

Electromagnetic Compatibility Test Report

Test Report No: QT-SUPEMC_FCC.49200_TR Issued on: April 19, 2023

> Product Name PureOne 3.0 P/N: PRF-PUREONE3.0 FCC ID: 2BAX3PRFPUREONE3 IC: 22778-PRFPUREONE3

Tested According to FCC 47 CFR part 15 subpart C §15.247

Tests Performed for SuperCom LTD 3 Rothschild St, Tel Aviv,6688106, Israel, Tel Aviv, Israel 6713412 Tel.: +972-9-8890880

QualiTech EMC Laboratory

43 Hasivim Street, POB 7500 Petah-Tikva, 4951169, Israel Tel: +972-4-6268494

The information contained herein is the property of QualiTech, EMC Lab and is supplied without liability for errors or omissions.

The copyright for this document vests in QualiTech, EMC Lab. All rights reserved.

This Test Report may not be reproduced, by any method, without the written permission of the QualiTech, EMC Lab.

If and when such permission is granted, the report must be reproduced only in the full format.

Test Personnel

Testing nonformed by	Guy Arhondov	Cuy		
Testing performed by	Izak Shtir	р [.] Зк		
Test report prepared by	Bina Talkar	Blogend .		
Test report reviewed by	Michael Gudovsky	Slews W		
Test report approved by	Michael Nikishin Group Manager	ft of		

Test Report details:

Test commencement date:	21.12.2022
Test completion date:	22.12.2022
Applicant's representative:	Boaz Polak
Issued on:	19.04.2023

Revision details:

Version	Date	Details/Reasons
Rev. 1	19.04.2023	-

Assessment information:

This report contains an assessment of the EUT against Electromagnetic Compatibility based upon tests carried out on the samples submitted. The results contained in this report relate only to the items tested. Manufactured products will not necessarily give identical results due to production and measurement tolerances. QualiTech, EMC Lab does not assume responsibility for any conclusion and generalization drawn from the test results with regards to other specimens or samples of type of the equipment represented by test item.

The EUT was setup and exercised using the configuration, modes of operation and arrangements defined in this report only.

Modifications:

Modifications made to the EUT

None

Modifications made to the Test Standard

None

Summary of Compliance Status

The EUT was tested according to the following test methods. Test results are given in full in section 3 - 7.

Test Case	Remarks
Minimum 6 dB bandwidth	Pass
Maximum peak output power	Pass
Peak power spectral density	Pass
Spurious emissions outside restricted bands	Pass
Band Edge Radiated Emissions	Pass

Table of Contents

1.	GENERAL	6
1.1.	Referenced documents:	6
1.2.	General Description	7
	1.2.1. General Description	
	1.2.2. Test configuration	
1.3.	Transmitter characteristics	
2.	TEST FACILITY & UNCERTAINTY OF MEASUREMENT	
2.1.	Accreditation/ Registration reference:	
2.2.	Test Facility description	
2.3.	The measurement software used:	
3.	MINIMUM 6 DB BANDWIDTH	
3.1.	General	
3.2.	Test procedure	
3.3.	List of Test Equipment:	
3.4.	Test results:	
4.	MAXIMUM PEAK OUTPUT POWER	
4.1.	General	
4.2.	Test procedure	
4.3.	List of Test Equipment:	
4.4.	Test results:	
5.	PEAK POWER SPECTRAL DENSITY	
5.1.	General	
5.2.	Test procedure	
5.3.	List of Test Equipment:	
5.4.	Test results:	
6 .	SPURIOUS EMISSIONS	
6.1.	General	
6.2.	Test procedure for spurious emission field strength measurements in 9 kHz to 30 MHz band	
6.3.	Test procedure for spurious emission field strength measurements above 30 MHz	
6.4.	List of Test Equipment:	24
6.5.	Test results:	
.7	BAND EDGE RADIATED EMISSIONS	
7.1.	General	
7.2.	Test procedure	
8.	APPENDICES	
8.1.	Appendix A: List of Measuring Equipment used:	
8.2.	Appendix B: Abbreviations/ Glossary used in the test report	
8.3.	Appendix C: Accreditation Certificate	43

1. General

1.1. Referenced documents:

FCC Part 15	Code of Federal Regulations (Washington, DC: Federal Communications Commission), Title 47, Part 15, Subpart C
ANSI C63.10:2013	American National Standard of Procedures for Compliance Testing of Unlicensed Wireless Devices

1.2. General Description

Following data in this clause is provided by the customer and represents his sole responsibility

1.2.1. General Description

PureOne Ankle Bracelet, is a monitoring device, powered from Lithium polymer rechargeable battery, based on or GPS position which sent to servers by Cellular network.

PureOne Ankle Bracelet is indoor/outdoor device.

The PureOne Ankle Bracelet is a monitoring device worn by court-restricted house arrest offenders or GPS monitored individuals. PureOne communicates with monitoring servers and is used in conjunction with correctional or law enforcement agencies to enforce a court decision.

Product environment/platform/ classification: IP68

Main functionality of equipment: GPS monitoring

Supplied power: Internal Lithium Polymer rechargeable battery <u>1350mAh@3.7V</u>

BLE link description: Bluetooth 5.1 module with a powerful Arm Cortex-M4 with FPU and u-connect software pre-flashed. The u-connect software in NINA-B41 modules provides support for u-blox Bluetooth low energy Serial Port Service, GATT client and server, beacons, NFCTM, and simultaneous peripheral and central roles – all configurable from a host using AT commands. NINA-B410 modules provide top grade security, thanks to secure boot, which ensures the module only boots up with original u-blox software. NINA-B410 has an U.FL connector for use with an external antenna.

FCC ID of the approved cellular module: FCC ID: RI7LE910CXSAX

1.2.2. Test configuration

Standalone configuration

1.3. Transmitter characteristics

Туре	of equipment													
	Stand-alone (Equipment with or without its own control provisions)													
V	Combined equ	mbined equipment (Equipment where the radio part is fully integrated within another type of equipment)												
	Plug-in card (H	Equipmen	ipment intended for a variety of host systems)											
Assig	ned frequency r	ange			2400	-2483	3.5 MI	Hz						
Opera	ting frequencie	s			2402-	2480	MHz							
Maxir	num rated outp	ut power	•		Peak	outpu	ıt pow	er -0.48	dBm					
					V	No								
									continuous v	aria	able			
Is trai	nsmitter output	power va	ariable	e?		Yes			stepped varia	able	with s	with step size		dB
						res	1	minimur	n RF power	RF power			dBm	
							1	maximum RF power			dBm			
Anten	na connection													
	unique couplin			aton	dard a	0.000	ctor V		Integral			with temporary RF connector		RF connector
	unique coupin	ıg		stan	ndard connector			v	Integrai		V	wi	without temporary RF connector	
Anten	na/s technical c	haracter	istics											
Туре			Man	nufa	cturer			Model number Gain						
integra	al		u-bl	OX				Printed Typ peak gain: 3 dBi					in: 3 dBi	
Trans	mitter aggregat	te data ra	te/s				1 Mb	ops						
Туре	of modulation						GFSK							
Modulating test signal (baseband)														
Trans	mitter power so	ource					-							
V	Battery	Nomina	al rate	d vo	ltage			3.3V	Battery ty	pe				
	DC	Nomina	al rate	d vo	oltage		VDC							
	AC mains	Nomina	al rate	d vo	oltage				Frequency	/		Hz		

