



# **TEST REPORT**

Applicant: Xiamen VBeT Electronics Co., Ltd.

Address: N403, Weiye Building, Xiamen Pioneering Park for Overseas Chinese Scholars, PRC, Xiamen, China

Product Name: DECT Link

FCC ID: 2AC67-DECT300U

FCC PART 15D Standard(s): ANSI C63.17-2013 ANSI C63.4-2014

Report Number: 2402X97571E-RF-00A

Report Date: 2024/12/23

The above device has been tested and found compliant with the requirement of the relative standards by Bay Area Compliance Laboratories Corp. (Dongguan).

Peopo Jun

Reviewed By: Pedro Yun Title: Project Engineer

GanitXn

Approved By: Gavin Xu Title: RF Supervisor

**Bay Area Compliance Laboratories Corp. (Dongguan)** No.12, Pulong East 1<sup>st</sup> Road, Tangxia Town, Dongguan, Guangdong, China

> Tel: +86-769-86858888 Fax: +86-769-86858891

www.baclcorp.com.cn

Note: The information marked  $\blacktriangle$  is provided by the applicant, the laboratory is not responsible for its authenticity and this information can affect the validity of the result in the test report. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested. This report cannot be reproduced except in full, without prior written approval of the Company. This report is valid only with a valid digital signature. The digital signature may be available only under the Adobe software above version 7.0. This report may contain data that are not covered by the accreditation scope and shall be marked with  $\bigstar$ . This report must not be used by the client to claim product certification, approval, or endorsement by NVLAP, NIST, or any agency of the U.S. Government. Each test item follows the test standard(s) without deviation.

# CONTENTS

| DOCUMENT REVISION HISTORY                                                                            |         |
|------------------------------------------------------------------------------------------------------|---------|
| 1. GENERAL INFORMATION ······                                                                        |         |
| 1.1 GENERAL DESCRIPTION OF EQUIPMENT UNDER TEST ·····                                                | 5       |
| 1.2 ACCESSORY INFORMATION ·····                                                                      |         |
| 1.3 ANTENNA INFORMATION DETAIL                                                                       | 5       |
| 1.4 Equipment Modifications ·····                                                                    | 5       |
| 2. SUMMARY OF TEST RESULTS                                                                           | 6       |
| 3. DESCRIPTION OF TEST CONFIGURATION                                                                 | 7       |
| 3.1 EUT OPERATION CONDITION ······                                                                   | 7       |
| 3.2 EUT EXERCISE SOFTWARE ·····                                                                      |         |
| 3.3 SUPPORT EQUIPMENT LIST AND DETAILS ·····                                                         | 7       |
| 3.4 SUPPORT CABLE LIST AND DETAILS ······                                                            | 7       |
| 3.5 BLOCK DIAGRAM OF TEST SETUP                                                                      |         |
| 3.6 TEST FACILITY                                                                                    |         |
| 3.7 MEASUREMENT UNCERTAINTY ·····                                                                    | 9       |
| 4. REQUIREMENTS AND TEST PROCEDURES                                                                  |         |
| 4.1 CONDUCTED EMISSIONS ······                                                                       | ··· 10  |
| 4.1.1 Applicable Standard ·····                                                                      | 10      |
| <ul><li>4.1.1 Applicable Standard</li><li>4.1.2 EUT Setup</li></ul>                                  | 10      |
| 4.1.3 EMI Test Receiver Setup<br>4.1.4 Test Procedure                                                | 10      |
| 4.1.4 Test Procedure<br>4.1.5 Corrected Amplitude & Margin Calculation                               | 11      |
| 4.1.6 Test Result                                                                                    | ···· 11 |
| 4.2 RADIATED SPURIOUS EMISSIONS ······                                                               | 12      |
| 4.2.1 Applicable Standard ·····                                                                      | 12      |
| 4.2.2 EUT Setup                                                                                      | ···· 12 |
| <ul><li>4.2.3 EMI Test Receiver &amp; Spectrum Analyzer Setup</li><li>4.2.4 Test Procedure</li></ul> | 13      |
| 4.2.4 Test Procedure                                                                                 | 13      |
| 4.2.5 Corrected Result & Margin Calculation                                                          | 14      |
| 4.3 EMISSION BANDWIDTH ······                                                                        |         |
| 4.3.1 Applicable Standard ·····                                                                      |         |
| 4.3.2 EUT Setup                                                                                      | 15      |
| 4.3.3 Test Procedure                                                                                 |         |
| 4.3.4 Test Result ·····                                                                              |         |
| 4.4 PEAK TRANSMIT POWER ······                                                                       | ··· 16  |
| 4.4.1 Applicable Standard ·····                                                                      |         |
| 4.4.2 EUT Setup                                                                                      |         |
| 4.4.3 Test Procedure                                                                                 |         |
| 4.4.4 Test Result ······<br>4.5 POWER SPECTRAL DENSITY ·····                                         |         |
|                                                                                                      |         |
| 4.5.1 Applicable Standard                                                                            | 17      |
| Report Template Version: FCC-15D-V1.0 Page 2 o                                                       | f 64    |

|    |                                                            | . –      |
|----|------------------------------------------------------------|----------|
|    | 4.5.2 EUT Setup<br>4.5.3 Test Procedure                    | 17       |
|    | 4.5.4 Test Result                                          | 18       |
|    | 4.6 EMISSION INSIDE AND OUTSIDE THE SUB-BAND               | 19       |
|    | 4.6.1 Applicable Standard                                  | 19       |
|    | 4.6.2 EUT Setup                                            | 19       |
|    | 4.6.3 Test Procedure         4.6.4 Test Result             | 19       |
|    | 4.0.4 Test Result 4.7 FREQUENCY STABILITY ······           | 20<br>21 |
|    |                                                            |          |
|    | 4.7.1 Applicable Standard                                  | 21       |
|    | 4.7.3 Test Procedure                                       | 21       |
|    | 4.7.4 Test Result                                          | 22       |
|    | 4.8 SPECIFIC REQUIREMENTS FOR UPCS DEVICE ·······          | 23       |
|    | 4.8.1 Applicable Standard                                  | 23       |
|    | 4.8.2 EUT Setup                                            | 25       |
|    | 4.8.3 Test Procedure ····································  | 25<br>26 |
| _  | TEST DATA AND RESULTS ···································· |          |
| Э. | IEST DATA AND RESULTS                                      | 27       |
|    | 5.1 AC LINE CONDUCTED EMISSIONS ······                     |          |
|    | 5.2 RADIATED SPURIOUS EMISSIONS                            |          |
|    | 5.3 EMISSION BANDWIDTH ······                              |          |
|    | 5.4 PEAK TRANSMIT POWER                                    | 48       |
|    | 5.5 POWER SPECTRAL DENSITY                                 | 50       |
|    | 5.6 EMISSION INSIDE AND OUTSIDE THE SUB-BAND               | 52       |
|    | 5.7 FREQUENCY STABILITY                                    | 57       |
|    | 5.8 SPECIFIC REQUIREMENTS FOR UPCS DEVICE                  | 58       |
| E  | XHIBIT A - EUT PHOTOGRAPHS ······                          | 63       |
|    | XHIBIT B - TEST SETUP PHOTOGRAPHS                          |          |
| 1  |                                                            | υT       |

# **DOCUMENT REVISION HISTORY**

| Revision Number | Report Number      | Description of<br>Revision | Date of Revision |
|-----------------|--------------------|----------------------------|------------------|
| 1.0             | 2402X97571E-RF-00A | Original Report            | 2024/12/23       |

# **1. GENERAL INFORMATION**

# 1.1 General Description of Equipment under Test

| EUT Name:                                             | DECT Link                                                                                                                                                                          |
|-------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| EUT Model:                                            |                                                                                                                                                                                    |
| Multiple Models:                                      | VT DECT 300U                                                                                                                                                                       |
| <b>Operation Frequency:</b>                           | 1921.536-1928.448 MHz                                                                                                                                                              |
| Maximum Peak Output Power<br>(Conducted):             | 19.57 dBm                                                                                                                                                                          |
| Modulation Type:                                      | GFSK                                                                                                                                                                               |
| Rated Input Voltage:                                  | 5.0Vdc from USB                                                                                                                                                                    |
| Serial Number:                                        | For RF Conducted Test: 2SFP-5<br>For AC line conducted emissions and Radiated Spurious Emissions<br>Below 1G Tests: 2SFP-2<br>For Radiated Spurious Emissions Above 1G Test:2SFP-1 |
| EUT Received Date:                                    | 2024/10/9                                                                                                                                                                          |
| EUT Received Status:                                  | Good                                                                                                                                                                               |
| Note:<br>The multiple models are electrically identi- | cal with the test model. Please refer to the declaration letter for more                                                                                                           |

The multiple models are electrically identical with the test model. Please refer to the declaration letter for more detail, which was provided by manufacturer.

# **1.2 Accessory Information**

| Accessory Description | Manufacturer | Model | Parameters |
|-----------------------|--------------|-------|------------|
| /                     | /            | /     | /          |

# **1.3 Antenna Information Detail**

| Antenna Man                            | ufacturer                                                                                                                               | Antenna<br>Type | input impedance<br>(Ohm) | Frequency Range | Antenna Gain |
|----------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|-----------------|--------------------------|-----------------|--------------|
| DSP Gro                                | oup                                                                                                                                     | PCB             | 50                       | 1920-1930MHz    | 0dBi         |
| The design of compliance with §15.203: |                                                                                                                                         |                 |                          |                 |              |
| $\boxtimes$                            | Unit uses a permanently attached antenna.                                                                                               |                 |                          |                 |              |
|                                        | Unit uses a unique coupling to the intentional radiator.                                                                                |                 |                          |                 |              |
|                                        | Unit was professionally installed, and installer shall be responsible for verifying that the correct antenna is employed with the unit. |                 |                          |                 |              |

# **1.4 Equipment Modifications**

No modifications are made to the EUT during all test items.

# 2. SUMMARY OF TEST RESULTS

| Standard(s) Section                    | Test Items                               | Result    |
|----------------------------------------|------------------------------------------|-----------|
| FCC § 15.315, § 15.207                 | Conducted Emission                       | Compliant |
| FCC § 15.205, § 15.209,<br>§ 15.319(g) | Radiated Spurious Emissions              | Compliant |
| FCC § 15.323 (a)                       | Emission Bandwidth                       | Compliant |
| FCC § 15.319 (c)                       | Peak Transmit Power                      | Compliant |
| FCC § 15.319 (d)                       | Power Spectral Density                   | Compliant |
| FCC § 15.323 (d)                       | Emission Inside and Outside the sub-band | Compliant |
| FCC § 15.323 (f)                       | Frequency Stability                      | Compliant |
| FCC § 15.323 (c)(e) &<br>§ 15.319 (f)  | Specific Requirements for UPCS           | Compliant |
| FCC § 15.317, § 15.203                 | Antenna Requirement                      | Compliant |

# **3. DESCRIPTION OF TEST CONFIGURATION**

# **3.1 EUT Operation Condition**

The system was configured to testing Mode, which was provided by the manufacturer.

# **3.2 EUT Exercise Software**

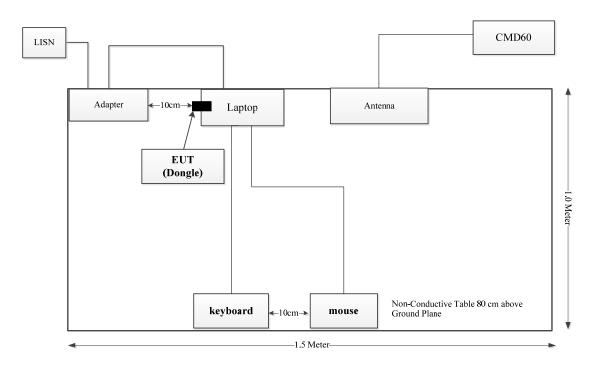
The EUT configuration as below:

# **EUT Exercise Software:** SSCOM V 5.13.1.exe

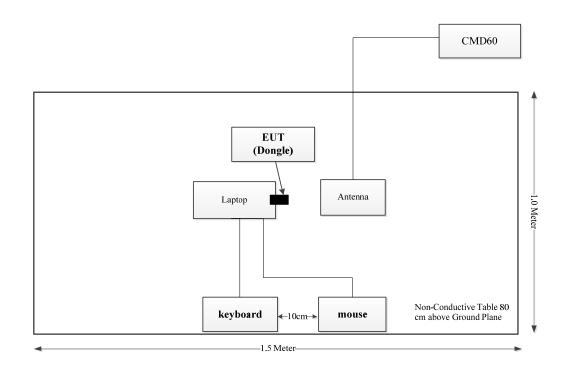
The software was provided by manufacturer. The maximum power was configured as below, that was provided by the manufacturer  $\blacktriangle$ :

| Test Modes |                | Power Level Setting |                 |
|------------|----------------|---------------------|-----------------|
| Test Modes | Lowest Channel | Middle Channel      | Highest Channel |
| GFSK       | default        | default             | default         |

#### **3.3 Support Equipment List and Details**


| Manufacturer | Description                              | Model   | Serial Number          |
|--------------|------------------------------------------|---------|------------------------|
| Lenovo       | Adapter                                  | 92P1109 | 11S92P1109Z1ZBTZ93A6YG |
| Lenovo       | Laptop                                   | E480    | PF-1QQYYP 19/06        |
| PHILIPS      | Keyboard                                 | SPK6234 | K234210510743          |
| PHILIPS      | Mouse                                    | SPK7214 | M214BQ210411115        |
| R&S          | Digital Radio<br>Communication<br>Tester | CMD 60M | 846956/010             |

## 3.4 Support Cable List and Details


| Cable<br>Description | Shielding<br>Type | Ferrite<br>Core | Length<br>(m) | From Port | То       |
|----------------------|-------------------|-----------------|---------------|-----------|----------|
| DC Cable             | no                | no              | 1.2           | Adapter   | Laptop   |
| USB Cable            | no                | no              | 1.0           | Laptop    | Keyboard |
| USB Cable            | no                | no              | 1.0           | Laptop    | Mouse    |

# 3.5 Block Diagram of Test Setup

AC line conducted emissions:



Spurious emissions:



# **3.6 Test Facility**

The Test site used by Bay Area Compliance Laboratories Corp. (Dongguan) to collect test data is located on the No.12, Pulong East 1st Road, Tangxia Town, Dongguan, Guangdong, China.

The lab has been recognized as the FCC accredited lab under the KDB 974614 D01 and is listed in the FCC Public Access Link (PAL) database, FCC Registration No. : 829273, the FCC Designation No. : CN5044.

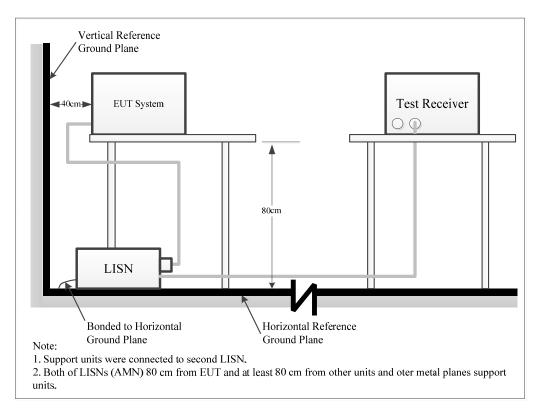
The lab has been recognized by Innovation, Science and Economic Development Canada to test to Canadian radio equipment requirements, the CAB identifier: CN0022.

# **3.7 Measurement Uncertainty**

Otherwise required by the applicant or Product Regulations, Decision Rule in this report did not consider the uncertainty. The extended uncertainty given in this report is obtained by combining the standard uncertainty times the coverage factor K with the 95% confidence interval.

| Parameter                         | Measurement Uncertainty                                       |
|-----------------------------------|---------------------------------------------------------------|
| Occupied Channel Bandwidth        | ±5 %                                                          |
|                                   | 9kHz~30MHz: 3.3dB, 30MHz~200MHz: 4.55 dB, 200MHz~1GHz:        |
|                                   | 5.92 dB, 1GHz~6GHz: 4.98 dB, 6GHz~18GHz: 5.89 dB,             |
| Unwanted Emissions, radiated      | 18GHz~26.5GHz:5.47 dB, 26.5GHz~40GHz:5.63 dB                  |
|                                   | 40~60G: 4.83dB, 60G~90G: 4.94dB, 90G-140G: 5.46dB, 140G-220G: |
|                                   | 6.00dB, 220G-325G: 7.35dB                                     |
| EIRP                              | 4.94dB                                                        |
| Temperature                       | ±1℃                                                           |
| Humidity                          | $\pm 5\%$                                                     |
| DC and low frequency voltages     | $\pm 0.4\%$                                                   |
| Duty Cycle                        | 1%                                                            |
| AC Power Lines Conducted Emission | 3.11 dB (150 kHz to 30 MHz)                                   |

# 4. REQUIREMENTS AND TEST PROCEDURES


## **4.1 Conducted Emissions**

#### 4.1.1 Applicable Standard

#### FCC§15.315

An unlicensed PCS device that is designed to be connected to the public utility (AC) power line must meet the limits specified in §15.207.

