

TEST REPORT

Application No.: DNT2505140264R5010-05785

Applicant: VAXEE Corporation

Address of Applicant: No. 61-3, Sec. 2, Jiayuan Rd., Shulin Dist., New Taipei City 23804,

Taiwan

EUT Description: Mouse

XE V2 Wireless, XE V2 W Wireless, XE V2 P Wireless, XE V2 R

Model No.: Wireless, XE V2 DB Wireless, XE V2 LG Wireless, XE V2 LB

Wireless, XE V2 FG Wireless

FCC ID: 2A9L8-XE2WL

Power Supply Input:DC 5V & DC 3.7V From Battery

Trade Mark: VAXEE

47 CFR FCC Part 2, Subpart J

Standards: 47 CFR Part 15, Subpart C

ANSI C63.10: 2013

Date of Receipt: 2025/04/01

Date of Test: 2025/04/01 to 2025/05/17

Date of Issue: 2025/05/20

Test Result: PASS

Prepared By: Wanne Jin (Testing Engineer)

Reviewed By: (Project Engineer)

Approved By: Messe (Manager)

Note: If there is any objection to the results in this report, please submit a written inquiry to the company within 15 days from the date of receiving the report. The test report is effective only with both signature and specialized stamp, and is issued by the company in accordance with the requirements of the "Conditions of Issuance of Test Reports" printed in the attached page. Unless otherwise stated, the results presented in this report only apply to the samples tested this time. Partial reproduction of this report is not allowed unless approved by the company in writing.

Date: May 20, 2025

Page: 2/31

Report Revise Record

Report Version	Revise Time	Issued Date	Valid Version	Notes
V2.0		May.20, 2025	Valid	Original Report

Report No.: DNT2505140264R5010-05785 Date: May 20, 2025 Page: 3 / 31

1 Test Summary

Test Item	Standard Section	Test Result
Antenna Requirement	15.203	PASS
20dB Occupied Bandwidth	15.215	PASS
Field Strength	15.249(a)	PASS
Radiated Spurious Emissions And Band Edge	15.205, 15.209, 15.249(a)(c)(d)(e), 15.35(b)	PASS
AC Power Line Conducted Emissions	15.207	PASS

Date: May 20, 2025

Page: 4/31

Contents

1 Test Summary		 		3
2 General Information		 		5
2.1 Test Location		 	·····	5
2.2 General Description of EUT		 		6
2.3 Power Setting of Test Software		 		7
2.4 Test Environment and Mode		 	·····	7
2.5 Channel List				
2.6 Description of Support Units				7
2.7 Test Facility		 	·····	8
2.8 Measurement Uncertainty (95% confidence leve	ls, k=2)	 		8
2.9 Equipment List				9
2.10 Assistant equipment used for test		 		10
3 Test results and Measurement Data				
3.1 Antenna requirements				11
3.2 20dB Occupied Bandwidth		 		12
3.3 Field Strength of Fundamental		 		15
3.4 Radiated Spurious Emissions		 		20
3.5 AC Power Line Conducted Emissions			<u> </u>	29

Report No.: DNT2505140264R5010-05785 Date: May 20, 2025 Page: 5 / 31

2 General Information

2.1 Test Location

Company:	Dongguan DN Testing Co., Ltd
Address:	No. 1, West Fourth Street, South Xinfa Road, Wusha Liwu, Chang ' an Town, Dongguan City, Guangdong P.R.China
Test engineer:	Wayne Lin

Report No.: DNT2505140264R5010-05785 Date: May 20, 2025 Page: 6 / 31

2.2 General Description of EUT

Manufacturer:	VAXEE Corporation			
Address of Manufacturer:	No. 61-3, Sec. 2, Jiayuan Rd., Shulin Dist., New Taipei City 23804 , Taiwan			
EUT Description:	Mouse			
Test Model No.:	XE V2 Wireless			
Additional Model(s): XE V2 P Wireless,XE V2 R Wireless,XE V2 DB Wireless Wireless,XE V2 LB Wireless,XE V2 FG Wireless				
Power Supply	Input:DC 5V ; DC 3.7V From Battery			
Chip Type:	PAR2862QC			
Serial number:	PR2505140264R5010			
Trade Mark:	VAXEE			
Hardware Version:	V1.0			
Software Version:	V1.0			
Operation Frequency:	2402MHz-2480MHz			
Type of Modulation:	GFSK			
Sample Type:	Prototype production			
Antenna Type:	☐ External, ⊠ Integrated			
Antenna Ports				
Antonno Coin*:	⊠ Provided by applicant			
Antenna Gain*:	1.3dBi			
	⊠ Provided by applicant			
RF Cable*:	0.5dB(0.6~1GHz); 0.8dB(1.4~2GHz); 1.0dB(2.1~2.7GHz); 1.5dB(3~4GHz); 1.8dB(4.4~6GHz);			

Remark:

^{*}All models are just color differences, motherboard, PCB circuit board, chip, electronic components, appearance is all the same.

^{*}Since the above data and/or information is provided by the applicant relevant results or conclusions of this report are only made for these data and/or information , DNT is not responsible for the authenticity, integrity and results of the data and information and/or the validity of the conclusion.

Report No.: DNT2505140264R5010-05785 Date: May 20, 2025 Page: 7 / 31

2.3 Power Setting of Test Software

Software Name	<i>/</i> /	N/A	<i>X X</i>
Frequency(MHz)	2402	2440	2480
Setting	Default	Default	Default

2.4 Test Environment and Mode

Operating Environment:	
Temperature:	20~25.0 °C
Humidity:	45~56 % RH
Atmospheric Pressure:	101.0~101.30 KPa
Test mode:	
Transmitting mode:	Keep the EUT in transmitting mode with all kind of modulation and all kind of data rate.

