

TEST REPORT

Report No.:	BCTC2205393489-1E		
Applicant:	Shenzhen Intellirocks Tech. Co., Ltd.		
Product Name:	Govee DreamView G1 Gaming Light		
Model/Type reference:	H604B		
Tested Date:	2022-05-26 to 2022-06-02		
Issued Date:	2022-06-02		
She	nzhen Beresting Co., Ltd.		
No. : BCTC/RF-EMC-007	Page: 1 of 44		

FCC ID: 2AQA6-H604B

Product Name:	Govee DreamView G1 Gaming Light		
Trademark:	N/A		
Model/Type reference:	H604B		
Prepared For:	Shenzhen Intellirocks Tech. Co., Ltd.		
Address:	No. 2901-2904, 3002, Block C, Section 1, Chuangzhi Yuncheng Building, Liuxian Avenue,Xili Community, Xili Street, Nanshan District, Shenzhen, China		
Manufacturer:	Shenzhen Intellirocks Tech. Co., Ltd.		
Address:	No. 2901-2904, 3002, Block C, Section 1, Chuangzhi Yuncheng Building, Liuxian Avenue,Xili Community, Xili Street, Nanshan District, Shenzhen, China		
Prepared By:	Shenzhen BCTC Testing Co., Ltd.		
Address:	1-2/F., Building B, Pengzhou Industrial Park, No.158, Fuyuan 1st Road, Tangwei, Fuhai Subdistrict, Bao'an District, Shenzhen, Guangdong, China		
Sample Received Date:	2022-05-16		
Sample tested Date:	2022-05-26 to 2022-06-02		
Issue Date:	2022-06-02		
Report No.:	BCTC2205393489-1E		
Test Standards:	FCC Part15.247 ANSI C63.10-2013		
Test Results:	PASS		
Remark:	This is Bluetooth BLE radio test report.		

Tested by:

Eric Yang/Project Handler

Approved by:

Zero Zhou/Reviewer

The test report is effective only with both signature and specialized stamp. This result(s) shown in this report refer only to the sample(s) tested. Without written approval of Shenzhen BCTC Testing Co., Ltd, this report can't be reproduced except in full. The tested sample(s) and the sample information are provided by the client.

Table Of Content

Test	Report Declaration	Page
1.	Version	5
2.	Test Summary	6
3.	Measurement Uncertainty	7
4.	Product Information And Test Setup	
4.1	Product Information	
4.2	Test Setup Configuration	
4.3	Support Equipment	
4.4	Channel List	
4.5	Test Mode	10
4.6	Table of parameters of text software setting	10
5.	Test Facility And Test Instrument Used	
5.1	Test Facility	
5.2	Test Instrument Used	
6.	Conducted Emissions	13
6.1	Block Diagram Of Test Setup	13
6.2	Limit	
6.3	Test procedure	13
6.4	EUT Operating Conditions	13
6.5	Test Result	
7.	Radiated Emissions	16
7.1	Block Diagram Of Test Setup	16
7.2	Limit	
7.3	Test procedure	18
7.4	EUT operating Conditions	19
7.5	Test Result	
8.	Radiated Band Emission Measurement And Restricted Bands Of Operati	on24
8.1	Block Diagram Of Test Setup	
8.2	Limit	24
8.3	Test Procedure	25
8.4	EUT Operating Conditions	25
8.5	Test Result	26
9.	Power Spectral Density Test	27
9.1	Block Diagram Of Test Setup	27
9.2	Limit	27
9.3	Test procedure	27
9.4	EUT Operating Conditions	27
9.5	Test Result	27
10.	EUT Operating Conditions Test Result Bandwidth Test	30
10.1	Block Diagram Of Test Setup	30
10.2	Limit	30
10.3	Test procedure	30
10.4	Block Diagram Of Test Setup Limit Test procedure EUT operating Conditions Test Result	30
10.5	Test Result	30
11.	Peak Output Power Test	33
11.1	Block Diagram Of Test Setup	33
11.2	Limit	33

11.3 Test Procedure	
11.4 EUT Operating Conditions	
11.5 Test Result	33
12. 100 kHz Bandwidth Of Frequency Band Edge	34
12.1 Block Diagram Of Test Setup	34
12.2 Limit	34
12.3 Test procedure	34
12.4 EUT operating Conditions	34
12.5 Test Result	34
13. Antenna Requirement	
13.1 Limit	
13.2 Test Result	40
14. EUT Photographs	41
15. EUT Test Setup Photographs	42

(Note: N/A Means Not Applicable)

Page: 4 of 44

1. Version

Report No.	Issue Date	Description	Approved
BCTC2205393489-1E	2022-06-02	Original	Valid

2. Test Summary

The Product has been tested according to the following specifications:

No.	Test Parameter	Clause No.	Results
1	Conducted Emission	15.207	PASS
2	6dB Bandwidth	15.247 (a)(2)	PASS
3	Peak Output Power	15.247 (b)	PASS
4	Radiated Spurious Emission	15.247 (d), 15.205	PASS
5	Power Spectral Density	15.247 (e)	PASS
6	Restricted Band of Operation	15.205	PASS
7	Band Edge (Out of Band Emissions)	15.247(d)	PASS
8	Antenna Requirement	15.203	PASS

No. : BCTC/RF-EMC-007

Page: 6 of 44

3. Measurement Uncertainty

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the Product as specified in CISPR 16-4-2. This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

No.	Item	Uncertainty
1	3m chamber Radiated spurious emission(30MHz-1GHz)	U=4.3dB
2	3m chamber Radiated spurious emission(9KHz-30MHz)	U=3.7dB
3	3m chamber Radiated spurious emission(1GHz-18GHz)	U=4.5dB
4	3m chamber Radiated spurious emission(18GHz-40GHz)	U=3.34dB
5	Conducted Emission (150kHz-30MHz)	U=3.20dB
6	Conducted Adjacent channel power	U=1.38dB
7	Conducted output power uncertainty Above 1G	U=1.576dB
8	Conducted output power uncertainty below 1G	U=1.28dB
9	humidity uncertainty	U=5.3%
10	Temperature uncertainty	U=0.59°C

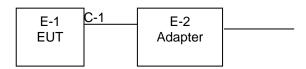
4. Product Information And Test Setup

4.1 Product Information

Model/Type reference:	H604B
Model differences:	N/A
Bluetooth Version::	5.0
Hardware Version:	V1.1
Software Version:	V1
Operation Frequency:	Bluetooth: 2402-2480MHz
Type of Modulation:	Bluetooth: GFSK
Number Of Channel:	40CH
Antenna installation:	FPC antenna
Antenna Gain:	1dBi
Ratings:	DC 12V
Adapter:	Model: BI24G-120200-AdU Input:100-240V~ 50/60Hz 0.8A Output: DC 12V 2.0A

No. : BCTC/RF-EMC-007

Page: 8 of 44


4.2 Test Setup Configuration

See test photographs attached in *EUT TEST SETUP PHOTOGRAPHS* for the actual connections between Product and support equipment.

Conducted Emission:

Radiated Spurious Emission

4.3 Support Equipment

No.	Device Type	Brand	Model	Series No.	Note
E-2	Adapter	N/A	BI24G-120200-A dU	N/A	Auxiliary

ltem	Shielded Type	Ferrite Core	Length	Note
C-1	N/A	N/A	1M	DC cable unshielded

Notes:

1. All the equipment/cables were placed in the worst-case configuration to maximize the emission during the test.

2. Grounding was established in accordance with the manufacturer's requirements and conditions for the intended use.

No.: BCTC/RF-EMC-007

Page: 9 of 44.

4.4 Channel List

	Channel List				
Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)
01	2402	11	2422	21	2442
02	2404	12	2424	22	2444
03	2406	13	2426	23	2446
~	~	~	~	~	~
09	2418	19	2438	39	2478
10	2420	20	2440	40	2480

4.5 Test Mode

To investigate the maximum EMI emission characteristics generates from EUT, the test system was pre-scanning tested base on the consideration of following EUT operation mode or test configuration mode which possible have effect on EMI emission level. Each of these EUT operation mode(s) or test configuration mode(s) mentioned above was evaluated respectively.

For All Mode	Description	Modulation Type
Mode 1	CH01	
Mode 2	CH20	GFSK
Mode 3	CH40	
Mode 4	Link mode (Conducted emission & Radiated emission)	

Note:

(1) The measurements are performed at the highest, middle, lowest available channels.