#### 4.1.2 EUT Setup



The setup of EUT is according with per ANSI C63.4-2014 measurement procedure. The specification used was with the FCC 15.315, FCC 15.207 limits.

The spacing between the peripherals was 10 cm.

The adapter or EUT was connected to the main LISN with a 120 V/60 Hz AC power source.

#### 4.1.3 EMI Test Receiver Setup

The EMI test receiver was set to investigate the spectrum from 150 kHz to 30 MHz.

During the conducted emission test, the EMI test receiver was set with the following configurations:

| Frequency Range  | IF B/W |
|------------------|--------|
| 150 kHz – 30 MHz | 9 kHz  |

#### 4.1.4 Test Procedure

The frequency and amplitude of the six highest ac power-line conducted emissions relative to the limit, measured over all the current-carrying conductors of the EUT power cords, and the operating frequency or frequency to which the EUT is tuned (if appropriate), should be reported, unless such emissions are more than 20 dB below the limit. AC power-line conducted emissions measurements are to be separately carried out only on each of the phase ("hot") line(s) and (if used) on the neutral line(s), but not on the ground [protective earth] line(s). If less than six emission frequencies are within 20 dB of the limit, then the noise level of the measuring instrument at representative frequencies should be reported. The specific conductor of the power-line cord for each of the reported emissions should be identified. Measure the six highest emissions with respect to the limit on each current-carrying conductor of each power cord associated with the EUT (but not the power cords of associated or peripheral equipment that are part of the test configuration). Then, report the six highest emissions with respect to the limit from among all the measurements identifying the frequency and specific current-carrying conductor identified with the emission. The six highest emissions should be reported for each of the current-carrying conductors, or the six highest emissions may be reported over all the current-carrying conductors.

#### 4.1.5 Corrected Amplitude & Margin Calculation

The basic equation is as follows:

Result = Reading + Factor

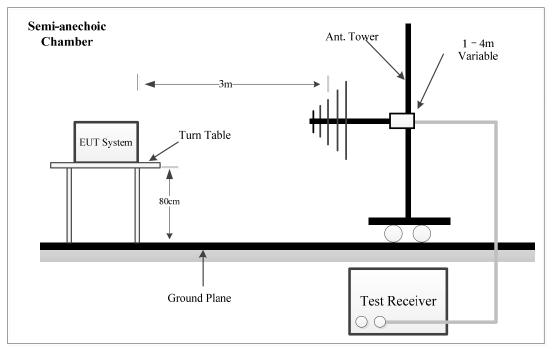
Factor = attenuation caused by cable loss + voltage division factor of AMN

The "**Margin**" column of the following data tables indicates the degree of compliance within the applicable limit. The equation for margin calculation is as follows:

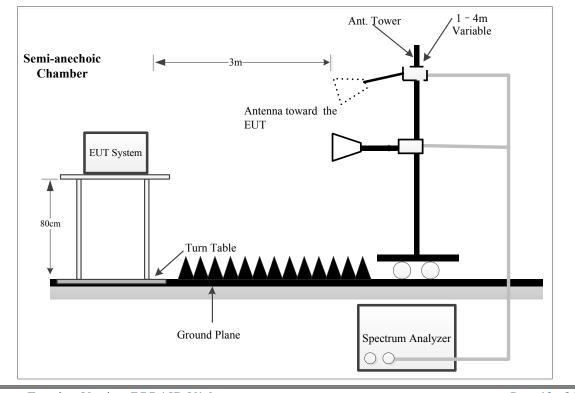
Margin = Limit - Result

#### 4.1.6 Test Result

Please refer to section 5.1.


# 4.2 Radiated Spurious Emissions

#### 4.2.1 Applicable Standard


FCC §15.319(g); §15.205; §15.209

## 4.2.2 EUT Setup

#### 30MHz~1GHz:



#### Above 1GHz:



The radiated emissions were performed in the 3 meters distance, using the setup accordance with the ANSI C63.4-2014. The specification used was the FCC 15.209 limits.

The external I/O cables were draped along the test table and formed a bundle 30 to 40 cm long in the middle.

The spacing between the peripherals was 10 cm.

#### 4.2.3 EMI Test Receiver & Spectrum Analyzer Setup

The system was investigated from 9 kHz to 20 GHz.

During the radiated emission test, the EMI test receiver & Spectrum Analyzer Setup were set with the following configurations:

9kHz-1000MHz:

| Frequency Range  | Measurement | RBW     | Video B/W | IF B/W | Detector |
|------------------|-------------|---------|-----------|--------|----------|
| 9 kHz – 150 kHz  | QP/AV       | 200Hz   | 1 kHz     | 200 Hz | QP/AV    |
| 150 kHz – 30 MHz | QP/AV       | 9 kHz   | 30 kHz    | 9 kHz  | QP/AV    |
| 30MHz – 1000 MHz | PK          | 100 kHz | 300 kHz   | /      | PK       |
|                  | QP          | /       | /         | 120kHz | QP       |

Above 1G: Pre-scan:

| Frequency Range | Measurement | Detector | Duty cycle | RBW  | Video B/W                  |
|-----------------|-------------|----------|------------|------|----------------------------|
| Above 1G        | РК          | Peak     | Any        | 1MHz | 3 MHz                      |
|                 |             |          | >98%       | 1MHz | 5kHz                       |
|                 | Ave.        | Peak     | <98%       | 1MHz | 1/T, not less than<br>5kHz |

Final measurement for emission identified during the pre-scan:

| <b>Frequency Range</b> | Measurement | Detector | Duty cycle | RBW  | Video B/W |
|------------------------|-------------|----------|------------|------|-----------|
| Above 1G               | РК          | Peak     | Any        | 1MHz | 3 MHz     |
|                        | Ave.        | Peak     | >98%       | 1MHz | 10 Hz     |
|                        |             |          | <98%       | 1MHz | 1/T       |

Note: T is minimum transmission duration

#### 4.2.4 Test Procedure

Maximizing procedure was performed on the highest emissions to ensure that the EUT complied with all installation combinations.

Data was recorded in Quasi-peak detection mode for frequency range of 9 kHz -1 GHz, except 9-90 kHz, 110-490 kHz, employing an average measurement, peak and Average measurement for frequencies above 1 GHz.

If the maximized peak measured value is under the QP/Average limit by more than 6dB, then it is unnecessary to perform an QP/Average measurement.

#### 4.2.5 Corrected Result & Margin Calculation

The basic equation is as follows:

Result = Reading + Factor

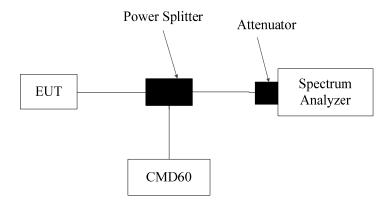
Factor = Antenna Factor + Cable Loss- Amplifier Gain

The "**Margin**" column of the following data tables indicates the degree of compliance within the applicable limit. The equation for margin calculation is as follows:

Margin = Limit – Result

#### 4.2.6 Test Result

Please refer to section 5.2.


# 4.3 Emission Bandwidth

#### 4.3.1 Applicable Standard

#### FCC §15.323 (a)

Operation shall be contained within the 1920–1930 MHz band. The emission bandwidth shall be less than 2.5 MHz and greater than 50 kHz.

#### 4.3.2 EUT Setup



A short RF cable with low cable loss connected to the EUT antenna port, which was provided by manufacturer. The insert loss of this RF cable/attenuator was offset into the setting of test equipment.

#### 4.3.3 Test Procedure

According to ANSI C63.17-2013 Section 6.1.3

#### Table 3—Spectrum analyzer settings for measurement of emissions bandwidth B

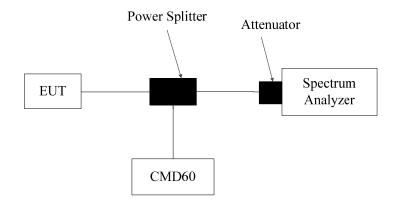
| RBW              | Approximately 1% of the emission bandwidth (a rough estimate may |  |  |  |
|------------------|------------------------------------------------------------------|--|--|--|
|                  | be obtained from peak power level measurement, or use            |  |  |  |
|                  | manufacturer's declared value)                                   |  |  |  |
| Video bandwidth  | $\geq$ 3 × the RBW                                               |  |  |  |
| Center frequency | Nominal center frequency of channel                              |  |  |  |
| Span             | $\geq 2 \times$ the expected emission bandwidth                  |  |  |  |
| Sweep time       | Coupled to frequency span and RBW                                |  |  |  |
| Amplitude scale  | Log                                                              |  |  |  |
| Detection        | Peak detection with maximum hold enabled                         |  |  |  |

Record the maximum level of the modulated carrier. Find the two furthest frequencies above and below the frequency of the maximum level of the modulated carrier where the signal level is 26 dB below the peak level of the carrier. The difference in frequency between these two frequencies is the emission bandwidth.

If after measuring the emission bandwidth, it is found that the RBW used was not approximately 1% of the emission bandwidth, then adjust the RBW and repeat the procedure until the correct RBW is used. If the spectrum analyzer has fixed values of RBW, the one that is the nearest to 1% of the emission bandwidth is acceptable, provided it is no less than 0.5% of the emission bandwidth and no greater than 2% of the emission bandwidth.

#### 4.3.4 Test Result

Please refer to section 5.3.


# 4.4 Peak Transmit Power

#### 4.4.1 Applicable Standard

#### FCC §15.319 (c)

Peak transmit power shall not exceed 100 microwatts multiplied by the square root of the emission bandwidth in hertz. Peak transmit power must be measured over any interval of continuous transmission using instrumentation calibrated in terms of an rms-equivalent voltage. The measurement results shall be properly adjusted for any instrument limitations, such as detector response times, limited resolution bandwidth capability when compared to the emission bandwidth, sensitivity, etc., so as to obtain a true peak measurement for the emission in question over the full bandwidth of the channel.

#### 4.4.2 EUT Setup



A short RF cable with low cable loss connected to the EUT antenna port, which was provided by manufacturer. The insert loss of this RF cable/attenuator was offset into the setting of test equipment.

#### 4.4.3 Test Procedure

According to ANSI C63.17-2013 Section 6.1.2

The resolution bandwidth (RBW) setting for this test must be adjusted by repeating this test and using increasing values of the RBW until there are negligible changes (within  $\pm 0.5$  dB) in the measured values of the maximum power.

| RBW              | $\geq$ Emission bandwidth                                                 |
|------------------|---------------------------------------------------------------------------|
| Video bandwidth  | ≥RBW                                                                      |
| Span             | Zero                                                                      |
| Center frequency | Nominal center frequency of transmit carrier                              |
| Amplitude scale  | Log (linear may be used if analyzer has sufficient linear dynamic range   |
|                  | and accuracy)                                                             |
| Detection        | Peak detection                                                            |
| Trigger          | Video                                                                     |
| Sweep rate       | Sufficiently rapid to permit the transmit pulse to be resolved accurately |

#### Table 2—Spectrum analyzer settings for determining the peak power

#### 4.4.4 Test Result

Please refer to section 5.4.

# 4.5 Power Spectral Density

#### 4.5.1 Applicable Standard

#### FCC §15.319 (d)

Power spectral density shall not exceed 3 milliwatts in any 3 kHz bandwidth as measured with a spectrum analyzer having a resolution bandwidth of 3 kHz.

#### 4.5.2 EUT Setup



A short RF cable with low cable loss connected to the EUT antenna port, which was provided by manufacturer. The insert loss of this RF cable/attenuator was offset into the setting of test equipment.

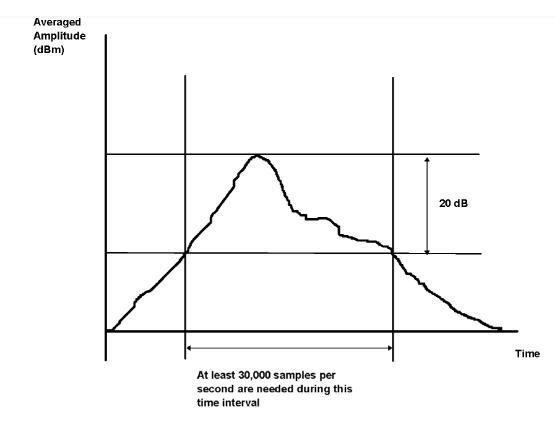
#### 4.5.3 Test Procedure

According to ANSI C63.17-2013 Section 6.1.5

The EUT transmit data sequence and mode of operation shall be representative of that encountered in normal operation, so that transient effects associated with transmission bursts or data content are captured by the PSD measurement.

| RBW              | 3 kHz                                                                   |
|------------------|-------------------------------------------------------------------------|
| Video bandwidth  | $\geq$ 3 × RBW                                                          |
| Span             | Zero span at frequency with the maximum level (frequency determined     |
|                  | in 6.1.3 if the same type of signal (continuous versus burst) was used  |
|                  | in 6.1.3)                                                               |
| Center frequency | Spectral peak as determined in 6.1.3                                    |
| Sweep time       | For burst signals, sufficient to include essentially all of the maximum |
|                  | length burst at the output of a 3 kHz filter (e.g., maximum input burst |
|                  | duration plus 600 µs). For continuous signals, 20 ms.                   |
| Amplitude scale  | Log power                                                               |
| Detection        | Sample detection and averaged for a minimum of 100 sweeps               |
| Trigger          | External or internal                                                    |

| Table 4—Spectrum | analyzer setting | is for finding of the | e maximum of PSD <sub>EUT</sub> |
|------------------|------------------|-----------------------|---------------------------------|
|                  |                  |                       |                                 |


For burst-type signals, arrange to measure the wideband burst duration of each burst analyzed and compute the mean duration.

Determine the level that is 20 dB below the first peak. Record the power-averaged waveform between the 20 dB threshold levels around the first peak with at least 30 000 samples per second as shown in Figure 4.

#### Bay Area Compliance Laboratories Corp. (Dongguan)

Multiple wideband bursts may produce the waveform between -20 dB peaks; these must be included in the determination of the average burst length. If there is no level that is 20 dB below the peak, then analyze the complete sweep and include all of the wideband waveform that occurs during the sweep time in the computation of average burst length.

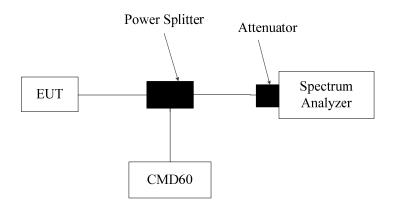
Sum the values of the sample points (in linear units of power) and divide by the sample frequency to obtain the total pulse energy in the 3 kHz bandwidth, then divide by the average duration of the wideband input pulse to obtain the average pulse power.



# Figure 4—Computed average transient method: Sampling of the averaged power waveform measured with 3 kHz RBW

#### 4.5.4 Test Result

Please refer to section 5.5.


#### 4.6 Emission Inside and Outside the Sub-band

#### 4.6.1 Applicable Standard

#### FCC §15.323 (d)

Emissions outside the band shall be attenuated below a reference power of 112 milliwatts as follows: 30 dB between the band and 1.25 MHz above or below the band; 50 dB between 1.25 and 2.5 MHz above or below the band; and 60 dB at 2.5 MHz or greater above or below the band. Emissions inside the band must comply with the following emission mask: In the bands between 1B and 2B measured from the center of the emission bandwidth the total power emitted by the device shall be at least 30 dB below the transmit power permitted for that device; in the bands between 2B and 3B measured from the center of the emission bandwidth the total power emitted by an intentional radiator shall be at least 50 dB below the transmit power permitted for that radiator; in the bands between 3B and the band edge the total power emitted by an intentional radiator in the measurement bandwidth shall be at least 60 dB below the transmit power permitted for that radiator. B" is defined as the emission bandwidth of the device in hertz. Compliance with the emission limits is based on the use of measurement instrumentation employing peak detector function with an instrument resolution bandwidth approximately equal to 1.0 percent of the emission bandwidth of the device under measurement.

#### 4.6.2 EUT Setup



A short RF cable with low cable loss connected to the EUT antenna port, which was provided by manufacturer. The insert loss of this RF cable/attenuator was offset into the setting of test equipment.