2. Test Facility & Uncertainty of Measurement

2.1. Accreditation/ Registration reference:

- A2LA Certificate Number: 1633.01
- FCC Registration Number: IL10006

2.2. Test Facility description

The tests were performed at the EMC Laboratory, QualiTech

Address: 43, Hasivim Street, Petah Tikva, Israel. Tel: +972-4-6268494

Semi Anechoic Configuration:

Measurement distance	3m		
Chamber dimensions	9.5m x 6.5m x 5.2m		
Antenna height	1 - 4m		
Shielding Effectiveness	Magnetic field ≥80dB at 15 kHz ≥90dB at 100 kHz Electric field >120dB from 1 MHz to 1 GHz >110dB from 1 GHz to 10 GHz		
Absorbing material	Ferrite tiles on the walls and ceiling Emerson and Cuming absorbing material in selected positions on the walls		
Normalized Site Attenuation measured at 5 positions	±3.9dB, 30 MHz to 200 MHz ±3dB, 200 MHz to 1000 MHz		
Transmission Loss measured at 5 positions, at 1.5m height	±3dB, 1 GHz to 18 GHz		

2.3. The measurement software used:

Software Name	Software Version			
Test Software "TILE"	Ver.7.1.4.10 & Ver.7.4.2.5			

3. Minimum 6 dB bandwidth

Date of Test: 14.02.2023 Relative Humidity: 48% Ambient Temperature: 21°C Atmospheric Pressure: 1011.4 hPa Test performed by: Izak Shtir

Test procedure: 11.8 for BW measurements

3.1. General

This test was performed to measure 6 dB bandwidth of the EUT carrier frequency. Specification test limits are given in Table .

Assigned frequency, MHz	Modulation envelope reference points*, dBc	Minimum bandwidth, kHz	
902.0 - 928.0			
2400.0 - 2483.5	6.0	500.0	
5725.0 - 5850.0			

Table 3.1: 6 dB bandwidth limits

* - Modulation envelope reference points provided in terms of attenuation below the peak of modulated carrier.

3.2. Test procedure

The EUT was set up as shown in Figure 3.1, energized and its proper operation was checked.

The EUT was set to transmit modulated carrier.

The transmitter minimum 6 dB bandwidth was measured with spectrum analyzer as frequency delta between reference points on modulation envelope and provided in Table 3.2 and associated plots.

Figure 3.1: 6 dB bandwidth test setup

3.3. List of Test Equipment:

Refer to appendix A for complete list of equipment used and respective calibration dates.

3.4. Test results:

Table 3.2: 6 dB bandwidth test results

ASSIGNED FREQUENCY BA	ND:	2400.0 - 2483.5 MH	2400.0 - 2483.5 MHZ			
DETECTOR USED:		PEAK MAXHOLD	PEAK MAXHOLD			
SWEEP TIME:		AUTO				
RESOLUTION BANDWIDTH:		100 KHZ				
VIDEO BANDWIDTH:		300 KHZ				
MODULATION:	MODULATION:					
BIT RATE:	1 MBPS	1 MBPS				
Carrier frequency, MHz	6 dB bandwidth, kHz	Limit, kHz	Margin, kHz	Verdict		
Low frequency						
2402	711.0	500.0	211.0	Pass		
Mid frequency						
2426	500.0	200.5	Pass			
High frequency						
2480	688.5	500.0	188.5	Pass		

Plot 3.1: 6dB BW, 2.402 GHz

Plot 3.2: 6dB BW, 2.426 GHz

4. Maximum Peak output power

Date of Test: 14.02.2023 Relative Humidity: 48% Ambient Temperature: 21°C Atmospheric Pressure: 1011.4 hPa Test performed by: Izak Shtir

Test procedure: 11.9.1.1 for Peak measurements with RBW≥OBW

4.1. General

This test was performed to measure the maximum peak output power radiated by transmitter. Specification test limits are given in Table 4.1.

Table 4.1	Peak	output	power	limits
-----------	------	--------	-------	--------

Assigned frequency range,	Maximum antenna gain,	Peak outpu	t power*	Equivalent field strength limit @
MHz	dBi	W	dBm	3m, dB(µV/m)**
2400.0 - 2483.5	6.0	1.0	30.0	131.2

*- The limit is provided in terms of conducted RF power at the antenna connector. If transmitting antennas of directional gain greater than 6 dBi are used, the peak output power limit shall be reduced below the stated value as follows:

by 1 dB for every 3 dB that the directional gain of antenna exceeds 6 dBi for fixed point-to-point transmitters operate in 2400-2483.5 MHz band;

without any corresponding reduction for fixed point-to-point transmitters operate in 5725-5850 MHz band;

by the amount in dB that the directional gain of antenna exceeds 6 dBi for the rest of transmitters.

**- Equivalent field strength limit was calculated from the peak output power as follows: $E=sqrt(30 \times P \times G)/r$, where P is peak output power in Watts, r is antenna to EUT distance in meters and G is transmitter antenna gain in dBi.

4.2. Test procedure

The EUT was set up as shown in Figure 4.1, energized and its proper operation was checked.

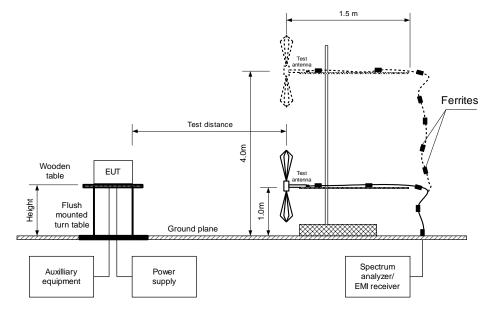
The EUT was adjusted to produce maximum available to end user RF output power.

The resolution bandwidth of spectrum analyzer was set wider than 6 dB bandwidth of the EUT and the field strength of the EUT carrier frequency was measured with antenna connected to spectrum analyzer/ EMI receiver. To find maximum radiation the turntable was rotated 3600 and the measuring antenna height was swept in both vertical and horizontal polarizations.

The maximum field strength of the EUT carrier frequency was measured as provided in Table 4.1 and associated plots.

The maximum peak output power was calculated from the field strength of carrier as follows:

$$\mathbf{P} = (\mathbf{E} \times \mathbf{d})2 / (30 \times \mathbf{G}),$$


where P is the peak output power in W, E is the field strength in V/m, d is the test distance and G is the transmitter numeric antenna gain over an isotropic radiator.

The above equation was converted in logarithmic units for 3 m test distance:

Peak output power in dBm = Field strength in dB(μ V/m) - Transmitter antenna gain in dBi – 95.2 dB

The worst test results (the lowest margins) were recorded in Table 4.1.