(2) Fully-charged battery is used during the test

4.6 Table of parameters of text software setting

During testing channel & power controlling software provided by the customer was used to control the operating channel as well as the output power level. The RF output power selection is for the setting of RF output power expected by the customer and is going to be fixed on the firmware of the final end product power parameters

Test software Version	FCCAssist
Frequency	2402 MHz 2440 MHz 2480 MHz
Parameters	DEF DEF

No. : BCTC/RF-EMC-007	Page: 10 of 44 / / / /	Edition : A.4

5. Test Facility And Test Instrument Used

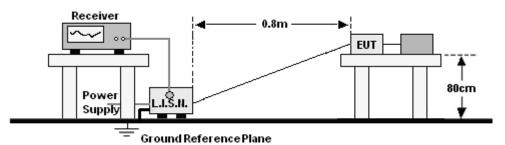
5.1 Test Facility

All measurement facilities used to collect the measurement data are located at Shenzhen BCTC Testing Co., Ltd. Address: 1-2/F., Building B, Pengzhou Industrial Park, No.158, Fuyuan 1st Road, Tangwei, Fuhai Subdistrict, Bao'an District, Shenzhen, Guangdong, China. The site and apparatus are constructed in conformance with the requirements of ANSI C63.4 and CISPR 16-1-1 other equivalent standards. FCC Test Firm Registration Number: 712850 IC Registered No.: 23583

5.2 Test Instrument Used

Conducted Emissions Test									
Equipment	Manufacturer	Model#	Serial#	Last Cal.	Next Cal.				
Receiver	R&S	ESR3	102075	May 24, 2022	May 23, 2023				
LISN	R&S	ENV216	101375	May 24, 2022	May 23, 2023				
Software	Frad	EZ-EMC	EMC-CON 3A1	\	\				
Attenuator	/	10dB DC-6GHz	1650	May 24, 2022	May 23, 2023				

RF Conducted Test								
Equipment	Manufacturer	Model#	Serial#	Last Cal.	Next Cal.			
Power Metter	Keysight	E4419		May 24, 2022	May 23, 2023			
Power Sensor (AV)	Keysight	E9300A		May 24, 2022	May 23, 2023			
Signal Analyzer 20kHz-26.5G Hz	Keysight	N9020A	MY49100060	May 24, 2022	May 23, 2023			
Spectrum Analyzer 9kHz-40GHz	R&S	FSP 40		May 24, 2022	May 23, 2023			



Radiated Emissions Test (966 Chamber)							
Equipment	Manufacturer	Model#	Serial#	Last Cal.	Next Cal.		
966 chamber ChengYu		966 Room	966	Jun. 06. 2020	Jun. 05, 2023		
Receiver	R&S	ESR3	102075	May 24, 2022	May 23, 2023		
Receiver	R&S	ESRP	101154	May 24, 2022	May 23, 2023		
Amplifier	SKET	LAPA_01G18 G-45dB	١	May 24, 2022	May 23, 2023		
Amplifier	Schwarzbeck	BBV9744	9744-0037	May 24, 2022	May 23, 2023		
TRILOG Broadband Antenna	Schwarzbeck	VULB9163	942	May 26, 2022	May 25, 2023		
Horn Antenna	Schwarzbeck	BBHA9120D	1541	May 24, 2022	May 23, 2023		
Horn Antenn (18GHz-40GH z)	Schwarzbeck	BBHA9170	00822	Jun. 15, 2021	Jun. 14, 2022		
Amplifier(18G Hz-40GHz)	MITEQ	TTA1840-35- HG	2034381	May 26, 2022	May 25, 2023		
Loop Antenna(9KHz -30MHz)	Schwarzbeck	FMZB1519B	00014	May 26, 2022	May 25, 2023		
RF cables1 (9kHz-30MHz)	Huber+Suhnar	9kHz-30MHz	B1702988-000 8	May 26, 2022	May 25, 2023		
RF cables2(30MH z-1GHz)	Huber+Suhnar	30MHz-1GHz	1486150	May 26, 2022	May 25, 2023		
RF cables3(1GHz -40GHz)	Huber+Suhnar	1GHz-40GHz	1607106	May 28, 2021	May 27, 2022		
Power Metter	Keysight	E4419	· · · · · · · · · · · · · · · · · · ·	May 26, 2022	May 25, 2023		
Power Sensor (AV)	Keysight	E9300A		May 26, 2022	May 25, 2023		
Signal Analyzer 20kHz-26.5G Hz	Keysight	N9020A	MY49100060	May 26, 2022	May 25, 2023		
Spectrum Analyzer 9kHz-40GHz	R&S	FSP 40		May 26, 2022	May 25, 2023		
Software	Frad	EZ-EMC	FA-03A2 RE	1	\downarrow		

6. Conducted Emissions

6.1 Block Diagram Of Test Setup

6.2 Limit

Quas-peak	Average	
66 - 56 *	56 - 46 *	
56.00	46.00	
60.00	50.00	
	66 - 56 * 56.00	

Notes:

1. *Decreasing linearly with logarithm of frequency.

2. The lower limit shall apply at the transition frequencies.

6.3 Test procedure

Setting
10 dB
0.15 MHz
30 MHz
9 kHz
-

a. The Product was placed on a nonconductive table 0.8 m above the horizontal ground reference plane, and 0.4 m from the vertical ground reference plane, and connected to the main through Line Impedance Stability Network (L.I.S.N).

b. The RBW of the receiver was set at 9 kHz in 150 kHz ~ 30MHz with Peak and AVG detector in Max Hold mode. Run the receiver's pre-scan to record the maximum disturbance generated from Product in all power lines in the full band.

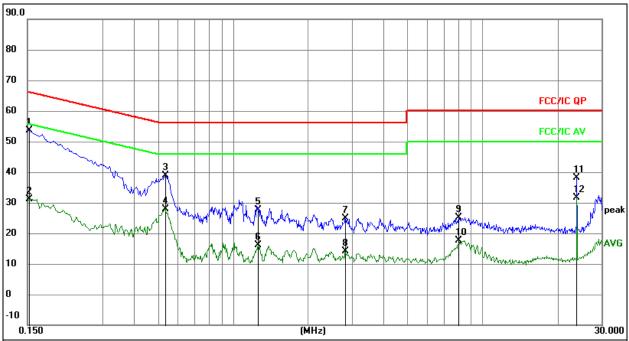
c. For each frequency whose maximum record was higher or close to limit, measure its QP and AVG values and record.

6.4 EUT Operating Conditions

The EUT was configured for testing in a typical fashion (as a customer would normally use it). The EUT has been programmed to continuously transmit during test. This operating condition was tested and used to collect the included data.

6.5 Test Result

Temperature:	26 ℃	Relative Humidity:	54%
Pressure:	101KPa	Phase :	L
Test Mode:	Mode 4	Test Voltage :	AC 120V/60Hz
90.0			
50.0			
80			
70			
60			FCC/IC QP
×			FCC/IC AV
50	2		
40			
30 4	A MANA MAN	Z .	9 ×2
20	WWW N WWW N N N N N N N N N N N N N N N	1 Martin Martin	10 minutes and the peak
10	I WANTER MAN	mann	Manune AVG
10			
0			
-10			
0.150 Remark:	μ <u>μ</u>	MHz)	30.00


Remai								1
	•		ak and Avera	ge values.			-	1
			Cable Loss.					
			Level + Correc	ct Factor				
4. Ove	er = Meas	urement - Li	mit					
			Reading	Correct	Measure-			
No.	Mk.	Freq.	Level	Factor	ment	Limit	Over	
		MHz		dB	dBuV	dBuV	dB	Detector
1	*	0.1500	33.96	19.60	53.56	66.00	-12.44	QP
2		0.1500	12.33	19.60	31.93	56.00	-24.07	AVG
3		0.5370	23.46	19.61	43.07	56.00	-12.93	QP
4		0.5370	8.61	19.61	28.22	46.00	-17.78	AVG
5		1.2705	12.92	19.62	32.54	56.00	-23.46	QP
6		1.2705	0.23	19.62	19.85	46.00	-26.15	AVG
7		2.8275	9.62	19.64	29.26	56.00	-26.74	QP
8		2.8275	-4.37	19.64	15.27	46.00	-30.73	AVG
9		8.4255	10.35	19.76	30.11	60.00	-29.89	QP
10		8.4255	-1.68	19.76	18.08	50.00	-31.92	AVG
11		24.0000	19.55	19.73	39.28	60.00	-20.72	QP
12		24.0000	11.95	19.73	31.68	50.00	-18.32	AVG