#### 4.6.3 Test Procedure

According to ANSI C63.17-2013 Section 6.1.6

#### **In-band emission:**

In the region between 1B and 2B from the center of the RF carrier, the measured emission level (measured with 1% of emission bandwidth) shall not exceed 30 dB below the permitted peak power for the EUT.

In the region between 2B and 3B from the center of the RF carrier, the measured emission level shall not exceed 50 dB below the permitted peak power for the EUT.

| RBW              | Approximately 1% of the emission bandwidth (B)           |
|------------------|----------------------------------------------------------|
| Video bandwidth  | $3 \times \text{RBW}$                                    |
| Sweep time       | The sweep time shall be sufficiently slow that the swept |
|                  | frequency rate shall not exceed one RBW per three        |
|                  | transmit bursts.                                         |
| Number of sweeps | Sufficient to stabilize the trace                        |
| Amplitude scale  | Log                                                      |
| Detection        | Peak detection and max hold enabled                      |
| Span             | Approximately equal to 3.5 B                             |

# Table 5—Spectrum analyzer settings for measuring in-band emissions

In the region between 3B and the UPCS band edge, as measured from the center of the RF carrier, the measured emission level shall not exceed 60 dB below the permitted peak power for the EUT.

#### **Out-band emission:**

Out-of-band tests shall be performed with the RF carrier set to the lowest and highest carriers defined by the EUT. The spectrum analyzer settings for in-band unwanted emissions in 6.1.6.1 also apply to out-of-band emissions. The EUT shall pass the tests of item a), item b), and either item c) or item d), as follows:

a) In the region between the band edges and 1.25 MHz below and above the lower and the upper band edges, respectively, the measured emission level shall not exceed -9.5 dBm.

b) In the region between 1.25 and 2.5 MHz below and above the lower and the upper band edges, respectively, the measured emission level shall not exceed -29.5 dBm.

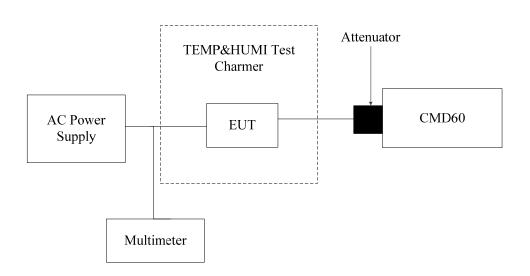
c) In the region at 2.5 MHz or greater below and above the lower and upper band edges, respectively, the measured emission level shall not exceed -39.5 dBm.

d) In the region at 2.5 MHz or greater below and above the lower and upper band edges, respectively, the measured emission level shall not exceed the limits of 47CFR15.209. Measurement shall be made as a radiated test.

UPCS devices, in general, include digital circuitry not directly associated with the radio transmitter and are subject to the requirements for unintentional radiators as described in 47CFR15.109, for both inband and out-of-band emissions. These emissions shall be measured with the EUT operating in receive and transmit modes. For the transmit mode, do not measure within 3.75 MHz or 3B, whichever is the largest, of the edges of the band. Emissions that are directly caused by digital circuits in the transmit path do not have to meet 47CFR15.109 limits, but shall meet those limits as mentioned in the preceding list.

#### 4.6.4 Test Result

Please refer to section 5.6.


# 4.7 Frequency Stability

#### 4.7.1 Applicable Standard

#### FCC §15.323(f)

The frequency stability of the carrier frequency of the intentional radiator shall be maintained within  $\pm 10$  ppm over 1 hour or the interval between channel access monitoring, whichever is shorter. The frequency stability shall be maintained over a temperature variation of  $-20^{\circ}$  to  $+50^{\circ}$ C at normal supply voltage, and over a variation in the primary supply voltage of 85 percent to 115 percent of the rated supply voltage at a temperature of 20 °C. For equipment that is capable only of operating from a battery, the frequency stability tests shall be performed using a new battery without any further requirement to vary supply voltage.

#### 4.7.2 EUT Setup



A short RF cable with low cable loss connected to the EUT antenna port, which was provided by manufacturer. The insert loss of this RF cable/attenuator was offset into the setting of test equipment.

#### 4.7.3 Test Procedure

According to ANSI C63.17-2013 Section 6.2.1.2

This test does not apply to an EUT that is capable only of operating from a battery. For a mainspowered EUT, the mean value of the carrier frequency shall be measured at the power supply voltage extremes of row 1 of Table 7.

# Table 7—Test parameters for carrier-frequency stability testing

| Temperature                                   | Supply voltage           |
|-----------------------------------------------|--------------------------|
| $20 \degree C \pm 2 \degree C$                | 85% to 115% of           |
| $20$ C $\pm 2$ C                              | declared nominal voltage |
| $-20$ °C $\pm 2$ °C                           | All declared nominal(s)  |
| $+50 ^{\circ}\text{C} \pm 2 ^{\circ}\text{C}$ | All declared nominal(s)  |

During test, the equipment shall be placed in the boxes and set the temperature to the specified requirement until the thermal balance has been reached.

# 4.7.4 Test Result

Please refer to section 5.7.

#### 4.8 Specific Requirements For UPCS Device

#### 4.8.1 Applicable Standard

#### FCC §15.319(f)

The device shall automatically discontinue transmission in case of either absence of information to transmit or operational failure. The provisions in this section are not intended to preclude transmission of control and signaling information or use of repetitive codes used by certain digital technologies to complete frame or burst intervals.

#### FCC §15.323(c)

Devices must incorporate a mechanism for monitoring the time and spectrum windows that its transmission is intended to occupy. The following criteria must be met:

(1) Immediately prior to initiating transmission, devices must monitor the combined time and spectrum windows in which they intend to transmit for a period of at least 10 milliseconds for systems designed to use a 10 milliseconds or shorter frame period or at least 20 milliseconds for systems designed to use a 20 milliseconds frame period.

(2) The monitoring threshold must not be more than 30 dB above the thermal noise power for a bandwidth equivalent to the emission bandwidth used by the device.

(3) If no signal above the threshold level is detected, transmission may commence and continue with the same emission bandwidth in the monitored time and spectrum windows without further monitoring. However, occupation of the same combined time and spectrum windows by a device or group of cooperating devices continuously over a period of time longer than 8 hours is not permitted without repeating the access criteria.

(4) Once access to specific combined time and spectrum windows is obtained an acknowledgment from a system participant must be received by the initiating transmitter within one second or transmission must cease. Periodic acknowledgments must be received at least every 30 seconds or transmission must cease. Channels used exclusively for control and signaling information may transmit continuously for 30 seconds without receiving an acknowledgment, at which time the access criteria must be repeated.

(5) If access to spectrum is not available as determined by the above, and a minimum of 20 duplex system access channels are defined for the system, the time and spectrum windows with the lowest power level may be accessed. A device utilizing the provisions of this paragraph must have monitored all access channels defined for its system within the last 10 seconds and must verify, within the 20 milliseconds (40 milliseconds for devices designed to use a 20 milliseconds frame period) immediately preceding actual channel access that the detected power of the selected time and spectrum windows is no higher than the previously detected value. The power measurement resolution for this comparison must be accurate to within 6 dB. No device or group of co-operating devices located within 1 meter of each other shall during any frame period occupy more than 6 MHz of aggregate bandwidth, or alternatively, more than one third of the time and spectrum windows defined by the system.

(6) If the selected combined time and spectrum windows are unavailable, the device may either monitor and select different windows or seek to use the same windows after waiting an amount of time, randomly chosen from a uniform random distribution between 10 and 150 milliseconds, commencing when the channel becomes available.

(7) The monitoring system bandwidth must be equal to or greater than the emission bandwidth of the intended transmission and have a maximum reaction time less than 50xSQRT (1.25/emission bandwidth in MHz) microseconds for signals at the applicable threshold level but shall not be required to be less than 50 microseconds. If a signal is detected that is 6 dB or more above the applicable

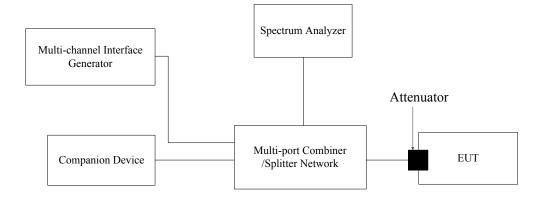
threshold level, the maximum reaction time shall be 35xSQRT (1.25/emission bandwidth in MHz) microseconds but shall not be required to be less than 35 microseconds.

(8) The monitoring system shall use the same antenna used for transmission, or an antenna that yields equivalent reception at that location.

(9) Devices that have a power output lower than the maximum permitted under this subpart may increase their monitoring detection threshold by one decibel for each one decibel that the transmitter power is below the maximum permitted.

(10) An initiating device may attempt to establish a duplex connection by monitoring both its intended transmit and receive time and spectrum windows. If both the intended transmit and receive time and spectrum windows meet the access criteria, then the initiating device can initiate a transmission in the intended transmit time and spectrum window. If the power detected by the responding device can be decoded as a duplex connection signal from the initiating device, then the responding device may immediately begin transmitting on the receive time and spectrum window monitored by the initiating device.

(11) An initiating device that is prevented from monitoring during its intended transmit window due to monitoring system blocking from the transmissions of a co-located (within one meter) transmitter of the same system, may monitor the portions of the time and spectrum windows in which they intend to receive over a period of at least 10 milliseconds. The monitored time and spectrum window must total at least 50 percent of the 10 millisecond frame interval and the monitored spectrum must be within 1.25 MHz of the center frequency of channel(s) already occupied by that device or co-located co-operating devices. If the access criteria is met for the intended receive time and spectrum window under the above conditions, then transmission in the intended transmit window by the initiating device may commence.


(12) The provisions of (c)(10) or (c)(11) of this section shall not be used to extend the range of spectrum occupied over space or time for the purpose of denying fair access to spectrum to other devices.

ANSI C63.17 2013 §6.2 Frequency and time stability and §7.Monitoring tests and §8.Time and spectrum window access procedure.

#### FCC §15.323(e)

The frame period (a set of consecutive time slots in which the position of each time slot can be identified by reference to a synchronizing source) of an intentional radiator operating in this band shall be 20 milliseconds or 10 milliseconds/X where X is a positive whole number. Each device that implements time division for the purposes of maintaining a duplex connection on a given frequency carrier shall maintain a frame repetition rate with a frequency stability of at least 50 parts per million (ppm). Each device which further divides access in time in order to support multiple communication links on a given frequency carrier shall maintain a frame repetition rate with a frequency stability of at least 10 ppm. The jitter (time-related, abrupt, spurious variations in the duration of the frame interval) introduced at the two ends of such a communication link shall not exceed 25 microseconds for any two consecutive transmissions. Transmissions shall be continuous in every time and spectrum window during the frame period defined for the device.

#### 4.8.2 EUT Setup



A short RF cable with low cable loss connected to the EUT antenna port, which was provided by manufacturer. The insert loss of this RF cable/attenuator was offset into the setting of test equipment.

#### 4.8.3 Test Procedure

#### 1) Monitoring Time

According to ANSI C63.17-2013 Section 7.3.3

#### 2) Lower Monitoring Threshold

According to ANSI C63.17- 2013 Section 7.3.1

#### 3) Maximum Transmit Period

According to ANSI C63.17- 2013 Section 8.2.2

#### 4) System Acknowledgement

According to ANSI C63.17- 2013 Section 8.1, 8.2

#### 5) Least Interfered Channel (LIC)

According to ANSI C63.17- 2013 Section 7.3.2, 7.3.3

#### 6) Random waiting

According to ANSI C63.17- 2013 Section 8.1.2 or 8.1.3

#### 7) Monitoring Bandwidth and Reaction Time

According to ANSI C63.17-2013 Section 7.4, 7.5

#### 8) Monitoring Antenna

According to ANSI C63.17- 2013 Section 4

#### 9) Monitoring threshold relaxation

According to ANSI C63.17- 2013 Section 4

#### **10) Duplex Connections**

According to ANSI C63.17- 2013 Section 8.3

#### **11) Alternative monitoring interval**

According to ANSI C63.17- 2013 Section 8.4

#### 12) Frame Repetition Stability Frame Period and Jitter

According to ANSI C63.17- 2013 Section 6.2.2, 6.2.3

## 4.8.4 Test Result

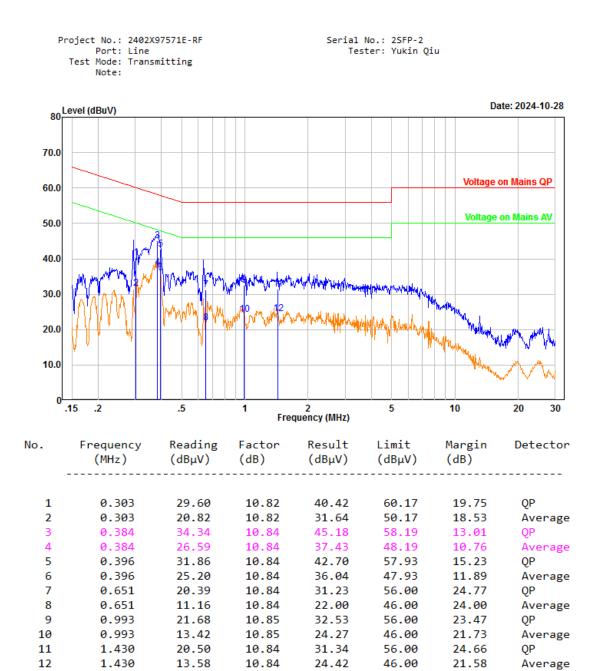
Please refer to section 5.8.

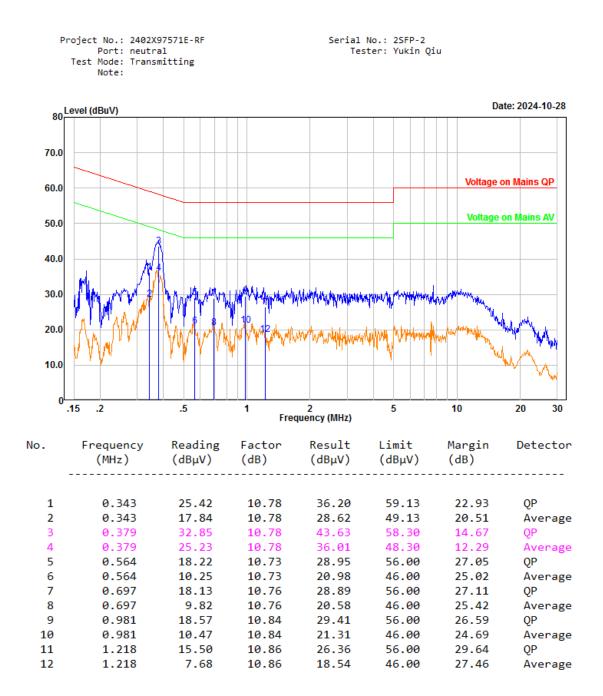
# **5. TEST DATA AND RESULTS**

# 5.1 AC Line Conducted Emissions

| Serial Number: | 2SFP-2    | Test Date:   | 2024/10/28   |
|----------------|-----------|--------------|--------------|
| Test Site:     | СЕ        | Test Mode:   | Transmitting |
| Tester:        | Yukin Qiu | Test Result: | Pass         |

#### **Environmental Conditions:**


|  | Temperature:<br>(°C) | 26.7 | Relative<br>Humidity:<br>(%) | 58 | ATM Pressure:<br>(kPa) | 101.2 |
|--|----------------------|------|------------------------------|----|------------------------|-------|
|--|----------------------|------|------------------------------|----|------------------------|-------|


# Test Equipment List and Details:

| Manufacturer | Description          | Model     | Serial<br>Number | Calibration Date | Calibration Due<br>Date |
|--------------|----------------------|-----------|------------------|------------------|-------------------------|
| R&S          | LISN                 | ENV216    | 101614           | 2024/9/5         | 2025/9/4                |
| MICRO-COAX   | Coaxial Cable        | C-NJNJ-50 | C-0200-01        | 2024/9/5         | 2025/9/4                |
| R&S          | EMI Test<br>Receiver | ESCI      | 100035           | 2024/8/26        | 2025/8/25               |
| Audix        | Test Software        | E3        | 191218 V9        | N/A              | N/A                     |

\* Statement of Traceability: Bay Area Compliance Laboratories Corp. (Dongguan) attests that all calibrations have been performed, traceable to National Primary Standards and International System of Units (SI).

Note: The maximum output power channel: Highest Channel was tested.





