

FCC TEST REPORT FCC PART 15 SUBPART C 15.239

Test report On Behalf of Dongguan Pinmi Electronic Technology Co., Ltd For **Car Handsfree Kit** Model No.: T50

FCC ID: 2AMBA-A995

Prepared for :	Dongguan Pinmi Electronic Technology Co., Ltd			
	2F, E block, Hongda Industrial Park, Jianshe Road, Shima Community,			
	Tangxia Town, Dongguan City, Guangdong, China			
Prepared By :	Shenzhen HUAK Testing Technology Co., Ltd.			
	1F, B2 Building, Junfeng Zhongcheng Zhizao Innovation Park, Fuhai			
	Street, Bao'an District, Shenzhen City, China			
Date of Test:	Sep. 03, 2018 ~ Sep. 11, 2018			
Date of Report:	Sep. 19, 2018			
Report Number:	HUAK180906992E			

TEST RESULT CERTIFICATION

Applicant's name:	Dongguan Pinmi Electronic Technology Co., Ltd			
Address:	2F, E block, Hongda Industrial Park, Jianshe Road, Shima			
Address	Community, Tangxia Town, Dongguan City, Guangdong, China			
Manufacture's Name:	Dongguan Pinmi Electronic Technology Co., Ltd			
Address:	2F, E block, Hongda Industrial Park, Jianshe Road, Shima			
Address	Community, Tangxia Town, Dongguan City, Guangdong, China			
Product description				
Trade Mark:	N/A			
Product name:	Car Handsfree Kit			
Model and/or type reference:	Т50			
Series Model:	A18S, X5, AG01, T6S, T9, T9S, T10Q, T10C, T15, T17, T20, T21,			
Series Model	T22, T23, T25, T30S, T31, T19,T40,T24			
Difference Description::	All the same except for the model name.			
Standards	FCC Rules and Regulations Part 15 Subpart C Section 15.239 ANSI C63.10: 2013			

This publication may be reproduced in whole or in part for non-commercial purposes as long as the Shenzhen HUAK Testing Technology Co., Ltd. is acknowledged as copyright owner and source of the material. Shenzhen HUAK Testing Technology Co., Ltd. takes no responsibility for and will not assume liability for damages resulting from the reader's interpretation of the reproduced material due to its placement and context.

Date of Test

Date (s) of performance of tests	
Date of Issue	Sep. 19, 2010
Test Result:	Pass

÷

2

Testing Engineer

Gory Qian)

Technical Manager

Authorized Signatory - 2

Eden Hu (Eden Hu) Jason Zhou

(Jason Zhou)

Table of Contents	Page
1. TEST SUMMARY	5
2 . GENERAL INFORMATION	6
2.1 GENERAL DESCRIPTION OF EUT	6
2.2 OPERATION OF EUT DURING TESTING	7
2.3 DESCRIPTION OF TEST SETUP	7
2.4 MEASUREMENT INSTRUMENTS LIST	8
3. RADIATED EMISSION	9
3.1. MEASUREMENT PROCEDURE	9
3.2. TEST SETUP	10
3.3. TEST RESULT FOR FIELD STRENGTH OF FUNDAMENTAL	11
3.4. TEST RESULT FOR FIELD STRENGTH OF BAND EDGE EMISSION	11
3.5. TEST RESULT FOR SPURIOUS EMISSION	12
4. BANDWIDTH	14
4.1. MEASUREMENT PROCEDURE	14
4.2. TEST SETUP	14
4.3. TEST RESULT	15
5. PHOTOGRAPH OF TEST	17
6. PHOTOGRAPHS OF EUT	18

1. TEST SUMMARY

1.1 TEST PROCEDURES AND RESULTS

FCC RULES	RULES DESCRIPTION OF TEST	
15.209 Field Strength of Fundamental and Spurious Emission		Compliant
15.215	Bandwidth	Compliant
15.207	Line Conducted Emission	N/A

NOTE: N/A stands for not applicable. The device is only used in the car, so the conducted emission is not applicable.