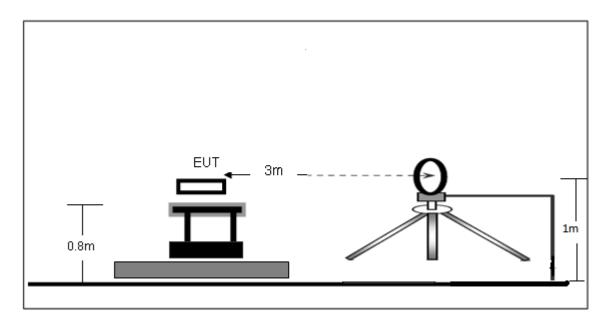
No.: BCTC/RF-EMC-007

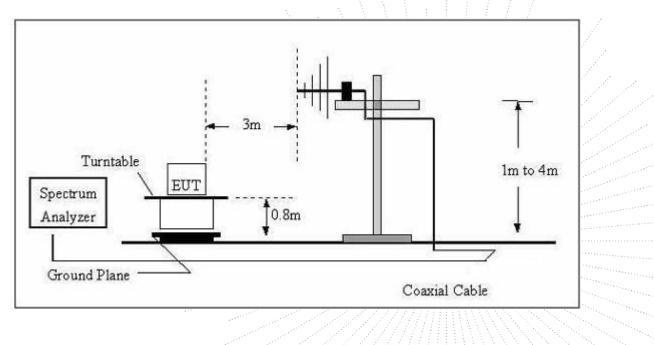
Page: 14 of 44

Temperature:	26 ℃	Relative Humidity:	54%
Pressure:	101KPa	Phase :	Ν
Test Mode:	Mode 4	Test Voltage :	AC 120V/60Hz

Remark:

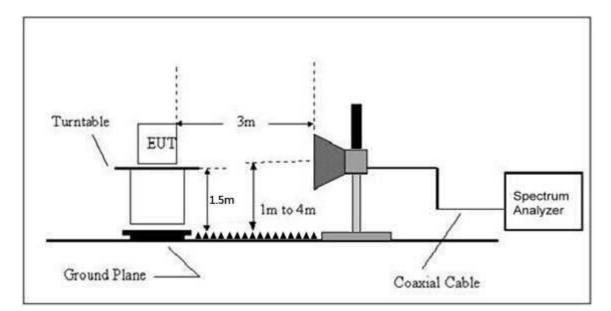
All readings are Quasi-Peak and Average values.
Factor = Insertion Loss + Cable Loss.


		ertion Loss +			5. C			1
3. Mea	suremer	nt = Reading	Level + Correc	ct Factor				
4. Ove	r = Meas	surement - Li	mit					
			Reading	Correct	Measure-			
No.	Mk.	Freq.	Level	Factor	ment	Limit	Over	
		MHz		dB	dBuV	dBuV	dB	Detector
1	*	0.1516	34.08	19.60	53.68	65.91	-12.23	QP
2		0.1516	11.59	19.60	31.19	55.91	-24.72	AVG
3		0.5322	19.34	19.61	38.95	56.00	-17.05	QP
4		0.5322	8.27	19.61	27.88	46.00	-18.12	AVG
5		1.2621	7.90	19.62	27.52	56.00	-28.48	QP
6		1.2621	-3.53	19.62	16.09	46.00	-29.91	AVG
7		2.8091	5.18	19.64	24.82	56.00	-31.18	QP
8		2.8091	-5.49	19.64	14.15	46.00	-31.85	AVG
9		8.0198	5.33	19.75	25.08	60.00	-34.92	QP
10		8.0198	-2.02	19.75	17.73	50.00	-32.27	AVG
11		23.8878	18.36	19.73	38.09	60.00	-21.91	QP
12		23.8878	11.89	19.73	31.62	50.00	-18.38	AVG
1								


7. Radiated Emissions

7.1 Block Diagram Of Test Setup

(A) Radiated Emission Test-Up Frequency Below 30MHz



(B) Radiated Emission Test-Up Frequency 30MHz~1GHz

(C) Radiated Emission Test-Up Frequency Above 1GHz

7.2 Limit

20dBc in any 100 kHz bandwidth outside the operating frequency band. In case the emission fall within the restricted band specified on 15.205(a), then the 15.209(a) limit in the table below has to be followed.

Frequency	Field Strength	Distance Field Strength Limit at 3m Dista		mit at 3m Distance
(MHz)	uV/m	(m)	uV/m	dBuV/m
0.009 ~ 0.490	2400/F(kHz)	300	10000 * 2400/F(kHz)	20log ^{(2400/F(kHz))} + 80
0.490 ~ 1.705	24000/F(kHz)	30	100 * 24000/F(kHz)	20log ^{(24000/F(kHz))} + 40
1.705 ~ 30	30	30	100 * 30	20log ⁽³⁰⁾ + 40
30 ~ 88	100	3	100	20log ⁽¹⁰⁰⁾
88 ~ 216	150	3	150	20log ⁽¹⁵⁰⁾
216 ~ 960	200	3	200	20log ⁽²⁰⁰⁾
Above 960	500	3	500	20log ⁽⁵⁰⁰⁾

Limits Of Radiated Emission Measurement (Above 1000MHz)

Frequency (MHz)	Limit (dBuV/m) (at 3M)	
	Peak	Average
Above 1000	74	54

Notes:

(1)The limit for radiated test was performed according to FCC PART 15C.

(2)The tighter limit applies at the band edges.

(3) Emission level (dBuV/m)=20log Emission level (uV/m).

Frequency Range Of Radiated Measurement

(a) For an intentional radiator the spectrum shall be investigated from the lowest radio frequency signal generated in the device, without going below 9 kHz, up to at least the frequency shown in this paragraph:

(1) If the intentional radiator operates below 10 GHz: to the tenth harmonic of the highest fundamental frequency or to 40 GHz, whichever is lower.

(2) If the intentional radiator operates at or above 10 GHz and below 30 GHz: to the fifth harmonic of the highest fundamental frequency or to 100 GHz, whichever is lower.

(3) If the intentional radiator operates at or above 30 GHz: to the fifth harmonic of the highest fundamental frequency or to 200 GHz, whichever is lower, unless specified otherwise elsewhere in the rules.

(4) If the intentional radiator operates at or above 95 GHz: To the third harmonic of the highest fundamental frequency or to 750 GHz, whichever is lower, unless specified otherwise elsewhere in the rules.

(5) If the intentional radiator contains a digital device, regardless of whether this digital device controls the functions of the intentional radiator or the digital device is used for additional control or function purposes other than to enable the operation of the intentional radiator, the frequency range shall be investigated up to the range specified in paragraphs (a) (1)through (4) of this section or the range applicable to the digital device, as shown in paragraph (b)(1) of this section, whichever is the higher frequency range of investigation.

7.3 Test procedure

Receiver Parameter	Setting	
Attenuation	Auto	
9kHz~150kHz	RBW 200Hz for QP	
150kHz~30MHz	RBW 9kHz for QP	
30MHz~1000MHz	RBW 120kHz for QP	

Spectrum Parameter	Setting
	RBW 1 MHz /VBW 1 MHz for Peak,
1-25GHz	- K - K N N N N N H H H H H H H H H H H H H H
	RBW 1 MHz / VBW 10Hz for Average

Below 1GHz test procedure as below:

a. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation.

b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.

c. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.

d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.

e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.

f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.

Above 1GHz test procedure as below:

a. The EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter camber. The table was rotated 360 degrees to determine the position of the highest radiation.

b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.

c.The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.

d.For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rota table was turned from 0 degrees to 360 degrees to find the maximum reading.

e.The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.

f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.

g. Test the EUT in the lowest channel, the middlest channel, the Highest channel. Note:

Both horizontal and vertical antenna polarities were tested and performed pretest to three orthogonal axis. The worst case emissions were reported.

7.4 EUT operating Conditions

The EUT was configured for testing in a typical fashion (as a customer would normally use it). The EUT has been programmed to continuously transmit during test. This operating condition was tested and used to collect the included data.

