

FCC TEST REPORT

(Part 15, Subpart C)

Applicant:	Fibocom Wireless Inc.
Address:	1101,Tower A, Building 6, Shenzhen International Innovation Valley, Dashi 1st Rd, Nanshan, Shenzhen , China

Manufacturer or	Fibocom Wireless Inc.	
Supplier:		
Address	1101, Tower A, Building 6, Shenzhen International Innovation Valley, Dashi 1st Rd,	
Addless.	Nanshan, Shenzhen , China	
Product:	LTE Module	
Brand Name:	Fibocom	
Model Name:	SC206-NA	
FCC ID:	ZMOSC206NA	
Date of tests:	Apr. 11, 2025 - May. 14, 2025	

The tests have been carried out according to the requirements of the following standard:

FCC Part 15, Subpart C, Section 15.247

ANSI C63.10-2020

CONCLUSION: The submitted sample was found to <u>COMPLY</u> with the test requirement

Prepared by Hanwen Xu Engineer / Mobile Department Approved by Peibo Sun Manager / Mobile Department

r Mannen

simple: bo

Date: May. 14, 2025

Date: May. 14, 2025

This report is governed by, and incorporates by reference, the Conditions of Testing as posted at the date of issuance of this report at http://www.bureauverilas.com/home/about-us/ems-conditions/ and is intended for your exclusive use. Any copying or replication of this report at http://www.bureauverilas.com/home/about-us/ems-conditions/ and is intended for your exclusive use. Any copying or replication of this report at http://www.bureauverilas.com/home/about-us/ems-conditions/ and is intended for your exclusive use. Any copying or replication of this report to the test samples identified herein. The results set forth in this report are not indicative or representative of the quality or characteristics of the lot from which a test sample was taken or any similar or identical product unless specifically and expressly noted. Our report includes all of the tests requested by you and the results thereof based upon the information that you provided to us. Measurement uncertainty is only provided upon request for accredited tests. Statements of conformity are based on simple acceptance criteria without taking measurement uncertainty into account, unless otherwise requested in writing. You have 60 days from date of issuance or this report to notify us of any material error or omission caused by our negligence or if your require measurement uncertainty; provided, however, that such notice shall be in writing and shall specifically address the issue you wish to raise. A failure to raise such issue within the prescribed time shall constitute your unqualified acceptance of the completeness of this report, the tests conducted and the correctness of the report contents.

Huarui 7layers High Technology (Suzhou) Co., Ltd. Tower N, Innovation Center, 88 Zuyi Road, High-tech District, Suzhou City, Anhui Province, China Tel: +86 (0557) 368 1008

TABLE OF CONTENTS

R	ELE	ASE C	ONTROL RECORD		5		
1	S	SUMM	ARY OF TEST RESU	JLTS	6		
	1.1	MEA	SUREMENT UNCE	RTAINTY	7		
2	C	GENEF	RAL INFORMATION				
	2.1	GEN	IERAL DESCRIPTIO	N OF EUT			
	2.2	DES	CRIPTION OF TEST	MODES			
	2	2.2.1	CONFIGURATION	OF SYSTEM UNDER TEST			
	2	2.2.2	TEST MODE APPL	CABILITY AND TESTED CHANNEL DETAIL			
	2.3	GEN	IERAL DESCRIPTIO	N OF APPLIED STANDARDS			
	2.4	DES	CRIPTION OF SUP	PORT UNITS			
3	٦	TEST 1	TYPES AND RESUL	٢۶			
	3.1	CON	IDUCTED EMISSIO	N MEASUREMENT			
	3	3.1.1	LIMITS OF CONDU	CTED EMISSION MEASUREMENT			
	3	3.1.2	TEST INSTRUMEN	TS			
	3	3.1.3	TEST PROCEDUR	ES			
	3	3.1.4	DEVIATION FROM	TEST STANDARD			
	З	3.1.5	TEST SETUP				
	З	3.1.6	EUT OPERATING (CONDITIONS			
	З	3.1.7	TEST RESULTS				
	3.2	RAD	NATED EMISSION A	ND BANDEDGE MEASUREMENT			
	3	3.2.1	LIMITS OF RADIAT	ED EMISSION AND BANDEDGE MEASURE	MENT 19		
	3	3.2.2	TEST INSTRUMEN	TS			
	3	3.2.3	TEST PROCEDUR	ES			
	3	3.2.4	DEVIATION FROM	TEST STANDARD			
	3	3.2.5	TEST SETUP				
	3	3.2.6	EUT OPERATING (CONDITIONS			
	3	3.2.7	TEST RESULTS				
	3.3	NUM	IBER OF HOPPING	FREQUENCY USED			
	3	3.3.1	LIMIT OF HOPPING	G FREQUENCY USED			
	3	3.3.2	TEST SETUP				
	З	3.3.3	TEST INSTRUMEN	TS			
	3	3.3.4	TEST PROCEDUR	ES			
	3	3.3.5	DEVIATION FROM	TEST STANDARD			
	3	3.3.6	TEST RESULTS				
	3.4	DWE	ELL TIME ON EACH	CHANNEL			
	Huar	rui 7laye	ers High Technology	Tower N, Innovation Center, 88 Zuyi Road, High-tech	Tel: +86 (0557) 368 1008		
	(Suz	(Suzhou) Co., Ltd. District, Suzhou City, Anhui Province, China					

3.4.1	LIMIT OF DWELL TIME USED6			
3.4.2	TEST SETUP			
3.4.3	TEST INSTRUMEN	TS		
3.4.4	TEST PROCEDUR	ES		
3.4.5	DEVIATION FROM	TEST STANDARD		
3.4.6	TEST RESULTS		61	
3.5 CHA	ANNEL BANDWIDTH			
3.5.1	LIMITS OF CHANN	EL BANDWIDTH		
3.5.2	TEST SETUP			
3.5.3	TEST INSTRUMEN	TEST INSTRUMENTS		
3.5.4	TEST PROCEDUR	E		
3.5.5	DEVIATION FROM	TEST STANDARD		
3.5.6	EUT OPERATING	CONDITION		
3.5.7	TEST RESULTS			
3.6 HOF	PPING CHANNEL SE	PARATION		
3.6.1	LIMIT OF HOPPING	G CHANNEL SEPARATION		
3.6.2	TEST SETUP			
3.6.3	TEST INSTRUMEN	TS		
3.6.4	TEST PROCEDUR	ES		
3.6.1	DEVIATION FROM	TEST STANDARD		
3.6.2	TEST RESULTS			
3.7 MAX	KIMUM OUTPUT PO	WER		
3.7.1	LIMITS OF MAXIM	JM OUTPUT POWER MEASUREMENT		
3.7.2	TEST SETUP			
3.7.3	TEST INSTRUMENTS			
3.7.4	TEST PROCEDUR	TEST PROCEDURES		
3.7.5	DEVIATION FROM	TEST STANDARD		
3.7.6	EUT OPERATING	CONDITION		
3.7.7	TEST RESULTS			
3.7.7.1	MAXIMUM PEAP	OUTPUT POWER		
3.7.7.2	AVERAGE OUT	PUT POWER (FOR REFERENCE)		
3.8 OU	F OF BAND MEASUF	REMENT		
3.8.1	LIMITS OF OUT OF	BAND MEASUREMENT		
3.8.2	TEST INSTRUMEN	TS		
3.8.3	TEST PROCEDUR	E		
3.8.4	DEVIATION FROM	TEST STANDARD		
3.8.5	EUT OPERATING	CONDITION		
3.8.6	TEST RESULTS			
Huarui 7layers High TechnologyTower N, Innovation Center, 88 Zuyi Road, High-techTel: +86 (0(Suzhou) Co., Ltd.District, Suzhou City, Anhui Province, China			Tel: +86 (0557) 368 1008	