2.5 Channel List

	Operation Frequency of each channel							
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency	
0	2402MHz	10	2422MHz	20	2442MHz	30	2462MHz	
1	2404MHz	11	2424MHz	21	2444MHz	31	2464MHz	
2	2406MHz	12	2426MHz	22	2446MHz	32	2466MHz	
3	2408MHz	13	2428MHz	23	2448MHz	33	2468MHz	
4	2410MHz	14	2430MHz	24	2450MHz	34	2470MHz	
5	2412MHz	15	2432MHz	25	2452MHz	35	2472MHz	
6	2414MHz	16	2434MHz	26	2454MHz	36	2474MHz	
7	2416MHz	17	2436MHz	27	2456MHz	37	2476MHz	
8	2418MHz	18	2438MHz	28	2458MHz	38	2478MHz	
9	2420MHz	19	2440MHz	29	2460MHz	39	2480MHz	

2.6 Description of Support Units

The EUT has been tested independent unit.

Report No.: DNT2505140264R5010-05785 Date: May 20, 2025 Page: 8 / 31

2.7 Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

Lab A:

· FCC, USA

Designation Number: CN1348

• A2LA (Certificate No. 7050.01)

DONGGUAN DN TESTING CO., LTD.

• Innovation, Science and Economic Development Canada

DONGGUAN DN TESTING CO., LTD. EMC Laboratory has been recognized by ISED as an accredited testing laboratory. CAB identifier is CN0149.

IC#: 30755.

2.8 Measurement Uncertainty (95% confidence levels, k=2)

No.	Item	Measurement Uncertainty
1	Total RF power, conducted	±0.41dB
2	RF power density, conducted	±1.96dB

No.	Item	Measurement Uncertainty		
1.	Conduction Emission	± 3.0dB (150kHz to 30MHz)		
9	4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4	± 4.8dB (Below 1GHz)		
	Dedicted Engineers	± 4.8dB (1GHz to 6GHz)		
2	Radiated Emission	± 4.5dB (6GHz to 18GHz)		
		± 5.02dB (Above 18GHz)		

Report No.: DNT2505140264R5010-05785 Date: May 20, 2025 Page: 9 / 31

2.9 Equipment List

For Connect EUT Antenna Terminal Test							
Description	Manufacturer	Model	Serial Number	Cal date	Due date		
Signal Generator	Keysight	N5181A-6G	MY48180415	2024-10-23	2025-10-22		
Signal Generator	Keysight	N5182B	MY57300617	2024-10-23	2025-10-22		
Power supply	Keysight	E3640A	ZB2022656	2024-10-23	2025-10-22		
Spectrum Analyzer	Aglient	N9010A	MY52221458	2024-10-23	2025-10-22		
BT/WIFI Test Software	Tonscend	JS1120 V3.1.83	NA NA	NA	NA		
RF Control Unit	Tonscend	JS0806-2	22F8060581	NA	NA		
temperature and humidity box	SCOTEK	SCD-C40-80PRO	6866682020008	2024-10-23	2025-10-22		

	Test Equipment for Conducted Emission							
Description	Manufacturer	Model	Serial Number	Cal Date	Due Date			
Receiver	R&S	ESCI3	101152	2024-10-23	2025-10-22			
LISN	R&S	ENV216	102874	2024-10-23	2025-10-22			
ISN	R&S	ENY81-CA6	1309.8590.03	2024-10-23	2025-10-22			

lest E	quipment for I	Radiated Emi	ssion(below	1000MHZ	
Description	Manufacturer	Model	Serial Number	Cal Date	Due Date
Receiver	R&S	ESR7	102497	2024-10-23	2025-10-22
Test Software	Audix	e3-6.111221a	NA	NA	NA
RF Cable	ETS-LINDGREN	RFC-NMS-100- NMS-350-IN	NA	2024-10-23	2025-10-22
Log periodic antenna	ETS-LINDGREN	VULB 9168	01475	2022-11-28	2025-11-27
Pre-amplifier	Schwarzbeck	BBV9743B	00423	2024-10-23	2025-10-22
Single ring magnetic field ring antenna	ETS-LINDGREN	6502	6502	2024-10-23	2025-10-22

Report No.: DNT2505140264R5010-05785 Date: May 20, 2025 Page: 10 / 31

Test E	quipment for F	Radiated Emi	ssion(Above	1000MHz	
Description	Manufacturer	Model	Serial Number	Cal Date	Due Date
Frequency analyser	Keysight	N9010A	MY52221458	2024-10-23	2025-10-22
RF Cable	ETS-LINDGREN	RFC-NMS-100- NMS-350-IN	NA NA	2024-10-23	2025-10-22
Horn Antenna	ETS-LINDGREN	3117	00252567	2022-11-28	2025-11-27
Double ridged waveguide antenna	ETS-LINDGREN	3116C	00251780	2022-11-28	2025-11-27
Test Software	Audix	e3-6.111221a	NA	NA	NA
Pre-amplifier	ETS-LINDGREN	3117-PA	252567	2024-10-23	2025-10-22
Pre-amplifier	ETS-LINDGREN	3116C-PA	251780	2024-10-23	2025-10-22

