) and high (2480MHz) are chosen for full testing.

5 CONDUCTED EMISSION TEST

5.1 Standard Applicable:

According to §15.207 & RSS-Gen §7.2.4, frequency range within 150kHz to 30MHz shall not exceed the Limit table as below.

Frequency range		mits (uV)
MHz	Quasi-peak	Average
0.15 to 0.50	66 to 56	56 to 46
0.50 to 5	56	46
5 to 30	60	50
Note		
1. The lower limit shall apply at the transition frequencies		

2. The limit decreases linearly with the logarithm of the frequency in the range 0.15 MHz to 0.50 MHz.

Conducted Emission Test Site									
EQUIPMENT TYPE	MFR	MODEL NUMBER	SERIAL NUMBER	LAST CAL.	CAL DUE.				
Conduction 04-3 Cable	WOKEN	CFD 300-NL	Conduction 04 -3	09/11/2017	09/10/2018				
EMI Receiver 16	Rohde & Schwarz	ESCI	101221	10/23/2017	10/22/2018				
LISN 18	ROHDE & SCHWARZ	ENV216	101424	02/04/2018	02/03/2019				
LISN 19	ROHDE & SCHWARZ	ENV216	101425	03/06/2018	03/05/2019				
Test Software	Farad	EZEMC Ver:ISL-03A2	N/A	N/A	N/A				

5.2 Measurement Equipment Used:

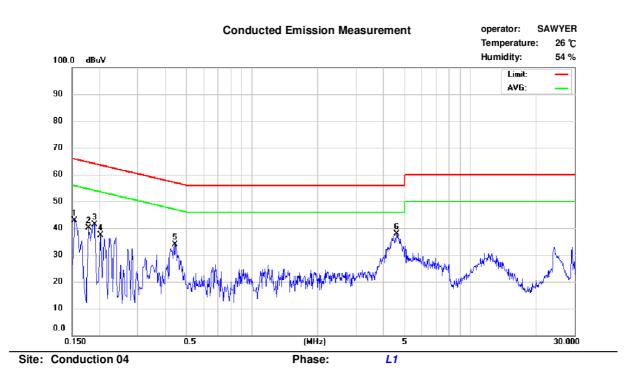
5.3 EUT Setup:

- 1. The conducted emission tests were performed in the test site, using the setup in accordance with ANSI C63.4-2009.
- 2. The AC/DC Power adaptor of EUT was plug-in LISN. The EUT was placed flushed with the rear of the table.
- 3. The LISN was connected with 120Vac/60Hz power source.

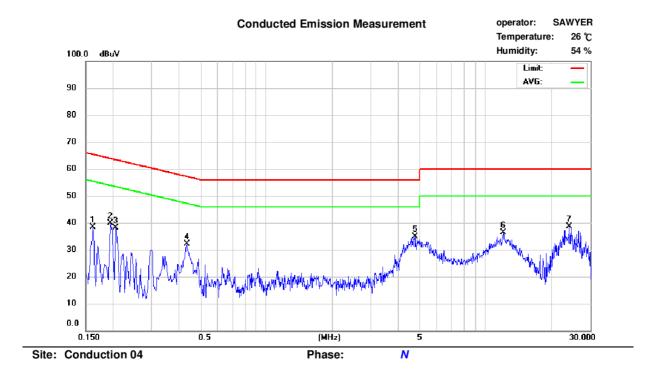
5.4 Measurement Procedure:

- 1. The EUT was placed on a table which is 0.8m above ground plane.
- 2. Maximum procedure was performed on the six highest emissions to ensure EUT compliance.
- 3. Repeat above procedures until all frequency measured were complete.

5.5 Measurement Result:


The initial step in collecting conducted data is a spectrum analyzer peak scan of the measurement range. Significant peaks are then marked as shown on the following data page, and these signals are then quasi-peaked.

Note: Refer to next page for measurement data and plots.


AC POWER LINE CONDUCTED EMISSION TEST DATA

Operation Mode:	Normal Operation	Test Date:	2018/03/05

No.	Frequency (MHz)	QP_R (dBuV)	AVG_R (dBuV)	Correct Factor (dB)	QP Emission (dBuV)	QP Limit (dBuV)	QP Margin (dB)	AVG Emission (dBuV)	AVG Limit (dBuV)	AVG Margin (dB)
1	0.154	32.41	17.21	9.94	42.35	65.78	-23.43	27.15	55.78	-28.63
2	0.178	25.35	7.73	9.93	35.28	64.58	-29.30	17.66	54.58	-36.92
3	0.190	27.74	12.77	9.93	37.67	64.04	-26.37	22.70	54.04	-31.34
4	0.202	26.83	9.86	9.93	36.76	63.53	-26.77	19.79	53.53	-33.74
5	0.446	19.64	13.32	9.92	29.56	56.95	-27.39	23.24	46.95	-23.71
6	4.602	21.86	10.73	10.08	31.94	56.00	-24.06	20.81	46.00	-25.19

-14 of 39-

No.	Frequency (MHz)	QP_R (dBuV)	AVG_R (dBuV)	Correct Factor (dB)	QP Emission (dBuV)	QP Limit (dBuV)	QP Margin (dB)	AVG Emission (dBuV)	AVG Limit (dBuV)	AVG Margin (dB)
1	0.162	30.37	14.97	9.30	39.67	65.36	-25.69	24.27	55.36	-31.09
2	0.194	26.77	12.73	9.30	36.07	63.86	-27.79	22.03	53.86	-31.83
3	0.206	23.03	8.05	9.30	32.33	63.37	-31.04	17.35	53.37	-36.02
4	0.434	22.74	16.66	9.31	32.05	57.18	-25.13	25.97	47.18	-21.21
5	4.758	22.46	15.40	9.49	31.95	56.00	-24.05	24.89	46.00	-21.11
6	12.058	25.06	18.39	9.68	34.74	60.00	-25.26	28.07	50.00	-21.93
7	24.046	9.02	3.67	9.90	18.92	60.00	-41.08	13.57	50.00	-36.43