B	UREAU ERITAS Test Report No.: PSZ-QSZ2504020109RF08	
4	PHOTOGRAPHS OF THE TEST CONFIGURATION	
5	MODIFICATIONS RECORDERS FOR ENGINEERING CHANGES TO THI	E EUT BY THE LAB
	69	
6	APPENDIX	
	20DB EMISSION BANDWIDTH	
	TEST RESULT	
	TEST GRAPHS	
	OCCUPIED CHANNEL BANDWIDTH	74
	TEST RESULT	74
	TEST GRAPHS	74
	MAXIMUM CONDUCTED OUTPUT POWER	
	TEST RESULT PEAK	
	CARRIER FREQUENCY SEPARATION	
	TEST RESULT	
	TEST GRAPHS	
	TIME OF OCCUPANCY	
	TEST RESULT	
	TEST GRAPHS	
	NUMBER OF HOPPING CHANNELS	
	TEST RESULT	
	TEST GRAPHS	
	BAND EDGE MEASUREMENTS	
	TEST RESULT	
	TEST GRAPHS	
	CONDUCTED SPURIOUS EMISSION	
	TEST RESULT	
	TEST GRAPHS	
	DUTY CYCLE	
	TEST RESULT	
	TEST GRAPHS	106

RELEASE CONTROL RECORD

ISSUE NO.	REASON FOR CHANGE	DATE ISSUED
PSZ-QSZ2504020109RF08	Original release	May. 14, 2025

1 SUMMARY OF TEST RESULTS

The EUT has been tested according to the following specifications:

APPLIED STANDARD: FCC Part 15, Subpart C						
STANDARD	TEST TYPE AND LIMIT	RESULT				
15.207	AC Power Conducted Emission	Compliance				
15.247(a)(1) (iii)	^{7(a)(1)} Number of Hopping Frequency Used Com					
15.247(a)(1) (iii)	Dwell Time on Each Channel	Compliance				
15.247(a)(1)	 Hopping Channel Separation Spectrum Bandwidth of a Frequency Hopping Sequence Spread Spectrum System 	Compliance				
15.247(b)	Maximum Peak Output Power	Compliance				
15.247(d)& 15.209	Transmitter Radiated Emissions	Compliance				
15.247(d)	Out of band Measurement	Compliance				
15.203	Antenna Requirement	Compliance				

NOTE:

- 1. If the Frequency Hopping System operating in 2400-2483.5MHz band and the output power less than 125mW. The hopping channel carrier frequencies separated by a minimum of 25kHz or two-thirds of the 20dB bandwidth of hopping channel whichever is greater.
- 2. The system shall hop to channel frequencies that are selected at the system hopping rate from a pseudo randomly ordered list of hopping frequencies. Each frequency must be used equally on the average by each transmitter. The system receivers shall have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shall shift frequencies in synchronization with the transmitted signals.

*Test Lab Information Reference

Lab A:

Huarui 7Layers High Technology (Suzhou) Co., Ltd.

Lab Address:

Tower N, Innovation Center, 88 Zuyi Road, High-tech District, Suzhou City, Anhui Province, China Accredited Test Lab Cert 6613.01

The FCC Site Registration No. is 434559; The Designation No. is CN1325.

1.1 MEASUREMENT UNCERTAINTY

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the EUT as specified in CISPR 16-4-2:

MEASUREMENT	UNCERTAINTY
AC Power Conducted emissions	±2.70dB
Radiated emissions (9KHz~30MHz)	±2.68dB
Radiated emissions (30MHz~1GHz)	±4.98dB
Radiated emissions (1GHz ~6GHz)	±4.70dB
Radiated emissions (6GHz ~18GHz)	±4.60dB
Radiated emissions (18GHz ~40GHz)	±4.12dB
Conducted emissions	±4.01dB
Occupied Channel Bandwidth	±43.58KHz
Conducted Output power	±2.06dB
Power Spectral Density	±0.85 dB

This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

The verdicts in this test report are given according the above diagram:

Case	Measured Value	Uncertainty Range	Verdict
1	below pass mark	below pass mark	Passed
2	below pass mark	within pass mark	Passed
3	above pass mark	within pass mark	Failed
4	above pass mark	above pass mark	Failed

That means, the laboratory applies, as decision rule (see ISO/IEC 17025:2017), the so-called shared risk principle.

Tower N, Innovation Center, 88 Zuyi Road, High-tech District, Suzhou City, Anhui Province, China

2 GENERAL INFORMATION

2.1 GENERAL DESCRIPTION OF EUT

PRODUCT*	LTE Module		
BRAND NAME*	Fibocom		
MODEL NAME*	SC206-NA		
NOMINAL VOLTAGE*	3.8Vdc		
MODULATION TECHNOLOGY	FHSS		
MODULATION TYPE	GFSK,⊓/4DQPSK,8DPSK		
OPERATING FREQUENCY	2402MHz~2480MHz		
NUMBER OF CHANNEL 79			
MAX. OUTPUT POWER	27.93mW (Max. Measured)		
ANTENNA GAIN*	3.36dBi		
ANTENNA TYPE*	Dipole Antenna		
HW VERSION*	V1.0		
SW VERSION*	SC206-U6.400.002		
I/O PORTS*	Refer to user's manual		
CABLE SUPPLIED*	NA		

NOTE:

- 1. *Since the above data and/or information is provided by the client relevant results or conclusions of this report are only made for these data and/or information, Test Lab is not responsible for the authenticity, integrity and results of the data and information and/or the validity of the conclusion.
- 2. For a more detailed features description, please refer to the manufacturer's specifications or the user's manual.
- 3. For the test results, the EUT had been tested with all conditions. But only the worst case was shown in test report.
- 4. Antenna gain and EUT conducted cable loss are provided by the customer, and the laboratory will record the results based on these items that involve these two parameters.

DUREAU VERITAS 2.2 DESCRIPTION OF TEST MODES

CHANNEL	FREQ. (MHz)	CHANNEL	FREQ. (MHz)	CHANNEL	FREQ. (MHz)	CHANNEL	FREQ. (MHz)
0	2402	20	2422	40	2442	60	2462
1	2403	21	2423	41	2443	61	2463
2	2404	22	2424	42	2444	62	2464
3	2405	23	2425	43	2445	63	2465
4	2406	24	2426	44	2446	64	2466
5	2407	25	2427	45	2447	65	2467
6	2408	26	2428	46	2448	66	2468
7	2409	27	2429	47	2449	67	2469
8	2410	28	2430	48	2450	68	2470
9	2411	29	2431	49	2451	69	2471
10	2412	30	2432	50	2452	70	2472
11	2413	31	2433	51	2453	71	2473
12	2414	32	2434	52	2454	72	2474
13	2415	33	2435	53	2455	73	2475
14	2416	34	2436	54	2456	74	2476
15	2417	35	2437	55	2457	75	2477
16	2418	36	2438	56	2458	76	2478
17	2419	37	2439	57	2459	77	2479
18	2420	38	2440	58	2460	78	2480
19	2421	39	2441	59	2461		

79 channels are provided to this EUT:

Please see section 4 photograph of the test configuration for reference.

2.2.2 TEST MODE APPLICABILITY AND TESTED CHANNEL DETAIL

Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates, XYZ axis and antenna ports.

The worst case was found when positioned on X axis for radiated emission. Following channel(s) was (were) selected for the final test as listed below:

EUT CONFIGURE MODE		APPLICA	ABLE TO		DECORPTION
	RE<1G	RE≥1G	PLC	APCM	DESCRIPTION
-		\checkmark	\checkmark	\checkmark	-

Where **RE<1G:** Radiated Emission below 1GHz **PLC:** Power Line Conducted Emission **RE≥1G:** Radiated Emission above 1GHz **APCM:** Antenna Port Conducted Measurement

RADIATED EMISSION TEST (BELOW 1 GHz):

- Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, XYZ axis, antenna ports (if EUT with antenna diversity architecture) and packet type.
- The following channel(s) was (were) selected for the final test as listed below.

EUT CONFIGURE MODE	AVAILABLE CHANNEL	TESTED CHANNEL	MODULATION TECHNOLOGY	MODULATION TYPE	PACKET TYPE
- 0 to 78		39	FHSS	8DPSK	3DH5

RADIATED EMISSION TEST (ABOVE 1 GHz):

- Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, XYZ axis, antenna ports (if EUT with antenna diversity architecture) and packet type.
- The following channel(s) was (were) selected for the final test as listed below.

EUT CONFIGURE MODE	AVAILABLE CHANNEL	TESTED CHANNEL	MODULATION TECHNOLOGY	MODULATION TYPE	PACKET TYPE
-	0 to 78	0, 39, 78	FHSS	GFSK	1DH5
-	0 to 78	0, 39, 78	FHSS	π/4 DQPSK	2DH5
- 0 to 78		0, 39, 78	FHSS	8DPSK	3DH5

Tower N, Innovation Center, 88 Zuyi Road, High-tech District, Suzhou City, Anhui Province, China

BUREAU VERITAS Test Report No.: PSZ-QSZ2504020109RF08 POWER LINE CONDUCTED EMISSION TEST:

- Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, antenna ports (if EUT with antenna diversity architecture) and packet type.
- The following channel(s) was (were) selected for the final test as listed below.