# **5.2 Radiated Spurious Emissions**

#### 1) 9kHz - 1GHz

| Serial Number: | 2SFP-2     | Test Date:   | 2024/10/28   |
|----------------|------------|--------------|--------------|
| Test Site:     | Chamber10m | Test Mode:   | Transmitting |
| Tester:        | Zoo Zou    | Test Result: | Pass         |

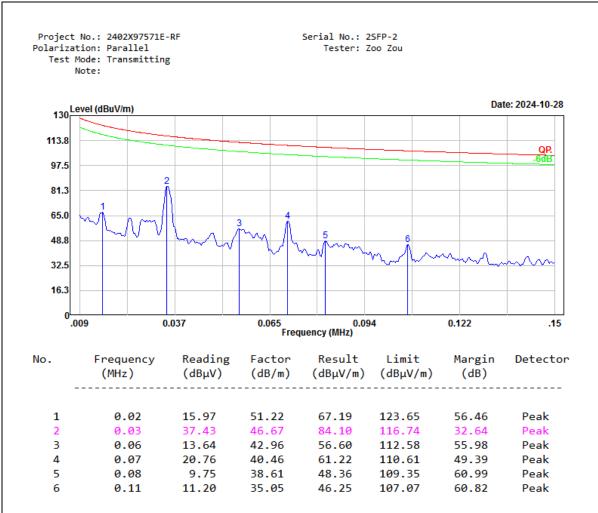
| Environmental Conditions: |      |                           |    |                           |       |  |  |  |
|---------------------------|------|---------------------------|----|---------------------------|-------|--|--|--|
| Temperature:<br>(°C)      | 27.4 | Relative Humidity:<br>(%) | 45 | ATM<br>Pressure:<br>(kPa) | 101.2 |  |  |  |

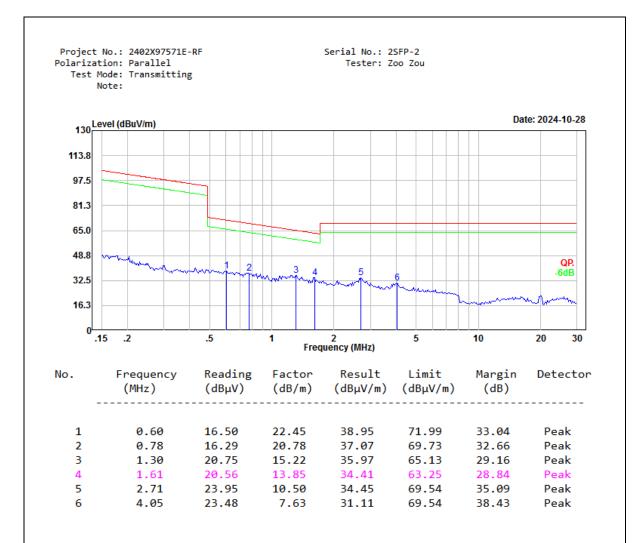
#### **Test Equipment List and Details:**

| Manufacturer   | Description             | Model     | Serial<br>Number | Calibration<br>Date | Calibration<br>Due Date |
|----------------|-------------------------|-----------|------------------|---------------------|-------------------------|
| EMCO           | Passive Loop<br>Antenna | 6512      | 9706-1206        | 2023/10/25          | 2026/10/24              |
| Sunol Sciences | Hybrid Antenna          | JB3       | A060611-1        | 2023/9/6            | 2026/9/5                |
| Narda          | Coaxial Attenuator      | 779-6dB   | 04269            | 2023/9/6            | 2026/9/5                |
| Unknown        | Coaxial Cable           | C-NJNJ-50 | C-1000-01        | 2024/7/1            | 2025/6/30               |
| Unknown        | Coaxial Cable           | C-NJNJ-50 | C-0400-04        | 2024/7/1            | 2025/6/30               |
| Unknown        | Coaxial Cable           | C-NJNJ-50 | C-0530-01        | 2024/7/1            | 2025/6/30               |
| Sonoma         | Amplifier               | 310N      | 185914           | 2024/8/26           | 2025/8/25               |
| R&S            | EMI Test Receiver       | ESCI      | 100224           | 2024/8/26           | 2025/8/25               |
| Audix          | Test Software           | E3        | 191218 V9        | N/A                 | N/A                     |

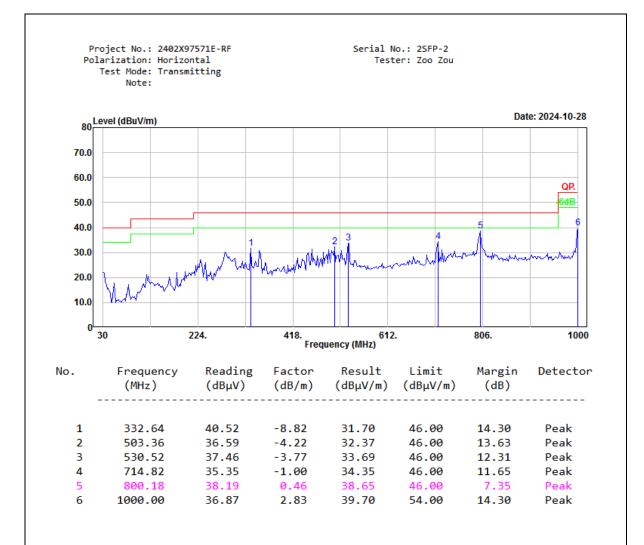
\* Statement of Traceability: Bay Area Compliance Laboratories Corp. (Dongguan) attests that all calibrations have been performed, traceable to National Primary Standards and International System of Units (SI).

#### **Test Data:**


Please refer to the below table and plots.

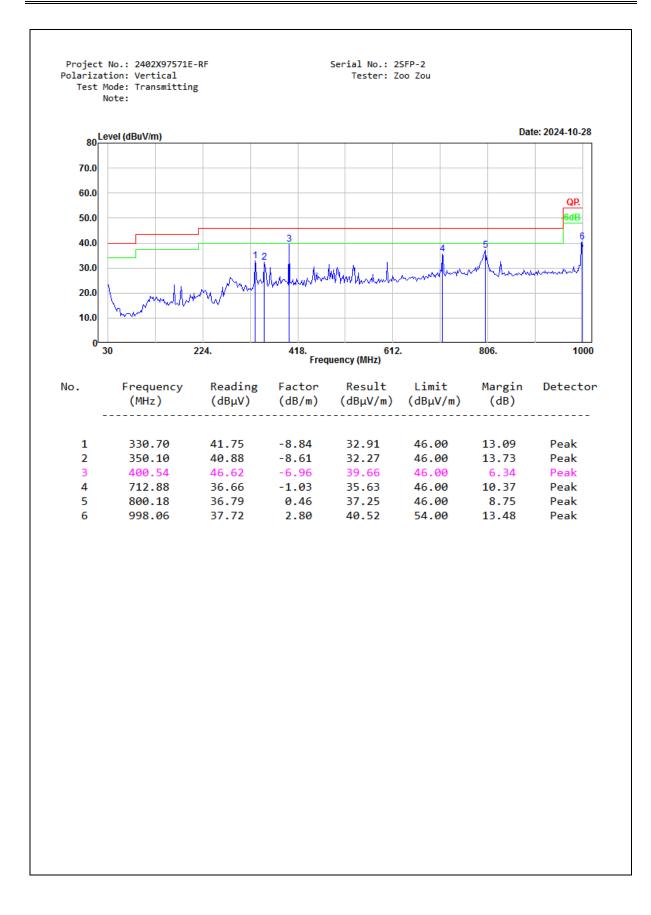

After pre-scan in the X, Y and Z axes of orientation, the worst case is refer to table and plots.

Note: The maximum output power channel: Highest Channel was tested.


#### 9kHz~30MHz

Three antenna orientations (parallel, perpendicular, and ground-parallel) were measured, the worst orientations were below:






#### 30MHz-1GHz





Report No.: 2402X97571E-RF-00A



Page 34 of 64

### 2) 1-20GHz:

| Serial Number:           | 2SFP-1                                                          |                               | Test Date:              | 2024/11/19~2024/12/10            |                         |  |
|--------------------------|-----------------------------------------------------------------|-------------------------------|-------------------------|----------------------------------|-------------------------|--|
| Test Site:               | Chamber B                                                       |                               | Test Mode:              | Transmitting                     |                         |  |
| Tester:                  | Tester: Colin Yang, Jeff Wei                                    |                               |                         | Pass                             |                         |  |
| Environmental Conditi    | ons:                                                            |                               |                         |                                  |                         |  |
| Temperature:<br>(℃)      |                                                                 |                               | 37~42                   | ATM<br>Pressure: 101.1~<br>(kPa) |                         |  |
| Test Equipment List an   | d Details:                                                      |                               |                         |                                  |                         |  |
| Manufacturer             | Description                                                     | Model                         | Serial Number           | Calibration<br>Date              | Calibration<br>Due Date |  |
| ETS-Lindgren             | Horn Antenna                                                    | 3115                          | 000 527 35              | 2023/9/7                         | 2026/9/6                |  |
| Xinhang Macrowave        | Coaxial Cable                                                   | XH750A-N/J-<br>SMA/J-10M      | 20231117004<br>#0001    | 2024/11/17                       | 2025/11/16              |  |
| АН                       | Preamplifier                                                    | PAM-0118P                     | 469                     | 2024/4/15                        | 2025/4/14               |  |
| Audix                    | Test Software                                                   | E3                            | 191218 V9               | N/A                              | N/A                     |  |
| R&S                      | Spectrum<br>Analyzer                                            | FSV40                         | 101944                  | 2024/9/6                         | 2025/9/5                |  |
| Ducommun<br>Technologies | Horn Antenna                                                    | ARH-4223-02                   | 1007726-02<br>1304      | 2023/2/22                        | 2026/2/21               |  |
| Xinhang Macrowave        | Coaxial Cable                                                   | XH360A-2.92/J-<br>2.92/J-6M-A | 20231208001<br>#0001    | 2023/12/11                       | 2024/12/10              |  |
| AH                       | Preamplifier                                                    | PAM-1840VH                    | 191                     | 2024/9/5                         | 2025/9/4                |  |
| Decentest                | Multiplex Switch<br>Test Control Set<br>&<br>Filter Switch Unit | DT7220SCU<br>&<br>DT7220FCU   | DC79902<br>&<br>DC79905 | 2024/8/27                        | 2025/8/26               |  |
| R&S                      | Digital Radio<br>Communication<br>Tester                        | CMD 60M                       | 846956/010              | 2024/10/22                       | 2025/10/21              |  |

\* Statement of Traceability: Bay Area Compliance Laboratories Corp. (Dongguan) attests that all calibrations have been performed, traceable to National Primary Standards and International System of Units (SI).

#### Test Data:

After pre-scan in the X, Y and Z axes of orientation, the worst case is below:

# Bay Area Compliance Laboratories Corp. (Dongguan)

Report No.: 2402X97571E-RF-00A

| Transmitting mode_peak |         | Frequency | 1921.536 | MHz                        |         |        |
|------------------------|---------|-----------|----------|----------------------------|---------|--------|
| <b>F</b>               |         | Deles     | Eastar   | Factor Corrected Amplitude | FCC 15D |        |
| Frequency              | Reading | Polar     | Factor   |                            | Limit   | Margin |
| MHz                    | dBµV    | H/V       | dB/m     | dBµV/m                     | dBµV/m  | dB     |
| 3843.07                | 53.34   | Н         | -4.94    | 48.40                      | 74.00   | 25.60  |
| 3843.07                | 58.79   | V         | -4.94    | 53.85                      | 74.00   | 20.15  |
| 5764.61                | 70.69   | Н         | -6.92    | 63.77                      | 74.00   | 10.23  |
| 5764.61                | 67.15   | V         | -6.92    | 60.23                      | 74.00   | 13.77  |
| 7686.14                | 47.81   | Н         | -2.39    | 45.42                      | 74.00   | 28.58  |
| 7686.14                | 48.31   | V         | -2.39    | 45.92                      | 74.00   | 28.08  |
| 9607.68                | 53.00   | Н         | 1.18     | 54.18                      | 74.00   | 19.82  |
| 9607.68                | 50.17   | V         | 1.18     | 51.35                      | 74.00   | 22.65  |

# Transmitting mode\_Average

| Frequency<br>(MHz) | Peak<br>Measurement@3m<br>(dBµV/m) | Polar<br>(H/V) | Duty Cycle<br>Correction<br>Factor<br>(dB) | Average<br>Amp.<br>(dBµV/m) | FCC 15D           |                |
|--------------------|------------------------------------|----------------|--------------------------------------------|-----------------------------|-------------------|----------------|
|                    |                                    |                |                                            |                             | Limit<br>(dBµV/m) | Margin<br>(dB) |
| 3843.07            | 48.40                              | Н              | -28.91                                     | 19.49                       | 54.00             | 34.51          |
| 3843.07            | 53.85                              | V              | -28.91                                     | 24.94                       | 54.00             | 29.06          |
| 5764.61            | 63.77                              | Н              | -28.91                                     | 34.86                       | 54.00             | 19.14          |
| 5764.61            | 60.23                              | V              | -28.91                                     | 31.32                       | 54.00             | 22.68          |
| 7686.14            | 45.42                              | Н              | -28.91                                     | 16.51                       | 54.00             | 37.49          |
| 7686.14            | 45.92                              | V              | -28.91                                     | 17.01                       | 54.00             | 36.99          |
| 9607.68            | 54.18                              | Н              | -28.91                                     | 25.27                       | 54.00             | 28.73          |
| 9607.68            | 51.35                              | V              | -28.91                                     | 22.44                       | 54.00             | 31.56          |

Report No.: 2402X97571E-RF-00A

| Transmitti | ing mode_peak |      | Frequency | 1924.992  | MHz    |        |
|------------|---------------|------|-----------|-----------|--------|--------|
| Frequenc   | Deading       | Pola | Eastan    | Corrected | FCC    | C 15D  |
| У          | Reading       | r    | Factor    | Amplitude | Limit  | Margin |
| MHz        | dBμV          | H/V  | dB/m      | dBµV/m    | dBµV/m | dB     |
| 3849.98    | 59.01         | Н    | -4.96     | 54.05     | 74.00  | 19.95  |
| 3849.98    | 68.44         | V    | -4.96     | 63.48     | 74.00  | 10.52  |
| 5774.98    | 68.65         | Н    | -6.92     | 61.73     | 74.00  | 12.27  |
| 5774.98    | 64.82         | V    | -6.92     | 57.90     | 74.00  | 16.10  |
| 7699.97    | 48.71         | Н    | -2.4      | 46.31     | 74.00  | 27.69  |
| 7699.97    | 49.90         | V    | -2.4      | 47.50     | 74.00  | 26.50  |
| 9624.96    | 55.10         | Н    | 1.18      | 56.28     | 74.00  | 17.72  |
| 9624.96    | 52.79         | V    | 1.18      | 53.97     | 74.00  | 20.03  |

### Transmitting mode\_Average

| п                   | Peak                       | Pola           | Duty Cycle               | Average          | FCC               | 15D            |
|---------------------|----------------------------|----------------|--------------------------|------------------|-------------------|----------------|
| Frequenc<br>y (MHz) | Measurement@3m(dBµV/<br>m) | r<br>(H/V<br>) | Correction<br>Factor(dB) | Amp.<br>(dBµV/m) | Limit<br>(dBµV/m) | Margin<br>(dB) |
| 3849.98             | 54.05                      | Н              | -28.91                   | 25.14            | 54.00             | 28.86          |
| 3849.98             | 63.48                      | V              | -28.91                   | 34.57            | 54.00             | 19.43          |
| 5774.98             | 61.73                      | Н              | -28.91                   | 32.82            | 54.00             | 21.18          |
| 5774.98             | 57.90                      | V              | -28.91                   | 28.99            | 54.00             | 25.01          |
| 7699.97             | 46.31                      | Н              | -28.91                   | 17.40            | 54.00             | 36.60          |
| 7699.97             | 47.50                      | V              | -28.91                   | 18.59            | 54.00             | 35.41          |
| 9624.96             | 56.28                      | Н              | -28.91                   | 27.37            | 54.00             | 26.63          |
| 9624.96             | 53.97                      | V              | -28.91                   | 25.06            | 54.00             | 28.94          |

| Transmitti | Fransmitting mode_peak |       |        | 1928.448  | MHz    |        |
|------------|------------------------|-------|--------|-----------|--------|--------|
| Energy     | Deeding                | Dolon | Eastan | Corrected | FCC    | C 15D  |
| Frequency  | Reading                | Polar | Factor | Amplitude | Limit  | Margin |
| MHz        | dBµV                   | H/V   | dB/m   | dBµV/m    | dBµV/m | dB     |
| 3856.90    | 62.43                  | Н     | -4.95  | 57.48     | 74.00  | 16.52  |
| 3856.90    | 73.03                  | V     | -4.95  | 68.08     | 74.00  | 5.92   |
| 5785.34    | 58.35                  | Н     | -6.92  | 51.43     | 74.00  | 22.57  |
| 5785.34    | 67.16                  | V     | -6.92  | 60.24     | 74.00  | 13.76  |
| 7713.79    | 50.96                  | Н     | -2.41  | 48.55     | 74.00  | 25.45  |
| 7713.79    | 48.41                  | V     | -2.41  | 46.00     | 74.00  | 28.00  |
| 9642.24    | 59.71                  | Н     | 1.21   | 60.92     | 74.00  | 13.08  |
| 9642.24    | 55.04                  | V     | 1.21   | 56.25     | 74.00  | 17.75  |