2.10 Assistant equipment used for test

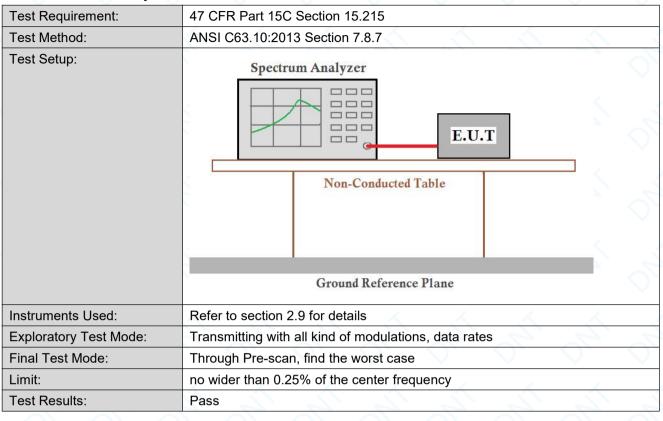
Code	Equipment	Manufacturer	Model No.	Equipment No.
1	Adapter	HUAWEI	HW- 100225C00	NA

Report No.: DNT2505140264R5010-05785 Date: May 20, 2025 Page: 11 / 31

3 Test results and Measurement Data

3.1 Antenna requirements

Standard requirement: 47 CFR Part 15C Section 15.203 /247(c)


An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited. This requirement does not apply to carrier current devices or to devices operated under the provisions of §§15.211, 15.213, 15.217, 15.219, 15.221, or §15.236. Further, this requirement does not apply to intentional radiators that must be professionally installed, such as perimeter protection systems and some field disturbance sensors, or to other intentional radiators which, in accordance with §15.31(d), must be measured at the installation site. However, the installer shall be responsible for ensuring that the proper antenna is employed so that the limits in this part are not exceeded.

The antenna is welded on the main PCB and no consideration of replacement. The best case gain of the antenna is 1.3dBi.

Report No.: DNT2505140264R5010-05785 Date: May 20, 2025 Page: 12 / 31

3.2 20dB Occupied Bandwidth

Test Data:

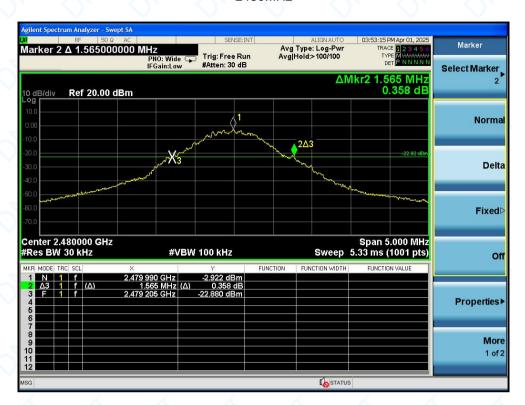
Test Frequency (MHz)	20dB Bandwidth (MHz)	Result
2402	1.595	Pass
2440	1.570	Pass
2480	1.565	Pass

Report No.: DNT2505140264R5010-05785 Date: May 20, 2025 Page: 13 / 31

Test Graphs

2402MHz

2440MHz



Date: May 20, 2025

Page: 14/31

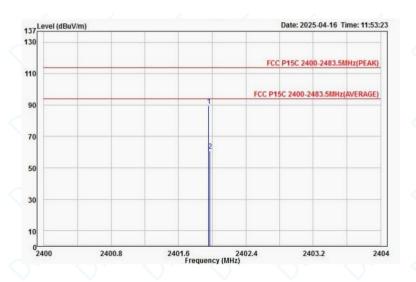
2480MHz

Report No.: DNT2505140264R5010-05785 Date: May 20, 2025 Page: 15/31

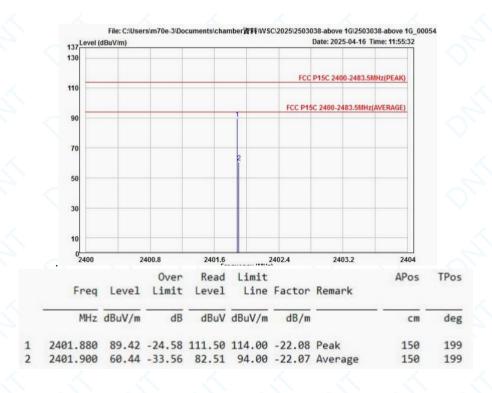
3.3 Field Strength of Fundamental

Test Requirement:	47 CFR Part 15C Section 15	.249(a)	\sim				
Test Method:	ANSI C63.10 :2013 Section						
Test Setup:	Antenna 3m or 10m Ground Reference Plane Test Receiver Angular 30MHz-1GHz	Antenna Tower	Above 1G				
Test Instruments:	Refer to section 2.9 for detail	ls					
Exploratory Test Mode:	Transmitting with all kind of	modulations, data rates					
Final Test Mode:	Through Pre-scan, find the v	orst case	O_{j} O_{j} O_{j}				
Limit:	Fundamental frequenc		gth of fundamental@3m icrovolts/meter)				
	902-928MHz	0, 0,	50				
	2400-2483.5MHz		50				
	5725-5875MHz	0, 0,	50				
	24.0-24.25 250						
	The EUT fundamental		83.5MHz,So the Average				
	Fundamental	Field strength of f	fundamental@3m (dBμV/m)				
	frequency	Average Limit	Peak Limit				
	2400-2483.5MHz	94	114				
	Note: 1. Average Limit (dBµV/m)=20×log[1000×Field Strength (mV/m)]. 2. Peak Limit (dBµV/m)= Average Limit (dBµV/m)+20dB						
Test Configuration:	RBW: ≥OBW VBW: 3XRBW Start frequency: 2400Mł Stop frequency: 2483.5N Sweep Time: Auto Detector: PEAK/AVG Trace Mode: Max Hold						
Test Procedure:	a 3 meter semi-anech determine the position o	oic camber. The table fithe highest radiation	e 1 meters above the ground at was rotated 360 degrees to				
	Donggu	an DN Testing Co., Ltd.					