EUT CONFIGURE	AVAILABLE	TESTED	MODULATION	MODULATION TYPE	PACKET
MODE	CHANNEL	CHANNEL	TECHNOLOGY		TYPE
- 0 to 78		78	FHSS	π /4-DQPSK	2DH5

ANTENNA PORT CONDUCTED MEASUREMENT:

- This item includes all test value of each mode, but only includes spectrum plot of worst value of each mode.
- Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, antenna ports (if EUT with antenna diversity architecture), and packet types.
- The following channel(s) was (were) selected for the final test as listed below.

AVAILABLE CHANNEL	TESTED CHANNEL	MODULATION TECHNOLOGY	MODULATION TYPE	PACKET TYPE
0 to 78	0, 39, 78	FHSS	GFSK	DH1/DH3/DH5
0 to 78	0, 39, 78	FHSS	π/4 DQPSK	2DH1/2DH3/2DH5
0 to 78	0, 39, 78	FHSS	8DPSK	3DH1/3DH3/3DH5

TEST CONDITION										
APPLICABLE TO	ENVIRONMENTAL CONDITIONS	TEST VOLTAGE (SYSTEM)	TESTED BY							
RE<1G	23deg. C, 70%RH	DC 3.8V By DC Source	Hanwen Xu							
RE≥1G	23deg. C, 70%RH	DC 3.8V By DC Source	Hanwen Xu							
PLC 25deg. C, 52%RH		DC 3.8V By DC Source	Hanwen Xu							
АРСМ	25deg. C, 60%RH	DC 3.8V By DC Source	Hanwen Xu							

BUREAU VERITAS 2.3 GENERAL DESCRIPTION OF APPLIED STANDARDS

The EUT is a RF Product. According to the specifications of the manufacturer, it must comply with the requirements of the following standards:

FCC Part 15, Subpart C. Section 15.247 ANSI C63.10-2020

NOTE:

- 1. All test items have been performed and recorded as per the above standards.
- 2. The EUT is also considered as a kind of computer peripheral, because the connection to computer is necessary for typical use. It has been verified to comply with the requirements of FCC Part 15, Subpart B, Class B (Certification). The test report has been issued separately.

2.4 DESCRIPTION OF SUPPORT UNITS

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

NO.	PRODUCT	BRAND	MODEL NO.	SERIAL NO.	FCC ID
1	Laptop	Lenovo	Thinkpad E14	SL10W47313	N/A
2	DC Source	HYELEC	HY3010B	551016	N/A
3	Adapter	N/A	N/A	N/A	N/A

NO.	SIGNAL CABLE DESCRIPTION OF THE ABOVE SUPPORT UNITS
1	DC Line: Unshielded, Detachable, 1.0m;

3 TEST TYPES AND RESULTS

3.1 CONDUCTED EMISSION MEASUREMENT

3.1.1 LIMITS OF CONDUCTED EMISSION MEASUREMENT

FREQUENCY OF EMISSION (MHz)	CONDUCTED	LIMIT (dBµV)
0.15 ~ 0.5	Quasi-peak	Average
0.5 ~ 5	66 to 56	56 to 46
5 ~ 30	56	46
	60	50

NOTE:

- 1. The lower limit shall apply at the transition frequencies.
- 2. The limit decreases in line with the logarithm of the frequency in the range of 0.15 to 0.50MHz.
- 3. All emanations from a class A/B digital device or system, including any network of conductors and apparatus connected thereto, shall not exceed the level of field strengths specified above.

3.1.2 TEST INSTRUMENTS

Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Next Cal.
EMI Test Receiver	Rohde&Schwarz	ESR3	102749	Mar.28,24	Mar.27,26
ELEKTRA test software	Rohde&Schwarz	ELEKTRA	NA	N/A	N/A
LISN network	Rohde&Schwarz	ENV216	102640	Mar.28,24	Mar.27,26
CABLE	Rohde&Schwarz	W61.01	N/A	Apr.27,24	Apr.26,25
CABLE	Rohde&Schwarz	W61.01	N/A	Apr.26,25	Apr.25,26
CABLE	Rohde&Schwarz	W601	N/A	Apr.27,24	Apr.26,25
CABLE	Rohde&Schwarz	W601	N/A	Apr.26,25	Apr.25,26

NOTE:

- 1. The test was performed in CE shielded room.
- 2. The calibration interval of the above test instruments is 12 /24 months and the calibrations are traceable to CEPREI/CHINA, GRGT/CHINA and NIM/CHINA.

3.1.3 TEST PROCEDURES

- a. The EUT was placed 0.4 meters from the conducting wall of the shielded room with EUT being connected to the power mains through a line impedance stabilization network (LISN). Other support units were connected to the power mains through another LISN. The two LISNs provide 50 ohm/ 50uH of coupling impedance for the measuring instrument.
- b. Both lines of the power mains connected to the EUT were checked for maximum conducted interference.
- c. The frequency range from 150kHz to 30MHz was searched. Emission levels under (Limit 20dB) was not recorded.
 NOTE: All modes of operation were investigated and the worst-case emissions are reported.

3.1.4 DEVIATION FROM TEST STANDARD

No deviation.

3.1.5 TEST SETUP

For the actual test configuration, please refer to the attached file (Test Setup Photo).

3.1.6 EUT OPERATING CONDITIONS

- a. Turned on the power and connected of all equipment.
- b. EUT was operated according to the type used was description in manufacturer's specifications or the User's Manual.

3.1.7 TEST RESULTS

CONDUCTED WORST-CASE DATA											
FREQ RANG	UENCY	150k	(Hz ~ 30N	/IHz	DET & RE BAN	ECTOR F SOLUTI DWIDTH		V	Quasi-Pe Average	ak (QF (AV), 9	P) / kHz
INPUT	POWER	120\	/ac, 60Hz		ENV CON	IRONME DITIONS	NTAL		26deg. C	C, 51%RH	
TESTE	ED BY	Hanv	ven Xu								
Rg	Frequency [MHz]	QPK Level [dBµV]	QPK Limit [dBµV]	QPK Margin [dB]	CAV Level [dBµV]	CAV: AVG Limit [dBµV]	CAV Margin [dB]	Co	orrection [dB]	Line	Meas. BW [kHz]
1	0.182	51.72	64.42	12.70	47.95	54.42	6.47		12.21	L1	9.000
1	0.420	23.94	57.45	33.51	23.32	47.45	24.13		11.76	L1	9.000
1	1.680	13.10	56.00	42.90	10.24	46.00	35.76		11.75	L1	9.000
1	5.033	16.29	60.00	43.71	13.78	50.00	36.22		11.79	L1	9.000
1	14.262	35.40	60.00	24.60	34.71	50.00	15.29		11.84	L1	9.000
1	26.840	27.33	60.00	32.67	23.02	50.00	26.98		11.90	L1	9.000
3. 4. 5. 6. 70 60. 70 60. 70 60. 70 60. 70 60. 70 60. 70 60. 70 60. 70 60. 70 60. 70 60. 70 60. 70 60. 70 60. 70 70 60. 70 70 60. 70 70 70 70 70 70 70 70 70 70 70 70 70	The emissi Margin valu Correction Emission L	on levels ue = Limi factor = l evel = C	of other f t value - E nsertion I prrection I	Frequenci Emission oss + Ca Factor + I	es were v level ble loss Reading V	rery low a /alue.	gainst the	lim.	it.	20 Freq	M 30 M uency in Hz

Huarui 7layers High Technology (Suzhou) Co., Ltd. Tower N, Innovation Center, 88 Zuyi Road, High-tech District, Suzhou City, Anhui Province, China