1.2 TEST FACILITY

Test Firm	:	Shenzhen HUAK Testing Technology Co., Ltd.
Address	:	1F, B2 Building, Junfeng Zhongcheng Zhizao Innovation Park,
		Fuhai Street, Bao'an District, Shenzhen City, China
Designation Number:	:	CN1229

Test Firm Registration Number : 616276

1.3 MEASUREMENT UNCERTAINTY

Measurement Uncertainty		
Conducted Emission Expanded Uncertainty	=	2.23dB, k=2
Radiated emission expanded uncertainty(9kHz-30MHz)	=	3.08dB, k=2
Radiated emission expanded uncertainty(30MHz-1000MHz)	=	4.42dB, k=2
Radiated emission expanded uncertainty(Above 1GHz)	=	4.06dB, k=2

2. GENERAL INFORMATION

2.1 GENERAL DESCRIPTION OF EUT

Operation Frequency	88.1MHz-107.9MHz			
Field Strength(3m)	45.94dBuV/m(AV)@3m			
Modulation	FM			
Number of channels	199(Channel spacing 100kHz)			
Hardware Version	V1.1			
Software Version	V1.0			
Antenna Designation	Integrated Antenna (Met 15.203 Antenna requirement)			
Power Supply	INPUT:DC 12V - 24V			
Power Supply	OUTPUT: DC 5V 2.4A MAX			

2.2 OPERATION OF EUT DURING TESTING

NO.	TEST MODE DESCRIPTION			
1	Transmitting mode(Low channel)			
2	Transmitting mode(Middle channel)			
3	Transmitting mode(High channel)			
Note:				
1. For Radiated Emission, 3axis were chosen for testing for each applicable mode.				
2. All the requirements have been tested by modulating the transmitter with a 2.5 kHz tone at a fixed level				
which set to the manufacturer's maximum rated input to the modulator.				

2.3 DESCRIPTION OF TEST SETUP

Operation of EUT during Radiation and Above1GHz Radiation testing:

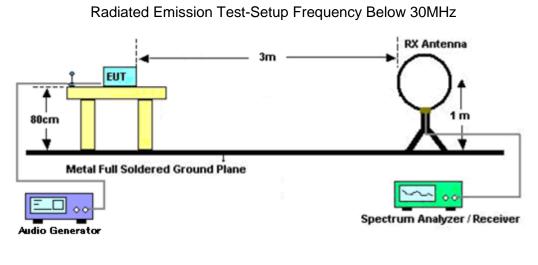
EUT

2.4 MEASUREMENT INSTRUMENTS LIST

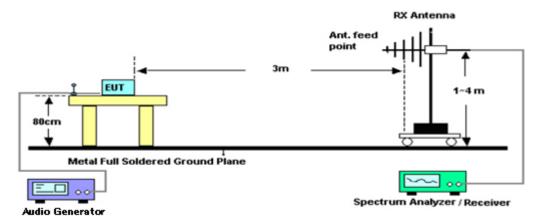
Item	Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Interval
1.	RF automatic control unit	Tonscend	JS0806-2	HKE-060	Dec. 28, 2017	1 Year
2.	Spectrum analyzer	R&S	FSP40	HKE-025	Dec. 28, 2017	1 Year
3.	Spectrum analyzer	Agilent	N9020A	HKE-048	Dec. 28, 2017	1 Year
4.	Preamplifier	Schwarzbeck	BBV 9743	HKE-006	Dec. 28, 2017	1 Year
5.	EMI Test Receiver	Rohde & Schwarz	ESCI 7	HKE-010	Dec. 28, 2017	1 Year
6.	Bilog Broadband Antenna	Schwarzbeck	VULB9163	HKE-012	Dec. 28, 2017	1 Year
7.	Loop Antenna	Schwarzbeck	FMZB 1519 B	HKE-014	Dec. 28, 2017	1 Year
8.	Horn Antenna	Schewarzbeck	9120D	HKE-013	Dec. 28, 2017	1 Year
9.	Pre-amplifier	EMCI	EMC05184 5SE	HKE-015	Dec. 28, 2017	1 Year
10.	Pre-amplifier	Agilent	83051A	HKE-016	Dec. 28, 2017	1 Year
11.	EMI Test Software EZ-EMC	Tonscend	JS1120-B Version	HKE-083	Dec. 28, 2017	N/A
12.	Power Sensor	Agilent	E9300A	HKE-086	Dec. 28, 2017	1 Year
13.	Spectrum analyzer	Agilent	N9020A	HKE-048	Dec. 28, 2017	1 Year
14.	Signal generator	Agilent	N5182A	HKE-029	Dec. 28, 2017	1 Year
15.	Signal Generator	Agilent	83630A	HKE-028	Dec. 28, 2017	1 Year
16.	Shielded room	Shiel Hong	4*3*3	HKE-039	Dec. 28, 2017	3 Year