Sale Land	IN DNTOGOG440004DG040.0G70G D
Repor	t No.: DNT2505140264R5010-05785 Date: May 20, 2025 Page: 16 / 31
	b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
	c. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
	d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters(for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
	e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
	f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.
	g. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, And found the X axis positioning which it is worse case.
	r. Repeat above procedures until all frequencies measured was complete.
Test Results:	Pass



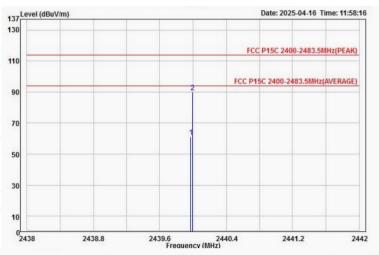
Date: May 20, 2025

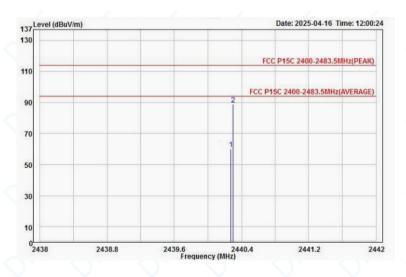

Page: 17/31

Test Data

2402MHz Vertical:

	Freq	Level	Over Limit		Limit Line	Factor	Remark	APos	TPos
	MHz	dBuV/m	dB	dBuV	dBuV/m	dB/m		cm	deg
1	2401.960	89.67	-24.33	111.74	114.00	-22.07	Peak	150	167
2	2401.970	60.77	-33.23	82.84	94.00	-22.07	Average	150	167

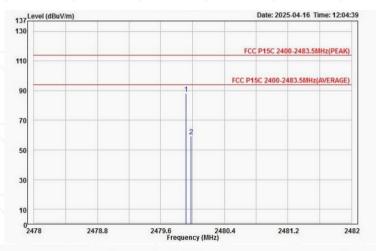



Report No.: DNT2505140264R5010-05785 Date: May 20, 2025 Page: 18 / 31

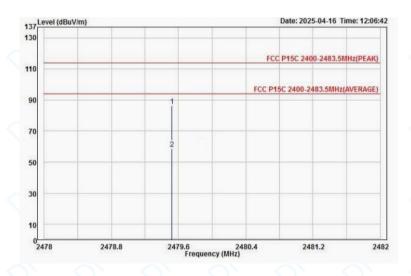
2440MHz

Vertical:

	Freq	Level	Over Limit		Limit Line		Remark	APos	TPos
	MHz	dBuV/m	dB	dBuV	dBuV/m	dB/m		cm	deg
1	2439.970	61.10	-32.90	83.17	94.00	-22.07	Average	150	161
2	2439.993	89.98	-24.02	112.05	114.00	-22.07	Peak	150	161


		Freq	Level	Over Limit		Limit Line		Remark	APos	TPos
		MHz	dBuV/m	dB	dBuV	dBuV/m	dB/m		cm	deg
1		2440.288	60.22	-33.78	82.30	94.00	-22.08	Average	150	205
2	2	2440.300	88.94	-25.06	111.02	114.00	-22.08	Peak	150	205

Report No.: DNT2505140264R5010-05785 Date: May 20, 2025 Page: 19 / 31


2480MHz

Vertical:

	Freq	Level	Over Limit		Limit Line		Remark	APos	TPos
	MHz	dBuV/m	dB	dBuV	dBuV/m	dB/m		cm	deg
1	2479.920	87.94	-26.06	110.49	114.00	-22.55	Peak	150	160
2	2479.980	59.47	-34.53	82.02	94.00	-22.55	Average	150	160

Horizontal:

	Freq	Level	Over Limit	2000	Limit Line		Remark	APos	TPos
	MHz	dBuV/m	dB	dBuV	dBuV/m	dB/m		cm	deg
1	2479.520	86.28	-27.72	108.83	114.00	-22.55	Peak	150	193
2	2479.520	58.50	-35.50	81.05	94.00	-22.55	Average	150	193

Note

1. The Measurement (Result Level) is calculated by Reading Level adding the Correct Factor(maybe including LISN Factor and the Cable Factor etc.), The basic equation is as follows:

Result Level= Reading Level + Correct Factor(including Ant.Factor, Cable Factor etc.)