FREC RAN	REQUENCY ANGE150KHz ~ 30MHzDETECTOR FUNCTION & RESOLUTION BANDWIDTH				1	Quasi-Pe Average	eak (QF (AV), 9	P) / kHz					
INPU	T POWER		120V	′ac, 60Hz			ENV CON	IRONME IDITIONS			26deg. C	, 51%F	RH
TEST	ED BY		Hanv	ven Xu									
Rg	Frequency [MHz]	QPK [dl	(Level BµV]	QPK Limit [dBµV]	QPK Margin [dB]	CAV [dl	′ Level BµV]	CAV: AVG Limit [dBµV]	CAV Margin [dB]	C	orrection [dB]	Line	Meas. BW [kHz]
1	0.182	5	1.85	64.42	12.57	47	7.87	54.42	6.55		12.23	Ν	9.000
1	0.420	24	4.77	57.45	32.68	24	4.14	47.45	23.31		12.81	Ν	9.000
1	1.379	7	.44	56.00	48.56	1	.70	46.00	44.30		12.74	Ν	9.000
1	5.874	1	7.99	60.00	42.01	15	5.70	50.00	34.30		12.77	Ν	9.000
1	14.262	3	6.20	60.00	23.80	35	5.52	50.00	14.48		12.82	Ν	9.000
1	26.844	3	1.08	60.00	28.92	29	9.94	50.00	20.06		12.88	Ν	9.000
3. 4. 5. 7. 7. 70 65 60 60 60 60 60 60 60 60 60 60 60 60 60	The emiss Margin val Correction Emission L		evels : Limit :or = I :] = Cc	of other f : value - E nsertion l prrection l mumber of the series of th	requencie Emission oss + Cal Factor + F	es w leve ble l Rea	/ere v l oss ding \ 	very low a Value.	gainst the	lin	nit.	* * * * * * * * * * *	M 30 M
)verview :s		◇ PK+ Level @Spectru ◇ QPK Level @Final R	m Overview esults	\sim	AVG Limit @F QPK Limit @F	CC Part 15 Voltage Main CC Part 15 Voltage Mair	ns Class B ns Class B			ricq.	

Tower N, Innovation Center, 88 Zuyi Road, High-tech District, Suzhou City, Anhui Province, China

3.2 RADIATED EMISSION AND BANDEDGE MEASUREMENT

3.2.1 LIMITS OF RADIATED EMISSION AND BANDEDGE MEASUREMENT

Radiated emissions which fall in the restricted bands, as defined in Section 15.205(a), must also comply with the radiated emission limits specified in Section 15.209(a). Other emissions shall be at least 20dB below the highest level of the desired power.

FREQUENCIES (MHz)	FIELD STRENGTH (microvolts/meter)	MEASUREMENT DISTANCE (meters)
0.009 ~ 0.490	2400/F(kHz)	300
0.490 ~ 1.705	24000/F(kHz)	30
1.705 ~ 30.0	30	30
30 ~ 88	100	3
88 ~ 216	150	3
216 ~ 960	200	3
Above 960	500	3

NOTE:

- 1. The lower limit shall apply at the transition frequencies.
- 2. Emission level (dBuV/m) = 20 log Emission level (uV/m).
- **3.** As shown in 15.35(b), for frequencies above 1000MHz, the field strength limits are based on average detector, however, the peak field strength of any emission shall not exceed the maximum permitted average limits, specified above by more than 20dB under any condition of modulation.

3.2.2 TEST INSTRUMENTS

Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Next Cal.
Pre-Amplifier	R&S	SCU18F1	100815	Aug.30,23	Aug.29,25
Pre-Amplifier	R&S	SCU08F1	101028	Jan.22,24	Jan.21,26
Signal Generator	R&S	SMB100A	182185	Mar.29,24	Mar.28,26
3m Fully-anechoic Chamber	ток	9m*6m*6m	HRSW-SZ-EMC- 01Chamber	Nov.25,22	Nov.24,25
3m Semi-anechoic Chamber	ток	9m*6m*6m	HRSW-SZ-EMC- 02Chamber	Nov.25,22	Nov.24,25
EMI TEST Receiver	R&S	ESW44	101973	Mar.28,24	Mar.27,26
Bilog Antenna	SCHWARZBECK	VULB 9163	1264	Dec.26,23	Dec.25,25
Horn Antenna	ETS-LINDGREN	3117	227836	Aug.22,23	Aug.21,25
Horn Antenna (18GHz-40GHz)	Steatite Q-par Antennas	QMS 00880	23486	Jul.15,24	Jul.14,26
Horn Antenna	Steatite Q-par Antennas	QMS 00208	23485	Aug.22,23	Aug.21,25
Loop Antenna	SCHWARZ	HFH2-Z2/Z2E	100976	Feb.22,25	Feb.21,27
WIDEBANDRADIO					
COMMUNICATION	R&S	CMW500	169399	Jun.19,24	Jun.18,26
TESTER					
Test Software	ELEKTRA	ELEKTRA4.32	N/A	N/A	N/A
Open Switch and Control Unit	R&S	OSP220	101964	N/A	N/A
DC Source	HYELEC	HY3010B	551016	Aug.31,23	Aug.30,25
Hygrothermograph	DELI	20210528	SZ014	Sep.06,23	Sep.05,25
6DB attenuator	Tonscend Technology Co., Ltd	N/A	23062787	N/A	N/A
PC	LENOVO	E14	HRSW0024	N/A	N/A
TMC- AMI18843A(CABLE)	R&S	HF290-NMNM- 7.00M	N/A	N/A	N/A
TMC- AMI18843A(CABLE)	R&S	HF290-NMNM- 4.00M	N/A	N/A	N/A
CABLE	R&S	W13.02	N/A	Apr.27,24	Apr.26,25
CABLE	R&S	W13.02	N/A	Apr.26,25	Apr.25,26
CABLE	R&S	W12.14	N/A	Apr.27,24	Apr.25,25
CABLE	R&S	W12.14	N/A	Apr.26,25	Apr.25,26

- 1. The calibration interval of the above test instruments is 12/24/36 months and the calibrations are traceable to CEPREI/CHINA, GRGT/CHINA and NIM/CHINA.
- 2. The test was performed in 3m Chamber.
- 3. The FCC Site Registration No. is 434559; The Designation No. is CN1325.

3.2.3 TEST PROCEDURES

- a. The EUT was placed on the top of a rotating table 0.8 meters (for below 1GHz) / 1.5 meters (for above 1GHz) above the ground at 3 meter chamber room for test. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. The antenna is a broadband antenna, and its height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- f. During the test, each emission was maximized by: having the EUT continuously working, investigated all operating modes, rotated about all 3 axis (X, Y & Z) and considered typical configuration to obtain worst position, manipulating interconnecting cables, For battery operated equipment, the equipment tests shall be perform using fresh batteries. The turntable was rotated to maximize the emission level.

NOTE:

- 1. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 120kHz for Quasi-peak detection at frequency below 1GHz.
- 2. The resolution bandwidth of test receiver/spectrum analyzer is 1 MHz and video bandwidth is 3MHz for Peak detection at frequency above 1GHz.
- 3. The resolution bandwidth of test receiver/spectrum analyzer is 1MHz and the video bandwidth is 10Hz for Average detection (AV) at frequency above 1GHz.
- 4. If the dwell time per channel of the hopping signal is less than 100 ms, then the reading obtained with the 10 Hz VBW may be further adjusted by a "duty cycle correction factor", derived from 20log(dwell time/100 ms), in an effort to demonstrate compliance with the 15.209 limit.
- 5. All modes of operation were investigated and the worst-case emissions are reported.

3.2.4 DEVIATION FROM TEST STANDARD

No deviation.

3.2.5 TEST SETUP

<Frequency Range 9KHz~30MHz >

< Frequency Range 30MHz~1GHz >

<Frequency Range above 1GHz>

Note: Above 1G is a directional antenna

Depends on the EUT height and the antenna 3dB beamwidth both, refer to section 7.3 of CISPR 16-2-3.

For the actual test configuration, please refer to the attached file (Test Setup Photo).

3.2.6 EUT OPERATING CONDITIONS

- a. Set the EUT under full load condition and placed them on a testing table.
- b. Set the transmitter part of EUT under transmission condition continuously at specific channel frequency.
- c. The necessary accessories enable the EUT in full functions.

3.2.7 TEST RESULTS

NOTE : The 9K~30MHz amplitude of spurious emissions attenuated more than 20 dB below the permissible value is not required in the report.