### Transmitting mode\_Average

| Б                  | Peak                       |                | Duty Cycle                   | Average          | FCC               | 15D            |
|--------------------|----------------------------|----------------|------------------------------|------------------|-------------------|----------------|
| Frequency<br>(MHz) | Measurement@3m<br>(dBμV/m) | Polar<br>(H/V) | Correction<br>Factor<br>(dB) | Amp.<br>(dBμV/m) | Limit<br>(dBµV/m) | Margin<br>(dB) |
| 3856.90            | 57.48                      | Н              | -28.91                       | 28.57            | 54.00             | 25.43          |
| 3856.90            | 68.08                      | V              | -28.91                       | 39.17            | 54.00             | 14.83          |
| 5785.34            | 51.43                      | Н              | -28.91                       | 22.52            | 54.00             | 31.48          |
| 5785.34            | 60.24                      | V              | -28.91                       | 31.33            | 54.00             | 22.67          |
| 7713.79            | 48.55                      | Н              | -28.91                       | 19.64            | 54.00             | 34.36          |
| 7713.79            | 46.00                      | V              | -28.91                       | 17.09            | 54.00             | 36.91          |
| 9642.24            | 60.92                      | Н              | -28.91                       | 32.01            | 54.00             | 21.99          |
| 9642.24            | 56.25                      | V              | -28.91                       | 27.34            | 54.00             | 26.66          |

Note:

For PK:

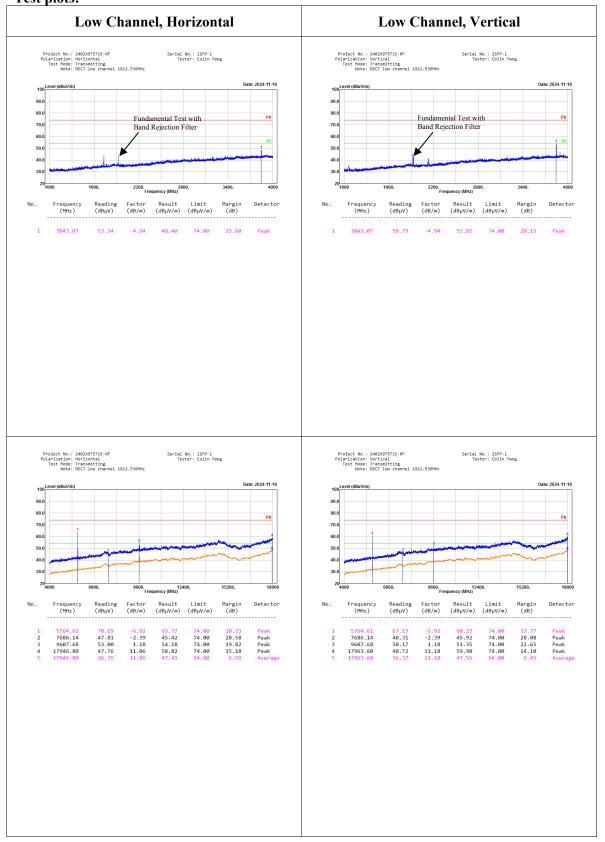
**Corrected Amplitude = Receiver Reading + Factor** 

Factor = Cable loss + Antenna Factor - Amplifier Gain

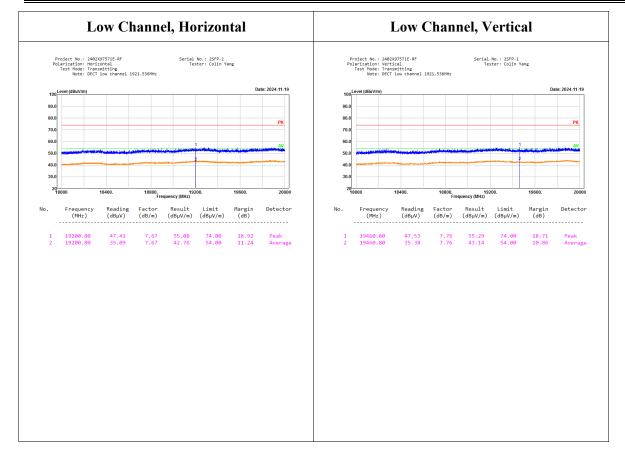
Margin = Limit- Corrected. Amplitude

For AV:

Average Amp. = Peak Measurement@3m + Duty Cycle Correction Factor


Margin = Limit- Average Amp.

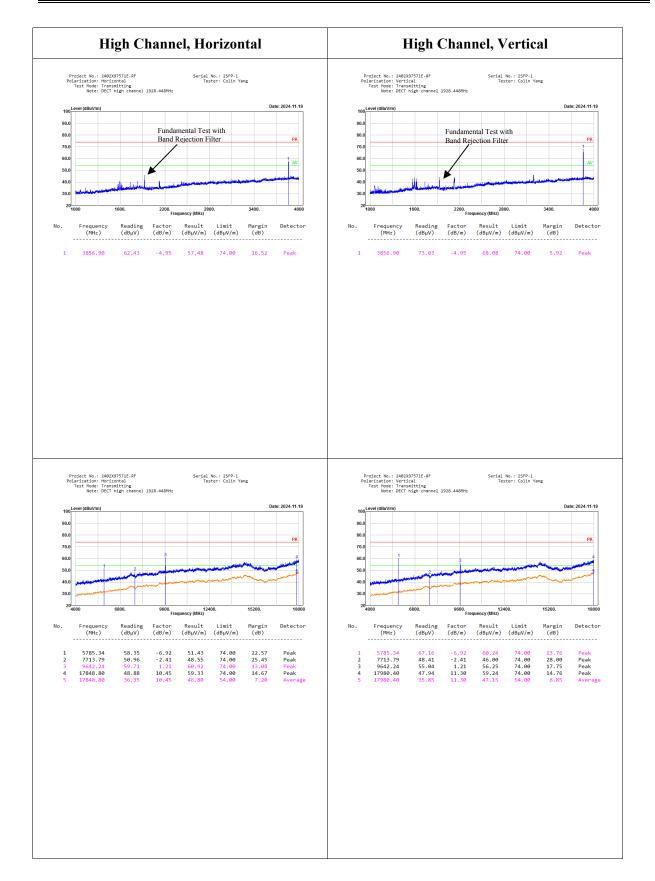
Duty Cycle Correction Factor=20\*log(Ton/(Ton+Toff))=20\*log(0.3587\*10/100)=-28.91


|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ctrum 2 🗶 Spectrum 3 🗶                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| RefLevel 45.00 dBm<br>Att 40 dB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Offset 17.00 dB   RBW 3 MHz  SWT 35 ms   VBW 3 MHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| SGL 40 UB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | • 5W1 35 ms • VBW 3 MH2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                        | -251                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| e 1Pk Cirw                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 40 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | _M1[1]                                                 | 19.39 dBm<br>10.7361 ms                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 30 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | D1[1]                                                  | -0.29 dB<br>358.7 µs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 20dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 131                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Da                                                     | 358.7 µs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 4                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 10 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 0 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| -10 dBm-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| coden las                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | and the second second second                           | crack contract                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | alangering daga talah kalangering kalangering sa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | unter material and reaction and a second second second | chicana chanastracticate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| -30 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| -40 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| -50 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| CF 1.924992 GHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2000 pts                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                        | 3.5 ms/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Marker                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 4                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Type Ref Trc<br>M1 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | X-value Y-value F<br>10.7361 ms 19.39 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | unction Functi                                         | on Result                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| D1 M1 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 358.7 µs -0.29 dB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| D1 M1 1<br>D2 M1 1<br>ProjectNo.:2402X97571E<br>Date: 10.DEC.2024 22:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 9.9892 ms -0.04 dB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| D1         M1         1           D2         M1         1           ProjectNo.:2402X97571E         Date: 10.DEC.2024         22:           Spectrum         Spe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 9.9892 ms -0.04 dB<br>Tester:Jeff Wei<br>10:23<br>ctrum 2 (K) Spectrum 3 (K)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                        | ₩ ₩22555                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| D1         M1         1           D2         M1         1           ProjectNo.:2402X97571E         2402X97571E           Date:         10.DEC.2024         22:           Spectrum         Spe         Spe           Ref Level 45.00 dBm         40 db         40 db                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 9.9892 ms -0.04 dB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| D1 M1 1<br>D2 M1 1<br>ErojectNo.:2402X97571E<br>Date: 10.DEC.2024 22:<br>Spectrum Spe<br>Ref Level 45.00 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 9.9992 ms -0.04 dB<br>Tester:Joff Wel<br>10:23<br>ctrum 2 3 Spectrum 3 XX<br>offset 17.00 dB @ RBW 3 MHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| DI MI I<br>D2 M1 I<br>ProjectNo.:2402X97571E<br>Date: 10.DEC.2024 22:<br>Spectrum Spe<br>RofLevel 45.00 dBm<br>Att 40 dB 4<br>SGL<br>01Pk Clrw                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 9.9992 ms -0.04 dB<br>Tester:Joff Wel<br>10:23<br>ctrum 2 3 Spectrum 3 XX<br>offset 17.00 dB @ RBW 3 MHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                        | (₩<br>▼<br>19.36 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| D1         M1         1           D2         M1         1           ProjectNo.:2402X97571E         22:           Date:         10.DEC.2024         22:           Spectrum         Spec         Spectrum           Stat         40 dB n         5GL           IFk Cirw         40 dBm         40 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 9.9992 ms -0.04 dB<br>Tester:Joff Wel<br>10:23<br>ctrum 2 3 Spectrum 3 XX<br>offset 17.00 dB @ RBW 3 MHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | _M1[1]                                                 | (∰)<br>19.36 dBm<br>27.7915 ms                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| DI MI I<br>D2 M1 I<br>D2 M1 I<br>Date: 10.DEC.2024 22:<br>Spectrum Spe<br>RofLevel 45.00 dBm<br>Att 40 dB 4<br>SGL<br>01Pk: Chw                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 9,9992 ms -0.04 dB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                        | (₩<br>▼<br>19.36 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| D1 M1 1<br>D2 M1 1<br>FrojectNo.:2402X97571<br>Date: 10.DEC.2024 22:<br>Spectrum Spe<br>Ref Level 45.00 dBm<br>• Att 40 dB 4<br>SGL<br>• 1Pk Chw<br>40 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 9.9992 ms -0.04 dB<br>Tester:Joff Wel<br>10:23<br>ctrum 2 3 Spectrum 3 XX<br>offset 17.00 dB @ RBW 3 MHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | _M1[1]                                                 | (TT)<br>▼<br>19.36 dBm<br>27.7915 ms<br>-0.21 dB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| D1         M1         1           D2         M1         1           Date:         10.0EC.2024         22:           SQ         M1         40.0E           SQ         Bm         30.0Em                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 9,9992 ms -0.04 dB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | _M1[1]                                                 | (TT)<br>▼<br>19.36 dBm<br>27.7915 ms<br>-0.21 dB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| DI MI I<br>D2 M1 I<br>D2 M1 I<br>D2 M1 I<br>D4 D2 M1 I<br>D4 D2 D2 M1 I<br>D4 D2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 9,9992 ms -0.04 dB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | _M1[1]                                                 | (TT)<br>▼<br>19.36 dBm<br>27.7915 ms<br>-0.21 dB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| D1 M1 1<br>D2 M1 1<br>D2 M1 1<br>ProjectNo.:2402X97571B<br>Date: 10.DEC.2024 22:<br>Spectrum Spe<br>Ref Level 45.00 dBm<br>e Att 40 dB<br>5GL<br>e 10k Chw<br>40 dBm<br>30 dBm<br>10 dBm<br>0 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 9,9992 ms -0.04 dB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | _M1[1]                                                 | (TT)<br>▼<br>19.36 dBm<br>27.7915 ms<br>-0.21 dB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| D1 M1 1<br>D2 M1 1<br>D2 M1 1<br>Date: 10.DEC.2024 22:<br>Spectrum Spe<br>Ref Level 45.00 dBm<br>Att 40 dB<br>SGL<br>IPk Clrw<br>40 dBm<br>20 dBm<br>10 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 9,9992 ms -0.04 dB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | _M1[1]                                                 | (TT)<br>▼<br>19.36 dBm<br>27.7915 ms<br>-0.21 dB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| D1 M1 1<br>D2 M1 1<br>ProjectNo.:2402X97571<br>Date: 10.DEC.2024 22:<br>Spectrum Spe<br>Rof Level 45.00 dBm<br>e Att 40 dB<br>5GL<br>e 19k Chw<br>40 dBm<br>30 dBm<br>10 dBm<br>0 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 9,9992 ms -0.04 dB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | N1[1]<br>DI[1]<br>                                     | (TT)<br>▼<br>19.36 dBm<br>27.7915 ms<br>-0.21 dB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| D1 M1 1<br>D2 M1 1<br>ProjectNo.:2402X97571E<br>Date: 10.DEC.2024 22:<br>Spectrum Spe<br>Rof Level 45.00 dBm<br>e At 40 dB<br>5GL<br>e 1Pk Chw<br>40 dBm<br>30 dBm<br>10 dBm<br>0 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 9.9992 ms -0.04 dB<br>Tester:Jeff HeI<br>10:23<br>ctrum 2 3 Spectrum 3 XX<br>offset 17.00 dB      RBW 3 MHz<br>SWT<br>100 ms     VBW 3 MHz<br>Mil<br>02<br>02<br>02<br>02<br>02<br>02<br>02<br>0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | N1[1]<br>DI[1]<br>                                     | (TT)<br>▼<br>19.36 dBm<br>27.7915 ms<br>-0.21 dB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| D1 M1 1<br>D2 M1 1<br>D2 M1 1<br>ProjectNo.:2402X97571E<br>Date: 10.DEC.2024 22:<br>Spectrum Spe<br>Ref Level 45.00 dBm<br>At 40 dB<br>5GL<br>0 1Pk Clrw<br>40 dBm<br>20 dBm<br>10 dBm<br>-10 dBm<br>-10 dBm<br>-30 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 9.9992 ms -0.04 dB<br>Tester:Jeff HeI<br>10:23<br>ctrum 2 3 Spectrum 3 XX<br>offset 17.00 dB      RBW 3 MHz<br>SWT<br>100 ms     VBW 3 MHz<br>Mil<br>02<br>02<br>02<br>02<br>02<br>02<br>02<br>0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | N1[1]<br>DI[1]<br>                                     | (TT)<br>▼<br>19.36 dBm<br>27.7915 ms<br>-0.21 dB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| D1 M1 1<br>D2 M1 1<br>D2 M1 1<br>D2 M1 1<br>D2 D2 M1 1<br>D2 D2 D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 9.9992 ms -0.04 dB<br>Tester:Jeff HeI<br>10:23<br>ctrum 2 3 Spectrum 3 XX<br>offset 17.00 dB      RBW 3 MHz<br>SWT<br>100 ms     VBW 3 MHz<br>Mil<br>02<br>02<br>02<br>02<br>02<br>02<br>02<br>0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | N1[1]<br>DI[1]<br>                                     | (TT)<br>▼<br>19.36 dBm<br>27.7915 ms<br>-0.21 dB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| D1 M1 1<br>D2 M1 1<br>D2 M1 1<br>ProjectNo.:2402X97571E<br>Date: 10.DEC.2024 22:<br>Spectrum Spe<br>Rof Level 45.00 dBm<br>Att 40 dB<br>SGL<br>1Pk Chw<br>40 dBm<br>30 dBm<br>10 dBm<br>0 dBm<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 9.9992 ms -0.04 dB<br>Tester:Jeff HeI<br>10:23<br>ctrum 2 3 Spectrum 3 XX<br>offset 17.00 dB      RBW 3 MHz<br>SWT<br>100 ms     VBW 3 MHz<br>Mil<br>02<br>02<br>02<br>02<br>02<br>02<br>02<br>0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | N1[1]<br>DI[1]<br>                                     | (TT)<br>▼<br>19.36 dBm<br>27.7915 ms<br>-0.21 dB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| D1 M1 1<br>D2 M1 1<br>ProjectNo.:2402X97571E<br>Date: 10.0EC.2024 22:<br>Spectrum Spe<br>Ref Level 45.00 d8m<br>Att 40 d8<br>5GL<br>9 IPk Clrw<br>40 d8m<br>10 d8m<br>10 d8m<br>-10 d8m<br>-30 d8m<br>-50  | 9.9992 ms -0.04 dB<br>Tester:Jeff HeI<br>10:23<br>ctrum 2 3 Spectrum 3 XX<br>offset 17.00 dB      RBW 3 MHz<br>SWT<br>100 ms     VBW 3 MHz<br>Mil<br>02<br>02<br>02<br>02<br>02<br>02<br>02<br>0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | N1[1]<br>DI[1]<br>                                     | (TT)<br>▼<br>19.36 dBm<br>27.7915 ms<br>-0.21 dB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| D1         M1         1           D2         M1         1           ProjectNo.:2402X97571E         Date:         10.0EC.2024           Date:         10.0EC.2024         22:           Spectrum         Spec         Rof Level 45.00 dBm           Att         40 dB         5GL           State:         1Pk Chw         40 dBm           40 dBm         30 dBm         20 dBm           10 dBm         0 dBm         -           -30 dBm         -         -           -50 dBm         -         -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 9.9892 ms -0.04 dB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                        | (₩)<br>19.36 dBm<br>27.7915 ms<br>-0.21 dB<br>409.0 µs<br>-0.21 dB<br>-0.21 d |
| D1         M1         1           D2         M1         1           ProjectNo.:2402X975718         Date:         10.DEC.2024           Date:         10.DEC.2024         22:           Spectrum         Spec         Ref Level 45.00 dBm           Att         40 dB         5GL           G1Pk Chw         40 dBm         30 dBm           20 dBm         10 dBm         10 dBm           10 dBm         0 dBm         -30 dBm           -30 dBm         -30 dBm         -30 dBm           -50 dBm         -50 dBm         -50 dBm           -50 dBm         -50 dBm         -50 dBm           -50 dBm         -50 dBm         -50 dBm           -50 dBm         1         1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 9.9992 ms -0.04 dB<br>Tester:Jeff HeI<br>10:23<br>ctrum 2 3<br>Spectrum 3 (X<br>SWT 100 ms VBW 3 MHz<br>SWT 100 ms VBW 3 MHz<br>SWT 100 ms VBW 3 MHz<br>CT 00 ms VBW 3 MHz<br>SWT 100 ms VBW 3 MHz<br>SWT 200 ms 200 ms Mz<br>SWT 200 ms 200 ms<br>SWT 200 ms 200 ms<br>SWT 200 ms<br>S                                                                                                                                                                                                                                                                                                                        |                                                        | (Тта)<br>19.36 dBm<br>27.7915 ms<br>-0.21 dB<br>409.0 µs<br>-0.21 dB<br>-0.21 dB<br>-0.2  |
| D1 M1 1<br>D2 M1 1<br>D2 M1 1<br>ProjectNo.:2402X87571E<br>Date: 10.DEC.2024 22:<br>Spectrum Spe<br>Ref Level 45.00 dBm<br>Att 40 dB<br>SGL<br>0 19k Clrw<br>40 dBm<br>20 dBm<br>10 dBm<br>10 dBm<br>-10 dBm<br>-30 dBm<br>-30 dBm<br>-50 dBm<br>-50 dBm<br>-10 d | 9.9892 ms -0.04 dB<br>TesteriJeff Wei<br>10:23<br>ctrum 2 3 Spectrum 3 X<br>offset 17:00 dB = RBW 3 MHz<br>SWT 100 ms = VBW 3 MHz<br>SWT 100 ms = VBW 3 MHz<br>IIII 02<br>IIII 02<br>IIIII 02<br>IIII 02<br>IIIII 02<br>IIII 02<br>IIIII 02<br>IIII 02<br>IIIII 02<br>IIIIII 02<br>IIIIIII 02<br>IIIIIII 02<br>IIIII 02<br>IIIIIII |                                                        | (₩)<br>19.36 dBm<br>27.7915 ms<br>-0.21 dB<br>409.0 µs<br>-0.21 dB<br>-0.21 d |