No.: BCTC/RF-EMC-007

Page: 19 of 44

7.5 Test Result

Below 30MHz

Temperature:	26 ℃	Relative Humidity:	54%
Pressure:	101KPa	TestValteres	
Test Mode:	Mode 4	Test Voltage :	AC 120V/60Hz

Freq.	Reading	Limit	Margin	State
(MHz)	(dBuV/m)	(dBuV/m)	(dB)	P/F
				PASS
				PASS

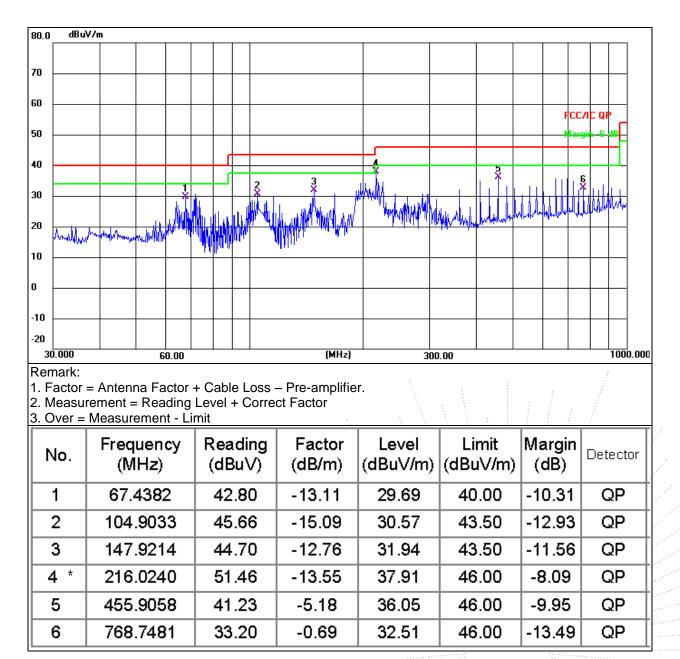
Note:

The amplitude of spurious emissions which are attenuated by more than 20dB below the

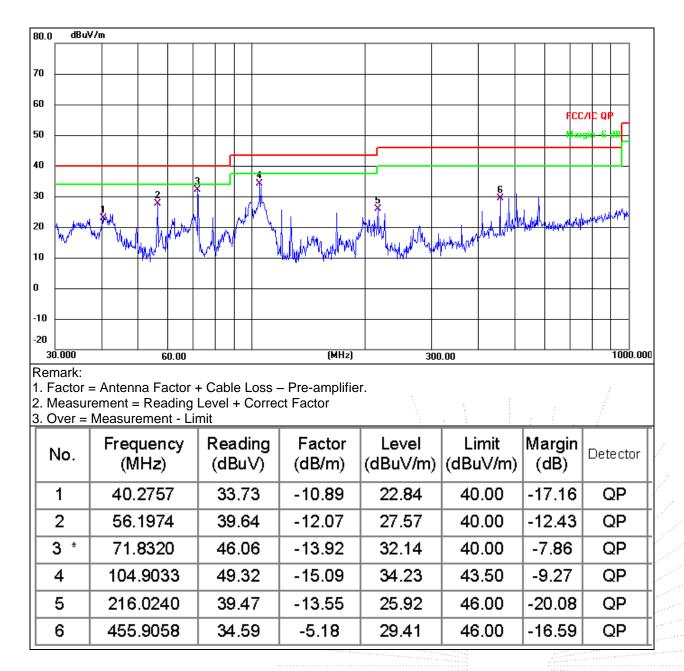
permissible value has no need to be reported.

Distance extrapolation factor =40 log (specific distance/test distance)(dB);

Limit line = specific limits(dBuv) + distance extrapolation factor.


No. : BCTC/RF-EMC-007

Page: 20 of 44


Between 30MHz - 1GHz

Temperature:	26 ℃	Relative Humidity:	54%
Pressure:	101KPa	Phase :	Horizontal
Test Mode:	Mode 4	Test Voltage:	AC 120V/60Hz

Temperature:	26 ℃	Relative Humidity:	54%
Pressure:	101KPa	Phase :	Vertical
Test Mode:	Mode 4	Test Voltage:	AC 120V/60Hz

Between 1GHz - 25GHz

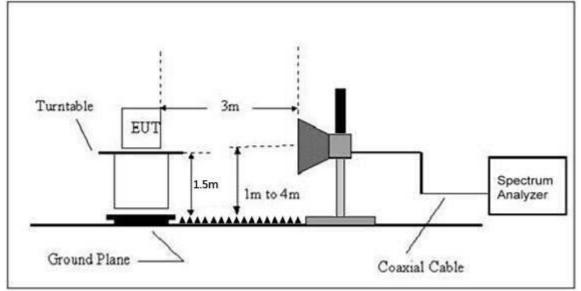
			GFSK				
Polar	Frequency	Reading Level	Correct Factor	Measure- ment	Limits	Over	Detector
(H/V)	(MHz)	(dBuV/m)	(dB)	(dBuV/m)	(dBuV/ m)	(dB)	Туре
			Low chann	el			
V	4804.00	52.28	-0.43	51.85	74.00	-22.15	PK
V	4804.00	41.81	-0.43	41.38	54.00	-12.62	AV
V	7206.00	43.53	8.31	51.84	74.00	-22.16	PK
V	7206.00	32.90	8.31	41.21	54.00	-12.79	AV
Н	4804.00	49.12	-0.43	48.69	74.00	-25.31	PK
Н	4804.00	39.23	-0.43	38.80	54.00	-15.20	AV
Н	7206.00	42.21	8.31	50.52	74.00	-23.48	PK
Н	7206.00	33.70	8.31	42.01	54.00	-11.99	AV
		•	Middle chan	nel			
V	4880.00	49.76	-0.38	49.38	74.00	-24.62	PK
V	4880.00	42.18	-0.38	41.80	54.00	-12.20	AV
V	7320.00	40.10	8.83	48.93	74.00	-25.07	PK
V	7320.00	32.09	8.83	40.92	54.00	-13.08	AV
Н	4880.00	45.89	-0.38	45.51	74.00	-28.49	PK
Н	4880.00	36.11	-0.38	35.73	54.00	-18.27	AV
Н	7320.00	37.63	8.83	46.46	74.00	-27.54	PK
Н	7320.00	29.25	8.83	38.08	54.00	-15.92	AV
			High chanr	nel			
V	4960.00	51.27	-0.32	50.95	74.00	-23.05	PK
V	4960.00	41.88	-0.32	41.56	54.00	-12.44	AV
V	7440.00	42.47	9.35	51.82	74.00	-22.18	PK
V	7440.00	33.10	9.35	42.45	54.00	-11.55	AV
Н	4960.00	48.73	-0.32	48.41	74.00	-25.59	PK
Н	4960.00	37.96	-0.32	37.64	54.00	-16.36	AV
Н	7440.00	40.07	9.35	49.42	74.00	-24.58	PK
Н	7440.00	31.93	9.35	41.28	54.00	-12.72	AV

Remark:

1.Emission Level = Meter Reading + Factor, Factor = Antenna Factor + Cable Loss – Pre-amplifier. Over= Emission Level - Limit

2. If peak below the average limit, the average emission was no test.

3. In restricted bands of operation, The spurious emissions below the permissible value more than 20dB


4. The amplitude of spurious emissions which are attenuated by more than 20dB below the permissible value has no need to be reported.

8. Radiated Band Emission Measurement And Restricted Bands Of Operation

8.1 Block Diagram Of Test Setup

Radiated Emission Test-Up Frequency Above 1GHz

8.2 Limit

FCC Part15 C Section 15.209 and 15.205

(a) Except as shown in paragraph (d) of this section, only spurious emissions are permitted in any of the frequency bands listed below:

MHz	MHz	MHz	GHz
0.090-0.110	16.42-16.423	399.9-410	4.5-5.15
¹ 0.495-0.505	16.69475-16.69525	608-614	5.35-5.46
2.1735-2.1905	16.80425-16.80475	960-1240	7.25-7.75
4.125-4.128	25.5-25.67	1300-1427	8.025-8.5
4.17725-4.17775	37.5-38.25	1435-1626.5	9.0-9.2
4.20725-4.20775	73-74.6	1645.5-1646.5	9.3-9.5
6.215-6.218	74.8-75.2	1660-1710	10.6-12.7
6.26775-6.26825	108-121.94	1718.8-1722.2	13.25-13.4
6.31175-6.31225	123-138	2200-2300	14.47-14.5
8.291-8.294	149.9-150.05	2310-2390	15.35-16.2
8.362-8.366	156.52475-156.52525	2483.5-2500	17.7-21.4
8.37625-8.38675	156.7-156.9	2690-2900	22.01-23.12
8.41425-8.41475	162.0125-167.17	3260-3267	23.6-24.0
12.29-12.293	167.72-173.2	3332-3339	31.2-31.8
12.51975-12.52025	240-285	3345.8-3358	36.43-36.5
12.57675-12.57725	322-335.4	3600-4400	(²)
13.36-13.41			

Limits Of Radiated Emission Measurement (Above 1000MHz)

Frequency (MHz)	Limit (dBuV/m) ((at 3M)
	Peak Average	
Above 1000	74	54

Notes:

(1) The limit for radiated test was performed according to FCC PART 15C.