3. RADIATED EMISSION

3.1. MEASUREMENT PROCEDURE


- 1. Configure the EUT according to ANSI C63.10. The EUT was placed on the top of the turntable 0.8 meter above ground and opposite the horn antenna. The phase center of the receiving antenna mounted on the top of a height-variable antenna tower was placed 3 meters far away from the turntable.
- 2. Power on the EUT and all the supporting units. The turntable was rotated by 360 degrees to determine the position of the highest radiation.
- 3. The height of the broadband receiving antenna was varied between one meter and four meters above ground to find the maximum emissions field strength of both horizontal and vertical polarization.
- 4. For each suspected emissions, the antenna tower was scan (from 1 M to 4 M) and then the turntable was rotated (from 0 degree to 360 degrees) to find the maximum reading.
- 5. Set the test-receiver system to Peak or CISPR quasi-peak Detect Function with specified bandwidth under Maximum Hold Mode.
- 6. For emissions below 1GHz, use 120KHz RBW and VBW>=3RBW for QP reading.
- 7. In case the emission is lower than 30MHz, loop antenna has to be used for measurement and the recorded data should be QP measured by receiver. High Low scan is not required in this case.
- 8. Only the worst case is reported.

The following table is the setting of spectrum analyzer and receiver.


Receiver Parameter	Setting		
Start ~Stop Frequency	9KHz~150KHz/RBW 200Hz for QP		
Start ~Stop Frequency	150KHz~30MHz/RBW 9KHz for QP		
Start ~Stop Frequency	30MHz~1000MHz/RBW 120KHz for QP		

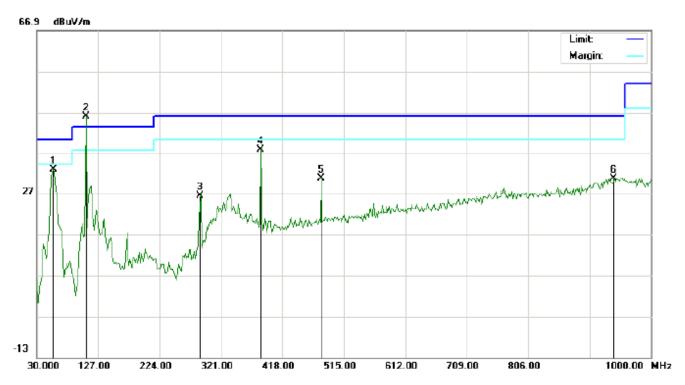
3.2. TEST SETUP

RADIATED EMISSION TEST SETUP 30MHz-1000MHz

3.3. TEST RESULT FOR FIELD STRENGTH OF FUNDAMENTAL

Frequency MHz	Polarization	Level dB(uV/m) PK	Limit dB(uV/m) PK	Margin dB	Pass/Fail	Detector
88.100	н	44.98	67.96	-22.98	Pass	PK
88.100	V	33.84	67.96	-34.12	Pass	PK
98.000	Н	45.41	67.96	-22.55	Pass	PK
98.000	V	34.07	67.96	-33.89	Pass	PK
107.900	Н	45.94	67.96	-22.02	Pass	PK
107.900	V	34.42	67.96	-33.54	Pass	PK
Frequency MHz	Polarization	Level dB(uV/m) AV	Limit dB(uV/m) AV	Margin dB	Pass/Fail	Detector
88.100	Н	44.32	47.96	-3.64	Pass	AV
88.100	V	33.29	47.96	-14.67	Pass	AV
98.000	Н	45.01	47.96	-2.95	Pass	AV
98.000	V	33.65	47.96	-14.31	Pass	AV
107.900	Н	45.44	47.96	-2.52	Pass	AV
107.900	V	34.02	47.96	-13.94	Pass	AV
3.4. TEST RESUL	T FOR FIELD STRE	NGTH OF BAND	DEDGE EMISSIO	N		
Frequency MHz	Polarization	Level dB(uV/m) QP	Limit dB(uV/m) QP	Margin dB	Pass/Fail	Detector
88.000	Н	37.45	40.00	-2.55	Pass	QP
88.000	V	26.53	40.00	-13.47	Pass	QP
108.000	Н	38.02	43.50	-5.48	Pass	QP
108.000	V	27.29	43.50	-16.21	Pass	QP

Note: The above two frequencies are the worst case for the band edge emission test.



3.5. TEST RESULT FOR SPURIOUS EMISSION

RADIATED EMISSION BELOW 30MHz

No emission found between lowest internal used/generated frequencies to 30MHz.