BELOW 1GHz WORST-CASE DATA

						B	T_8DPSK						
C	CHAN	INEL		Chanr	nel 39		DETEO			0	ai Da ala (C		
F	REQ		ANGE	30MH	z ~ 10	GHz	DETECT		ION	Qua	si-Peak (G	2P)	
			ANTEN	INA PO	OLARI	TY & TES	T DISTAN	CE: HORIZO	ONTA	L AT	Г З М		
	Rg	Frequency [MHz]	QPK Lev [dBµV/r	/el QPk n] [dB	K Limit μV/m]	QPK Margin [dB]	Correction [dB]	Polarization	Azin [de	nuth g]	Antenna Height [m]	Meas. BW [kHz]	
	1	58.858	25.82	4	0.00	14.18	-9.82	н	86	.9	2.00	120.000	
	1	121.714	23.09	4	3.50	20.41	-12.77	н	22	5.6	2.00	120.000	
	1	229.675	22.07	4	6.00	23.93	-8.84	н	86	.9	2.00	120.000	
	1	324.492	22.87	4	6.00	23.13	-6.06	н	5	5	1.00	120.000	
	1	420.037	23.08	4	6.00	22.92	-2.46	н	22	5.6	2.00	120.000	
	1	626.259	22.84	4	6.00	23.16	-2.08	н	35	i9	1.00	120.000	

REMARKS:

- Emission Level(dBuV/m) = Read Level(dBuV) + Correction Factor(dB/m) 1.
- Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) Pre-Amplifier 2. Factor(dB)
- 3. The other emission levels were very low against the limit.

Margin value = Limit value - Emission level. 4.

Tower N, Innovation Center, 88 Zuyi Road, High-tech District, Suzhou City, Anhui Province, China

Tel: +86 (0557) 368 1008

CH	AN	NEL	C	Channel 39		DETECT			asi-Peak (()D)
FR	EQI	UENCY R	ANGE 3	0MHz ~ 1G	GHz	DETECT	IOK FUNCT		asi-reak (C	κ Γ)
			ANTEN	INA POLA	RITY & TE	ST DISTA	NCE: VERT	ICAL AT	3 M	
R	g F	Frequency [MHz]	QPK Leve [dBµV/m]	I QPK Limit [dBµV/m]	QPK Margin [dB]	Correction [dB]	Polarization	Azimuth [deg]	Antenna Height [m]	Meas. BW [kHz]
1		35.675	25.31	40.00	14.69	-13.16	v	359.1	1.00	120.000
1		46.199	23.66	40.00	16.34	-9.90	v	275.4	1.00	120.000
1		121.665	22.00	43.50	21.50	-11.86	v	355.1	2.00	120.000
1		158.574	24.59	43.50	18.91	-13.22	V	359.1	1.00	120.000
1		293.258	16.98	46.00	29.02	-6.62	V	5	1.00	120.000
1		581.009	22.74	46.00	23.26	-2.78	v	85.8	2.00	120.000
Level in dBµV/m	3. 55 50 - 47.5 - 47.5 - 40 - 42.5 - 40 - 37.5 - 33.5 - 33.5 - 25.5 - 20 - 25.5 - 20 - 25.5 - 10 - 7.5 - 10 - 7.5 - 5 - 2.5 - 10 - 10 - 2.5 - 10 -	The othe Margin v	¢ er emissic value = Li	on levels we	ere very lo Emission	w against t level. ♪	he limit.			
	-2.5 - -5 - -7.5 - -10 - -12.5 - -15 - -17.5 -									

Tower N, Innovation Center, 88 Zuyi Road, High-tech District, Suzhou City, Anhui Province, China

ABOVE 1GHz WORST-CASE DATA

					BT	_GF	FSK					
CHAN	NEL	7	TX CI	hannel 0		DE	TECTOR		Pea	ak (PK)		
FREQ	UENCY RAI	NGE	1GHz	<u>z</u> ~ 25GHz		FU	NCTION		Ave	erage (AV)		
	A	NTEN	NA P	OLARITY &	k TEST	DIS	STANCE: H	ORIZON	TAL	AT 3 M		
Rg	Frequency [MHz]	PK+ L [dBµ\	.evel V/m]	PK+ Limit [dBµV/m]	PK+ Marg [dB	in]	Correction [dB]	Polarizat	tion	Azimuth [deg]	Antenr Heigh [m]	na it
5	2,378.000	46.1	19	74.00	27.8	1	6.50	н		4.9	1.00	
5	2,390.000	44.8	B8	74.00	29.1	2	6.52	н		359	2.00	
5	2,402.000	92.8	83				6.53	н		4.9	1.00	
1///11 12(1) 111 111 111 100 100 100 100 100 100 1) 5 5 5 5 5 5 5 5 5 5 5 5 5	G 2.325 G :	2.330 G 2	2335 G 2340 G 2345		2.355 G	2360 G 2365 G 237			56 2.390 6 2.395 6	2.400 G Frequency	241 G

Note: All other emissions that greater than 20dB below the limit were not recorded.

Tower N, Innovation Center, 88 Zuyi Road, High-tech District, Suzhou City, Anhui Province, China

٦g	Frequency [MHz]	AVG Level [dBµV/m]	AVG Limit [dBµV/m]	AVG Margin [dB]	Correction [dB]	Polarization	Azimuth [deg]	Antenna Height [m]
5	2,387.000	31.03	54.00	22.97	6.51	н	294.5	1.00
5	2,390.000	31.04	54.00	22.96	6.52	н	294.5	1.00
5	2,402.000	88.17			6.53	н	4.9	1.00
$\begin{array}{c} 120\\ 117,5\\ 117,5\\ 110,5\\ 110,5\\ 100,$								

Rg	Frequency [MHz]	PK+ Level [dBµV/m]	PK+ Limit [dBµV/m]	PK+ Margin [dB]	Correction [dB]	Polarization	Azimuth [deg]	Antenna Height [m]
5	2,330.000	45.82	74.00	28.18	6.43	v	238.7	2.00
5	2,390.000	44.87	74.00	29.13	6.52	v	358.1	1.00
5	2,402.000	88.50			6.53	v	359	2.00
$\begin{array}{c} 125\\ 120\\ 117,5\\ 115\\ 1117,5\\ 115\\ 112,5\\ 110\\ 107,5\\ 100\\ 97,5\\ 100\\ 99,5\\ 50\\ 90\\ 99,5\\ 50\\ 90\\ 90\\ 87,5\\ 50\\ 50\\ 50\\ 50\\ 50\\ 50\\ 50\\ 50\\ 50\\ 5$								

₹g	Frequency [MHz]	AVG Level [dBµV/m]	AVG Limit [dBµV/m]	AVG Margin [dB]	Correction [dB]	Polarization	Azimuth [deg]	Antenn Heigh [m]
5	2,385.500	30.93	54.00	23.07	6.51	v	355.8	2.00
5	2,390.000	30.92	54.00	23.08	6.52	v	0.9	2.00
5	2,402.000	83.77			6.53	v	359	2.00
$\begin{array}{c} 125\\ 120\\ 117.5\\ 110\\ 117.5\\ 115.5\\ 110\\ 107.5\\ 100.5\\ 92.5\\ 90\\ 92.5\\ 90\\ 92.5\\ 85\\ 82.5\\ 80\\ 77.5\\ 85\\ 70\\ 67.5\\ 80\\ 62.5\\ 70\\ 67.5\\ 55\\ 52.5\\ 55\\ 52.5\\ $							P. P.	

REMARKS:

- 1. Emission Level = Read Level+ Antenna Factor + Cable Loss- Preamp Factor
- 2. Margin value = Limit value Emission level.
- 3. 2402MHz: Fundamental frequency.