(2)The tighter limit applies at the band edges.

(3) Emission level (dBuV/m)=20log Emission level (uV/m).

8.3 Test Procedure

Receiver Parameter	Setting
Attenuation	Auto
Start Frequency	2300MHz
Stop Frequency	2520
RB / VB (emission in restricted band)	1 MHz / 1 MHz for Peak, 1 MHz / 10Hz for Average

Above 1GHz test procedure as below:

a. The EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter camber. The table was rotated 360 degrees to determine the position of the highest radiation.

b.The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.

c.The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.

d.For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rota table was turned from 0 degrees to 360 degrees to find the maximum reading.

e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.

f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.

g. Test the EUT in the lowest channel, the Highest channel. Note:

Both horizontal and vertical antenna polarities were tested and performed pretest to three orthogonal axis. The worst case emissions were reported.

8.4 EUT Operating Conditions

The EUT was configured for testing in a typical fashion (as a customer would normally use it). The EUT has been programmed to continuously transmit during test. This operating condition was tested and used to collect the included data.

No. : BCTC/RF-EMC-007

8.5 Test Result

	Polar (H/V)	Frequency (MHz)	Reading Level	Correct Factor	Measure- ment (dBuV/m)	Lim (dBu		Result
	(17, •)	(141112)	(dBuV/m)	(dB)	РК	PK	AV	
			Lov	w Channel 2	402MHz		•	•
	Н	2390.00	53.32	-6.70	46.62	74.00	54.00	PASS
GFSK	Н	2400.00	56.71	-6.71	50.00	74.00	54.00	PASS
	V	2390.00	52.82	-6.70	46.12	74.00	54.00	PASS
	V	2400.00	54.50	-6.71	47.79	74.00	54.00	PASS
			Hig	h Channel 2	480MHz			
	Н	2483.50	51.96	-6.79	45.17	74.00	54.00	PASS
	Н	2500.00	49.67	-6.81	42.86	74.00	54.00	PASS
	V	2483.50	53.15	-6.79	46.36	74.00	54.00	PASS
	V	2500.00	48.20	-6.81	41.39	74.00	54.00	PASS

Remark:

1. Emission Level = Meter Reading + Factor,

Factor = Antenna Factor + Cable Loss – Pre-amplifier.

Over= Emission Level - Limit

2. If the PK measured levels comply with average limit, then the average level were deemed to comply with average limit.

3 In restricted bands of operation, The spurious emissions below the permissible value more than 20dB

4. The amplitude of spurious emissions which are attenuated by more than 20dB below the permissible value has no need to be reported.

9. Power Spectral Density Test

9.1 Block Diagram Of Test Setup

9.2 Limit

	FCC Part	15 (15.247) , Subpart C		
Section	Test Item	Limit	Frequency Range (MHz)	Result
15.247	Power Spectral Density	8 dBm (in any 3KHz)	2400-2483.5	PASS

Limits Of Radiated Emission Measurement (Above 1000MHz)

9.3 Test procedure

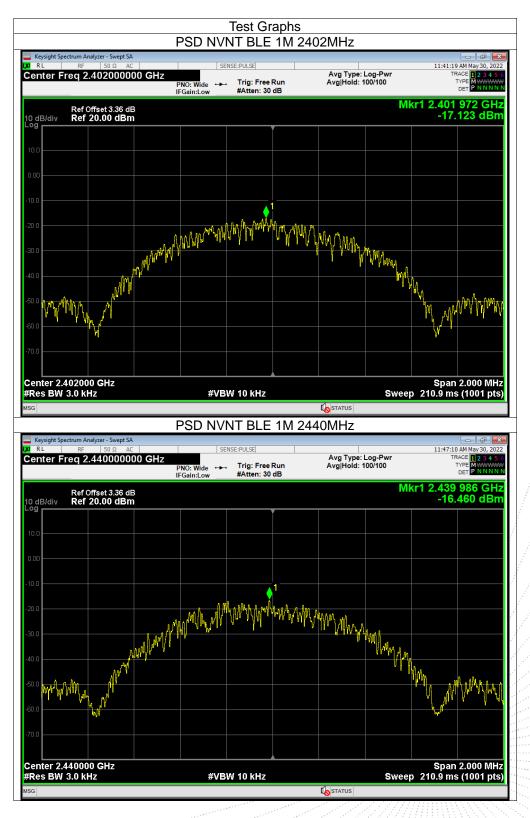
- 1. Set analyzer center frequency to DTS channel center frequency.
- 2. Set the span to 1.5 times the DTS bandwidth.
- 3. Set the RBW to: 3 kHz
- 4. Set the VBW \ge 3 x RBW.
- 5. Detector = peak.
- 6. Sweep time = auto couple.
- 7. Trace mode = max hold.
- 8. Allow trace to fully stabilize.
- 9. Use the peak marker function to determine the maximum amplitude level within the RBW.
- 10. If measured value exceeds limit, reduce RBW (no less than 3 kHz) and repeat.

-16.33

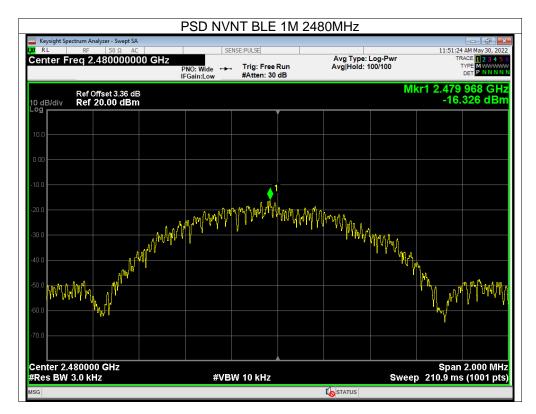
9.4 EUT Operating Conditions

The EUT tested system was configured as the statements of 4.6 Unless otherwise a special operating condition is specified in the follows during the testing. Note: Power Spectral Density(dBm)=Reading+Cable Loss

9.5 Test Result


Temperature:	26 ℃	Relative Humidity:	54%
Pressure:	101KPa	Test Voltage :	AC 120V/60Hz
Frequency	Power Spectral Density(dBm/3kHz)	Limit (dBm/3kHz)	Result
2402 MHz	-17.12	8	PASS
2440 MHz	-16.46	8	PASS

2480 MHz


8

PASS

No.: BCTC/RF-EMC-007

Page: 29 of 44

10. Bandwidth Test

10.1 Block Diagram Of Test Setup

10.2 Limit

		FCC Part15 (15.247	′) , Subpart C	
Section	Test Item	Limit	Frequency Range (MHz)	Result
15.247(a)(2)	Bandwidth	>= 500KHz (-6dB bandwidth)	2400-2483.5	PASS

10.3 Test procedure

- 1. Set RBW = 100 kHz.
- 2. Set the video bandwidth (VBW) \ge 3 x RBW.
- 3. Detector = Peak.
- 4. Trace mode = max hold.
- 5. Sweep = auto couple.
- 6. Allow the trace to stabilize.

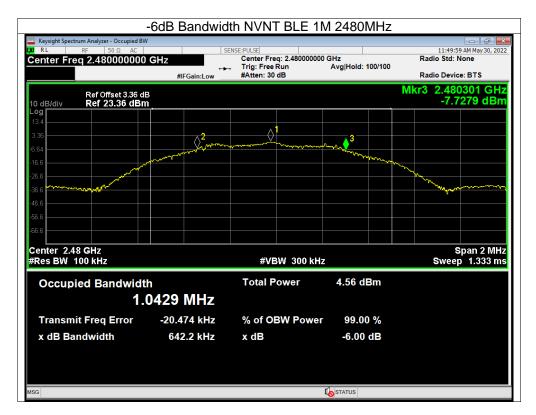
7. Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission.