6 PEAK /AVERAGE OUTPUT POWER MEASUREMENT

6.1 Standard Applicable:

According to §15.247(b)(3),(4)(b)

(3) For systems using digital modulation in the 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz bands: 1 Watt. As an alternative to a peak power measurement, compliance with the one Watt limit can be based on a measurement of the maximum conducted output power. Maximum Conducted Output Power is defined as the total transmit power delivered to all antennas and antenna elements averaged across all symbols in the signaling alphabet when the transmitter is operating at its maximum power control level. Power must be summed across all antennas and antenna elements. The average must not include any time intervals during which the transmitter is off or is transmitting at a reduced power level. If multip802.11n 40Ms of operation are possible (e.g., alternative modulation methods), the maximum conducted output power is the highest total transmit power occurring in any mode. (4) The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

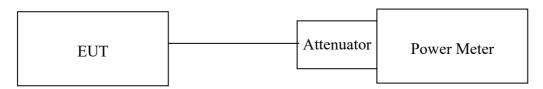
(c) Operation with directional antenna gains greater than 6 dBi.

(1) Fixed point-to-point operation:

(i) Systems operating in the 2400-2483.5 MHz band that are used exclusively for fixed,

point-to-point operations may employ transmitting antennas with directional gain greater than 6 dBi provided the maximum conducted output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6 dBi.

(ii) Systems operating in the 5725-5850 MHz band that are used exclusively for fixed,


point-to-point operations may employ transmitting antennas with directional gain greater than 6 dBi without any corresponding reduction in transmitter conducted output power.

Conducted Emission Test Site								
EQUIPMENT TYPEMFRMODEL NUMBERSERIAL NUMBERLAST CAL.C.								
Power Meter 05	Anritsu	ML2495A	1116010	09/07/2017	09/06/2018			
Power Sensor 05	Anritsu	MA2411B	34NKF50	09/07/2017	09/06/2018			
Power Sensor 06	DARE	RPR3006W	13I00030SNO33	12/12/2017	12/11/2018			
Power Sensor 07	DARE	RPR3006W	13I00030SNO34	12/12/2017	12/11/2018			
Temperature Chamber	KSON	THS-B4H100	2287	12/02/2017	12/01/2018			
DC Power supply	ABM	8185D	N/A	11/06/2017	11/05/2018			
AC Power supply	EXTECH	CFC105W	NA	12/25/2017	12/24/2018			
Attenuator	Woken	Watt-65m3502	11051601	NA	NA			
Splitter	MCLI	PS4-199	12465	12/26/2017	12/25/2019			
Spectrum analyzer	keysight	N9010A	MY56070257	07/07/2017	07/06/2018			
Spectrum analyzer	R&S	FSP40	100143	11/02/2017	11/01/2018			
Test Sofware	DARE	Radimation Ver:2013.1.23	NA	NA	NA			

6.2 Measurement Equipment Used:

6.3 Test Set-up:

6.4 Measurement Procedure:

Refer to section 9.1.3 and 9.2.3 Peak and Average Conducted Output Power Measurement Procedure of KDB Document: 558074 D01 DTS Meas Guidance v04

6.5 Measurement Result:

LE Mode

Frequency (MHz)	Peak Reading Power (dBm)	Cable Loss	Output Power (dBm)	Output Power (W)	Limit (W)
Low	7.83	0.00	7.83	0.00606	1
Mid	8.34	0.00	8.34	0.00683	1
High	8.40	0.00	8.40	0.00692	1

Note: offset 1dB for cable lose.

7 6dB Bandwidth

7.1 Standard Applicable:

According to §15.247(a)(2), Systems using digital modulation techniques may operate in the 902 - 928 MHz,2400 - 2483.5 MHz, and 5725 - 5850 MHz bands. The minimum 6 dB bandwidth shall be at least 500kHz.

7.2 Measurement Equipment Used:

Refer to section 6.2 for details.

7.3 Test Set-up:

Refer to section 6.3 for details.

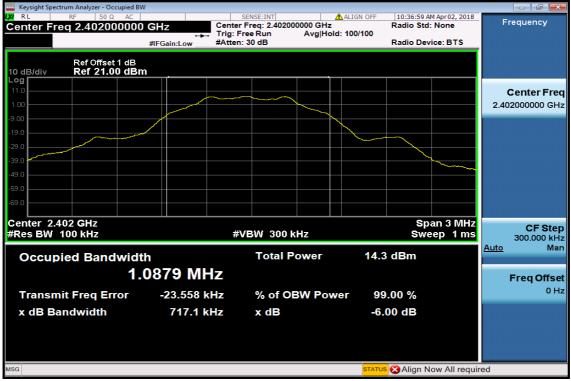
7.4 Measurement Procedure:

Refer to section 8.1 DTS bandwidth Measurement Procedure of KDB Document: 558074 D01 DTS Meas Guidance v04

- 1. Set resolution bandwidth (RBW) = 100kHz.
- 2. Set the video bandwidth (VBW) =300kHz.
- 3. Detector = Peak.
- 4. Trace mode = max hold.
- 5. Sweep = auto couple.
- 6. Allow the trace to stabilize.
- 7. Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission. Compare the resultant bandwidth with the RBW setting of the analyzer. Readjust RBW and repeat measurement.