CHANNEL	TX Channel 3	39	DETEC	TOR		Peak (PK	()	
REQUENCY RANGE	1GHz ~ 25GI	Ηz	FUNCT	ION		Average	(AV)	
ANTEN	INA POLARIT	Y & TES	DISTAN	NCE: H	ORIZON [.]	TAL AT 3	М	
Rg Frequency PK+ Level [dBµV/m]	PK+ Limit [dBµV/m] PK+ [dB]	AVG Level [dBµV/m]	AVG Limit [dBµV/m]	AVG Margin [dB]	Correction [dB]	Polarization	Azimuth [deg]	Antenna Height [m]
2 4,882.000 50.91	74.00 23.09	40.93	54.00	13.07	14.77	н	359	2.00
2 7,323.000 56.15	74.00 17.85	44.59	54.00	9.41	21.12	н	3.6	2.00
L 75 76 76 77 77 78 77 79 77 65 65 65 65 57.5 65 57.5 65 57.5 65 52.5 65 52.5 75 55 75 55 75 55 75 75 75	26	36 40		6 G 7 G	86 96 1			20 G 25 G

		ANT	ENNA P	OLARI	ΓY & TE	ST DIST	ANCE:	VERTIC	AL AT 3 M			
Rg	Frequency [MHz]	PK+ Level [dBµV/m]	PK+ Limit [dBµV/m]	PK+ Margin [dB]	AVG Level [dBµV/m]	AVG Limit [dBµV/m]	AVG Margin [dB]	Correction [dB]	Polarization	Azimuth [deg]	Anten Heigł [m]	na ht
2	4,882.000	51.75	74.00	22.25	41.80	54.00	12.20	14.77	v	1	1.00	,
2	7,323.000	55.81	74.00	18.19	44.81	54.00	9.19	21.12	v	1	2.00	,
	,											
: 80												
1 /0												
70												
67.5	5 _											
65												
62.5	5											
60												
57.5	5							0				
55								Ψ				
52.5	2					φ						
47.6	_											
47.5								<u></u>				
42.5	5 _					_		Υ				
40						Ψ						
37.5	5											
35	i —											
32.5	5											
30												
27.5	2											
25]											
22.0												
17.5	5 -											
15												
12.5	5 -											
10												
7.5	5 -											
5	-											
2.5												
u	16		2.6	1	G 40	5.6	6.6 7.0	86 96 4			20 G	25
	1.0		20	31	40	, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	36 76	,	0.0	E-	200	250

REMARKS:

- 1. Emission Level = Read Level+ Antenna Factor + Cable Loss- Preamp Factor
- 2. Margin value = Limit value Emission level.
- 3. 2402MHz: Fundamental frequency.

HAN	NEL		тх с	hannel 78		DET	ECTOR		Peak	(PK)		
REQ		NGE	1GHz	z ~ 25GHz	2	FUN	CTION		Aver	age (AV)		
_	A	NTEN	INA P	OLARITY	& TEST	DIST	ANCE: H	ORIZON	TAL A	AT 3 M		
Rg	Frequency [MHz]	PK+ [dBµ	Level ıV/m]	PK+ Limi [dBµV/m]	t PK- Marg [dB]	in I	Correction [dB]	Polarizat	ion	Azimuth [deg]	Anten Heig [m]	ina ht
6	2,479.750	83	.69				6.81	н		4.8	1.00)
6	2,483.500	48	.48	74.00	25.5	2	6.80	н		355.2	2.00)
6	2,484.000	47	.59	74.00	26.4	1	6.80	н		355.2	2.00)
1200 1200 1200 1200 1110 1115 1110 1110	4/5 G 24	78 G	2480 G	2482 G	Q. 2484 G 244	50 G	2.488 G 2.490	DG 2492 G	2.494	G 2.496 G	2.498 G Frequenc	2.5 G

Rg	Frequency [MHz]	AVG Level [dBµV/m]	AVG Limit [dBµV/m]	AVG Margin [dB]	Correction [dB]	Polarization	Azimuth [deg]	Antenna Height [m]
6	2,480.000	79.81			6.81	Н	4.2	1.00
6	2,483.500	31.41	54.00	22.59	6.80	н	90.6	2.00
6	2,488.000	31.76	54.00	22.24	6.80	н	249	1.00
$\begin{array}{c} 120\\ 117.5\\ 117.5\\ 117.5\\ 117.5\\ 117.5\\ 100.5\\ 102.5\\ 100.97.5\\ 100.97.5\\ 100.97.5\\ 885\\ 80.99.5\\ 890.99.5\\ 8$		478.6 2480.6		4G 2486 G	2486 249		494 G 2.499 G	2499.G 2.5

Rg Frequency [MHz] PK+ Level dBµV/m PK+ Limit (dBµ/m) PK+ Margin (dB] Correction (dB] Polarization Azimuth (deg) Antenn Height (n) 6 2,479.750 82.43 6.81 V 359 2.00 6 2,483.500 46.76 74.00 27.24 6.80 V 359 2.00 6 2,486.000 46.74 74.00 27.26 6.80 V 355.8 2.00 1000 46.74 74.00 27.26 6.80 V 355.8 2.00 1000 46.74 74.00 27.26 6.80 V 355.8 2.00			ANTENNA	POLARITY	' & TEST D	DISTANCE:	VERTICAL A	Т 3 М	
6 2,479.750 82.43 6.81 V 359 2.00 6 2,483.500 46.76 74.00 27.24 6.80 V 359 2.00 6 2,486.000 46.74 74.00 27.26 6.80 V 359 2.00 6 2,486.000 46.74 74.00 27.26 6.80 V 355.8 2.00 100 17.5 6.80 V 355.8 2.00 101 11.5 11.5 11.5 11.5 11.5 11.5 101 11.5 11	Rg	Frequency [MHz]	PK+ Level [dBµV/m]	PK+ Limit [dBµV/m]	PK+ Margin [dB]	Correction [dB]	Polarization	Azimuth [deg]	Antenna Height [m]
6 2,483.500 46.76 74.00 27.24 6.80 V 359 2.00 6 2,486.000 46.74 74.00 27.26 6.80 V 355.8 2.00 125	6	2,479.750	82.43			6.81	v	359	2.00
6 2,486.000 46.74 74.00 27.26 6.80 V 355.8 2.00 125	6	2,483.500	46.76	74.00	27.24	6.80	v	359	2.00
125 1 <th1< th=""> 1 <th1< th=""> <th1< th=""></th1<></th1<></th1<>	6	2,486.000	46.74	74.00	27.26	6.80	v	355.8	2.00
20 2.475 G 2.478 G 2.480 G 2.482 G 2.484 G 2.486 G 2.488 G 2.490 G 2.492 G 2.494 G 2.496 G 2.498 G 2	$ \begin{array}{c} = \\ = \\ 1/5 \\ 1/$	475 G 24	78 G 2480 G	2482 G 248	4 G 2.486 G	2.486 2.490	G 2492 G 24	64 G 2496 G	2.498 G 2.5

		ANTENNA	POLARITY	' & TEST D	ISTANCE:	VERTICAL A	Т 3 М	
Rg	Frequency [MHz]	AVG Level [dBµV/m]	AVG Limit [dBµV/m]	AVG Margin [dB]	Correction [dB]	Polarization	Azimuth [deg]	Antenna Height [m]
6	2,480.000	78.58			6.81	v	359	2.00
6	2,483.500	31.37	54.00	22.63	6.80	v	359	2.00
6	2,487.000	31.68	54.00	22.32	6.80	V	0.9	2.00
125 125 127 117.5 117.5 117.5 117.5 110.5 117.5 105.5 117.5	475 G 24	78 G 2480 G	2482 G 248	4 G 2.486 G	2488 G 2490	G 2492 G 24	94 G 2496 G	2499 G 25 G Frequency in Hz

REMARKS:

- 1. Emission Level = Read Level+ Antenna Factor + Cable Loss- Preamp Factor
- 2. Margin value = Limit value Emission level.
- 3. 2480MHz: Fundamental frequency.

						BT_π	/4-[DQPSK				
H/	ANI	NEL		тх с	hannel 0		DE	TECTOR		Pea	ak (PK)	
RE	EQI		NGE	1GHz	z ~ 25GHz FU			UNCTION			erage (AV)	
		Α	NTEN	INA P	OLARITY &	& TEST	DI	STANCE: H	ORIZON	TAL	AT 3 M	
F	٦g	Frequency [MHz]	PK+ [dBl	Level JV/m]	PK+ Limit [dBµV/m]	PK+ Marg [dB]	⊦ in]	Correction [dB]	Polarizat	tion	Azimuth [deg]	Antenna Height [m]
	5	2,382.000	45	i.87	74.00	28.1	3	6.50	н		355	2.00
	5	2,390.000	44	.94	74.00	29.0	6	6.52	н		358.8	1.00
	5	2,402.500	90	1.53				6.53	н		5.5	1.00
	90 87.5 85 82.5 75 72.5 70 67.5 65 62.5 60 57.5 55 52.5											
	60											

Tower N, Innovation Center, 88 Zuyi Road, High-tech District, Suzhou City, Anhui Province, China