Figure 4.1 Setup for carrier field strength measurements

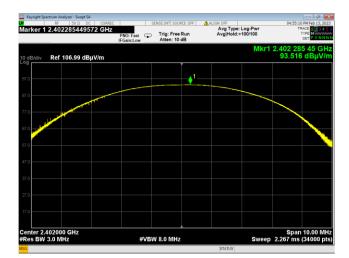
Photograph 4.1 Setup for carrier field strength measurements

4.3. List of Test Equipment:

Refer to appendix A for complete list of equipment used and respective calibration dates.

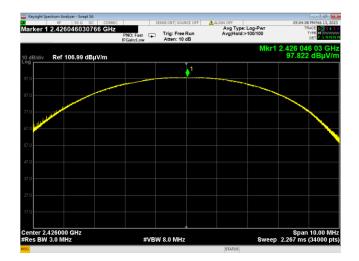
4.4. Test results:

Table 4.2 Peak output power test results


ASSIGNED FREQUENCY:						0-2483.5 MH	Z						
TEST DISTA	TEST DISTANCE:												
TEST SITE:					SEM	I ANECHOIC (CHAMBER						
EUT HEIGH	Г:				1.5 M	I							
DETECTOR	USED:				PEAF	Κ							
TEST ANTE	NNA TYPE:				DOU	BLE RIDGED	GUIDE (ABOVE	E 1000 MH	IZ)				
TRANSMITT	TER OUTPUT PO	OWER SETTIN	IGS:		MAX	IMUM							
DETECTOR	USED:				PEAF	K							
RESOLUTIO	N BANDWIDTH	ł:			3 MHZ								
VIDEO BAN	DWIDTH:				8 MHZ								
MODULATI	ON:				BLE								
BITRATE:					1 MB	PS							
Frequency, MHz	Field strength, dB(µV/m)	Antenna polarization	Antenna height, m		nuth, rees*	EUT antenna gain, dBi	Peak output power, dBm**	Limit, dBm	Margin, dB***	Verdict			
2402.0	93.516	Н	1.5		0	3	-4.71	30	-34.71	Pass			
2426.0	97.822	Н	1.5		0	3	-0.48	30	-30.48	Pass			
2480.0	95.680	Н	1.5		0	3	-2.52	30	-32.52	Pass			

*- EUT front panel refer to 0 degrees position of turntable.

**- Peak output power was calculated from the field strength of carrier as follows: $P = (E \times d)^2 / (30 \times G)$,


where P is the peak output power in W, E is the field strength in V/m, d is the test distance in meters and G is the transmitter numeric antenna gain over an isotropic radiator. The above equation was converted in logarithmic units for 3 m test distance: *Peak output power in dBm = Field strength in dB*(μ V/m) - *Transmitter antenna gain in dBi – 95.2 dB* ***- Margin = Peak output power – specification limit.

Note: Maximum peak output power was obtained at Unom (115% Unom, 85% Unom) input power voltage.

Plot 4.1: Peak output power at Low Frequency

Plot 4.2: Peak output power at Mid Frequency

Plot 4.3: Peak output power at High Frequency

5. Peak power spectral density

Date of Test: 13.02.2023 Relative Humidity: 48% Ambient Temperature: 21°C Atmospheric Pressure: 1011.4 hPa Test performed by: Izak Shtir

Test Method: ANSI C63.10 section 11.10.2

5.1. General

This test was performed to measure the peak spectral power density radiated by the transmitter RF antenna. Specification test limits are given in 5.1.

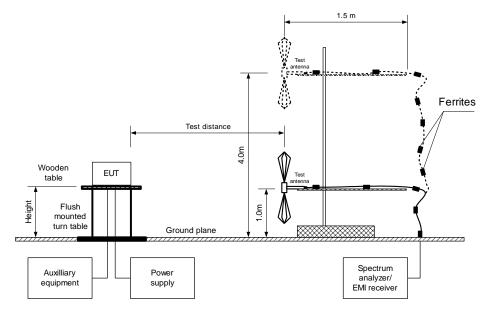
Assigned frequency range, MHz	Measurement bandwidth, kHz	Peak spectral power density, dBm	Equivalent Peak spectral power density limit @ 3m, dB(µV/m)*
902.0-928.0			
2400.0 - 2483.5	100.0	8.0	103.2
5725.0 - 5850.0			

Table 5.1 Peak spectral power density limits

* - Equivalent Peak spectral power density limit was calculated from the peak spectral power density as follows: $E=sqrt(30 \times P)/r$, where P is peak spectral power density and r is antenna to EUT distance in meters.

5.2. Test procedure

The EUT was set up as shown in Figure 5.1, energized and its proper operation was checked.


The EUT was adjusted to produce maximum available to end user RF output power.

The Peak spectral power density of the EUT carrier frequency was measured with antenna connected to spectrum analyzer/ EMI receiver. To find maximum radiation the turntable was rotated 360⁰ and the measuring antenna height was swept in both vertical and horizontal polarizations.

The frequency span of spectrum analyzer was set to capture the entire 6 dB band of the transmitter, in peak hold mode with resolution bandwidth set to 100.0 kHz, video bandwidth wider than resolution bandwidth, auto sweep time and sufficient number of sweeps was allowed for trace stabilization. The spectrum lines spacing was verified to be wider than 100 kHz. Otherwise the resolution bandwidth was reduced until individual spectrum lines were resolved and the power of individual spectrum lines was integrated over 100 kHz band.


The peak of emission was zoomed with span set just wide enough to capture the emission peak area and sweep time was set equal to span width divided by resolution bandwidth. Spectrum analyzer was set in peak hold mode, sufficient number of sweeps was allowed for trace stabilization and peak spectral power density was measured as provided in Table 5.2 and associated plots.

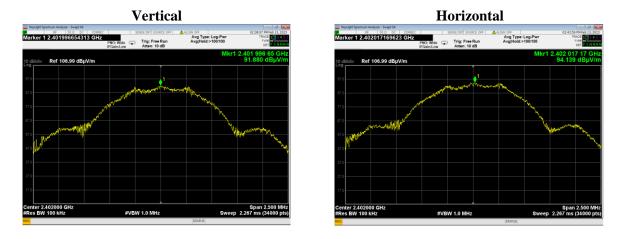
Figure 5.1 Setup for carrier Peak spectral power density measurements

Photograph 5.1 Setup for carrier field strength measurements

5.3. List of Test Equipment:

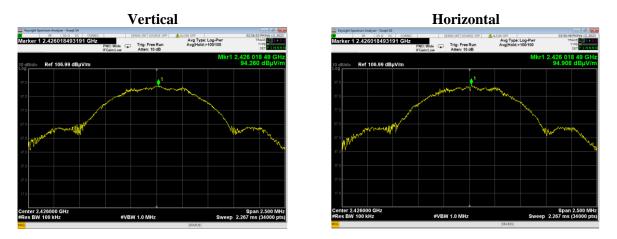
Refer to appendix A for complete list of equipment used and respective calibration dates.