10.4 EUT operating Conditions

The EUT tested system was configured as the statements of 4.6 Unless otherwise a special operating condition is specified in the follows during the testing. Note: Power Spectral Density(dBm)=Reading+Cable Loss

10.5 Test Result

Temperature:	26 °C	Relative Humidity:	54%	
Pressure:	101KPa	Test Voltage :	AC	120V/60Hz


		المحاجب المراجع المراجع المحمول المحمو	
Frequency (MHz)	-6dB bandwidth (MHz)	Limit (kHz)	Result
2402	0.654	500	Pass
2440	0.652	500	Pass
2480	0.642	500	Pass

No.: BCTC/RF-EMC-007

Page: 32 of 44

11. Peak Output Power Test

11.1 Block Diagram Of Test Setup

EUT	WER METER
-----	-----------

11.2 Limit

		FCC Part15 (15.247),	Subpart C	
Section	Test Item	Limit	Frequency Range (MHz)	Result
15.247(b)(3)	Peak Output Power	1 watt or 30dBm	2400-2483.5	PASS

11.3 Test Procedure

a. The EUT was directly connected to the Power meter

11.4 EUT Operating Conditions

The EUT tested system was configured as the statements of 4.6 Unless otherwise a special operating condition is specified in the follows during the testing. Note: Power Spectral Density(dBm)=Reading+Cable Loss

11.5 Test Result

Temperature:	26 ℃	Relative Humidity:	54%
Pressure:	101KPa	 Test Voltage :	AC 120V/60Hz

	and a second		
	Frequency(MHz)	Maximum Conducted Output Power(PK) (dBm)	Conducted Output Power Limit(dBm)
GFSK	2402	-0.47	30
	2440	-1.33	30
	2480	-1.07	30

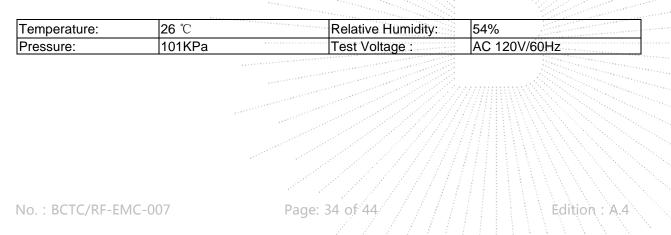
12. 100 kHz Bandwidth Of Frequency Band Edge

12.1 Block Diagram Of Test Setup

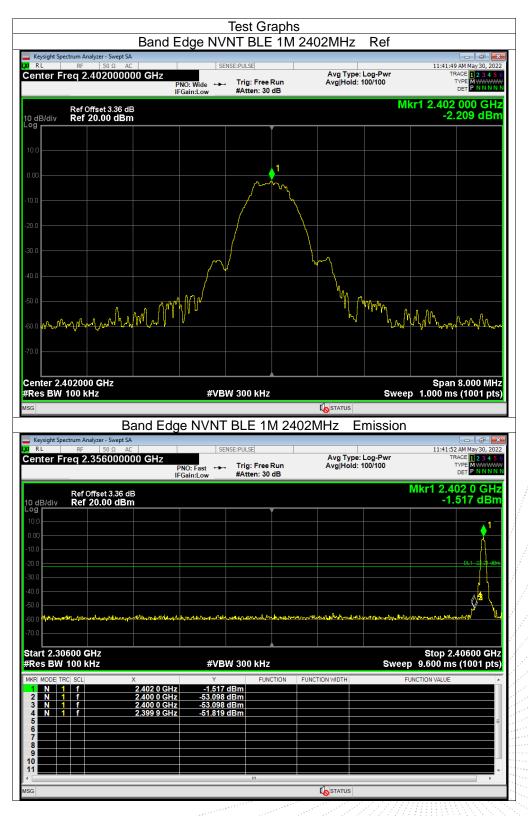
12.2 Limit

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.

12.3 Test procedure

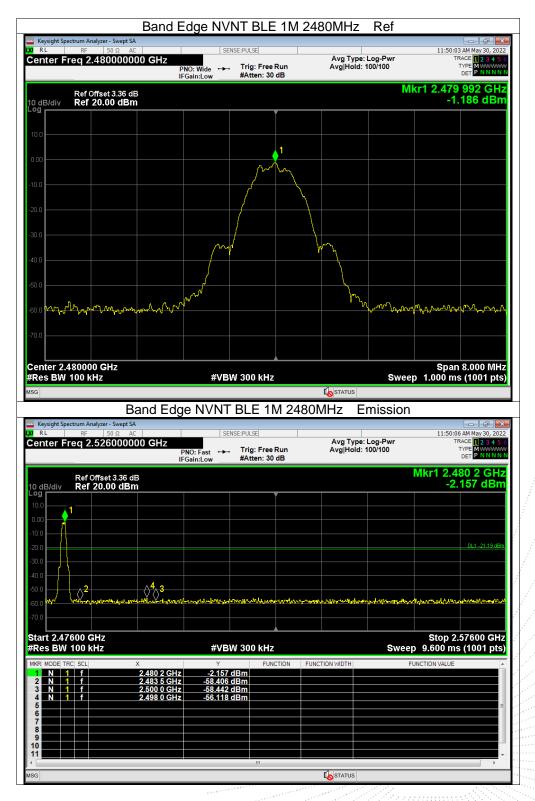

Using the following spectrum analyzer setting:

- a) Set the RBW = 100KHz.
- b) Set the VBW = 300KHz.
- c) Sweep time = auto couple.
- d) Detector function = peak.
- e) Trace mode = max hold.
- f) Allow trace to fully stabilize.

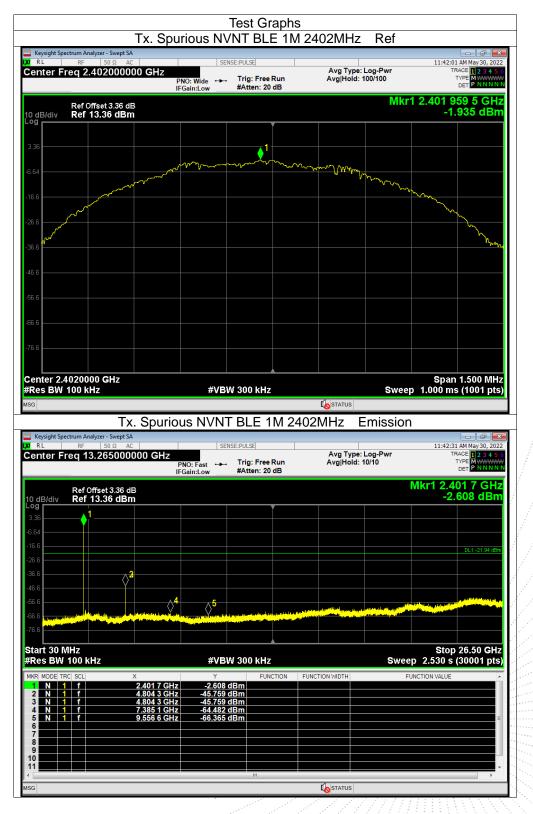

12.4 EUT operating Conditions

The EUT tested system was configured as the statements of 4.6 Unless otherwise a special operating condition is specified in the follows during the testing. Note: Power Spectral Density(dBm)=Reading+Cable Loss