### Report No.: 2402X97571E-RF-00A

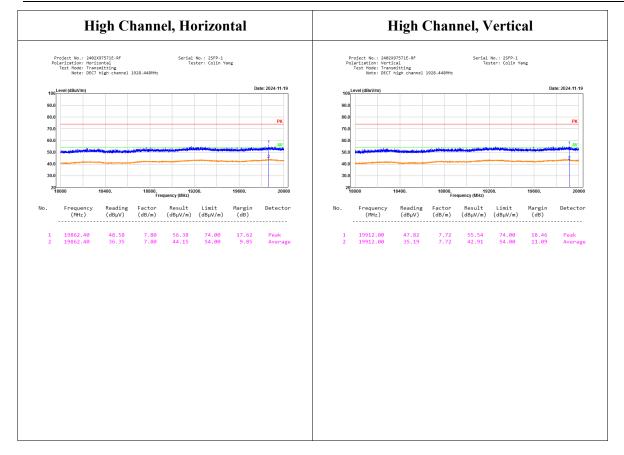
**Test plots:** 




Page 40 of 64






|              | ject No.: 2402<br>rization: Hori<br>est Mode: Tran<br>Note: DECT | zontal                  | l 1924.992MH;    | Tes                  | No.: 2SFP-1<br>ster: Colin Ya | ng             |                 | Pol              | oject No.: 2402)<br>arization: Verti<br>Test Mode: Trans<br>Note: DECT | ical                     | 1 1924.992MH          | Te                   | No.: 2SFP-1<br>ster: Colin Ya | ing            |                 |
|--------------|------------------------------------------------------------------|-------------------------|------------------|----------------------|-------------------------------|----------------|-----------------|------------------|------------------------------------------------------------------------|--------------------------|-----------------------|----------------------|-------------------------------|----------------|-----------------|
| 100          | vel (dBuV/m)                                                     |                         |                  |                      |                               | Da             | ate: 2024-11-19 | 100 <sup>L</sup> | evel (dBuV/m)                                                          |                          |                       |                      |                               | D              | nte: 2024-11-19 |
| 90.0         |                                                                  |                         |                  |                      |                               |                |                 | 90.0             |                                                                        |                          |                       |                      |                               |                |                 |
| 80.0         |                                                                  |                         |                  | _                    |                               |                | PK              | 80.0             |                                                                        |                          |                       |                      |                               |                | РК              |
| 70.0         |                                                                  |                         |                  |                      |                               |                |                 | 70.0             |                                                                        |                          |                       |                      |                               |                |                 |
| 60.0<br>50.0 |                                                                  | ويتباعدون فالموس ماجاره |                  | -                    |                               |                | u               | 60.0<br>50.0     | an a                               | فللمراجع أسالهم والمحامة | . اور دی ایک سرار اور | -                    |                               |                |                 |
| 40.0         |                                                                  |                         |                  |                      | 2                             |                |                 | 40.0             |                                                                        |                          |                       |                      |                               |                |                 |
| 30.0         |                                                                  |                         |                  |                      |                               |                |                 | 30.0             |                                                                        |                          |                       |                      |                               |                |                 |
| 20<br>18     | 00                                                               | 18400.                  | 18800.<br>Fre    | 192<br>Equency (MHz) | 200.                          | 19600.         | 20000           | 20<br>18         | 000                                                                    | 18400.                   | 18800.<br>Fre         | 192<br>Equency (MHz) | 200.                          | 19600.         | 2000            |
| No.          | Frequency<br>(MHz)                                               | Reading<br>(dBµV)       | Factor<br>(dB/m) | Result<br>(dBµV/m)   | Limit<br>(dBµV/m)             | Margin<br>(dB) | Detector        | No.              | Frequency<br>(MHz)                                                     | Reading<br>(dBμV)        | Factor<br>(dB/m)      | Result<br>(dBµV/m)   | Limit<br>(dBµV/m)             | Margin<br>(dB) | Detecto         |
| 1<br>2       | 19226.80<br>19226.80                                             | 48.40<br>36.37          | 7.68<br>7.68     | 56.08<br>44.05       | 74.00<br>54.00                | 17.92<br>9.95  | Peak<br>Average | 1<br>2           | 19911.20<br>19911.20                                                   | 48.25<br>36.18           | 7.72<br>7.72          | 55.97<br>43.90       | 74.00<br>54.00                | 18.03<br>10.10 | Peak<br>Average |
|              |                                                                  |                         |                  |                      |                               |                |                 |                  |                                                                        |                          |                       |                      |                               |                |                 |
|              |                                                                  |                         |                  |                      |                               |                |                 |                  |                                                                        |                          |                       |                      |                               |                |                 |
|              |                                                                  |                         |                  |                      |                               |                |                 |                  |                                                                        |                          |                       |                      |                               |                |                 |
|              |                                                                  |                         |                  |                      |                               |                |                 |                  |                                                                        |                          |                       |                      |                               |                |                 |
|              |                                                                  |                         |                  |                      |                               |                |                 |                  |                                                                        |                          |                       |                      |                               |                |                 |
|              |                                                                  |                         |                  |                      |                               |                |                 |                  |                                                                        |                          |                       |                      |                               |                |                 |
|              |                                                                  |                         |                  |                      |                               |                |                 |                  |                                                                        |                          |                       |                      |                               |                |                 |

### Report No.: 2402X97571E-RF-00A



Page 44 of 64





### 5.3 Emission Bandwidth

### **Test Information:**

| Serial No.: | 2SFP-5   | Test Date:   | 2024/12/10   |
|-------------|----------|--------------|--------------|
| Test Site:  | RF       | Test Mode:   | Transmitting |
| Tester:     | Jeff Wei | Test Result: | Pass         |

### **Environmental Conditions:**

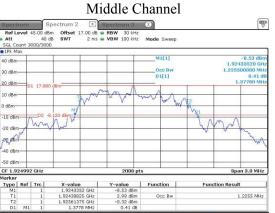
| Temperature:<br>(°C): | 24.2 | Relative<br>Humidity:<br>(%) | 42 | ATM Pressure:<br>(kPa) | 101.1 |
|-----------------------|------|------------------------------|----|------------------------|-------|
|-----------------------|------|------------------------------|----|------------------------|-------|

### **Test Equipment List and Details:**

| Manufacturer | Description                           | Model     | Serial Number | Calibration<br>Date | Calibration<br>Due Date |
|--------------|---------------------------------------|-----------|---------------|---------------------|-------------------------|
| R&S          | Spectrum Analyzer                     | FSV40     | 101947        | 2024/9/5            | 2025/9/4                |
| R&S          | Digital Radio<br>Communication Tester | CMD 60M   | 846956/010    | 2024/10/22          | 2025/10/21              |
| R&S          | Coaxial Attenuator                    | 10dB      | F-08-EM512    | 2024/6/13           | 2025/6/12               |
| Gongee       | Coaxial Power<br>Splitters & Combiner | PD-0/6-2S | RF20230800110 | 2024/1/15           | 2025/1/14               |
| Unknown      | Coaxial Cable                         | C-SJSJ-50 | C-0060-02     | 2024/6/1            | 2025/5/31               |
| Unknown      | Coaxial Cable                         | C-SJSJ-50 | C-0060-03     | 2024/6/1            | 2025/5/31               |

\* Statement of Traceability: Bay Area Compliance Laboratories Corp. (Dongguan) attests that all calibrations have been performed, traceable to National Primary Standards and International System of Units (SI).

### **Test Data:**


| Test Channel | Test Frequency<br>(MHz) | 99% Emission<br>Bandwidth<br>(MHz) | 26 dB Emission<br>Bandwidth<br>(MHz) | Limit                                 |
|--------------|-------------------------|------------------------------------|--------------------------------------|---------------------------------------|
| Lowest       | 1921.536                | 1.220                              | 1.451                                | $50 \text{ kHz} \sim 2.5 \text{ MHz}$ |
| Middle       | 1924.992                | 1.226                              | 1.378                                | $50 \text{ kHz} \sim 2.5 \text{ MHz}$ |
| Highest      | 1928.448                | 1.218                              | 1.455                                | 50 kHz ~ 2.5 MHz                      |



ProjectNo.:2402X97571E Tester:Jeff Wei Date: 10.DEC.2024 21:18:33



ProjectNo.:2402X97571E Tester:Jeff Wei Date: 10.DEC.2024 21:29:37



ProjectNo.:2402X97571E Tester:Jeff Wei Date: 10.DEC.2024 21:21:33

Report Template Version: FCC-15D-V1.0

Report No.: 2402X97571E-RF-00A

### 5.4 Peak Transmit Power

### **Test Information:**

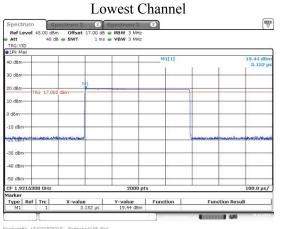
| Serial No.: | 2SFP-5   | Test Date:   | 2024/12/10   |
|-------------|----------|--------------|--------------|
| Test Site:  | RF       | Test Mode:   | Transmitting |
| Tester:     | Jeff Wei | Test Result: | Pass         |

### **Environmental Conditions:**

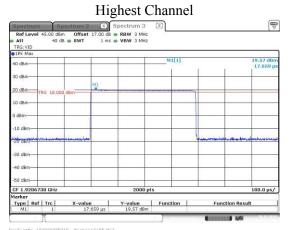
| Temperat<br>( | ure:<br>°C): | 24.2 | Relative<br>Humidity:<br>(%) | 42 | ATM Pressure:<br>(kPa) | 101.1 |  |
|---------------|--------------|------|------------------------------|----|------------------------|-------|--|
|---------------|--------------|------|------------------------------|----|------------------------|-------|--|

### **Test Equipment List and Details:**

| Manufacturer | Description                           | Model     | Serial Number | Calibration<br>Date | Calibration<br>Due Date |
|--------------|---------------------------------------|-----------|---------------|---------------------|-------------------------|
| R&S          | Spectrum Analyzer                     | FSV40     | 101947        | 2024/9/5            | 2025/9/4                |
| R&S          | Digital Radio<br>Communication Tester | CMD 60M   | 846956/010    | 2024/10/22          | 2025/10/21              |
| R&S          | Coaxial Attenuator                    | 10dB      | F-08-EM512    | 2024/6/13           | 2025/6/12               |
| Gongee       | Coaxial Power<br>Splitters & Combiner | PD-0/6-2S | RF20230800110 | 2024/1/15           | 2025/1/14               |
| Unknown      | Coaxial Cable                         | C-SJSJ-50 | C-0060-02     | 2024/6/1            | 2025/5/31               |
| Unknown      | Coaxial Cable                         | C-SJSJ-50 | C-0060-03     | 2024/6/1            | 2025/5/31               |


\* Statement of Traceability: Bay Area Compliance Laboratories Corp. (Dongguan) attests that all calibrations have been performed, traceable to National Primary Standards and International System of Units (SI).