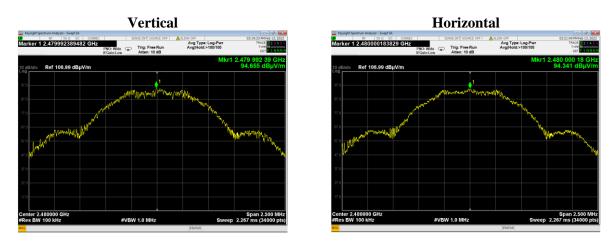
5.4. Test results:


Table 5.2 Peak spectral power density measurement of peak spectral power density

ASSIGNED F	REQUENCY:			2400.0 – 2483.5 MHZ						
TEST DISTAN	NCE:			3 M						
TEST SITE:				SEMI AN	ECHOIC CHAM	IBER				
EUT HEIGHT	•			1.5 M						
DETECTOR U	JSED:			PEAK						
RESOLUTION	N BANDWIDTH:			100 KHZ						
VIDEO BANI	OWIDTH:			1 MHZ						
TEST ANTEN	INA TYPE:			DOUBLE	RIDGED GUID	E (ABOVE 1	000 MHZ)			
TRANSMITT	ER OUTPUT POW	ER SETTINGS:		MAXIMU	М					
Modulation/bi	trate:			GFSK / 1 Mbps						
Frequency, MHz	Peak spectral power density, dB(µV/m)	EUT antenna gain, dBi	Limit, dB(µV/m)	Margin, dB*	Antenna polarization	Antenna height, m	Turn-table position**, degrees	Verdict		
Low frequence	y									
2402	94.139	3	103.2	-12.061	Н	1.5	0	Pass		
2402	91.880	3	103.2	-14.320	V	1.5	0	Pass		
Mid frequenc	У									
2426	94.908	3	103.2	-11.292	Н	1.5	0	Pass		
2426	94.260	3	103.2	-11.940	V	1.5	0	Pass		
High frequen	cy									
2480	94.655	3	103.2	-11.545	Н	1.5	0	Pass		
	94.341	3	103.2	-11.859	V	1.5	0	Pass		

*- Margin = Peak spectral power density - EUT antenna gain - 95.2 - calculated Peak spectral power density limit.


**- EUT front panel refer to 0 degrees position of turntable.



Plot 5.1: Power density Low frequency, Horizontal

Plot 5.2: Power density Mid frequency, Vertical

Plot 5.3: Power density High frequency, Horizontal

6. Spurious Emissions

Date of Test: 13.02.2023 Relative Humidity: 48% Ambient Temperature: 21°C Atmospheric Pressure: 1011.4 hPa Test performed by: Izak Shtir

Test Method: ANSI C63.10 section 11.12.1

6.1. General

This test was performed to measure field strength of spurious emissions from the EUT. Specification test limits are given in Table 6.1

	Field strength at	3 m within restricted ba	nds, dB(µV/m)***	Attenuation of field strength of	
Frequency, MHz	Peak	Quasi Peak	Average	spurious versus carrier outside restricted bands, dBc***	
0.009 - 0.090	148.5 - 128.5	NA	128.5 - 108.5**		
0.090 - 0.110	NA	108.5 - 106.8**	NA		
0.110 - 0.490	126.8 - 113.8	NA	106.8 - 93.8**		
0.490 - 1.705		73.8-63.0**			
1.705 - 30.0*		69.5		20.0	
30 - 88	NA	40.0	NA	20.0	
88 - 216	NA	43.5	INA		
216 - 960 960 - 1000		46.0			
		54.0			
1000 - 10thharmonic	74.0	NA	54.0		

Table 6.1: Radiated spurious emissions limits

*- The limit for 3 m test distance was calculated using the inverse square distance extrapolation factor as follows:

 $Lim_{S2} = Lim_{S1} + 40 \log (S_1/S_2),$

where $S_1 \,and \, S_2-$ standard defined and test distance respectively in meters.

**- The limit decreases linearly with the logarithm of frequency.

*** - The field strength limits applied from the lowest radio frequency generated in the device, without going below 9 kHz up to the tenth harmonic of the highest fundamental frequency.

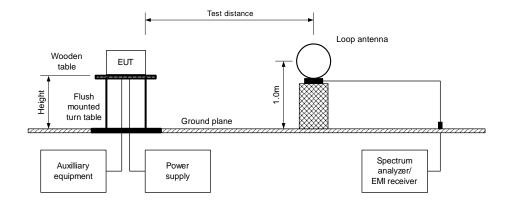
6.2. Test procedure for spurious emission field strength measurements in 9 kHz to 30 MHz band

The EUT was set up as shown in Figure 6.1, energized and the performance check was conducted.

The specified frequency range was investigated with antenna connected to spectrum analyzer/ EMI receiver. To find maximum radiation the turntable was rotated 360⁰ and the measuring antenna was rotated around its vertical axis.

The worst test results (the lowest margins) were recorded and shown in the associated plots.

6.3. Test procedure for spurious emission field strength measurements above 30 MHz


The EUT was set up as shown in Figure 6.2 Figure 6.3, energized and the performance check was conducted.

The specified frequency range was investigated with antenna connected to spectrum analyzer/ EMI receiver. To find maximum radiation the turntable was rotated 360⁰, the measuring antenna height was changed from 1 to 4 m, its polarization was switched from vertical to horizontal.

The worst test results (the lowest margins) were recorded and shown in the associated plots.

Note: Emissions in non-restricted frequency bands was not tested with 100 kHz RBW and attenuation of 20 dBc peak or 30 dBc AVR, however we can state compliance with limits based on Section 11.11.1(c) of ANSI C63.10.

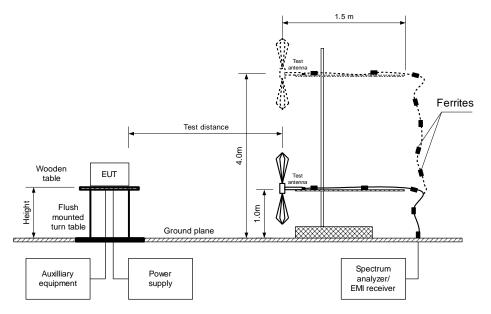
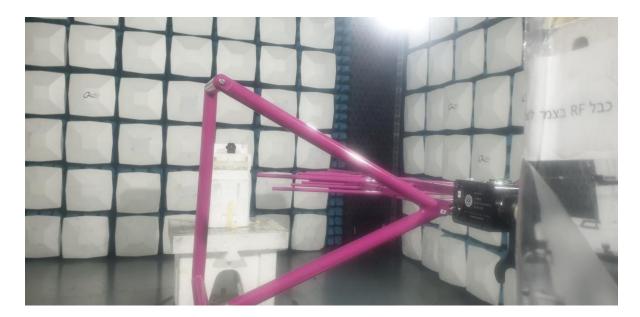


Figure 6.1 Setup for spurious emission field strength measurements below 30 MHz

Photograph 6.1 Setup for spurious emission field strength measurements below 30 MHz



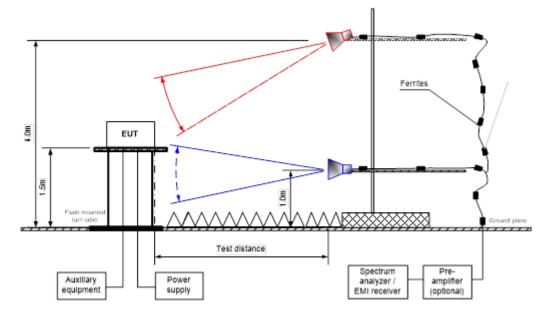


Figure 6.2 Setup for spurious emission field strength measurements from 30 to 1000 MHz