7.5 Measurement Result:

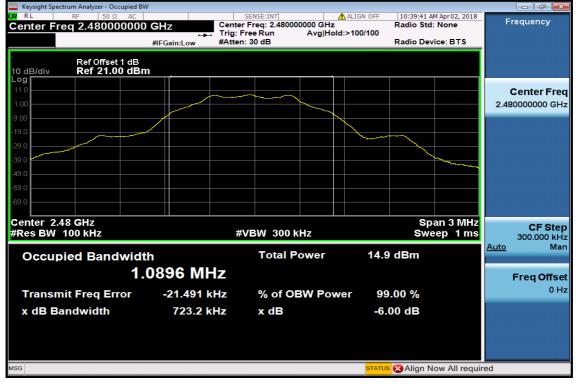
LF Mode


Frequency (MHz)	Bandwidth (MHz)	Bandwidth (kHz)	Result						
Low	0.72	> 500	PASS						
Mid	0.72	> 500	PASS						
High	0.72	> 500	PASS						

Note: Refer to next page for plots.

BT BLE

6dB Band Width Test Data CH-Low



6dB Band Width Test Data CH-Mid

Keysight Spectrum Analyzer - Occupied E	W				
Image: Wirel RF 50 Ω AC Center Freq 2.44200000 End En		er Freq: 2.442000000 GHz	Radio Std:	M Apr 02, 2018 None	Frequency
	Trig:	Free Run Avg Hold: n: 30 dB	100/100 Radio Dev	ice: BTS	
	in dameon				
Ref Offset 1 dB 10 dB/div Ref 21.00 dB	m				
Log					
11.0					Center Freq
1.00					2.442000000 GHz
-9.00			<hr/>		
-29.0			Land .		
-39.0					
-49.0				- marine and a second s	
-59.0					
-69.0					
Center 2.442 GHz #Res BW 100 kHz	4	∜VBW 300 kHz		an 3 MHz	CF Step
#Res BW 100 KHZ	#	FVEW JUUKHZ	Swe	ep 1ms	300.000 kHz Auto Man
Occupied Bandwid	th	Total Power	14.8 dBm		Auto Man
1	.0888 MHz				En a Official
					Freq Offset 0 Hz
Transmit Freq Error	-22.312 kHz	% of OBW Powe	r 99.00 %		0 HZ
x dB Bandwidth	719.3 kHz	x dB	-6.00 dB		
MSG			STATUS 🔀 Align N	ow All requir	ed

6dB Band Width Test Data CH-High

8 100kHz BANDWIDTH OF BAND EDGES MEASUREMENT

8.1 Standard Applicable:

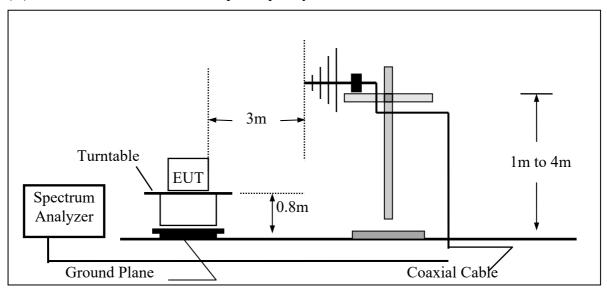
According to §15.247(c), in any 100 kHz bandwidth outside the frequency bands in which the spread spectrum intentional radiator in operating, the radio frequency power that is produced by the intentional radiator shall be at least 20dB below that in the 100kHz bandwidth within the band that contains the highest level of the desired power, In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in15.209(a).

8.2 Measurement Equipment Used:

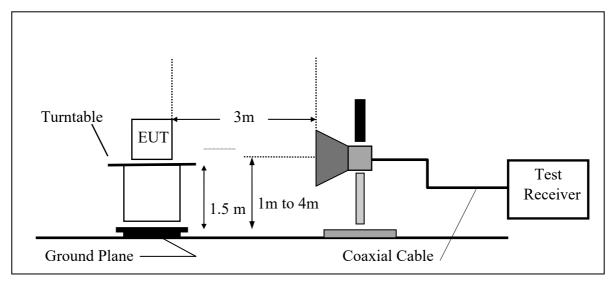
8.2.1 Conducted Emission at antenna port: Refer to section 6.2 for details.

8.2.2 Radiated emission:

Chamber 19(966 Chamber)								
EQUIPMENT TYPE	MFR							
Spectrum Analyzer 21(26.5GHz)	Agilent	N9010A	MY52100117	06/30/2017	06/29/2018			
EMI Receiver	SCHWARZBECK	FCVU1534	1534149	12/07/2017	12/06/2018			
Dipole antenna	SCHWARZBECK	VHAP,30-300	919	12/28/2017	12/27/2019			
Dipole antenna	SCHWARZBECK	UHAP,300-100 0	1195	12/28/2017	12/27/2019			
Loop Antenna9K-30M	EM	EM 6879	271	11/01/2016	10/31/2018			
Bilog Antenna30-1G	SCHWARZBECK	VULB9168	736	07/21/2017	07/20/2018			
Horn antenna1-18G	ETS	3117	00066665	11/29/2017	11/28/2018			
Horn antenna26-40G(05)	Com-power	AH-640	100A	02/22/2017	02/21/2019			
Horn antenna18-26G(04)	Com-power	AH-826	081001	11/21/2017	11/20/2019			
Preamplifier9-1000M	HP	8447F	NA	12/08/2017	12/07/2018			
Preamplifier1-18G	MITEQ	AFS44-001018 00-25-10P-44	1329256	07/26/2017	07/25/2018			
Preamplifier1-26G	EM	EM01M26G	NA	11/24/2017	11/23/2018			
Preamplifier26-40G	MITEQ	JS-26004000-2 7-5A	818471	11/20/2017	11/19/2019			
Cable1-18G	HUBER SUHNER	Sucoflex 106	NA	11/24/2017	11/23/2018			
Cable UP to 1G	HUBER SUHNER	RG 214/U	NA	10/02/2017	10/01/2018			
SUCOFLEX 1GHz~40GHz cable	HUBER SUHNER	Sucoflex 102	27963/2&3742 1/2	11/02/2017	11/01/2019			
Signal Generator	R&S	SMU200A	102330	03/14/2018	03/13/2019			
Signal Generator	Anritsu	MG3692A	50405	12/07/2017	12/06/2018			
2.4G Filter	Micro-Tronics	Brm50702	76	12/25/2017	12/24/2018			
Test Software	Audix	E3 Ver:6.12023	N/A	N/A	N/A			