### **Test Data:**


| Test Channel | Frequency<br>(MHz) | Peak Transmit Power<br>(dBm) | Limit<br>(dBm) |
|--------------|--------------------|------------------------------|----------------|
| Lowest       | 1921.536           | 19.44                        | 20.81          |
| Middle       | 1924.992           | 19.45                        | 20.70          |
| Highest      | 1928.448           | 19.57                        | 20.81          |

Note:

For FCC: Peak Transmit Power Limit =  $100(EBW)^{1/2} \mu W$ 



ProjectNo.:2402X97571E Tester:Jeff Wei Date: 10.DEC.2024 21:44:40



ProjectNo.:2402X97571E Tester:Jeff Wei Date: 10.DEC.2024 21:37:50

### Middle Channel Spectrum 2 (K) Spectrum 3 (K) .00 dBm Offset 17.00 dB = RBW 3 MHz 40 dB = SWT 1 ms = VBW 3 MHz Ref Att TRG: VI 1Pk M M1[1] 19.45 dBr 1.651 µ iO dBm 30 dBn 20 dBm-G 18. 0 dBn dBm -10 dBm 30 dBm 40 dBm -50 dBm 2000 pts CF 1.9249283 GHz 100.0 µs/ Type Ref Trc M1 1 X-value Y-value Function 1.651 μs 19.45 dBm Function Result 11.010 III 4/0

ProjectNo.:2402X97571E Tester:Jeff Wei Date: 10.DEC.2024 21:49:04

# Report No.: 2402X97571E-RF-00A

Page 49 of 64

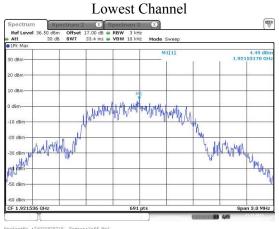
## 5.5 Power Spectral Density

### **Test Information:**

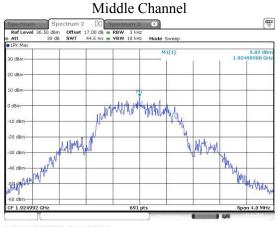
| Serial No.: | 2SFP-5   | Test Date:   | 2024/12/11   |
|-------------|----------|--------------|--------------|
| Test Site:  | RF       | Test Mode:   | Transmitting |
| Tester:     | Jeff Wei | Test Result: | Pass         |

### **Environmental Conditions:**

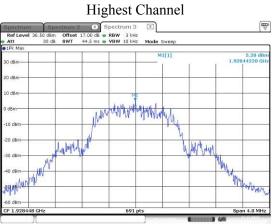
| Temperature:<br>(°C): | 25.7 | Relative<br>Humidity:<br>(%) | 44 | ATM Pressure:<br>(kPa) | 101.8 |
|-----------------------|------|------------------------------|----|------------------------|-------|
|-----------------------|------|------------------------------|----|------------------------|-------|


### **Test Equipment List and Details:**

| Manufacturer | Description                              | Model     | Serial Number     | Calibration<br>Date | Calibration<br>Due Date |
|--------------|------------------------------------------|-----------|-------------------|---------------------|-------------------------|
| R&S          | Spectrum Analyzer                        | FSV40     | 101947            | 2024/9/5            | 2025/9/4                |
| R&S          | Digital Radio<br>Communication<br>Tester | CMD 60M   | 846956/010        | 2024/10/22          | 2025/10/21              |
| R&S          | Coaxial Attenuator                       | 10dB      | F-08-EM512        | 2024/6/13           | 2025/6/12               |
| Gongee       | Coaxial Power<br>Splitters & Combiner    | PD-0/6-2S | RF202308001<br>10 | 2024/1/15           | 2025/1/14               |
| Unknown      | Coaxial Cable                            | C-SJSJ-50 | C-0060-02         | 2024/6/1            | 2025/5/31               |
| Unknown      | Coaxial Cable                            | C-SJSJ-50 | C-0060-03         | 2024/6/1            | 2025/5/31               |


\* Statement of Traceability: Bay Area Compliance Laboratories Corp. (Dongguan) attests that all calibrations have been performed, traceable to National Primary Standards and International System of Units (SI).

### **Test Data:**


| Test Channel | Test Frequency<br>(MHz) | Power Spectral Density |         | Limit<br>(mW/3kHz) |
|--------------|-------------------------|------------------------|---------|--------------------|
|              |                         | dBm/3kHz               | mW/3kHz | (III W/ SKITZ)     |
| Lowest       | 1921.536                | 0.43                   | 1.104   | 3                  |
| Middle       | 1924.992                | 0.55                   | 1.135   | 3                  |
| Highest      | 1928.448                | -1.00                  | 0.794   | 3                  |

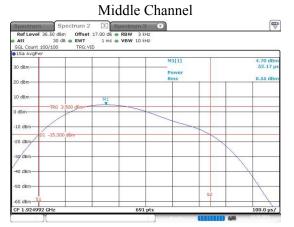


ProjectNo.:2402X97571E Tester:Jeff Wei Date: 11.DEC.2024 21:38:52



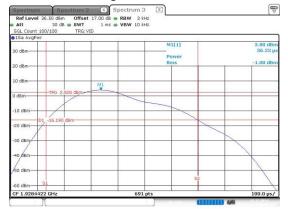
ProjectNo.:2402X97571E Tester:Jeff Wei Date: 11.DEC.2024 21:45:19




ProjectNo.:2402X97571E Tester:Jeff Wei Date: 11.DEC.2024 22:01:23



Report No.: 2402X97571E-RF-00A


# Spectrum Spectrum 3 Image: Construct of the sector of the

ProjectNo.:2402X97571E Tester:Jeff Wei Date: 11.DEC.2024 21:43:04



ProjectNo.:2402X97571E Tester:Jeff Wei Date: 11.DEC.2024 21:58:53

### Highest Channel



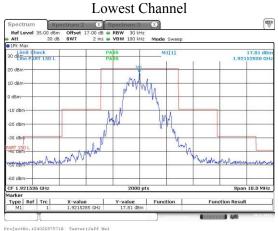
ProjectNo.:2402X97571E Tester:Jeff Wei Date: 11.DEC.2024 22:06:14

### 5.6 Emission Inside and Outside the Sub-band

**Test Information:** 

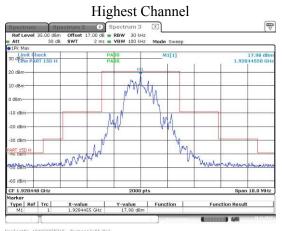
| Serial No.: | 2SFP-5   | Test Date:   | 2024/12/10   |
|-------------|----------|--------------|--------------|
| Test Site:  | RF       | Test Mode:   | Transmitting |
| Tester:     | Jeff Wei | Test Result: | Pass         |

### **Environmental Conditions:**

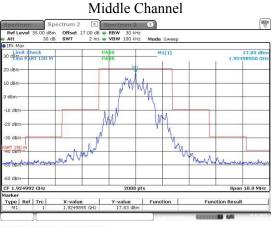

| Temperature:<br>(°C): 24.2 | 2 Rela<br>2 Humio |  | ATM Pressure:<br>(kPa) | 101.1 |
|----------------------------|-------------------|--|------------------------|-------|
|----------------------------|-------------------|--|------------------------|-------|

### **Test Equipment List and Details:**

| Manufacturer | Description                              | Model     | Serial Number     | Calibration<br>Date | Calibration<br>Due Date |
|--------------|------------------------------------------|-----------|-------------------|---------------------|-------------------------|
| R&S          | Spectrum Analyzer                        | FSV40     | 101947            | 2024/9/5            | 2025/9/4                |
| R&S          | Digital Radio<br>Communication<br>Tester | CMD 60M   | 846956/010        | 2024/10/22          | 2025/10/21              |
| R&S          | Coaxial Attenuator                       | 10dB      | F-08-EM512        | 2024/6/13           | 2025/6/12               |
| Gongee       | Coaxial Power<br>Splitters & Combiner    | PD-0/6-2S | RF202308001<br>10 | 2024/1/15           | 2025/1/14               |
| Unknown      | Coaxial Cable                            | C-SJSJ-50 | C-0060-02         | 2024/6/1            | 2025/5/31               |
| Unknown      | Coaxial Cable                            | C-SJSJ-50 | C-0060-03         | 2024/6/1            | 2025/5/31               |


\* Statement of Traceability: Bay Area Compliance Laboratories Corp. (Dongguan) attests that all calibrations have been performed, traceable to National Primary Standards and International System of Units (SI).

### **Test Data:**




### Unwanted Emission inside the Sub-band

ProjectNo.:2402X97571E Tester:Jeff Wei Date: 10.DEC.2024 22:41:24



ProjectNo.:2402X97571E Tester:Jeff Wei Date: 10.DEC.2024 22:48:19



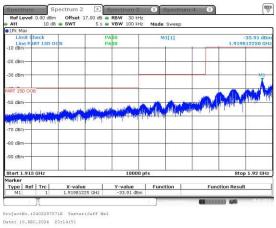
ProjectNo.:2402X97571E Tester:Jeff Wei Date: 10.DEC.2024 22:24:19

### Low Channel (Unwanted Emission outside the Sub-band)

 
 Spectrum
 Spectrum 3
 Spectrum 4
 Spectrum4 Limit Check M1[1] -45.13 dB PABS Line F 30 dBm— RT 15D 0 RT 150 50 dBm-60 dBm-80 dBm-90 dBm 100 dBm -110 dBm Stop 1.915 GHz Start 30.0 M 1000 
 Marker
 Ref
 Trc
 X-value
 Y-value
 Function

 M1
 1
 960.72 MHz
 -45.13 dBm

 Function Result **GH** (1000000) 4/6


ProjectNo.:2402X97571E Tester:Jeff Wei Date: 10.DEC.2024 23:11:54

| 1Pk Max                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | dB 🖷 SWT 🛛 S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | s 🖶 VBW 100 ki                    | Hz Mode Sweep                 |                               |                                |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|-------------------------------|-------------------------------|--------------------------------|
| Limit Check                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | PABS                              | M1[1]                         |                               | -59.37 dB                      |
| Line PART 15D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | OCB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | PASS                              | WI[1]                         | 1.2                           | -39.37 0B<br>930169250 GF      |
| ART 15D OOB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                   |                               | 1                             | -                              |
| TIME T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                   |                               |                               |                                |
| 20 dBm-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                   |                               |                               | _                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                   |                               |                               |                                |
| 30 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                   |                               |                               |                                |
| 40 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                   |                               |                               |                                |
| 40 GBin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                   |                               |                               |                                |
| 50 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                   |                               |                               |                                |
| M1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                   |                               |                               |                                |
| 60 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                   |                               |                               |                                |
| Lefter en                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ministration and an and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | in the second state of the second | all is part of the three of a | dellar deserve by endered and | Abielluna des la dilla         |
| and a state of the | and in the local state of the second state of | -                                 | -                             | in a particular properties    | a new property of the property |
| 25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                   |                               |                               |                                |
| 80 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | _                                 |                               |                               |                                |
| 00.40-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                   |                               | 2 2                           |                                |
| 90 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                   |                               |                               |                                |
| Start 1.93 GHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1000                              | 0 pts                         | 8                             | top 1.935 GH:                  |
| larker                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                   |                               |                               |                                |
| Type   Ref   Trc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | X-value                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Y-value                           | Function                      | Function R                    | esult                          |

ProjectNo.:2402X97571E Tester:Jeff Wei Date: 10.DEC.2024 23:15:35

| Spectrum Spectrum 2                                                              |             | pectrum 3    | and the second s | Spectrun   | n4 🛛         |                      | <b>U</b>                |
|----------------------------------------------------------------------------------|-------------|--------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|--------------|----------------------|-------------------------|
| Ref Level -20.00 dBm Offse<br>Att 10 dB = SWT                                    |             | RBW 30 k     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | e Sweep    |              |                      |                         |
| 1Pk Max                                                                          | 20.3        | - 1011 100 H | n. mou                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | e sweep    |              |                      |                         |
| Limit Check<br>Line PART 15D OGB                                                 |             | 38<br>38     | М                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1[1]       |              |                      | -60.81 dBn<br>.42580 GH |
| 50 GBII                                                                          |             |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |              |                      |                         |
| RT 15D OOB                                                                       |             |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            | -            |                      | 1                       |
| 50 dBm                                                                           |             | -            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            | -            | -                    | -                       |
|                                                                                  |             |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            | M            |                      |                         |
| 50 dBm                                                                           | 1 A A       |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | a bland on | a Builder    | i cain sele de a     | all way the             |
| 10 dBm                                                                           |             |              | light the sector of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |            | A Management | participation in the | a second a              |
| 30 dBm                                                                           |             |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |              |                      |                         |
| 90 dBm                                                                           |             |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            | -            |                      |                         |
| 100 dBm                                                                          |             |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -          | -            |                      | -                       |
| 110 dBm                                                                          | -           |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -          | -            |                      |                         |
| tart 3.0 GHz                                                                     |             | 10000        | pts                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |            |              | Sto                  | p 20.0 GHz              |
| arker                                                                            | - 1         | March 1      | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |            |              |                      |                         |
| Type         Ref         Trc         X-valu           M1         1         15.42 | e<br>58 GHz | -60.81 dBm   | Fund                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ion        | Fund         | tion Resul           | (                       |

ProjectNo.:2402X97571E Tester:Jeff Wei Date: 10.DEC.2024 23:18:11



| Att                         | 10 dB 🖶 SWT          | 35               | BW 100 kHz M                | ode Sweep            |                          |                           |
|-----------------------------|----------------------|------------------|-----------------------------|----------------------|--------------------------|---------------------------|
| Limit Check<br>Line PART 15 | DOCB                 | PASS<br>PASS     |                             | M1[1]                |                          | -48.50 dBn<br>2.305890 GH |
| -30 GBW                     |                      |                  |                             |                      |                          |                           |
| -50 dBm                     |                      | M1               |                             |                      |                          |                           |
| -60 dBm                     |                      |                  |                             |                      |                          |                           |
| and and the stand of        | un elusia el ere ave | LIL CALLER STOLE | o to an all a state all the | and a sub-set of the | Baselie, du line ; la se |                           |
| -80 dBm                     |                      |                  |                             |                      |                          |                           |
|                             |                      |                  |                             | -                    |                          |                           |
| -90 dBm                     |                      |                  |                             |                      |                          |                           |
| -90 dBm                     |                      | -                | -                           | -                    |                          |                           |
| 21                          |                      |                  |                             |                      |                          |                           |

ProjectNo.:2402X97571E Tester:Jeff Wei Date: 10.DEC.2024 23:16:12

### Middle Channel (Unwanted Emission outside the Sub-band)

 
 Spectrum
 Spectrum 3
 Spectrum 4
 Spectrum4 Limit Che M1[1] -53.06 dB 1.732250 GF eck PABS S0 dBm-RT 15D 0 RT 150 50 dBm-60 dBm 80 dBm-90 dBm 100 dBn -110 dBm Stop 1.915 GHz Start 30.0 1000 
 Marker
 Function
 Y-value
 Y-value
 Function

 M1
 1
 1.73225 GHz
 -53.06 dBm
 -53.06 dBm
 Function Result **GH** (1000000) 4/6

ProjectNo.:2402X97571E Tester:Jeff Wei Date: 10.DEC.2024 23:08:02

| Att 10 dB 🖶 SWT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 5 s 🖶 VBV             | V 100 KHZ Mod                             | e Sweep   |                 |         |                |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|-------------------------------------------|-----------|-----------------|---------|----------------|
| ●1Pk Max                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                       |                                           |           |                 |         |                |
| Limit Check<br>Line PART 15D OOB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | PASS                  |                                           | M1[1]     |                 | 1 9 2 0 | -54.47 dB      |
| PART 15D OOB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1.600                 |                                           | 1         | 1               | 1.000   | 012200 01      |
| allor.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                       |                                           |           |                 |         |                |
| -20 dBm-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                       |                                           | -         |                 | 0       |                |
| -30 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                       |                                           |           |                 |         |                |
| -So dalli                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                       |                                           |           |                 |         |                |
| -40 dBm-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                       |                                           |           |                 |         |                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |                                           |           |                 |         |                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |                                           |           |                 |         |                |
| •50 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                       |                                           |           | -               | -       |                |
| Y                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                       |                                           |           |                 |         |                |
| Y                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ale at hy painting of | na lakenda hat an ta                      | simula at | di konta stal l |         | adread. J. Mar |
| Anna an an ann an Aline an Aline an Aline an Anna Anna Anna Anna Anna Anna Anna                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |                                           |           |                 |         |                |
| Y                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                       |                                           |           |                 |         |                |
| Terrando and a second s |                       |                                           |           |                 |         |                |
| Anna an an ann an Aline an Aline an Aline an Anna Anna Anna Anna Anna Anna Anna                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |                                           |           |                 |         |                |
| <mark>A service de la constance de la constanc</mark>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                       |                                           |           |                 |         |                |
| -80 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                       |                                           |           |                 |         |                |
| An and the problem of |                       |                                           |           |                 |         |                |
| -90 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                       | 4, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19 |           |                 |         |                |

ProjectNo.:2402X97571E Tester:Jeff Wei Date: 10.DEC.2024 23:04:59

| Att 10 dB 👄 SWT                  | 20 9            | - VBW 10 | 0 kHz Mod | ie Sweep     | 6              |                          |
|----------------------------------|-----------------|----------|-----------|--------------|----------------|--------------------------|
| ●1Pk Max                         |                 |          |           |              |                |                          |
| Limit Check<br>Line PART 15D OOB |                 | PASS     | M         | 1[1]         | e e            | -47.45 dBn<br>3.84920 GH |
| -Su ubin                         |                 |          |           |              |                |                          |
| -50 dam                          |                 |          | -         |              |                |                          |
| -60 dBm                          |                 | مسععد    | and make  | . A. Markela | A HIGH MARKING | the formation of the     |
| -70 dBm                          | A second second |          |           |              |                |                          |
| -80 dBm                          | -               | _        |           |              |                |                          |
| -90 dBm                          | -               | -        |           |              |                |                          |
| -100 dBm                         | -               | -        |           |              |                |                          |
| -110 dBm                         |                 | -        | -         |              |                |                          |
| Start 3.0 GHz                    |                 | 1000     | 10 pts    |              |                | Stop 20.0 GHz            |
| Marker                           |                 |          | 1         |              |                |                          |
| Type Ref Trc X-value             | 492 GHz         | -47,45 d | Func      | tion         | Functio        | in Result                |