Photograph 6.2 Setup for spurious emission field strength measurements from 30 to 1000 MHz

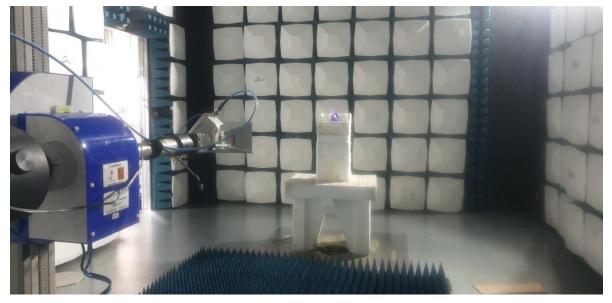


Figure 6.3 Setup for spurious emission field strength measurements above1000 MHz

Photograph 6.3 Setup for spurious emission field strength measurements above1000 MHz

6.4. List of Test Equipment:

Refer to appendix A for complete list of equipment used and respective calibration dates.

6.5. Test results:

Table 6.2 Field strength of emissions outside restricted bands

ASSIGNED H	FREQUENCY:				2400.0 – 2483.5 MHZ						
INVESTIGA	FED FREQUEN	CY RANGE:			0.009 - 25000 MHZ						
TEST DISTA	NCE:				3 M						
MODULATI	ON:				BI	LE					
BIT RATE:											
DUTY CYCL	DUTY CYCLE:										
TRANSMITT	TRANSMITTER OUTPUT POWER SETTINGS:										
DETECTOR	DETECTOR USED:										
RESOLUTION BANDWIDTH:						0 KHZ					
VIDEO BAN	DWIDTH:				30	0 KHZ					
TEST ANTE	NNA TYPE:				ACTIVE LOOP (9 KHZ – 30 MHZ)						
					BICONILOG (30 MHZ – 1000 MHZ)						
					D	OUBLE RIDGE	D GUIDE (ABOV	/E 1000 MI	HZ)		
Frequency,	Field strength	Antenna	Antenna	Azimut	h	Field strength	Attenuation	Limit,	Margin,	Verdict	
MHz	of spurious,	polarization	height, m	degree		of carrier,	below carrier,	,	dB**	veruiet	
	$dB(\Box V/m)$	polurization	neight, m	uegree	5	$dB(\Box V/m)$	dBc	dBc	u		
Low carrier f	requency										
		All emiss	sions were gr	eater tha	n 20	0 dB below the li	imit			Pass	
Mid carrier f	requency										
		All emiss	ions were gr	eater tha	n 20	0 dB below the li	imit			Pass	
High carrier	frequency										
		All emiss	ions were gr	eater tha	$n \overline{20}$	0 dB below the li	imit			Pass	

*- EUT front panel refers to 0 degrees position of turntable.

**- Margin = Attenuation below carrier – specification limit.

ASSIGNE	ED FREQUEN	CY:			2	2400.0 - 2483.5 MHZ						
INVESTI	GATED FREC	QUENCY	RANGE:		1	1000 - 25000 MHZ						
TEST DIS	TANCE:				3	3 M						
MODULA	ATION:				0	FSK						
BIT RAT	E:				1	MBPS						
DUTY CY	CLE:				1	00 %						
TRANSM	ITTER OUTF	UT POV	VER SETT	INGS:	Ν	IAXIMUM						
DETECT	OR USED:				Р	EAK						
RESOLU'	TION BAND	VIDTH:			1	00 KHZ						
VIDEO B	ANDWIDTH:				3	00 KHZ						
TEST AN	TENNA TYP	E:					OP (9 KHZ -					
							G (30 MHZ –	,				
				•	Γ	OUBLE RI	DGED GUI	DE (ABOVE	E 1000 MHZ	Z)		
Frequency	Anten	na	Azimuth,		t field stre BW=3 MI	• Average field strength (VRW-10 Hz)					Verdict	
MHz	Polarization	Height, m	degrees*	Measured, dB(µV/m)			Measured, dB(µV/m)	Calculated, dB(µV/m)		Margin, dB***	veruiet	
Low carri	er frequency	2402 MI	Hz									
			All emis	sions were n	nore than 2	20 dB below	the limit				Pass	
Mid carri	er frequency	2442 MI	Iz									
4883.25 3	Vertical	1.50	56	51.03	74.0	-22.97	46.79	NA	54.0	-7.21	Pass	
High carrier frequency 2480 MHz												
High carr	ier frequency	2480 M	Hz									
High carr 4959.41 3	ier frequency Vertical	2480 M 1.50	Hz 61	54.39	74.0	-19.61	49.90	NA	54.0	-4.10	Pass	

Table 6.3 Field strength of spurious emissions above 1 GHz within restricted bands

*- EUT front panel refers to 0 degrees position of turntable.

**- Margin = Measured field strength - specification limit.

***- Margin = Calculated field strength - specification limit,

where Calculated field strength = Measured field strength + average factor.

Table 6.4 Average factor calculation

	Transmission pulse		Transmis	sion burst	Transmission train	Average factor,
ſ	Duration, ms	Period, ms	Duration, ms	Period, ms	duration, ms	dB
Ī	NA	NA	NA	NA	NA	NA

*- Average factor was calculated as follows

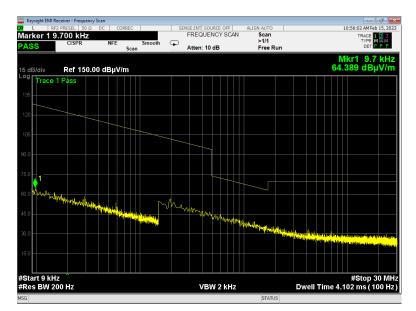
for pulse train shorter than 100 ms: Average factor = $20 \times \log_{10} \left(\frac{Pulse duration}{Pulse period} \times \frac{Burst duration}{Trainduration} \times Number of bursts within pulse train \right)$

for pulse train longer than 100 ms:

Average factor = $20 \times \log_{10} \left(\frac{Pulse duration}{Pulse period} \times \frac{Burst duration}{100 \, ms} \times Number of bursts within 100 \, ms} \right)$

ASSIGNED I	FREQUENCY	7.		2400.0 - 2483.5 MHZ							
INVESTIGA	TED FREQU	ENCY RANGE:		0.009 - 25000 MHZ							
TEST DISTA	NCE:			3 M							
MODULATI	ON:			BLE							
BIT RATE:				1 MBPS							
DUTY CYCI	LE:			100 %							
TRANSMITT	FER OUTPUT	POWER SETTINGS:		MAXIMUM	[
DETECTOR	USED:			PEAK							
RESOLUTIO	N BANDWII	DTH:		100 KHZ							
VIDEO BAN	DWIDTH:			300 KHZ							
TEST ANTE	NNA TYPE:				OOP (9 KHZ – 3						
				BICONILOG (30 MHZ – 1000 MHZ)							
	•			DOUBLE R	DOUBLE RIDGED GUIDE (ABOVE 1000 MHZ)						
Б	Peak	Qua				Turn-table					
Frequency, MHz	emission, db(µv/m)	Measured emission, db(µv/m)	Limit, db(µv/m)	Margin, db*	Antenna polarization	Antenna height, m	position**, degrees	Verdict			
Low carrier	frequency										
120.009	30.06	28.35	43.5	-15.15	Vertical	1.02	-31	Pass			
400.002	39.26	38.00	46.0	-8.00	Horizontal	1.04	-31	F 888			
Mid carrier f	frequency										
400.007	39.46	38.14	46.0	-7.86	Horizontal	1.02	-31	Pass			
High carrier	frequency										
119.994	30.03	28.42	43.5	-15.08	Vertical	1.00	-34	Pass			
		38.06	46.0		Horizontal	1.04	-33	F 488			

Table 6.5 Field strength of spurious emissions below 1 GHz within restricted bands


*- Margin = Measured emission - specification limit.