8.3 Test SET-UP:


8.3.1 Conducted Emission at antenna port: Refer to section 6.3 for details.

8.3.2 Radiated emission:

(A) Radiated Emission Test Set-Up, Frequency Below 1000MHz

(B) Radiated Emission Test Set-UP Frequency Over 1 GHz

-23 of 39-

8.4 Measurement Procedure:

- 1. Place the EUT on the table and set it in transmitting mode.
- 2. Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to the spectrum analyzer.
- 3. Set center frequency of spectrum analyzer = operating frequency.
- 4. Set the spectrum analyzer as RBW=100kHz, VBW=3* RBW, Span=25MHz, Sweep = auto
- 5. Mark Peak, 2.390GHz and 2.4835GHz and record the max. level.
- 6. Repeat above procedures until all frequency measured were complete.

Refer to section 11 and 12 emissions in restricted and non-restricted frequency bands Measurement Procedure of KDB Document: 558074 D01 DTS Meas Guidance v04

The measurement of unwanted emissions at the edge of the authorized frequency bands can be complicated by the leakage of RF energy from the fundamental emission into the RBW pass band. Thus, for measurements at the band edges, a narrower resolution bandwidth (no less than 10 kHz) can be used within the first 1 MHz beyond the fundamental emission, provided that that measured energy is subsequently integrated over the appropriate reference bandwidth (i.e., 100 kHz or 1 MHz). This integration can be performed using the band power function of the spectrum analyzer or by summing the spectral levels (in linear power units) over the appropriate reference bandwidth.

8.5 Field Strength Calculation:

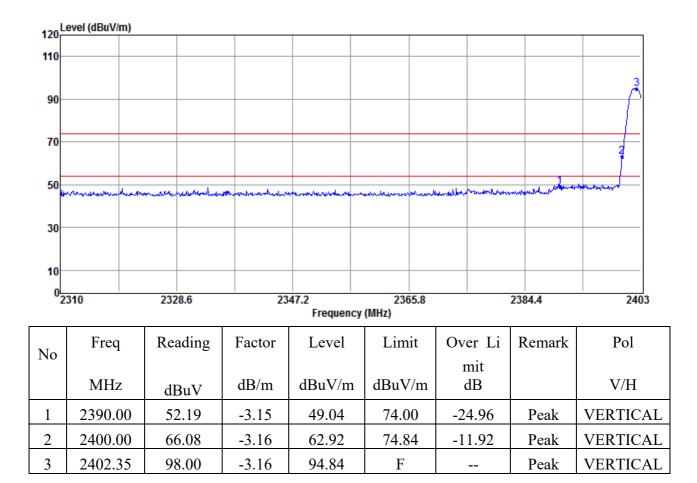
The field strength is calculated by adding the Antenna Factor and Cable Factor and subtracting the Amplifier Gain and Duty Cycle Correction Factor(if any) from the measured reading. The basic equation with a sample calculation is as follows:

FS = RA + AF + CL - AG

Where	FS = Field Strength	CL = Cable Attenuation Factor (Cable Loss)
	RA = Reading Amplitude	AG = Amplifier Gain
	AF = Antenna Factor	

8.6 Measurement Result:

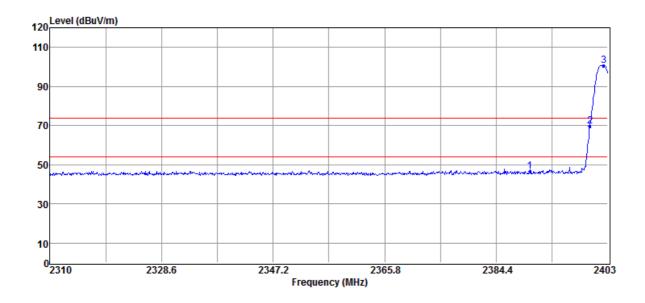
Note: Refer to next page spectrum analyzer data chart and tabular data sheets.