Rg	Frequency [MHz]	AVG Level [dBµV/m]	AVG Limit [dBµV/m]	AVG Margin [dB]	Correction [dB]	Polarization	Azimuth [deg]	Antenna Height [m]
5	2,394.000	31.32	54.00	22.68	6.52	н	228.7	1.00
5	2,395.000	31.30	54.00	22.70	6.52	н	228.7	1.00
5	2,402.000	86.80			6.53	н	228.7	1.00
$\begin{array}{c} 120\\ 117.5\\ 115\\ 115\\ 110\\ 02.5\\ 90\\ 97.5\\ 99\\ 90\\ 87.5\\ 90\\ 87.5\\ 70\\ 77.5\\ 70\\ 77.5\\ 85\\ 82.5\\ 80\\ 77.5\\ 65\\ 55\\ 55\\ 55\\ 55\\ 55\\ 55\\ 55\\ 55\\ 5$								

٦g	Frequency [MHz]	PK+ Level [dBµV/m]	PK+ Limit [dBµV/m]	PK+ Margin [dB]	Correction [dB]	Polarization	Azimuth [deg]	Antenna Height [m]
5	2,377.000	46.31	74.00	27.69	6.50	v	304.6	2.00
5	2,390.000	44.69	74.00	29.31	6.52	v	0.9	2.00
5	2,402.000	87.89			6.53	v	359	2.00
$\begin{array}{c} 125\\ 120\\ 117,5\\ 110\\ 117,5\\ 111,5\\ 1112,5\\ 1112,5\\ 110,5\\ 102,5\\ 100,5\\ 102,5\\$								

Rg	Frequency [MHz]	AVG Level [dBµV/m]	AVG Limit [dBµV/m]	AVG Margin [dB]	Correction [dB]	Polarization	Azimuth [deg]	Antenna Height [m]
5	2,376.000	30.87	54.00	23.13	6.49	v	112.8	1.00
5	2,390.000	30.94	54.00	23.06	6.52	v	359	2.00
5	2,402.000	80.74			6.53	v	359	2.00
125 120 117.5 120.0 115 112.5 105.5 92.5 90 90.0 90.0 90.0 90.0 90.0 90.0 90.0								

REMARKS:

- 1. Emission Level = Read Level+ Antenna Factor + Cable Loss- Preamp Factor
- 2. Margin value = Limit value Emission level.
- 3. 2402MHz: Fundamental frequency.

Cł	HAN	INEL		TX Ch	annel 39)	DETEC	TOR		Peak (PK	()		
FF	REQ	UENCY	RANGE	1GHz	~ 25GH	z	FUNCT	ION		Average	(AV)		
			ANTE	NNA PC	LARIT	(& TES	DISTA	NCE: H	ORIZO	NTAL AT 3	М		
	Rg	Frequency [MHz]	PK+ Level [dBµV/m]	PK+ Limit [dBµV/m]	PK+ Margin [dB]	AVG Level [dBµV/m]	AVG Limit [dBµV/m]	AVG Margin [dB]	Correctio [dB]	Polarization	Azimuth [deg]	Antenna Height [m]	
	2	4,882.000	50.08	74.00	23.92	39.83	54.00	14.17	14.77	н	359	1.00	
ŀ	2	7 323 000	55 31	74.00	18 69	AA 7A	54.00	9.26	21 12		260.2	2.00	-
L	2	7,323.000	55.51	74.00	10.09	44.74	54.00	9.20	21.12		200.2	2.00	
	- 80	0											
	۳ ۲												
	H 75	5											
		5 -											
		5 -											
	2 65	5											
	62.5	5											
	60	. –											
	57.5	5							_				
	55	5							φ				
	52.5	5					~						
	47.6	,					Ψ						
	47.5	5											
	42.5	5 -							Ψ				
	40	- 					·····						
	37.5	5					T						
	35	5											
	32.5	5 -											
	30	2											
	27.5												
	20	5 _											
	22.	<u> </u>											
	17.5	5 -											
	15	5											
	12.5	5 -											
	10) –											
	7.5	5 -											
	5	5											
	2.5	-											
	,	16		2 G	3	G 40	6 5 G	6G 7G	86 96	10.6		20 G 25	G
		O AVG Level @	CriticalPoint	O PK+ Lev	el @CriticalPoint		/G Limit @FCC_RSE_W	LAN2.4G_HF_LIMIT	∕PK+ Limit @FC	C_RSE_WLAN2.4G_HF_LIMIT	Fr	equency in F	Iz

Tel: +86 (0557) 368 1008

		ANT	ENNA F	OLARI	TY & TE	ST DIST	ANCE:	VERTIC	AL AT 3 M		
٦g	Frequency [MHz]	PK+ Level [dBµV/m]	PK+ Limit [dBµV/m]	PK+ Margin [dB]	AVG Level [dBµV/m]	AVG Limit [dBµV/m]	AVG Margin [dB]	Correction [dB]	Polarization	Azimuth [deg]	Antenna Height [m]
2	4,882.000	49.77	74.00	24.23	39.82	54.00	14.18	14.77	v	0.9	2.00
2	7,323.000	55.34	74.00	18.66	44.93	54.00	9.07	21.12	v	359	1.00
	,										
: 80)										
76											
72	;]										
72.0											
67	5										
65	;										
62.5	5										
60)										
57.5	5										
55	; - <u></u>							φ			
52.5	5 -										
50	2					φ					
47.5	. –							1			
45	2							Ψ			
42.5						4					
37 5	5					Ψ					
35											
32.5	5										
30)										
27.5	5										
25	i —										
22.5	5										
20)										
17.5	5										
15	2										
12.5											
7 /	5 -										
5											
2.5	5 -										
0)										
	16		2 G	3	G 40	6 5 G	6G 7	G 8G 9G 1	0 G		20 G 25 (

REMARKS:

- 1. Emission Level = Read Level+ Antenna Factor + Cable Loss- Preamp Factor
- 2. Margin value = Limit value Emission level.
- 3. 2441MHz: Fundamental frequency.

Tower N, Innovation Center, 88 Zuyi Road, High-tech District, Suzhou City, Anhui Province, China

Rg	Frequency [MHz]	AVG Level [dBµV/m]	AVG Limit [dBµV/m]	AVG Margin [dB]	Correction [dB]	Polarization	Azimuth [deg]	Antenna Height [m]
6	2,480.000	76.75			6.81	Н	4.2	1.00
6	2,483.500	31.45	54.00	22.55	6.80	н	355.8	2.00
6	2,487.000	31.73	54.00	22.27	6.80	н	253.8	1.00
$\begin{array}{c} 120\\ 117.5\\ 117.5\\ 117.5\\ 117.5\\ 117.5\\ 117.5\\ 117.5\\ 117.5\\ 117.5\\ 100\\ 102.5\\ 100\\ 102.5\\ 97.5\\ 99.$			24826 248				444 G 2495 G	2486 25

Rg Frequency [MHz] PK+ Level (dBµV/m) PK+ Limit (dBµV/m) PK+ margin (dB) Correction (dB) Polarization Azimuth (deg) Antenna Height (m) 6 2,479.750 81.41 0 6.81 V 359 2.00 6 2,483.500 45.66 74.00 28.34 6.80 V 277.1 2.00 6 2,496.500 47.21 74.00 26.79 6.79 V 1 1.00			ANTENNA	POLARITY	′ & TEST [ISTANCE:	VERTICAL A	Т 3 М	
6 2,479.750 81.41 6.81 V 359 2.00 6 2,483.500 45.66 74.00 28.34 6.80 V 277.1 2.00 6 2,496.500 47.21 74.00 26.79 6.79 V 1 1.00	Rg	Frequency [MHz]	PK+ Level [dBµV/m]	PK+ Limit [dBµV/m]	PK+ Margin [dB]	Correction [dB]	Polarization	Azimuth [deg]	Antenna Height [m]
6 2,483.500 45.66 74.00 28.34 6.80 V 277.1 2.00 6 2,496.500 47.21 74.00 26.79 6.79 V 1 1.00 U1175 117.5 <th1< th=""><th>6</th><th>2,479.750</th><th>81.41</th><th></th><th></th><th>6.81</th><th>V</th><th>359</th><th>2.00</th></th1<>	6	2,479.750	81.41			6.81	V	359	2.00
6 2,496.500 47.21 74.00 26.79 6.79 V 1 1.00 UM1 120 120 110 110 100 073 92.9 97.9 92.9 97.9 97.9 97.9 97.9 97.9	6	2,483.500	45.66	74.00	28.34	6.80	V	277.1	2.00
UNATED 125 125 126 127 127 127 127 127 127 127 127	6	2,496.500	47.21	74.00	26.79	6.79	v	1	1.00
	125 126 127 117.5 1115 1115 1115 1115 1115 1115 1105 1005 900 97.5 97.5 99.5 97.5 90.77.5 77.5 77.5 77.5 77.5 77.5 865 805 82.5 800 77.5 77.5 77.5 81.5 80.5 82.5 80.5 80.5 81.5 82.5 82.5 82.5 82.5 82.5 82.5 82.5 82.5 82.5 82.5 82.5 82.5 82.5 82.5 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>								