**- EUT front panel refer to 0 degrees position of turntable.

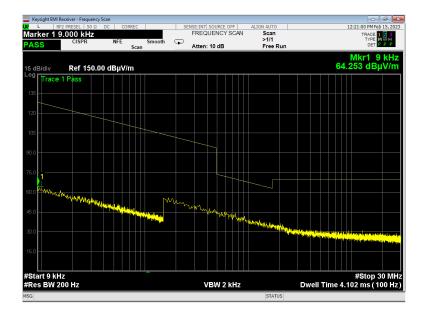
Table 6.6 Field strength of spurious emissions below 1 GHz within restricted bands

Frequency (MHz)	Measured Peak (dBuV/m)	Measured QP (dBuV/m)	Margin QP (dB)	Polarization	Ant Height (cm)	TT Azimut (Deg)	Verdict			
			BLI	E Low						
31.458	36.83	30.980	-9.02	Н	130	20	Pass			
562.86	44.55	40.070	-5.93	Н	243	93	Pass			
860.044	41.00	34.920	-11.08	Н	100	0	Pass			
554.994	35.906	38.611	-7.39	V	216	352	Pass			
573.638	44.067	37.214	-8.79	V	138	1	Pass			
590.997	44.523	39.970	-6.03	V	126	275	Pass			
BLE Mid										
567.238	40.92	40	-6.00	Н	167	106	Pass			
573.513	43.81	40.29	-5.71	Н	250	120	Pass			
955.712	42.89	37.13	-8.87	Н	150	161	Pass			
564.724	43.513	36.04	-9.96	V	240	0	Pass			
573.68	44.566	40.479	-5.52	V	199	39	Pass			
583.246	42.658	38.641	-7.36	V	130	323	Pass			
			BLF	High						
573.707	40.97	37.29	-8.71	Н	236	120	Pass			
921.945	41.12	35.88	-10.12	Н	167	181	Pass			
573.594	46.189	38.003	-8.00	V	250	58	Pass			
927.881	41.119	35.988	-10.01	V	101	0	Pass			

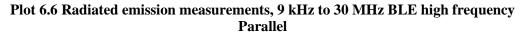
Plot 6.1 Radiated emission measurements, 9 kHz to 30 MHz BLE low frequency Horizontal

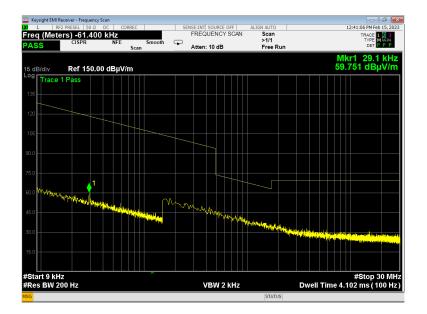
Plot 6.2 Radiated emission measurements, 9 kHz to 30 MHz BLE mid frequency Horizontal



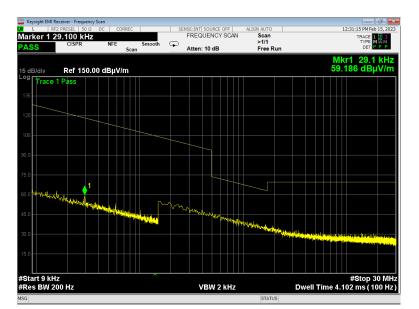


Plot 6.3 Radiated emission measurements, 9 kHz to 30 MHz BLE high Horizontal


Plot 6.4 Radiated emission measurements, 9 kHz to 30 MHz, BT low frequency Parallel

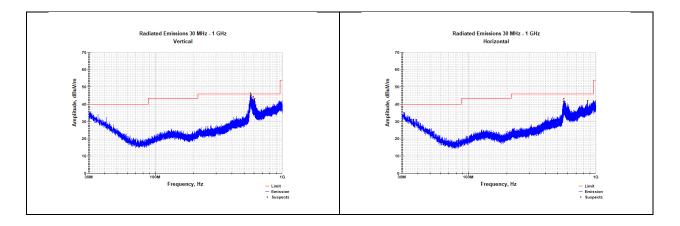


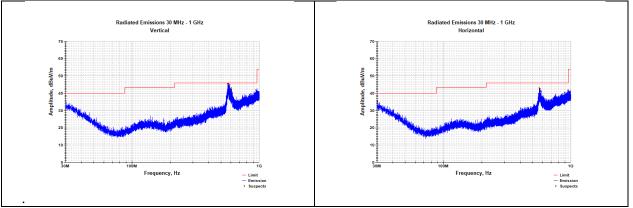
Plot 6.5 Radiated emission measurements, 9 kHz to 30 MHz BLE mid frequency Parallel

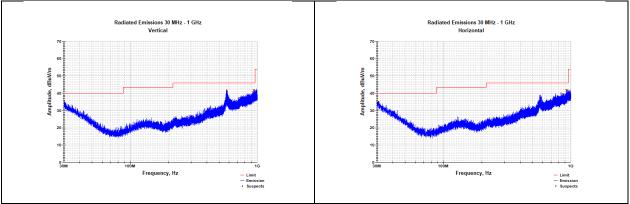


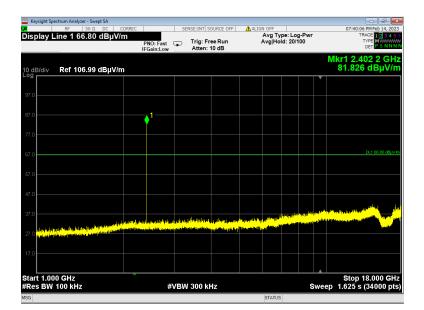
Plot 6.7 Radiated emission measurements, 9 kHz to 30 MHz, BLE low frequency Perpendicular

Plot 6.8 Radiated emission measurements, 9 kHz to 30 MHz, BLE mid frequency Perpendicular