FCC

Band Edges:

Radiated Emission: BLE mode

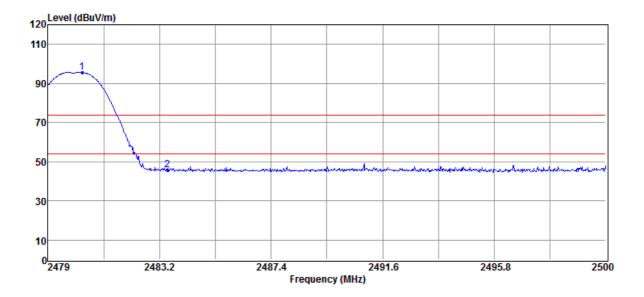
Operation Mode	TX CH Low	Test Date	2018/04/02
Fundamental Frequency	2412 MHz	Test By	Barry
Temperature	25 °C	Humidity	60 %


-24 of 39-

Remark:

- 1 Field strength limits for frequency above 1000MHz are based on average limits. However, Peak mode field strength shall not exceed the average limits specified plus 20dB.
- 2 Measurement of data within this frequency range shown "-" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- 3 Spectrum Peak mode IF bandwidth Setting : 1GHz- 26GHz, RBW= 1MHz, Sweep time= 200 ms., the VBW setting was 3 MHz.
- 4 Spectrum AV mode if bandwidth Setting : 1GHz- 26GHz, RBW= 1MHz, VBW= 10Hz, Sweep time= 200 ms.

-25 of 39-

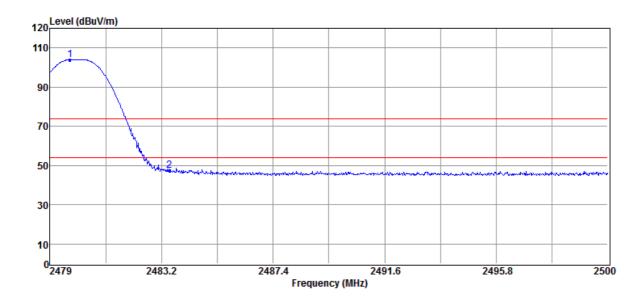

No	Freq	Reading	Factor	Level	Limit	Over L	Remark	Pol
INO	MHz	dBuV	dB/m	dBuV/m	dBuV/m	imit dB		V/H
1	2200.00		2.15	16 77	74.00	27.22	D 1	
1	2390.00	49.92	-3.15	46.77	74.00	-27.23	Peak	HORIZONTAL
2	2400.02	72.65	-3.16	69.49	80.79	-11.30	Peak	HORIZONTAL
3	2402.35	103.95	-3.16	100.79	F		Peak	HORIZONTAL

Remark:

- 1 Field strength limits for frequency above 1000MHz are based on average limits. However, Peak mode field strength shall not exceed the average limits specified plus 20dB.
- 2 Measurement of data within this frequency range shown "-" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- 3 Spectrum Peak mode IF bandwidth Setting : 1GHz- 26GHz, RBW= 1MHz, Sweep time= 200 ms., the VBW setting was 3 MHz.
- 4 Spectrum AV mode if bandwidth Setting : 1GHz- 26GHz, RBW= 1MHz, VBW= 10Hz, Sweep time= 200 ms.

Operation Mode	TX CH High	Test Da
Fundamental Frequency	2462 MHz	Test By
Temperature	25 °C	Humidi

Fest Date2018/04/02Fest ByBarryHumidity60 %


-26 of 39-

No	Freq	Reading	Factor	Level	Limit	Over Li	Remark	Pol
INO	MHz	dBuV	dB/m	dBuV/m	dBuV/m	mit dB		V/H
1	2480.28	98.73	-3.11	95.62	F		Peak	VERTICAL
2	2483.50	48.92	-3.11	45.81	74.00	-28.19	Peak	VERTICAL

Remark:

- 1 Field strength limits for frequency above 1000MHz are based on average limits. However, Peak mode field strength shall not exceed the average limits specified plus 20dB.
- 2 Measurement of data within this frequency range shown "-" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- 3 Spectrum Peak mode IF bandwidth Setting : 1GHz- 26GHz, RBW= 1MHz, Sweep time= 200 ms., the VBW setting was 3 MHz.
- 4 Spectrum AV mode if bandwidth Setting : 1GHz- 26GHz, RBW= 1MHz, VBW= 10Hz, Sweep time= 200 ms.

-27 of 39-

N	Freq	Reading	Factor	Level	Limit	Over L	Remark	Pol
No	MHz	dBuV	dB/m	dBuV/m	dBuV/m	imit dB		V/H
1	2479.76	107.08	-3.11	103.97	F		Peak	HORIZONTAL
2	2483.50	50.34	-3.11	47.23	74.00	-26.77	Peak	HORIZONTAL

Remark:

- 1 Field strength limits for frequency above 1000MHz are based on average limits. However, Peak mode field strength shall not exceed the average limits specified plus 20dB.
- 2 Measurement of data within this frequency range shown "-" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- 3 Spectrum Peak mode IF bandwidth Setting : 1GHz- 26GHz, RBW= 1MHz, Sweep time= 200 ms., the VBW setting was 3 MHz.
- 4 Spectrum AV mode if bandwidth Setting : 1GHz- 26GHz, RBW= 1MHz, VBW= 10Hz, Sweep time= 200 ms.

9 SPURIOUS RADIATED EMISSION TEST

9.1 Standard Applicable

According to \$15.247(c), all other emissions outside these bands shall not exceed the general radiated emission limits specified in \$15.209(a). And according to \$15.33(a)(1), for an intentional radiator operates below 10GHz, the frequency range of measurements: to the tenth harmonic of the highest fundamental frequency or to 40GHz, whichever is lower.

9.2 Measurement Equipment Used:

9.2.1 Conducted Emission at antenna port:

Refer to section 6.2 for details.

9.2.2 Radiated emission:

Refer to section 7.2 for details.

9.3 Test SET-UP:

9.3.1 Conducted Emission at antenna port:

Refer to section 6.3 for details.

9.3.2 Radiated emission:

Refer to section 7.3 for details.