12.5 Test Result



No. : BCTC/RF-EMC-007

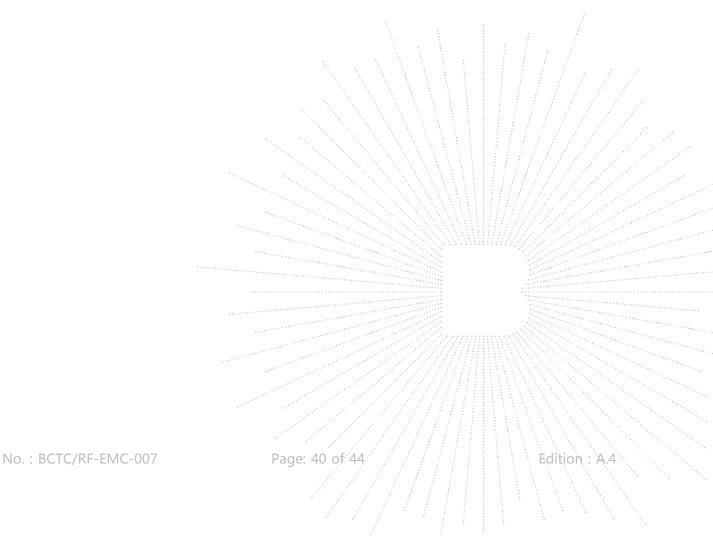

Page: 35 of 44

Conducted Emission Measurement

No.: BCTC/RF-EMC-007

Keysight Spectrum Analyzer - Swe RL RF 50 Ω		SE	NSE:PULSE			11:47:17 AM May 30, 20
enter Freq 2.44000	0000 GHz	PNO: Wide ↔		Avg Type: Lo Avg Hold: 100	og-Pwr D/100	TRACE 1234 TYPE MWWW DET PNNN
Ref Offset 3.3 dB/div Ref 13.36 d	6 dB I B m				Mkr1	2.439 961 0 GF -1.921 dB
dB/div Ref 13.36 d			Ĭ			
36						
54	wy wy wy	wh allowed	have a ware	mar mar mar and the	mm	
.6						m -
						- Contraction of the second se
						٨٨
.6						
i.6						
.6						
enter 2.4400000 GHz	 :					Span 1.500 Mł
tes BW 100 kHz		#VB\	W 300 kHz	STATUS	Sweep	1.000 ms (1001 pt
	Tx. Spurio	us NVN	T BLE 1M 244		ningian	
					nission	
RL RF 50 Ω	AC	SE	NSE:PULSE			11:47:47 AM May 30, 20
RL RF 50 Ω	AC 00000 GHz	SEI PNO: Fast FGain:Low	Trim Free Dam	Avg Type: Lc Avg Hold: 10/	og-Pwr	
RL RF 50 Ω enter Freq 13.2650 Ref Offset 3.3	AC 000000 GHz 106 dB	PNO: Fast ↔	Trig: Free Run	Avg Type: Lo	og-Pwr 10	11:47:47 AM May 30, 20 TRACE 1 2 3 4
RL RF 50 Ω enter Freq 13.2650 Ref Offset 3.3 dB/div Ref 13.36 c	AC 000000 GHz 106 dB	PNO: Fast ↔	Trig: Free Run	Avg Type: Lo	og-Pwr 10	11:47:47 AM May 30, 20 TRACE 1 2 3 4 TYPE MWWW DET P NNN
RL RF 50 Ω enter Freq 13.2650 Ref Offset 3.3 dB/div Ref 13.36 c	AC 000000 GHz 106 dB	PNO: Fast ↔	Trig: Free Run	Avg Type: Lo	og-Pwr 10	11:47:47 AM May 30, 20 TRAGE 12 3.4 TYPE MWWW DET P NNNI Ikr1 2.439 7 GH -3.725 dBt
enter Freq 13.2650 Ref Offset 3.3	AC 000000 GHz 106 dB	PNO: Fast ↔	Trig: Free Run	Avg Type: Lo	og-Pwr 10	11:47:47 AM May 30, 20 TRAGE 12 3.4 TYPE MWWW DET P NNNI Ikr1 2.439 7 GH -3.725 dBt
RL RF 50 Ω enter Freq 13.2650 Ref Offset 3.3 dB/div Ref 13.36 c	AC 000000 GHz 106 dB	PNO: Fast ↔	Trig: Free Run	Avg Type: Lo	og-Pwr 10	11:47:47 AM May 30, 20 TRAGE 12 3.4 TYPE MWWW DET P NNNI Ikr1 2.439 7 GH -3.725 dBt
RL RF 50 Ω enter Freq 13.2650 Ref Offset 3.3 dB/div Ref 13.36 c 9 36 4 56 56 56 56	AC 000000 GHz 16 dB 18m	PNO: Fast ↔	Trig: Free Run	Avg Type: Lo	og-Pwr 10	11:47:47 AM May 30, 20 TRAGE 12 3.4 TYPE MWWW DET P NNNI Ikr1 2.439 7 GH -3.725 dBt
RL Ref 0ffset 3.3 dB/div Ref 13.36 c 9 36 44 45 66 66 66 66 66 66 66 66 66 66 66 66 66	AC 000000 GHz 16 dB 18m	PNO: Fast ↔	Trig: Free Run	Avg Type: Lo	og-Pwr 10	11:47:47 AM May 30, 21 TRAGE [] 2 3 4 TYPE M TYPE M DET P NNN Ikr1 2.439 7 GH -3.725 dB
RE 50 £ enter Freq 13.2650 Ref Offset 3.3 dB/div Ref 13.36 c g g dB/div Ref 13.36 c g g g dB/div Ref 13.36 c g g g g g g g g g g g g g g g g g g g	AC 000000 GHz 16 dB 18m	PNO: Fast FGain:Low	Trig: Free Run #Atten: 20 dB	Avg Type: Lo	pg-Pwr 10 M	11:47:47 AM May 30, 20 TRACE 1 2 3 4 TYPE M WWW DET P NNN Ikr1 2.439 7 GH -3.725 dB DC1-21 92 d
RL R6 50 Ω Penter Freq 13.2650 Ref Offset 3.3 dB/div Ref 13.36 c 9 9 9 9 9 9 9 9 9 9 9 9 9	AC 000000 GHz 66 dB 18m 4 4 4 4 4 4 4 4 4 4 4 4 4	PNO: Fast FGain:Low	Trig: Free Run #Atten: 20 dB	Avg Type: Lo	pg-Pwr 10 M Sweep	11:47:47 AM May 30, 20 TRACE 1 2 3 4 TYPE M WWW DET P NNN Ikr1 2.439 7 GH -3.725 dB DC1-21 92 d
RE 0ffset 3.3 enter Freq 13.2650 Ref 0ffset 3.3 dB/div Ref 13.36 c 36 66 66 66 66 66 66 66 66 66	AC 000000 GHz 10 10 10 10 10 10 10 10 10 10	PNO: Fast FGain:Low 5 #VB ¥VB Y -3.725 -44.632 -44.632	Trig: Free Run #Atten: 20 dB	Avg Type: Lc Avg Hold: 10/	pg-Pwr 10 M Sweep	11:47:47 AM May 30, 20 TRACE 1 2 3 4 TYPE M 20 4 DET P NNN Ikr1 2.439 7 GH -3.725 dBi DCL1-21 52 d DCL1-21 52 d Stop 26.50 GH 2.530 s (30001 pt
RL RF 50 Ω enter Freq 13.2650 Ref Offset 3.3 GB/div Ref 13.36 c 36	AC 000000 GHz 16 dB 18 m 48 dB 18 m 48 dB 19 m 49 dB 19 m 40 dB 10 dB	PNO: Fast FGain:Low 5 #VBI \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	Trig: Free Run #Atten: 20 dB	Avg Type: Lc Avg Hold: 10/	pg-Pwr 10 M Sweep	11:47:47 AM May 30, 20 TRACE 1 2 3 4 TYPE M 20 4 DET P NNN Ikr1 2.439 7 GH -3.725 dBi DCL1-21 52 d DCL1-21 52 d Stop 26.50 GH 2.530 s (30001 pt
RL Ref 50 Ω enter Freq 13.2650 Barter Freq 13.36 c GB/div Ref 13.36 c GB/div Ref 13.36 c GB Image: Second Sec	AC 000000 GHz 16 dB 18 m 2459 7 GHz 4.880 2 GHz 4.880 2 GHz 4.880 2 GHz	PNO: Fast FGain:Low 5 #VBI \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	Trig: Free Run #Atten: 20 dB	Avg Type: Lc Avg Hold: 10/	pg-Pwr 10 M Sweep	11:47:47 AM May 30, 20 TRACE 1 2 3 4 TYPE M 20 4 DET P NNN Ikr1 2.439 7 GH -3.725 dBi DCL1-21 52 d DCL1-21 52 d Stop 26.50 GH 2.530 s (30001 pt