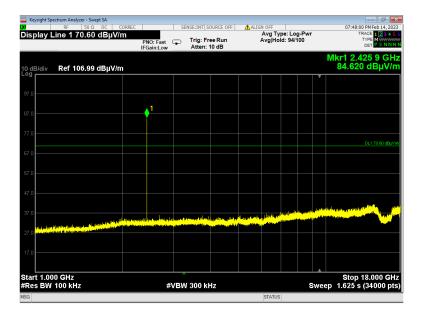


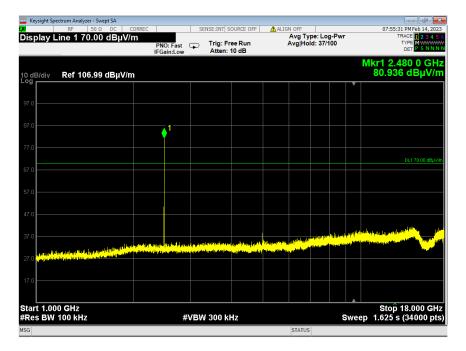

Plot 6.9 Radiated emission measurements, 9 kHz to 30 MHz, BLE high frequency Perpendicular


Plot 6.10 Radiated emission measurements, 30 MHz to 1 GHz, BLE low frequency Horizontal and vertical

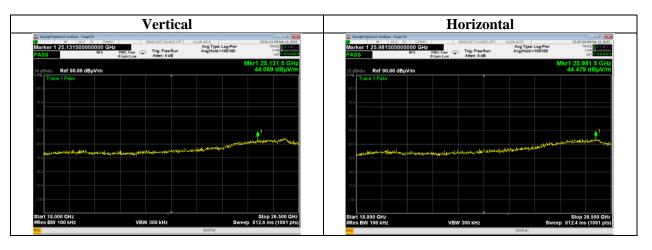

Plot 6.11 Radiated emission measurements, 30 MHz to 1 GHz, BLE mid frequency Horizontal and vertical

Plot 6.12 Radiated emission measurements, 30 MHz to 1 GHz, BLE high frequency Horizontal and vertical

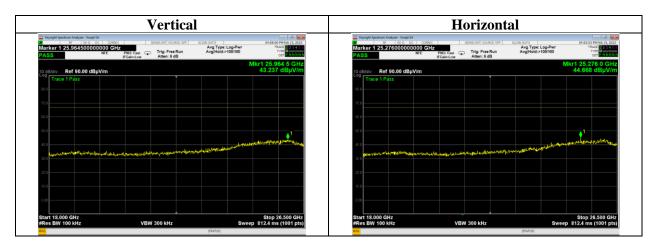



Plot 6.13 Radiated emission measurements, 1 GHz to 18 GHz, BLE low frequency Horizontal and vertical (Worst Case)

Plot 6.14 Radiated emission measurements, 1 GHz to 18 GHz, BLE mid frequency Horizontal and vertical (Worst Case)



Plot 6.15 Radiated emission measurements, 1 GHz to 18 GHz, BLE high frequency Horizontal and vertical (Worst Case)



Plot 6.16 Radiated emission measurements, 18 GHz to 26.5 GHz BLE low frequency

Plot 6.17 Radiated emission measurements, 18 GHz to 26.5 GHz BLE mid frequency

Plot 6.18 Radiated emission measurements, 18 GHz to 26.5 GHz BLE high frequency

Vertical		Horizontal			
Repet Sectorer Andres: Sector 10 Sector 10 Alson or 10 Marker 1 25.998500000000 GHz Sector 10 Avg Type: Leg-Pwr Marker 1 25.998500000000 GHz Pilot Fast Trig: Free Run Avg Type: Leg-Pwr Ass Pilot Fast Trig: Free Run Avg Type: Leg-Pwr	0412204 PM Heb 15, 2022 TRACE 17 2 3 4 0 TYPE 2 3 4 0 OCT 0 N H N H	Marker 1 25.90500000000 GHz	11 SOURCE OFF ALLON AUTO 04:16:32 PH/rei 15, 2021 Free Run Avg Type: Log-Pwr 16 d B oort		
0 dB/div Ref 90.00 dBµV/m	Mkr1 25.998 5 GHz 44.812 dBµV/m	10 dB/dlv Ref 90.00 dBµV/m	Mkr1 25.905 0 GHa 44.108 dBµV/n		
Trace 1 Pais	and the state of t	Colore 1 P 455			
		00 <u></u>	an an Indonesian Special and a second se		
Start 18.000 GHz Sweet Res BW 100 kHz Sweet	Stop 26.500 GHz ep 812.4 ms (1001 pts)	Start 18.000 GHz #Res BW 100 kHz VBW 300	Stop 26.500 GHz kHz Sweep 812.4 ms (1001 pts		

7. Band edge radiated emissions

7.1. General

This test was performed to measure emissions, radiated from the EUT at the assigned frequency band edges. Specification test limits are given in Table 7.1

 Table 7.1 Band edge emission limits

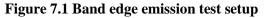
Output power	Assigned frequency, MHz	Attenuation below carrier*, dBc	Field strength at 3 m w dB(µ	· · · · · · · · · · · · · · · · · · ·
			Peak	Average
Peak	2400.0 - 2483.5	20.0	74.0	54.0

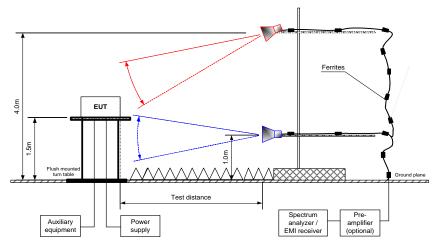
* - Band edge emission limit is provided in terms of attenuation below the peak of modulated carrier measured with the same resolution bandwidth.

7.2. Test procedure

The EUT was set up as shown in Figure 7.1 energized normally modulated at the maximum data rate and its proper operation was checked.

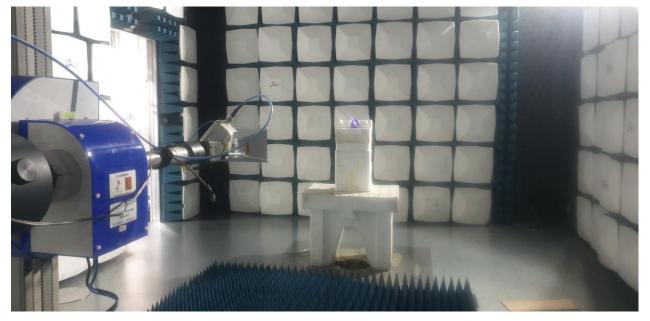
The EUT was adjusted to produce maximum available to end user RF output power at the lowest carrier frequency.


The spectrum analyzer span was set to capture the carrier frequency and associated modulation products. The resolution bandwidth was set wider than 1 % of the frequency span.


The spectrum analyzer was set in max hold mode and allowed trace to stabilize. The highest emission level within the authorized band was measured.

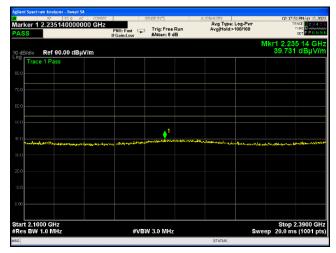
The maximum band edge emission and modulation product outside of the band were measured as provided in Table 7.2 and associated plots and referenced to the highest emission level measured within the authorized band.

The above procedure was repeated with the EUT adjusted to produce maximum RF output power at the highest carrier frequency.


The above procedure was repeated with the frequency hopping function enabled.