RADIATED EMISSION BELOW 1GHZ-Horizontal

No.	Mk	Freq.	Reading	Factor	Measurement	Limit	Over		Antenna Height	Table Degree	Comment
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB		cm	degree	
1		55.8667	27.88	4.94	32.82	40.00	-7.18	peak			
2	*	107.6000	37.22	8.72	45.94						
3		288.6666	12.88	13.48	26.36	46.00	-19.64	peak			
4		384.0500	18.72	18.96	37.68	46.00	-8.32	peak			
5		479.4333	9.75	20.91	30.66	46.00	-15.34	peak			
6		941.7999	0.87	29.77	30.64	46.00	-15.36	peak			

RESULT: PASS

66.9 dBuV/m Limit Margin: 2 5 X 5 X \$ 27 M.N. 1 -13 1000.00 MHz 30.000 127.00 224.00 321.00 418.00 515.00 612.00 709.00 806.00

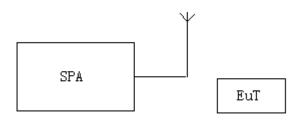
RADIATED EMISSION BELOW 1GHZ-Vertical

No.	Mk	Freq.	Reading	Factor	Measurement	Limit	Over	Detector	Antenna Height		Comment
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB		cm	degree	
1	*	107.6000	33.74	0.68	34.42						
2		288.6666	15.78	15.07	30.85	46.00	-15.15	peak			
3		384.0500	12.23	18.96	31.19	46.00	-14.81	peak			
4		479.4333	6.94	20.91	27.85	46.00	-18.15	peak			
5		576.4333	6.39	22.61	29.00	46.00	-17.00	peak			
6		671.8167	5.56	24.43	29.99	46.00	-16.01	peak			

RESULT: PASS

Note:

- 1. Factor=Antenna Factor + Cable loss Amplifier gain, Margin=Measurement-Limit.
- 2 The "Factor" value can be calculated automatically by software of measurement system.
- 3 All test modes had been tested. The High channel is the worst case and recorded in the report.



4. BANDWIDTH 4.1. MEASUREMENT PROCEDURE

1. Set the parameters of SPA as below: Centre frequency = Operation Frequency RBW=3KHz VBW=10KHz Span: 300kHz Sweep time: Auto

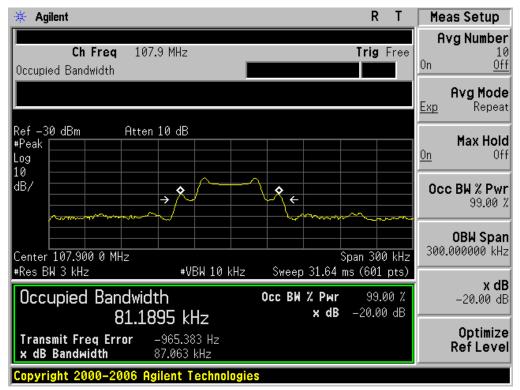
- 2. Set the EUT to continue transmitting mode. Allow the trace to stabilize. Use the "N dB down" function of SPA to define the bandwidth.
- 3. Record the plots and Reported.

4.2. TEST SETUP

4.3. TEST RESULT

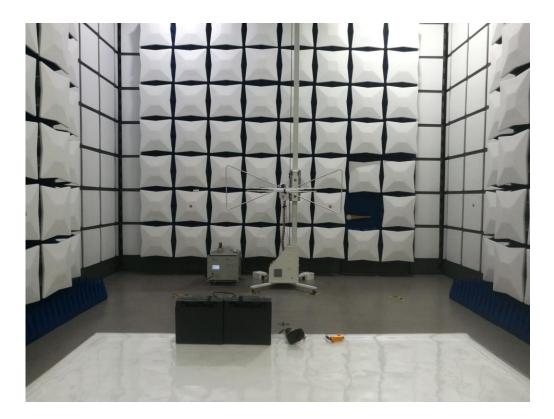
Channel	Channel Frequency(MHz)	-20dB bandwidth (kHz)	Limit(kHz)
Low	88.1	86.723	200
Middle	98.0	86.733	200
High	107.9	87.063	200