Tel: +86 (0557) 368 1008

				AVC				Antonno
Rg	Frequency [MHz]	AVG Level [dBµV/m]	AVG Limit [dBµV/m]	Margin [dB]	Correction [dB]	Polarization	Azimuth [deg]	Height [m]
6	2,480.000	75.97			6.81	V	0.9	2.00
6	2,483.500	31.40	54.00	22.60	6.80	v	359	2.00
6	2,487.500	31.64	54.00	22.36	6.80	v	0.9	2.00
$\begin{array}{c} 125\\ 120\\ 117,5\\ 117,5\\ 117,5\\ 117,5\\ 117,5\\ 117,5\\ 105\\ 100,5\\ 1$								
2.4	475 G 2.4	78 G 2.480 G	2.482 G 2.48	4 G 2.486 G	2.488 G 2.490	G 2.492 G 2.4	94 G 2.496 G	2.498 G 2.5 Frequency in

REMARKS:

- 1. Emission Level = Read Level+ Antenna Factor + Cable Loss- Preamp Factor
- 2. Margin value = Limit value Emission level.
- 3. 2480MHz: Fundamental frequency.

					BT_	_8D	PSK				
HAN	NEL		тх с	hannel 0		DE	TECTOR		Pea	ak (PK)	
REQI		NGE	1GHz ~ 25GHz		FU	FUNCTION		Ave	erage (AV)		
	A	NTEN	INA P	OLARITY &	& TEST	DI	STANCE: H	ORIZON	TAL	AT 3 M	
Rg	Frequency [MHz]	PK+ [dBl	Level JV/m]	PK+ Limit [dBµV/m]	PK+ Marg [dB]	in]	Correction [dB]	Polariza	tion	Azimuth [deg]	Antenna Height [m]
5	2,373.500	46	.76	74.00	27.2	4	6.49	н		15.4	2.00
5	2,390.000	45	.54	74.00	28.4	6	6.52	н		1.3	2.00
5	2,402.000	92	.01				6.53	н		4.2	1.00
900 87.5 85.5 82.5 80 77.5 72.5 72.5 65 62.5 60 57.5 52.5 55 52.5 50 45.5 40 42.5 40 37.5											
35 32.5 30 27.5 25 22.5 20 2	2.31 G 2.315 G 2.320 G	G 2.325 G	2.330 G	2.335 G 2.340 G 2.345	G 2.350 G 2	2.355 G	2.360 G 2.365 G 2.37	0 G 2.375 G 2.38	0 G 2.38	35 G 2.390 G 2.395 G	2.400 G 2.4 Frequency in

۲g	Frequency [MHz]	AVG Level [dBµV/m]	AVG Limit [dBµV/m]	AVG Margin [dB]	Correction [dB]	Polarization	Azimuth [deg]	Antenna Height [m]
5	2,388.000	31.02	54.00	22.98	6.51	н	355.1	2.00
5	2,390.000	31.06	54.00	22.94	6.52	Н	4.2	1.00
5	2,402.500	84.65			6.53	н	4.2	1.00
$\begin{array}{c} 120\\ 117.5\\ 117.5\\ 117.5\\ 110.5\\ 100.5\\ 99.5\\ 9$								

٦g	Frequency [MHz]	PK+ Level [dBµV/m]	PK+ Limit [dBµV/m]	PK+ Margin [dB]	Correction [dB]	Polarization	Azimuth [deg]	Antenna Height [m]	
5	2,352.000	46.24	74.00	27.76	6.46	v	358.4	1.00	
5	2,390.000	44.86	74.00	29.14	6.52	v	0.9	2.00	
5	2,402.000	88.01			6.53	v	359	2.00	
$\begin{array}{c} 120\\ 117.5\\ 115\\ 115\\ 110\\ 107.5\\ 100\\ 107.5\\ 90\\ 102.5\\ 90\\ 102.5\\ 80\\ 77.5\\ 80\\ 77.5\\ 80\\ 77.5\\ 80\\ 77.5\\ 80\\ 77.5\\ 80\\ 77.5\\ 80\\ 102\\ 102\\ 102\\ 102\\ 102\\ 102\\ 102\\ 10$									

Rg	Frequency [MHz]	AVG Level [dBµV/m]	AVG Limit [dBµV/m]	AVG Margin [dB]	Correction [dB]	Polarization	Azimuth [deg]	Antenna Height [m]	
5	2,387.000	30.99	54.00	23.01	6.51	v	185	2.00	
5	2,390.000	31.02	54.00	22.98	6.52	v	359.1	1.00	
5	2,402.000	80.62			6.53	v	359	2.00	
$\begin{array}{c} 125\\ & 120\\ & 120\\ & 117.5, \\ 117.5, \\ 117.5, \\ 117.5, \\ 117.5, \\ 117.5, \\ 117.5, \\ 117.5, \\ 107.5, \\ 100, $									

REMARKS:

- 1. Emission Level = Read Level+ Antenna Factor + Cable Loss- Preamp Factor
- 2. Margin value = Limit value Emission level.
- 3. 2402MHz: Fundamental frequency.

С	HAN	NEL		TX Ch	TX Channel 39			TOR		Peak (PK)			
F	FREQUENCY RANGE			1GHz	1GHz ~ 25GHz			ION		Average (AV)			
			ANTE	NNA PO	DLARIT	(& TES]		NCE: H	ORIZON	TAL AT 3 M			
	Rg	Frequency [MHz]	PK+ Level [dBµV/m]	PK+ Limit [dBµV/m]	PK+ Margin [dB]	AVG Level [dBµV/m]	AVG Limit [dBµV/m]	AVG Margin [dB]	Correction [dB]	Polarization	Azimuth [deg]	Antenna Height [m]	
	2	4,882.000	51.05	74.00	22.95	39.57	54.00	14.43	14.77	v	359	2.00	
	2	7.323.000	55.22	74.00	18.78	44.77	54.00	9.23	21.12	v	2.4	2.00	
	-	1,0201000	00.22	1 1100			0.000	0.20	22			2.00	
	E //rtfgp ii level 1 E //rtfgp ii level 1	0 5 5 5 5 5 5 5 5 5 5 5 5 5											
		0			-					1			
		1 G O AVG Level @	CriticalPoint	2 G O PK+ Lev	3 rel @CriticalPoint	G 40	5 G /G Limit @FCC_RSE_W	6 G 7 G	8 G 9 G 1 ∿PK+ Limit @FCC_R	0 G SE_WLAN2.4G_HF_LIMIT	Fr	20 G 25 G equency in Hz	

g	Frequency [MHz]	PK+ Level [dBµV/m]	PK+ Limit [dBµV/m]	PK+ Margin [dB]	AVG Level [dBµV/m]	AVG Limit [dBµV/m]	AVG Margin [dB]	Correction [dB]	Polarization	Azimuth [deg]	Antenn Height [m]
2	4,882.000	51.05	74.00	22.95	39.57	54.00	14.43	14.77	v	359	2.00
2	7,323.000	55.22	74.00	18.78	44.77	54.00	9.23	21.12	v	2.4	2.00
80											
70											
72.	5 -										
70	,										
67.	5 -										
62.	5 -										
60)										
57.	5							~			
52	5 -							<u>Ψ</u>			
50	,					φ					
47.	5 -										
45	5							φ			
40	,										
37.	5					Y					
35	; —										
32.5	5 _										
27.	5 -										
25	;										
22.	5										
20) —										
16	;										
12.	5										
10) —										
7.	5										
	,										
2.3	,										
	1 G		2 G	3	G 4.0	3 5 G	6G 70	G 8G 9G 1	0 G		20 G 2

REMARKS:

- 1. Emission Level = Read Level+ Antenna Factor + Cable Loss- Preamp Factor
- 2. Margin value = Limit value Emission level.
- 3. 2402MHz: Fundamental frequency.

Tower N, Innovation Center, 88 Zuyi Road, High-tech District, Suzhou City, Anhui Province, China