9.4 Measurement Procedure:

- 1. The EUT was placed on a turn table which is 1.5m above ground plane.
- 2. The turn table shall rotate 360 degrees to determine the position of maximum emission level.
- 3. EUT is set 3m away from the receiving antenna which varied from 1m to 4m to find out the highest emissions.
- 4. When measurement procedures for electric field radiated emissions above 1 GHz the EUT measurement is to be made "while keeping the antenna in the 'cone of radiation' from that area and pointed at the area both in azimuth and elevation, with polarization oriented for maximum response." is still within the 3dB illumination BW of the measurement antenna.
- 5. Maximum procedure was performed on the six highest emissions to ensure EUT compliance.
- 6. And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical.
- 7. Repeat above procedures until all frequency measured were complete.

Refer to section 11 and 12 emissions in restricted and non-restricted frequency bands Measurement Procedure of KDB Document: 558074 D01 DTS Meas Guidance v04

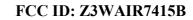
9.5 Field Strength Calculation

The field strength is calculated by adding the Antenna Factor and Cable Factor and subtracting the Amplifier Gain and Duty Cycle Correction Factor(if any) from the measured reading. The basic equation with a sample calculation is as follows:

FS = RA + AF + CL - AG

Where	FS = Field Strength	CL = Cable Attenuation Factor (Cable Loss)
	RA = Reading Amplitude	AG = Amplifier Gain
	AF = Antenna Factor	

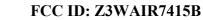
9.6 Measurement Result:


Note: Refer to next page spectrum analyzer data chart and tabular data sheets.

Chanr	tion Mode nel Number erature	· CI	CH Low Test By B)18/04/02 arry) %
No	Freq	Reading	Factor	Level	Limit	Over Limit	Remark	Pol
	MHz	dBuV	dB	dBuV/m	dBuV/m	dB		V/H
1	40.67	35.75	-7.57	28.18	40.00	-11.82	Peak	VERTICAL
2	134.76	32.55	-8.04	24.51	43.50	-18.99	Peak	VERTICAL
3	175.50	37.23	-8.04	29.19	43.50	-14.31	Peak	VERTICAL
4	295.78	30.06	-6.10	23.96	46.00	-22.04	Peak	VERTICAL
5	491.72	41.72	-2.57	39.15	46.00	-6.85	Peak	VERTICAL
6	828.31	28.36	3.03	31.39	46.00	-14.61	Peak	VERTICAL
1	134.76	34.54	-8.04	26.50	43.50	-17.00	Peak	HORIZONTAL
2	170.65	37.98	-7.39	30.59	43.50	-12.91	Peak	HORIZONTAL
3	384.05	30.70	-4.31	26.39	46.00	-19.61	Peak	HORIZONTAL
4	493.66	39.65	-2.54	37.11	46.00	-8.89	Peak	HORIZONTAL
5	517.91	35.91	-2.18	33.73	46.00	-12.27	Peak	HORIZONTAL
6	762.35	28.00	2.26	30.26	46.00	-15.74	Peak	HORIZONTAL

Radiated Spurious Emission Measurement Result (below 1GHz)

- 1 No further spurious emissions detected from the lowest internal frequency and 30MHz.
- 2 Measuring frequencies from the lowest internal frequency to the 1GHz.
- 3 Radiated emissions measured in frequency range from 9MHz to 1000MHz were made with an instrument detector setting 9-90kHz/110-490kHz using PK/AV and other Frequency Band using PK/QP
- 4 Measurement result within this frequency range shown "-" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- 5 The IF bandwidth of SPA between 9kHz to 30MHz was 10kHz, VBW= 30kHz; between 30MHz to 1GHz was 100kHz, VBW=300kHz.



Operation Mode TX mode Test Date 2018/04/02 CH Mid Channel Number Test By Barry Temperature Humidity 60 % 25 °C Over Factor Level Limit Remark Pol No Reading Freq Limit MHz dBuV dB dBuV/m dBuV/m dB V/H -7.99 33.88 36.57 28.58 40.00 -11.42 VERTICAL 1 Peak 2 169.68 36.26 -7.29 28.97 43.50 -14.53 Peak VERTICAL 3 30.55 390.84 -4.17 26.38 46.00 -19.62 Peak VERTICAL 491.72 41.42 -2.57 38.85 46.00 -7.15 VERTICAL 4 Peak 5 730.34 40.35 1.68 42.03 46.00 -3.97 Peak VERTICAL 27.96 3.91 Peak 6 879.72 31.87 46.00 -14.13 VERTICAL 1 170.65 38.25 -7.39 30.86 43.50 -12.64 HORIZONTAL Peak 2 380.17 30.69 -4.41 26.28 46.00 -19.72 Peak HORIZONTAL 3 42.97 492.69 -2.56 40.41 46.00 -5.59 Peak HORIZONTAL 4 522.76 40.70 -2.11 38.59 46.00 -7.41 Peak HORIZONTAL 5 712.88 27.72 1.26 28.98 46.00 -17.02 Peak HORIZONTAL 6 28.05 790.48 2.52 30.57 46.00 -15.43 Peak HORIZONTAL

Radiated Spurious Emission Measurement Result (below 1GHz)

- 1 No further spurious emissions detected from the lowest internal frequency and 30MHz.
- 2 Measuring frequencies from the lowest internal frequency to the 1GHz.
- 3 Radiated emissions measured in frequency range from 9MHz to 1000MHz were made with an instrument detector setting 9-90kHz/110-490kHz using PK/AV and other Frequency Band using PK/QP
- 4 Measurement result within this frequency range shown "-" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- 5 The IF bandwidth of SPA between 9kHz to 30MHz was 10kHz, VBW= 30kHz; between 30MHz to 1GHz was 100kHz, VBW=300kHz.