Report No.: DNT2505140264R5010-05785 Date: May 20, 2025 Page: 20 / 31

3.4 Radiated Spurious Emissions

Test Requirement:	47 CFR Part 15C Section 15.249(a) 47 CFR Part 15C Section 15.209 47 CFR Part 15C Section 15.205											
Test Method:		ANSI C63.10 :2013 Section 11.12										
Test Site:	Measurement Distance: 3m or 10m (Semi-Anechoic Chamber)											
Receiver Setup:	Frequency	Det	ector	RBW	VBW	Remark						
	0.009MHz-0.090MHz	Pe	eak	10kHz	30kHz	Peak						
	0.009MHz-0.090MHz	Ave	rage	10kHz	30kHz	Average						
	0.090MHz-0.110MHz	Quas	i-peak	10kHz	30kHz	Quasi-peak						
	0.110MHz-0.490MHz	Pe	eak	10kHz	30kHz	Peak						
	0.110MHz-0.490MHz	Ave	rage	10kHz	30kHz	Average						
	0.490MHz -30MHz	Quas	i-peak	10kHz	30kHz	Quasi-peak						
	30MHz-1GHz	Quas	i-peak	120kHz	300kHz	Quasi-peak						
	Above 1GHz	Above 1GHz Po		1MHz	3MHz	Peak						
Limit:	15.209 Radiated emission limits											
	Frequency		strength olt/meter)	Limit (dBuV/m)	Remark	Measurement distance (m)						
	0.009MHz-0.490MHz	2400/	F(kHz)		V-	300						
	0.490MHz-1.705MHz	24000	/F(kHz)	- /	- /	30						
	1.705MHz-30MHz	3	30			30						
	30MHz-88MHz	1	00	40.0	Quasi-peak	3						
	88MHz-216MHz	1	50	43.5	Quasi-peak	3						
	216MHz-960MHz	2	00	46.0	Quasi-peak	3						
	960MHz-1GHz	5	00	54.0	Quasi-peak	3						
	Above 1GHz	5	00	54.0	Average	3						
	Fundamental freq	Fi	Field strength of harmonics@3m (microvolts/meter)									
	902-928MHz	:	,		500							
	2400-2483.5MI	Hz	500									
	5725-5875MH	lz			500)						
				0500								

Remark:Unless otherwise specified, the limit on peak radio frequency emissions is 20dB above the maximum permitted average emission limit applicable to the equipment under test. This peak limit applies to the total peak emission level radiated by the device.

2500

24.0-24.25

The limits on the field strength of the spurious emissions in the below table are based on the fundamental frequency of the intentional radiator. Spurious emissions shall be attenuated to the average (or, alternatively, CISPR quasi-peak) limits shown in this table or to the general limits shown in §15.209, whichever limit permits a higher field strength.

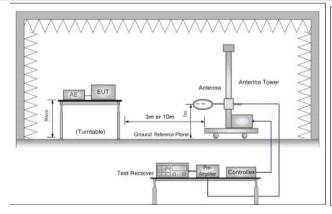
Dongguan DN Testing Co., Ltd.

Date: May 20, 2025

Page: 21/31

The EUT fundamental frequency is 2400-2483.5MHz,So the Average Limit& Peak Limit is show in below table:

Fundamental frequency	Field strength of spurious	s emission@3m (dBµV/m)
(MHz)	Average Limit	Peak Limit
2400-2483.5	54	74


Note:

- 1.Average Limit (dBµV/m)=20×log[1000×Field Strength (mV/m)].
- 2.Peak Limit (dBµV/m)= Average Limit (dBµV/m)+20dB

15.205 Restricted frequency band

MHz	MHz	MHz	GHz
0.090 - 0.110	16.42 - 16.423	399.9 - 410	4.5 - 5.15
¹ 0.495 - 0.505	16.69475 - 16.69525	608 - 614	5.35 - 5.46
2.1735 - 2.1905	16.80425 - 16.80475	960 - 1240	7.25 - 7.75
4.125 - 4.128	25.5 - 25.67	1300 - 1427	8.025 - 8.5
4.17725 - 4.17775	37.5 - 38.25	1435 - 1626.5	9.0 - 9.2
4.20725 - 4.20775	73 - 74.6	1645.5 - 1646.5	9.3 - 9.5
6.215 - 6.218	74.8 - 75.2	1660 - 1710	10.6 - 12.7
6.26775 - 6.26825	108 - 121.94	1718.8 - 1722.2	13.25 - 13.4
6.31175 - 6.31225	123 - 138	2200 - 2300	14.47 - 14.5
8.291 - 8.294	149.9 - 150.05	2310 - 2390	15.35 - 16.2
8.362 - 8.366	156.52475 - 156.52525	2483.5 - 2500	17.7 - 21.4
8.37625 - 8.38675	156.7 - 156.9	2690 - 2900	22.01 - 23.12
8.41425 - 8.41475	162.0125 - 167.17	3260 - 3267	23.6 - 24.0
12.29 - 12.293	167.72 - 173.2	3332 - 3339	31.2 - 31.8
12.51975 - 12.52025	240 - 285	3345.8 - 3358	36.43 - 36.5
12.57675 - 12.57725	322 - 335.4	3600 - 4400	(2)

Test Setup:

Antenna Tower

Antenna Tower

Ground Reference Plane

Test Receiver

Antenna Controlles

Figure 1. Below 30MHz

Figure 2. 30MHz to 1GHz

CO PORTOR OF THE PROPERTY OF T

Report No.: DNT2505140264R5010-05785 Date: May 20, 2025 Page: 22 / 31

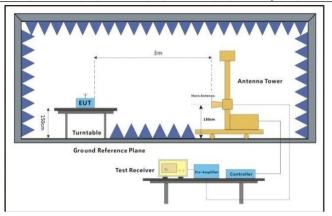
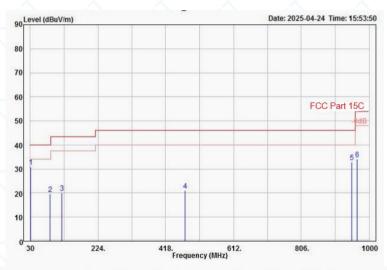
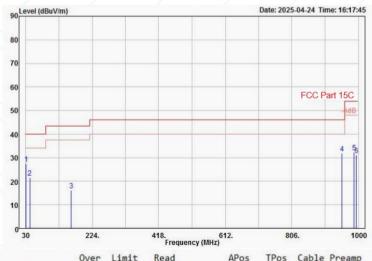