Keysight Spectrum Analyzer - Swept R L RF 50 Ω				1		11:50:11 AM May 20, 20
RL RF 50 Ω enter Freq 2.480000	000 GHz	NO: Wide ↔→ FGain:Low	Trig: Free Run #Atten: 20 dB	Avg Type: L Avg Hold: 10	og-Pwr 00/100	11:50:11 AM May 30, 20 TRACE 1 2 3 4 5 TYPE MWWW DET P N N N
Ref Offset 3.36 dB/div Ref 13.36 dB	dB				Mkr1 2	.479 970 0 GH -1.389 dBi
g			Ť			
36						
64		- Marine	man man	www.w.w.	Ym.	
5.6	~ ~ ~				· · · · · · · · · · · · · · · · · · ·	~
5.6						
ν.σ						لىرىمى بىرىر
5.6						
5.6						
ŝ.6						
ŝ.6						
enter 2.4800000 GHz						Span 1.500 MH
Res BW 100 kHz		#VBV	V 300 kHz		Sweep 1	.000 ms (1001 pt
а т	. On unio					
Keysight Spectrum Analyzer - Swept		US INVINI	BLE 1M 24	80MHZ E	mission	
RL RF 50 Ω enter Freq 13.26500		SEN	ISE:PULSE			11:50:42 AM May 30, 20
		DNO: Fast inter	Tria: Free Run	Avg Type: L Avg Hold: 10	og-Pwr)/10	TRACE 1 2 3 4
		PNO: Fast ↔↔ FGain:Low	Trig: Free Run #Atten: 20 dB	Avg Type: L Avg Hold: 10)/10	
Ref Offset 3.36 dB/div Ref 13.36 dE	dB	PNO: Fast ↔ FGain:Low	Trig: Free Run #Atten: 20 dB	Avg Type: L Avg Hold: 1()/10	r1 2.480 2 GH
1 dB/div Ref 13.36 dE	dB	PNO: Fast ↔	Trig: Free Run #Atten: 20 dB	Avg Type: L Avg Hold: 1()/10	r1 2.480 2 GH
0 dB/div Ref 13.36 dE Pg .36 1	dB	PNO: Fast ↔	Trig: Free Run #Atten: 20 dB	Avg Type: L Avg Hold: 10)/10	r1 2.480 2 GH -3.576 dBi
dB/div Ref 13.36 dE	dB	PNO: Fast +++	Trig: Free Run #Atten: 20 dB	Avg Type: L Avg Hold: 10)/10	r1 2.480 2 GH -3.576 dBi
dB/div Ref 13.36 dE 99 36 64 66 66 66 66 66	dB	PNO: Fast FGain:Low	Trig: Free Run #Atten: 20 dB	Avg Type: L Avg Hold: 10)/10	r1 2.480 2 GH -3.576 dBi
dB/div Ref 13.36 dE 99 36 64 66 66 66 66 66 66 66 66 66	dB Bm	PRO: Fast →→ FGain:Low	Trig: Free Run #Atten: 20 dB	Avg Type: L Avg Hold: 10)/10	r1 2.480 2 GH -3.576 dBi
Ref Offset 3.36 dB/div Ref 13.36 dE g	dB Bm	PNO: Fast FGain:Low	Trig: Free Run #Atten: 20 dB	Avg Type: L Avg Hold: 10)/10	TRACE [] 2:34 TYPE [] WWWW DET [] WWWW 11 2.480 2 GH -3.576 dBr 0.11-21-39 dE
dB/div Ref 13.36 dE	dB Bm	FGain:Low	Trig: Free Run #Atten: 20 dB	Avg Type: L Avg Hold: 10		r1 2.480 2 GH -3.576 dB 001 -21 39 at 500 26.50 GH
dB/div Ref 13.36 dE 9 1 9 1 64 1 65 1 66 1 67 1 68 1 69 1 64 1 65 1 66 1 67 1 68 1 69 1 60 1 61 1 62 1 63 1 64 1 7 1	dB 3m 3 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	FGain:Low	#Atten: 20 dB	Avg Type: L Avg Hold: 10	Sweep	r1 2.480 2 GH -3.576 dB 001 -21 39 at 500 26.50 GH
dB/div Ref 13.36 dE 99 1 64 1 65 1 66 1 67 1 68 1 69 1 60 1 61 1 62 1 63 1 64 1 65 1 66 1 67 1 68 1 69 1 7 1 7 1 8 1 9 1 1 1 1 1 1 1 1 1 1 1	dB 3m 3m 3m 3m 3m 4 3 3 4 3 4 4 3 5 9 5 6 4 5 9 5 6 6 Hz 4 5 9 5 6 6 1 4 5 9 5 6 6 1 5 4 5 7 3 4 5 5 8 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1	FGain:Low 5 4 4 4 4 4 4 820 -44.820 -44.820 -44.820 -44.820 -5.033 -6.5033 -6.5033 -6.503 -6.	#Atten: 20 dB		Sweep	r1 2.480 2 GH -3.576 dBr 0.1 -21 39 @ Stop 26.50 GH 2.530 s (30001 pt
dB/div Ref 13.36 dE 30 1 31 1 35 1 36 1 37 1 38 1 39 1 30 1 31 1 36 1 36 1 37 1 3 1 4 1 7 5 30 1	dB 3m 3 3 3 4 4 4 959 6 GHz 4,959 6 GHz	FGain:Low 5 #VBW 3.5766 -44.820 0 -44.820 0 -45.033 0	#Atten: 20 dB		Sweep	r1 2.480 2 GH -3.576 dB 001 -21 39 d 001 -21 39 d Stop 26.50 GH 2.530 s (30001 pt
dB/div Ref 13.36 dE 99 1 64 1 65 1 66 1 67 1 68 1 69 1 60 1 61 1 62 1 63 1 64 1 65 1 66 1 67 1 68 1 69 1 7 1 7 1 8 1 9 1 1 1 1 1 1 1 1 1 1 1	dB 3m 3m 3m 3m 3m 4 3 3 4 3 4 4 3 5 9 5 6 4 5 9 5 6 6 Hz 4 5 9 5 6 6 1 4 5 9 5 6 6 1 5 4 5 7 3 4 5 5 8 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1	FGain:Low 5 4 4 4 4 4 4 820 -44.820 -44.820 -44.820 -44.820 -5.033 -6.5033 -6.5033 -6.503 -6.	#Atten: 20 dB		Sweep	r1 2.480 2 GH -3.576 dBr 0.1 -21 39 @ Stop 26.50 GH 2.530 s (30001 pt


13. Antenna Requirement

13.1 Limit

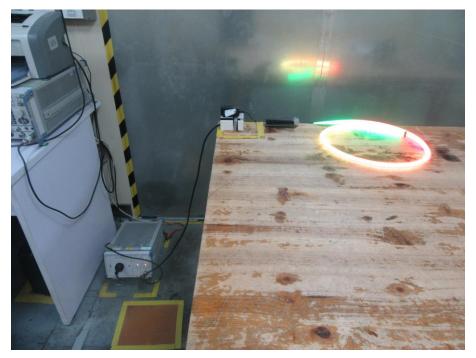
15.203 requirement: For intentional device, according to 15.203: an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device.

13.2 Test Result

The EUT antenna is FPC antenna, fulfill the requirement of this section.

14. EUT Photographs

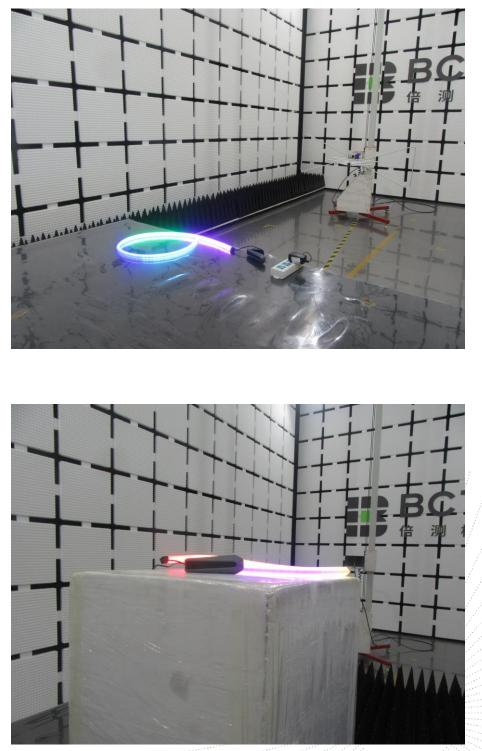
EUT Photo


NOTE: Appendix-Photographs Of EUT Constructional Details

Page: 41 of 44

15. EUT Test Setup Photographs

Conducted emissions



No. : BCTC/RF-EMC-007

Page: 42 of 44

Radiated Measurement Photos

STATEMENT

1. The equipment lists are traceable to the national reference standards.

2. The test report can not be partially copied unless prior written approval is issued from our lab.

3. The test report is invalid without stamp of laboratory.

4. The test report is invalid without signature of person(s) testing and authorizing.

5. The test process and test result is only related to the Unit Under Test.

6. The quality system of our laboratory is in accordance with ISO/IEC17025.

7.If there is any objection to report, the client should inform issuing laboratory within 15 days from the date of receiving test report.

Address:

1-2/F., Building B, Pengzhou Industrial Park, No.158, Fuyuan 1st Road, Tangwei, Fuhai Subdistrict, Bao'an District, Shenzhen, Guangdong, China

TEL: 400-788-9558

P.C.: 518103

FAX: 0755-33229357

Website : http://www.chnbctc.com

E-Mail : bctc@bctc-lab.com.cn

***** END *****

No.: BCTC/RF-EMC-007

Page: 44 of 44