Chanı	ntion Mode nel Number erature	CI	X mode H High ℃				Test Date Test By Humidity	2018/04/02 Barry 60 %
No	Freq	Reading	Factor	Level	Limit	Over Limit	Remark	Pol
	MHz	dBuV	dB	dBuV/m	dBuV/m	dB		V/H
1	33.88	36.98	-7.99	28.99	40.00	-11.01	Peak	VERTICAL
2	96.93	37.34	-12.59	24.75	43.50	-18.75	Peak	VERTICAL
3	170.65	36.65	-7.39	29.26	43.50	-14.24	Peak	VERTICAL
4	372.41	30.94	-4.58	26.36	46.00	-19.64	Peak	VERTICAL
5	521.79	39.93	-2.12	37.81	46.00	-8.19	Peak	VERTICAL
6	797.27	27.99	2.60	30.59	46.00	-15.41	Peak	VERTICAL
1	134.76	34.26	-8.04	26.22	43.50	-17.28	Peak	HORIZONTAL
2	171.62	38.01	-7.53	30.48	43.50	-13.02	Peak	HORIZONTAL
3	307.42	30.58	-5.83	24.75	46.00	-21.25	Peak	HORIZONTAL
4	491.72	38.93	-2.57	36.36	46.00	-9.64	Peak	HORIZONTAL
5	520.82	40.22	-2.15	38.07	46.00	-7.93	Peak	HORIZONTAL
6	865.17	28.07	3.63	31.70	46.00	-14.30	Peak	HORIZONTAL

Radiated Spurious Emission Measurement Result (below 1GHz)

- 1 No further spurious emissions detected from the lowest internal frequency and 30MHz.
- 2 Measuring frequencies from the lowest internal frequency to the 1GHz.
- 3 Radiated emissions measured in frequency range from 9MHz to 1000MHz were made with an instrument detector setting 9-90kHz/110-490kHz using PK/AV and other Frequency Band using PK/QP
- 4 Measurement result within this frequency range shown "-" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- 5 The IF bandwidth of SPA between 9kHz to 30MHz was 10kHz, VBW= 30kHz; between 30MHz to 1GHz was 100kHz, VBW=300kHz.

Chan	ation Mode nel Number perature	CH	K mode H Low °C				Test Date Test By Humidity	2018/04/02 Barry 60 %
No	Freq	Reading	Factor	Level	Limit	Over Limit	Remark	Pol
	MHz	dBuV	dB	dBuV/m	dBuV/m	dB		V/H
1	2001.00	47.28	-5.34	41.94	74.00	-32.06	Peak	VERTICAL
2	4804.00	31.01	3.23	34.24	74.00	-39.76	Peak	VERTICAL
1	1497.00	39.67	-7.33	32.34	74.00	-41.66	Peak	HORIZONTAL
2	4804.00	31.07	3.23	34.30	74.00	-39.70	Peak	HORIZONTAL

-33 of 39-

Radiated Spurious Emission Measurement Result (above 1GHz)

- 1 No further spurious emissions detected from the lowest internal frequency and 30MHz.
- 2 Measuring frequencies from the lowest internal frequency to the 1GHz.
- 3 Radiated emissions measured in frequency range from 9MHz to 1000MHz were made with an instrument detector setting 9-90kHz/110-490kHz using PK/AV and other Frequency Band using PK/QP
- 4 Measurement result within this frequency range shown "-" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- 5 The IF bandwidth of SPA between 9kHz to 30MHz was 10kHz, VBW= 30kHz; between 30MHz to 1GHz was 100kHz, VBW=300kHz.

Chanı	tion Mode nel Number erature	CH	K mode H Mid °C				Test Date Test By Humidity	2018/04/02 Barry 60 %
No	Freq	Reading	Factor	Level	Limit	Over Limit	Remark	Pol
	MHz	dBuV	dB	dBuV/m	dBuV/m	dB		V/H
1	1497.00	43.86	-7.33	36.53	74.00	-37.47	Peak	VERTICAL
2	4884.00	32.27	3.42	35.69	74.00	-38.31	Peak	VERTICAL
1	1497.00	41.13	-7.33	33.80	74.00	-40.20	Peak	HORIZONTAL
2	4884.00	30.91	3.42	34.33	74.00	-39.67	Peak	HORIZONTAL

-34 of 39-

Radiated Spurious Emission Measurement Result (above 1GHz)

- 1 Field strength limits for frequency above 1000MHz are based on average limits. However, Peak mode field strength shall not exceed the average limits specified plus 20dB.
- 2 Measurement of data within this frequency range shown "-" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- 3 Spectrum Peak mode IF bandwidth Setting : 1GHz- 26GHz, RBW= 1MHz, Sweep time= 200 ms., the VBW setting was 3 MHz.
- 4 Spectrum AV mode if bandwidth Setting : 1GHz- 26GHz, RBW= 1MHz, VBW= 10Hz, Sweep time= 200 ms.