Figure 3. Above 1 GHz

	9
Test Procedure:	 h. For below 1GHz, the EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 or 10 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation. i. For above 1GHz, the EUT was placed on the top of a rotating table 1.5 meters
	above the ground at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation
	j. The EUT was set 3 or 10 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
	k. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
	I. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters(for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
	m. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
	n. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be retested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.
	 o. Test the EUT in the lowest channel, the middle channel ,the Highest channel. p. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, And found the X axis positioning which it is worse case. q. Repeat above procedures until all frequencies measured was complete.
Exploratory Test Mode:	Transmitting with all kind of modulations, data rates. Transmitting mode.
Final Test Mode:	Pretest the EUT at Transmitting mode. Through Pre-scan, find the worst case.
Instruments Used:	Refer to section 2.9 for details
Test Results:	Pass



Report No.: DNT2505140264R5010-05785 Date: May 20, 2025 Page: 23 / 31

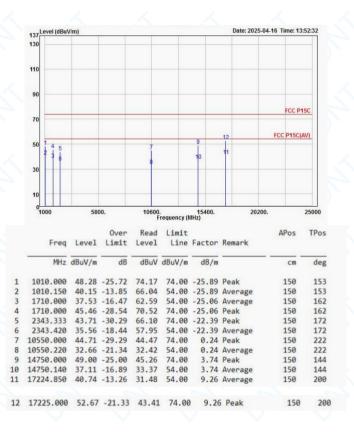

Test data

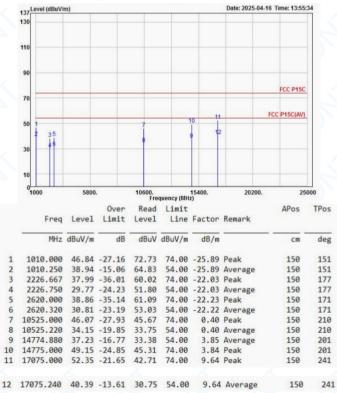
For 30-1000MHz TX

Vertical:

	Freq	Level	Over Limit	Limit Line	Read Level		APos	TPos		Preamp Factor	Ant Factor	
	MHz	dBuV/m	dB	dBuV/m	dBuV	dB/m	cm	deg	dB	dB	dB/m	_
1	30.990	30.80	-9.20	40.00	43.17	-12.37	100	360	1.73	37.01	22.91	QP
2	86.355	19.51	-20.49	40.00	43.33	-23.82	100	12	2.53	39.42	13.07	QP
3	119.920	20.09	-23.41	43.50	42.96	-22.87	100	299	3.02	39.90	14.01	QP
4	472.565	21.13	-24.87	46.00	30.10	-8.97	100	27	7.03	40.21	24.21	QP
5	950.695	32.81	-13.19	46.00	30.33	2.48	100	360	11.57	39.39	30.30	QP
6	966.045	34.14	-19.86	54.00	31.59	2.55	100	58	11.75	39.36	30.16	QP

	Freq	Level	Over Limit	Limit Line			APos	TPos		Preamp Factor	Ant Factor	Remar
	MHz	dBuV/m	dB	dBuV/m	dBuV	dB/m	cm	deg	dB	dB	dB/m	—
1	30.990	30.80	-9.20	40.00	43.17	-12.37	100	360	1.73	37.01	22.91	QP
2	86.355	19.51	-20.49	40.00	43.33	-23.82	100	12	2.53	39.42	13.07	QP
3	119.920	20.09	-23.41	43.50	42.96	-22.87	100	299	3.02	39.90	14.01	QP
4	472.565	21.13	-24.87	46.00	30.10	-8.97	100	27	7.03	40.21	24.21	QP
5	950.695	32.81	-13.19	46.00	30.33	2.48	100	360	11.57	39.39	30.30	QP
6	966.045	34.14	-19.86	54.00	31.59	2.55	100	58	11.75	39.36	30.16	QP

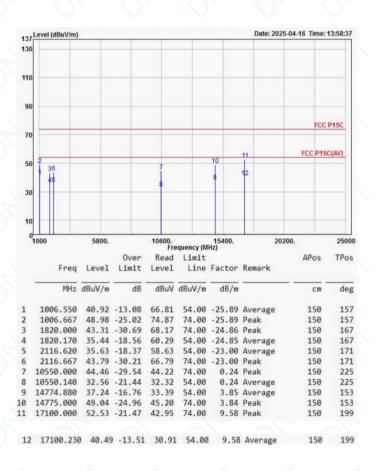


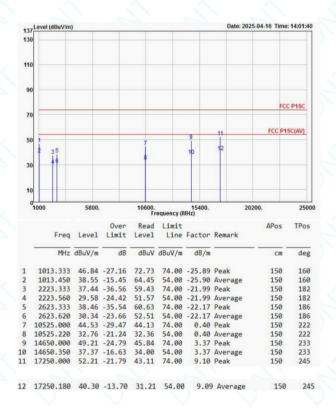

Report No.: DNT2505140264R5010-05785 Date: May 20, 2025 Page: 24 / 31

For above 1GHz TX

2402MHz

Vertical:

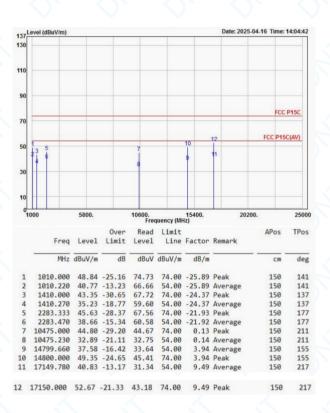


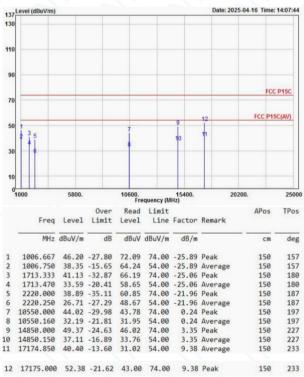

Date: May 20, 2025

Page: 25/31

2440MHz

Vertical:

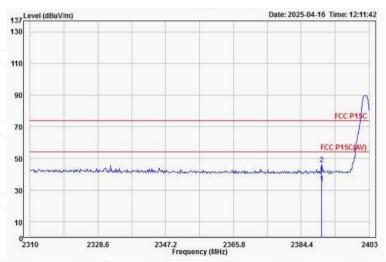



Report No.: DNT2505140264R5010-05785 Date: May 20, 2025

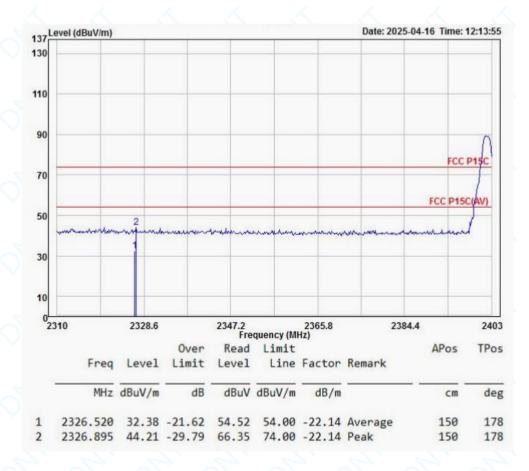
Page: 26 / 31

2480MHz

Vertical:



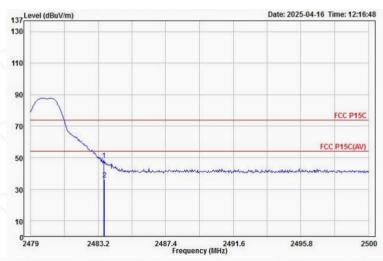
Date: May 20, 2025


Page: 27 / 31

2402MHz

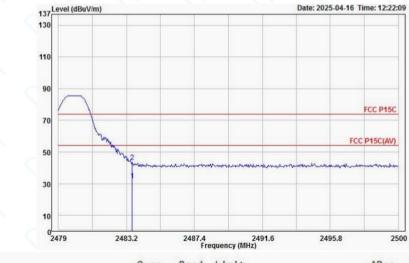
Vertical:

	Freq	Level	Over Limit	1	Limit Line		Remark	APos	TPos
	MHz	dBuV/m	dB	dBuV	dBuV/m	dB/m		cm	deg
1	2389.950	34.33	-19.67	56.59	54.00	-22.26	Average	150	166
2	2389.980	46.25	-27.75	68.51	74.00	-22.26	Peak	150	166



Date: May 20, 2025

Page: 28 / 31


2480MHz

Vertical:

	Freq	Level	Over Limit	617-1517	Limit Line		Remark	APos	TPos
	MHz	dBuV/m	dB	dBuV	dBuV/m	dB/m		cm	deg
1	2483.550	48.37	-25.63	70.91	74.00	-22.54	Peak	150	162
2	2483.580	36.21	-17.79	58.75	54.00	-22.54	Average	150	162

Horizontal:

	Freq	Level	Over Limit	10	Limit Line		Remark	APos	TPos
	MHz	dBuV/m	dB	dBuV	dBuV/m	dB/m		cm	deg
1	2483.550	31.92	-22.08	54.46	54.00	-22.54	Average	150	188
2	2483.550	43.83	-30.17	66.37	74.00	-22.54	Peak	150	188

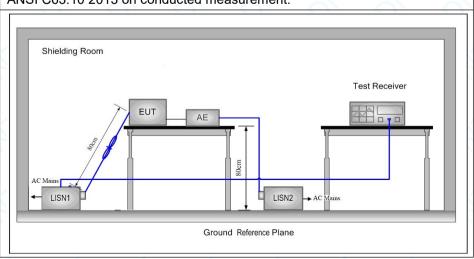
Note:

1. The Measurement (Result Level) is calculated by Reading Level adding the Correct Factor(maybe including Ant.Factor and the Cable Factor etc.), The basic equation is as follows:

Measurement Level= Reading Level + Correct Factor(including LISN Factor, Cable Factor etc.)

2. The amplitude of 9KHz to 30MHz spurious emission that is attenuated by more than 20dB below the

Date: May 20, 2025 Pag

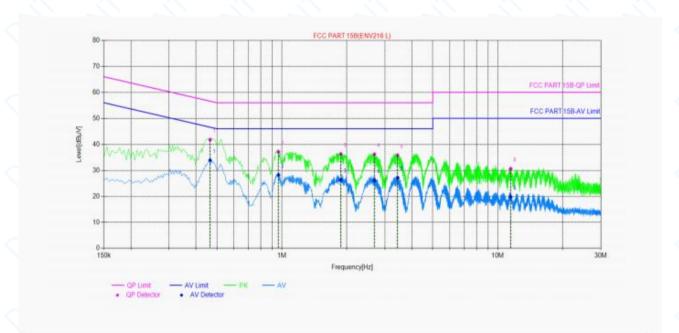

Page: 29/31

permissible limit has no need to be reported.