Photograph 7.1 Band edge emission test setup

Table 7.2 Band edge emission outside restrie	cted bands test results


ASSIGNED FREQUENCY RANGE:			2400.0 – 2483.5 MHz				
DETECTO	OR USED:	Peak					
TRANSM	ITTER OUTPUT PO	OWER SETTINGS:	Maximum				
RESOLUT	FION BANDWIDTH	ł:	100 kHz				
VIDEO BA	ANDWIDTH:		≥RBW				
MODULA	TION/BITRATE:	GFSK / 1 Mbps					
Frequency , MHzBand edge emission, dBmEmission at carrier, dBm			Attenuation below carrier, dBc	Limit, dBc	Margin, dB*	Verdict	
2400.00	-52.53	-3.96	48.57	20.0	28.57	Pass	

*- Margin = Attenuation below carrier – specification limit.

Table 7.3 Band edge emission inside restricted bands test results

ASSIGNED FREQUEN	2400.0 – 2483.5 MHz							
DETECTOR USED:			Peak					
TRANSMITTER OUTP	UT POWER		Maximum					
SETTINGS:								
VIDEO BANDWIDTH:			> RBW					
MODULATION/BITRATE:	-		GFSK / 1 MI	ops				
Peak field strength (VBW			V=3 MHz)	Average field	Average field strength (VBW=1 kHz)			
Frequency, MHz	Measured, dB(µV/m)	Limit, dB(µV/m)	Margin, dB**	Measured, dB(µV/m)	Limit, dB(µV/m)	Margin, dB**	Verdict	
Low carrier frequency						1		
2235.14	39.731	74.0	34.269	N.A	54.0	N.A	Pass	
2245.04	N.A	74.0	N.A	25.796	54.0	28.204	Pass	
2830.10	43.596	74.0	30.404	N.A	54.0	N.A	Pass	
2830.01	N.A	74.0	N.A	36.145	54.0	17.855	Pass	
High carrier frequency								
2383.62	44.406	74.0	29.594	N.A	54.0	N.A	Pass	
2236.65	N.A	74.0	N.A	25.443	54.0	28.557	Pass	
2498.50	40.477	74.0	33.523	N.A	54.0	N.A	Pass	
2915.06	N.A	74.0	N.A	26.888492	54.0	27.112	Pass	

Plot 7.1 The highest emission level within restricted band at low carrier frequency

Plot 7.2 The highest emission level within restricted band at high carrier frequency

larker 1 2.498478 ASS	PNC		Free Run n:6 dB	ALSONAUTO Avg Type: Log-F Avg Hold:>100/1	wr T	COPMApr 10, 20 RACE 12 3 4 THPE M CARACTER DET P P N N N
0 dB/div Ref 90.00	dBµV/m				Mkr1 2.4 40.477	98 5 GH ′dBµV/r
Trace 1 Pass						
0.0						
0.0						
0.0						
•••						
- And Stanson Section	d garger and general parts and general the second	- definished to be an inter-	prosperious and sugar	And a second state of the second s	(provident and a second second	and the grant day of the second
0.0						
0.0						
tart 2.4835 GHz					Stop 3	3.0000 GH
Res BW 1.0 MHz		#VBW 3.01	MHz		Sweep 20.0 ms	(1001 pt

Plot 7.3 The highest emission level outside restricted band at low carrier frequency

RF 50 Q		SENSE:I	NT	ALIGNAUTO		:46:28 PM Apr 13, 20
Ref Value 102.99 dE	PI	10: Wide 🖵 Tri Gain:Low #At	g:FreeRun ten:6dB	Avg Type: Log Avg Hold>100	g-Pwr /100	TRACE 2 3 4 TYPE MUMANA DET PPNNN
10 dB/div Ref 102.99	IdBµV/m				Mkr1 2.4 44.9	00 000 GH 36 dBµV/r
og						
93.0		Jan	mont			
83.0						
73.0						
63.0				ي الم		
53.0				- <u>\</u>		
	and more thank			- Andrews		
43.0 Aghaphaphaphaphaphaphaphaphaphaphaphaphaph					"shalasandadahabaga	
33.0					and the second sec	however
23.0						
13.0						
Start 2.399000 GHz Res BW 100 kHz		#VBW 30	0 kHz		Stop Sweep 20.0	2.405577 GH ms (1001 pt
WKR MODE TRC SCL	×	Y	FUNCTION FI	JNCTION WIDTH	FUNCTION VALU	JE
1 N 1 f 2 N 1 f	2.400 000 GHz 2.401 999 GHz	44.936 dBµV/m 93.509 dBµV/m				
3						
5						
						>

8. Appendices

8.1. Appendix A: List of Measuring Equipment used:

Equipment description	Last Cal	Cal Due
Semi Anechoic Chamber, 9.5m [L] x 6.5m [W] x 5.2m [H]	19 05 2022	19 05 2024
Teseq CBL 6141B, Bilog Antenna	01 06 2022	01 06 2025
1 GHz to 18 GHz, Double ridge horn, 24.2 by 13.6 cm opening ARA DRG-118/A	03 10 2022	03 10 2023
LNA 1-18GHz (New), Spacek Labs, SL1018-56-5, 17J29	20 09 2022	20 09 2023
Keysight MXE EMI Receiver N9038A	11 05 2022	11 05 2023
Spectrum Keysight E4446A	05 09 2022	05 09 2023
Schwarzbeck BBHA 9170 SHF-EHF horn	21 03 2021	21 03 2024
Low-Noise Amplifier 26.5GHz - 40GHz, Spacek Labs, SLKa-35-4	27.02.2023	27.02.2024

8.2. Appendix B: Abbreviations/ Glossary used in the test report

AC	Alternating Current	Hz	Hertz
AVR	Average (Detector)	НСР	Horizontal Coupling Plane
A/m	Ampere per meter	kHz	Kilohertz
AE	Auxiliary equipment	kV	Kilovolt
AM	Amplitude modulation	ISN	Impedance stabilization network
cm	Centimeter	LISN	Line Impedance Stabilization
CE	Conducted Emission		Network
CI	Conducted Immunity	m	Meter
CNR	Calibration not required	MHz	Megahertz
dB	Decibel	NA	Not Applicable
dBm	Decibel referred to one Mill watt	NP	Normal performance
dB(µV)	Decibel referred to one micro	QP	Quasi-Peak (Detector)
N /	volt	Ω	Ohm
$dB(\mu V/m)$	Decibel referred to one micro	PM	Pulse modulation
	volt per meter	PC	Personal Computer
DC	Direct Current	RF	Radio Frequency
ESD	Electrostatic Discharge	RE	Radiated Emission
EFT	Electrical Fast Transients	RI	Radiated Immunity
EMC	Electromagnetic Compatibility	rms	Root-mean-square
EMI	Electromagnetic Immunity	sec	Second
EN	European Standard	SA	Spectrum analyzer
EUT	Equipment under test	Transceiver	Transmitter -receiver
F/O	Fiber optic	V	Volt
GHz	Gigahertz	VCP	Vertical coupling plane
	-	W	Watt
		L	

8.3. Appendix C: Accreditation Certificate

End of the Test Report