Chan	ation Mode nel Number perature	CI	K mode H High ℃				Test Date Test By Humidity	2018/04/02 Barry 60 %
No	Freq	Reading	Factor	Level	Limit	Over Limit	Remark	Pol
	MHz	dBuV	dB	dBuV/m	dBuV/m	dB		V/H
1	1994.00	44.03	-5.39	38.64	74.00	-35.36	Peak	VERTICAL
2	4960.00	32.41	3.60	36.01	74.00	-37.99	Peak	VERTICAL
1	2064.00	37.31	-4.47	32.84	74.00	-41.16	Peak	HORIZONTAL
2	4962.00	31.54	3.61	35.15	74.00	-38.85	Peak	HORIZONTAL

-35 of 39-

Radiated Spurious Emission Measurement Result (above 1GHz)

- 1 No further spurious emissions detected from the lowest internal frequency and 30MHz.
- 2 Measuring frequencies from the lowest internal frequency to the 1GHz.
- 3 Radiated emissions measured in frequency range from 9MHz to 1000MHz were made with an instrument detector setting 9-90kHz/110-490kHz using PK/AV and other Frequency Band using PK/QP
- 4 Measurement result within this frequency range shown "-" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- 5 The IF bandwidth of SPA between 9kHz to 30MHz was 10kHz, VBW= 30kHz; between 30MHz to 1GHz was 100kHz, VBW=300kHz.

10 Peak Power Spectral Density

10.1 Standard Applicable:

According to §15.247(e) For digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission. This power spectral density shall be determined in accordance with the provisions of paragraph (b) of this section. The same method of determining the conducted output power shall be used to determine the power spectral density.

10.2 Measurement Equipment Used:

Refer to section 6.2 for details.

10.3 Test Set-up:

Refer to section 6.3 for details.

10.4 Measurement Procedure:

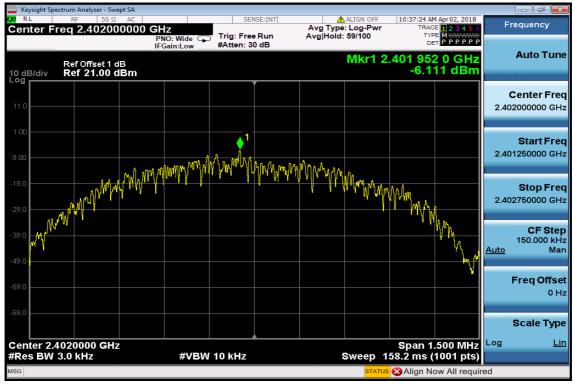
Refer to section 10.2 Peak Power Density(PKPPSD) Measurement Procedure of KDB Document: 558074 D01 DTS Meas Guidance v04

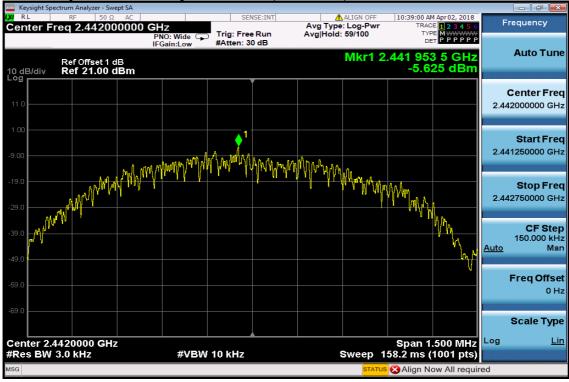
- 1. Set analyzer center frequency to DTS channel frequency
- 2. Set the span to 1.5 times the DTS bandwidth.
- 3. Set resolution bandwidth $3kHz \leq RBW \leq 100kHz$.
- 4. Set the video bandwidth VBW $\geq 3 \times RBW$.
- 5. Detector = peak.
- 6. Sweep time = auto couple.
- 7. Trace mode = max hold.
- 8. Allow trace to fully stabilize.
- 9. Use the peak marker function to determine the maximum amplitude level within the RBW.
- 10. If measured value exceeds limit, reduce RBW (no less than 3 kHz) and repeat.

10.5 Measurement Result:

LE Mode

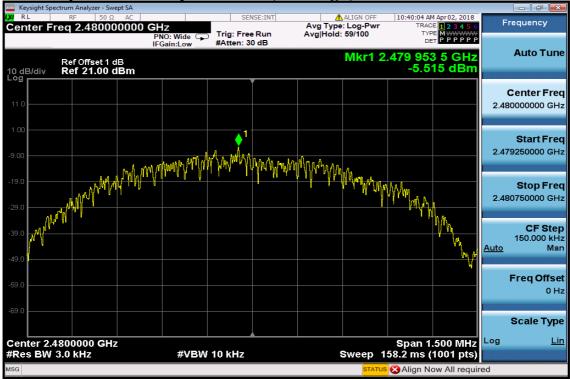
	Power Density	Maximum Limit
СН	Level (dBm)	(dBm)
Low	-6.11	8
Mid	-5.63	8
High	-5.52	8


Note: offset 1dB for cable lose.



BT BLE

Power Spectral Density Test Plot (CH-Low)



Power Spectral Density Test Plot (CH-Mid)

Power Spectral Density Test Plot (CH-High)

11 ANTENNA REQUIREMENT

11.1 Standard Applicable

According to §15.203, Antenna requirement.

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this Section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited. This requirement does not apply to carrier current devices or to devices operated under the provisions of Sections 15.211, 15.213, 15.217, 15.219, or 15.221. Further, this requirement does not apply to intentional radiators that must be professionally installed, such as perimeter protection systems and some field disturbance sensors, or to other intentional radiators which, in accordance with Section 15.31(d), must be measured at the installation site. However, the installer shall be responsible for ensuring that the proper antenna is employed so that the limits in this Part are not exceeded.

11.2 Antenna Connected Construction

The directional gins of antenna used for transmitting is -5.7dBi, and the antenna is designed with fixed type and no consideration of replacement. Please see EUT photo and antenna spec. for details.