3.5 AC Power Line Conducted Emissions

Test Requirement:	47 CFR Part 15C Section	15.207	
Test Method:	ANSI C63.10: 2013		$O_{I} = O_{I} = O_{I}$
Test Frequency Range:	150kHz to 30MHz		
Limit:	(1415)	Limit	(dBuV)
	Frequency range (MHz)	Quasi-peak	Average
	0.15-0.5	56 to 46*	
	0.5-5	56	46
	5-30	60	50
	* Decreases with the loga	rithm of the frequency.	O, O , O ,
Test Procedure:	1) The mains terminal dis room. 2) The EUT was connected Impedance Stabilization Not impedance. The power cast a second LISN 2, which we plane in the same way as multiple socket outlet strips single LISN provided the real of the tabletop EUT was ground reference plane. As placed on the horizontal generation of the EUT shall be 0.4 meterical ground reference reference plane. The LISN unit under test and bonder mounted on top of the ground test and bonder mounted on top of the ground test and associated eld in order to find the maximely equipment and all of the interest and all	ed to AC power source the letwork) which provides a lables of all other units of the as bonded to the ground the LISN 1 for the unit be a was used to connect mustating of the LISN was not placed upon a non-metal and for floor-standing arrangement of the vertical ground reference plane, d with a vertical ground reference plane was bonded to the lable 1 was placed 0.8 m from the vertical ground reference plane. This is of the LISN 1 and the Eleguipment was at least 0.8 m emission, the relative interface cables must be considered.	rough a LISN 1 (Line 50Ω/50μH + 5Ω linear ne EUT were connected to reference sing measured. A litiple power cables to a exceeded. lic table 0.8m above the ngement, the EUT was reference plane. The rear reference plane. The shorizontal ground in the boundary of the lane for LISNs is distance was UT. All other units of 8 m from the LISN 2. positions of

Test Setup:

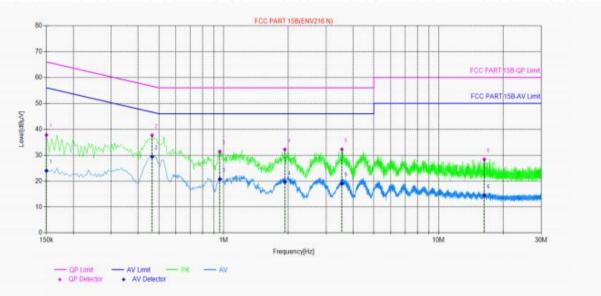


Report No.: DNT2505140264R5010-05785 Date: May 20, 2025 Page: 30 / 31 Exploratory Test Mode: Transmitting with all kind of modulations, data rates at lowest, middle and highest channel. Charge + Transmitting mode. Final Test Mode: Through Pre-scan, find the 6.5Mbps of rate of 802.11n(HT20) at lowest channel is the worst case. Charge + Transmitting mode. Only the worst case is recorded in the report. Instruments Used: Refer to section 2.9 for details Test Results: PASS

Measurement Data

An initial pre-scan was performed on the live and neutral lines with peak detector. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission were detected.

Live Line:


Final Data List									
NO.	Freq. [MHz]	Factor (dB)	QP Value [dBµV]	QP Limit [dBµV]	QP Margin [dB]	AV Value [dBµV]	AV Limit [dBμV]	AV Margin [dB]	Verdict
1	0.465	9.84	41.77	56.60	14.83	33.88	46.60	12.72	PASS
2	0.9645	9.73	37.13	56.00	18.87	28.26	46.00	17.74	PASS
3	1.8735	9.73	36.31	56.00	19.69	26.34	46.00	19.66	PASS
4	2.6835	9.74	36.21	56.00	19.79	26.07	46.00	19.93	PASS
5	3.435	9.75	35.79	56.00	20.21	27.20	46.00	18.80	PASS
6	11.4765	9.90	30.65	60.00	29.35	19.78	50.00	30.22	PASS

Date: May 20, 2025

Page: 31/31

Neutral Line:

Final Data List											
NO.	Freq. [MHz]	Factor [dB]	QP Value [dBµV]	QP Limit [dBµV]	QP Margin [dB]	ΑV Value [dBμV]	AV Limit [dBµV]	AV Margin [dB]	Verdict		
1	0.15	9.79	37.80	66.00	28.20	24.00	56.00	32.00	PASS		
2	0.465	9.77	37.69	56.60	18.91	29.43	46.60	17.17	PASS		
3	0.96	9.71	31.42	56.00	24.58	20.71	46.00	25.29	PASS		
4	1.9275	9.77	32.25	56.00	23.75	19.59	46.00	26.41	PASS		
5	3.552	9.92	32.27	56.00	23.73	18.99	46.00	27.01	PASS		
6	16.3185	9.97	28.39	60.00	31.61	14.50	50.00	35.50	PASS		

Remark:

- 1. The following Quasi-Peak and Average measurements were performed on the EUT:
- 2. The Measurement (Result Level) is calculated by Reading Level adding the Correct Factor(maybe including LISN Factor and the Cable Factor etc.), The basic equation is as follows:

Result Level= Reading Level + Correct Factor(including LISN Factor, Cable Factor etc

---END REPORT---