TEST PLOT OF BANDWIDTH FOR LOW CHANNEL



TEST PLOT OF BANDWIDTH FOR MIDDLE CHANNEL

Page 16 of 25


TEST PLOT OF BANDWIDTH FOR HIGH CHANNEL

5. PHOTOGRAPH OF TEST

Radiated Emission

6. PHOTOGRAPHS OF EUT

TOP VIEW OF EUT

BOTTOM VIEW OF EUT

FRONT VIEW OF EUT

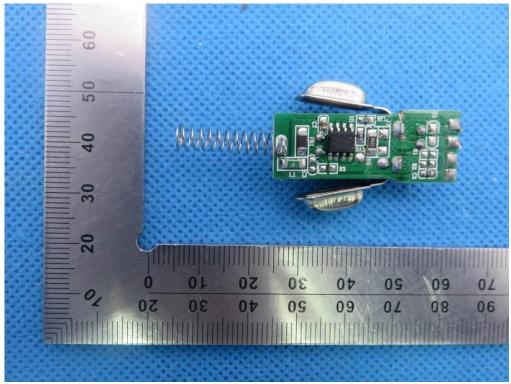
BACK VIEW OF EUT

LEFT VIEW OF EUT

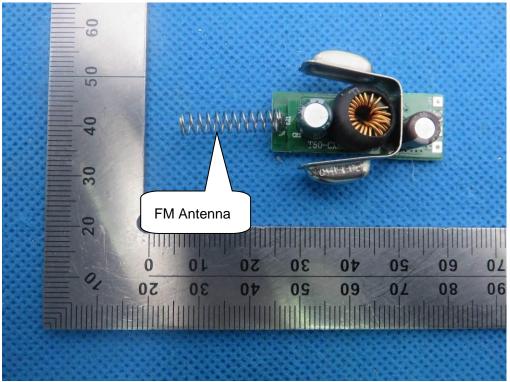
RIGHT VIEW OF EUT

VIEW OF EUT (PORT)-1

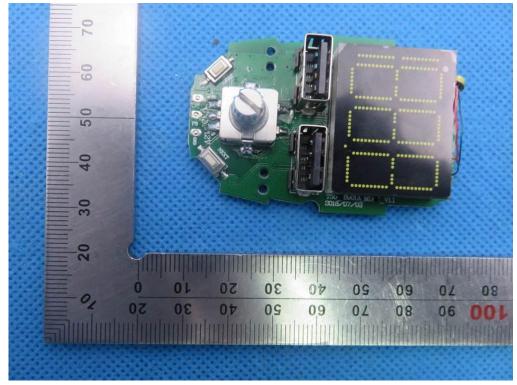
VIEW OF EUT (PORT)-2



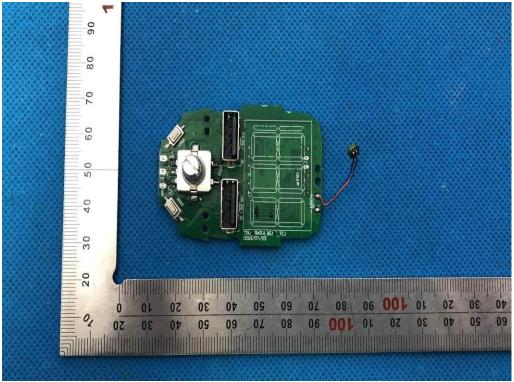
OPEN VIEW OF EUT



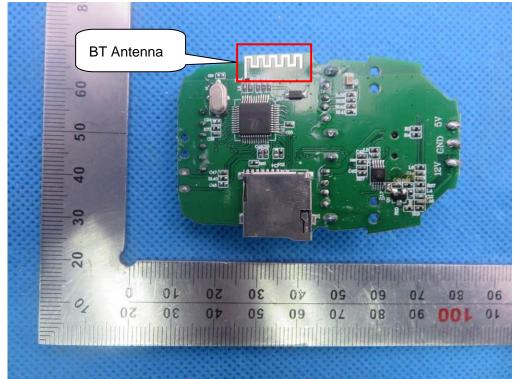
INTERNAL VIEW OF EUT-1

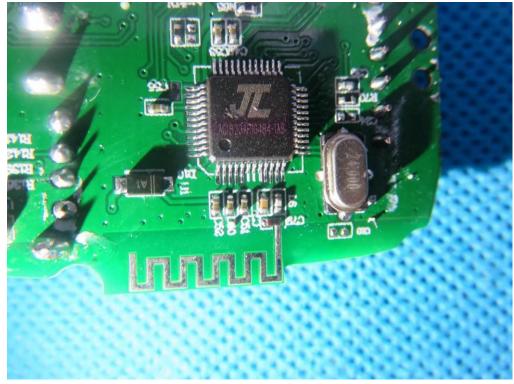


INTERNAL VIEW OF EUT-2



INTERNAL VIEW OF EUT-3




INTERNAL VIEW OF EUT-4


INTERNAL VIEW OF EUT-5

INTERNAL VIEW OF EUT-7

INTERNAL VIEW OF EUT-8

----END OF REPORT----