ProjectNo.:2402X97571E Tester:Jeff Wei Date: 10.DEC.2024 23:19:44

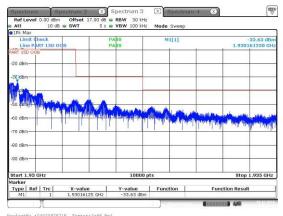
| Limit Check                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | PAB                           |                   | M1[1]                                    |                                                                                                                                                                                                                                                                   |                                            | 54.60 dB     |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|-------------------|------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------|--------------|
| Line PART 15D OOB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | PASS                          |                   |                                          |                                                                                                                                                                                                                                                                   | 1.9198                                     | 71750 GF     |
| 20 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                               |                   |                                          |                                                                                                                                                                                                                                                                   |                                            |              |
| 30 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                               |                   |                                          |                                                                                                                                                                                                                                                                   |                                            |              |
| So obin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                               |                   |                                          | _                                                                                                                                                                                                                                                                 |                                            |              |
| ART 15D OOB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                               |                   |                                          | _                                                                                                                                                                                                                                                                 |                                            |              |
| ant 130 000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                               |                   |                                          |                                                                                                                                                                                                                                                                   |                                            |              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                               |                   |                                          | -                                                                                                                                                                                                                                                                 |                                            | MI           |
| 50 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Tatad Californi Misson multik |                   | akin kin kini kini kini kini kini kini k | diffe (Line Mar. died                                                                                                                                                                                                                                             | Manalaka di Marana                         | No.          |
| 50 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                               | matter by service | chela Millipla Minace                    | d start frankrave dans                                                                                                                                                                                                                                            | N <sub>e</sub> National News               | Kilon (Maria |
| 50 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | in Cherry Maragarith          |                   | alata da sere                            | diter for the dist                                                                                                                                                                                                                                                | natagia <sup>di</sup> tera                 |              |
| 50 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                               |                   |                                          | Jan Jáchar, Jan                                                                                                                                                                                                                                                   | Ng Kalipin <sup>Da</sup> lang<br>Pagina da |              |
| 50 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                               |                   |                                          | d fan ji den ster en den st<br>set en ser en<br>set en ser en | n an   |              |
| 50 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                               | 10000 pt          |                                          |                                                                                                                                                                                                                                                                   | an <del>te e t</del> a                     | 1.92 GH2     |
| 50 dBm<br>-60 dBm<br>-60 dBm<br>-60 dBm<br>-90 dBm<br>-90 dBm<br>-91 SGH2<br>-91 |                               |                   |                                          |                                                                                                                                                                                                                                                                   | an <del>te e t</del> a                     |              |

Date: 10.DEC.2024 23:06:18

 
 Spectrum
 Offset
 Spectrum
 Offset
 Spectrum
 Spectrum
 Spectrum
 A

 Ref Level
 -20.00 d8m
 Offset
 17.00 d8
 8 RBW
 30 kHz
 Node
 Spectrum
 4

 10 d8
 SWT
 5 s
 VBW
 100 kHz
 Mode
 Sweep


 Max
 Max
 Sweep
 Spectrum
 4
 10 kHz
 Node
 Sweep
  $(\mathbf{x})$  Att
 1Pk Max -51.57 dBn 309510 GH M1[1] Limit Check PABS Line PA 30 dBm ART 150 0 -50 dBm--60 dBm-the state 80 dBm--90 dBm--100 dBm -110 dBm Start 1.935 GHz Marker 1000 Stop 3.0 GHz Marker Type Ref Trc M1 1 Function Result Contracting 440

ProjectNo.:2402X97571E Tester:Jeff Wei Date: 10.DEC.2024 23:04:13

### High Channel (Unwanted Emission outside the Sub-band)

| 1Pk Max                                                                                                          |                             |                              | 1997 C              |                                    |
|------------------------------------------------------------------------------------------------------------------|-----------------------------|------------------------------|---------------------|------------------------------------|
| Limit Check<br>Line PART 15D OOB<br>-30 dBm                                                                      | PASS<br>PASS                | M1[1]                        | 1                   | -46.64 dBn<br>964.110 MH;          |
| ART 15D OOB                                                                                                      |                             | ML                           | -                   |                                    |
| -50 dBm                                                                                                          |                             |                              |                     | 1                                  |
| -60 dBm                                                                                                          |                             |                              |                     |                                    |
| and the second | nd on the government of the | and the second second second | Name and the second | and and dealer where a life dealer |
| -80 dBm                                                                                                          |                             |                              |                     |                                    |
| -90 dBm                                                                                                          |                             | _                            |                     |                                    |
| -100 dBm                                                                                                         |                             |                              |                     |                                    |
| -110 dBm                                                                                                         |                             |                              |                     | s is                               |
| Start 30.0 MHz                                                                                                   |                             | 10000 pts                    |                     | Stop 1.915 GHz                     |
| Marker                                                                                                           |                             |                              |                     |                                    |

ProjectNo.:2402X97571E Tester:Jeff Wei Date: 10.DEC.2024 22:58:35



ProjectNo.:2402X97571E Tester:Jeff Wei Date: 10.DEC.2024 23:01:54

| Spectr     |                       | -      | ctrum       |                 |              | trum 3                | X           | Spectrun  | n4 🛛         |                  | 1                       |
|------------|-----------------------|--------|-------------|-----------------|--------------|-----------------------|-------------|-----------|--------------|------------------|-------------------------|
| Ref Le     | vel -20.0             |        | Off:        | et 17.00 (      |              | 3W 30 k<br>BW 100 k   |             | le Sweep  |              | 2                |                         |
| 1Pk Clr    | W                     |        |             |                 |              |                       |             |           |              |                  |                         |
|            | it Check<br>e PART 13 | 5D OC  | 3           |                 | PASS<br>PASS |                       | М           | 1[1]      |              |                  | -61.45 dBi<br>.74160 GH |
| -00 0011   | 8                     |        |             |                 |              |                       |             |           |              |                  |                         |
| PART 150   | OOB                   | -      |             |                 | -            | -                     |             |           | -            |                  |                         |
| -50 dBm    | _                     | _      |             | _               |              |                       |             |           | -            | -                | -                       |
| -60 dBm    |                       |        |             |                 |              |                       |             |           |              | MI               |                         |
| -ou com    |                       | ( July | Arg         | والعارية الم    | والدار والأ  |                       | u u destá u |           | A LANGERT LA | with a star fine | 1 march                 |
| -70 crpffi | Ada a California      |        |             |                 | -            | and the second second | 1           | - Bachard |              |                  |                         |
| -80 dBm    |                       | _      |             | _               | _            |                       |             |           |              |                  | -                       |
| -90 dBm    | _                     | _      |             | -               | _            | _                     |             |           | -            |                  |                         |
| -100 dBr   | n                     | _      |             | _               | _            | _                     |             |           |              |                  | -                       |
| -110 dBr   | n                     | _      |             | _               | _            | _                     |             |           | -            | 2                |                         |
| Start 3    | 0 GHz                 |        |             |                 |              | 10000                 | pts         |           |              | Sto              | p 20.0 GHz              |
|            |                       |        |             |                 |              |                       |             |           |              | 010              |                         |
| Type<br>M1 | Ref   Tro             | 1      | X-va<br>17. | lue<br>7416 GHz |              | value<br>51.45 dBm    | Func        | tion      | Fun          | ction Resul      | t                       |
|            | Ref   Tro             |        |             |                 |              |                       | Func        | tion      | Fun          |                  |                         |

ProjectNo.:2402X97571E Tester:Jeff Wei Date: 10.DEC.2024 23:25:05

| 1Pk Max       |                  | SWT 5se                             | <b>VBW</b> 100 kHz  | Mode Sweep                        |                                 |                              |
|---------------|------------------|-------------------------------------|---------------------|-----------------------------------|---------------------------------|------------------------------|
| Limit Che     | ick<br>F 15D OOB |                                     | ASS<br>ASS          | M1[1]                             |                                 | -59.51 dBr<br>1.919958250 GH |
| -20 dBm       |                  |                                     |                     |                                   | -                               |                              |
| -30 dBm       |                  |                                     |                     |                                   |                                 |                              |
| ART 15D OOB   | -                |                                     |                     |                                   |                                 |                              |
| -50 dBm       |                  |                                     | -                   |                                   |                                 |                              |
| -60 dBm       | a dicas hannes   | himis hale demonstrate              | Langer Handelay and | R hours with the tool of          | hereiten, Hinney al-Hill aber   | algheses stephellin          |
|               |                  | less ( series and the series of the |                     | office and a second second second | and properties there are proved |                              |
| -80 dBm       |                  |                                     | -                   |                                   |                                 |                              |
| -90 dBm       |                  |                                     |                     |                                   |                                 |                              |
|               | Hz               | -                                   | 10000 (             | ots                               |                                 | Stop 1.92 GHz                |
| Start 1.915 G |                  |                                     |                     |                                   |                                 |                              |

ProjectNo.:2402X97571E Tester:Jeff Wei Date: 10.DEC.2024 22:59:13

 
 Spectrum
 M1[1] PABS -51.61 dE 2.313660 G RT 15D Line F 30 dBm— PASS ART 15D C M1 -50 dBm-60 dBn the second 80 dBm-90 dBm-100 dBm -110 dBn Start 1.9 3.0 GHz GHz 100 
 Type
 Ref
 Trc
 X-value
 Y-value
 Function

 M1
 1
 2.31366 GHz
 -51.61 dBm

 Function Result -----

ProjectNo.:2402X97571E Tester:Jeff Wei Date: 10.DEC.2024 23:02:50

### 5.7 Frequency Stability

**Test Information:** 

| Serial No.: | 2SFP-5   | Test Date:   | 2024/12/10   |
|-------------|----------|--------------|--------------|
| Test Site:  | RF       | Test Mode:   | Transmitting |
| Tester:     | Jeff Wei | Test Result: | Pass         |

### **Environmental Conditions:**

| Temperature:<br>(°C): | 24.2 | Relative<br>Humidity:<br>(%) | 42 | ATM Pressure:<br>(kPa) | 101.1 |
|-----------------------|------|------------------------------|----|------------------------|-------|
|-----------------------|------|------------------------------|----|------------------------|-------|

### **Test Equipment List and Details:**

| Manufacturer | Description                              | Model          | Serial Number     | Calibration<br>Date | Calibration<br>Due Date |
|--------------|------------------------------------------|----------------|-------------------|---------------------|-------------------------|
| R&S          | Digital Radio<br>Communication<br>Tester | CMD 60M        | 846956/010        | 2024/10/22          | 2025/10/21              |
| R&S          | Coaxial Attenuator                       | 10dB           | F-08-EM512        | 2024/6/13           | 2025/6/12               |
| Gongee       | Coaxial Power<br>Splitters & Combiner    | PD-0/6-2S      | RF202308001<br>10 | 2024/1/15           | 2025/1/14               |
| Unknown      | Coaxial Cable                            | C-SJSJ-50      | C-0060-02         | 2024/6/1            | 2025/5/31               |
| Unknown      | Coaxial Cable                            | C-SJSJ-50      | C-0060-03         | 2024/6/1            | 2025/5/31               |
| BACL         | TEMP&HUMI Test<br>Chamber                | BTH-150-40     | 30173             | 2024/9/6            | 2025/9/5                |
| All-sun      | Multimeter                               | EM305A         | 8348897           | 2024/8/16           | 2025/8/15               |
| Daoxiang     | AC Transformer                           | TDGC2-<br>5KVA | F-08-EM011        | N/A                 | N/A                     |

\* Statement of Traceability: Bay Area Compliance Laboratories Corp. (Dongguan) attests that all calibrations have been performed, traceable to National Primary Standards and International System of Units (SI).

### **Test Data:**

| Temperature<br>(℃) | Voltage<br>(V <sub>AC</sub> ) | Test Frequency<br>(MHz) | Measured<br>Frequency<br>Offset<br>(kHz) | Measured<br>Frequency<br>Offset<br>(ppm) | Limit<br>(ppm) |
|--------------------|-------------------------------|-------------------------|------------------------------------------|------------------------------------------|----------------|
| -20                | 120                           | 1924.992                | 5                                        | 2.60                                     | ±10            |
| 20                 | 102                           | 1924.992                | 6                                        | 3.12                                     | ±10            |
| 20                 | 138                           | 1924.992                | 7                                        | 3.64                                     | ±10            |
| 50                 | 120                           | 1924.992                | 4                                        | 2.08                                     | ±10            |

Note: the voltage range was declared by manufacturer  $\blacktriangle$ .

### 5.8 Specific Requirements for UPCS Device

### **Test Information:**

| Serial No.: | 2SFP-5   | Test Date:   | 2024/12/10   |
|-------------|----------|--------------|--------------|
| Test Site:  | RF       | Test Mode:   | Transmitting |
| Tester:     | Jeff Wei | Test Result: | N/A          |

### **Environmental Conditions:**

| Temperature:<br>(°C): 24.2 | Relative<br>Humidity: 42<br>(%) | 2 ATM Pressure: (kPa) | 101.1 |
|----------------------------|---------------------------------|-----------------------|-------|
|----------------------------|---------------------------------|-----------------------|-------|

### **Test Equipment List and Details:**

| Manufacturer | Description                              | Model         | Serial Number | Calibration<br>Date | Calibration<br>Due Date |
|--------------|------------------------------------------|---------------|---------------|---------------------|-------------------------|
| R&S          | Spectrum Analyzer                        | FSV40         | 101947        | 2024/9/5            | 2025/9/4                |
| R&S          | Digital Radio<br>Communication<br>Tester | CMD<br>60M    | 846956/010    | 2024/10/22          | 2025/10/21              |
| R&S          | Coaxial Attenuator                       | 10dB          | F-08-EM512    | 2024/6/13           | 2025/6/12               |
| Gongee       | Coaxial Power<br>Splitters & Combiner    | PD-0/6-<br>2S | RF20230800110 | 2024/1/15           | 2025/1/14               |
| Unknown      | Coaxial Cable                            | C-SJSJ-<br>50 | C-0060-02     | 2024/6/1            | 2025/5/31               |
| Unknown      | Coaxial Cable                            | C-SJSJ-<br>50 | C-0060-03     | 2024/6/1            | 2025/5/31               |
| Agilent      | MXG Vector Signal<br>Generator           | N5182B        | MY51350142    | 2024/8/26           | 2025/8/25               |

\* Statement of Traceability: Bay Area Compliance Laboratories Corp. (Dongguan) attests that all calibrations have been performed, traceable to National Primary Standards and International System of Units (SI).

### **Test Data:**

### 1) Automatic Discontinuation of Transmission

### **Test result:**

The following tests were performed after a connection had been established with headset.

| Test condition        | Reaction of EUT       | Pass/Fail |
|-----------------------|-----------------------|-----------|
| The headset power off | Connection break down | Pass      |

### 2) Monitoring Time

### Test result:

This requirement is covered by the results of Least Interfered Channel (LIC).

| 1 2                                                                                                                                                                                                                                                                                           | × /                    |         |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|---------|
| Interference (Refer to ANSI C63.17 clause 7.3.3)                                                                                                                                                                                                                                              | Reaction of EUT        | Results |
| a) Apply the interference on $f_1$ at level $T_L+U_M+20dB$ and<br>no interference on $f_2$ . Initiate transmission and verify the<br>transmission only on $f_2$ . Then terminate it.                                                                                                          | EUT transmits on $f_2$ | Pass    |
| b) Apply the interference on $f_2$ at level $T_L+U_M+20dB$<br>and immediately remove all interference from $f_1$ . The<br>EUT should immediately attempt transmission on $f_1$ (but<br>at least 20 ms after the interference on $f_2$ is applied),<br>verify the transmission only on $f_1$ . | EUT transmission $f_1$ | Pass    |

### 3) Lower Monitoring Threshold

### **Test result:**

Not applicable because the EUT has more 40 defined duplex system access channels and meet the provision of the Least Interfered Channel (LIC).

### 4) Maximum Transmit Period

### **Test result:**

| Repetition of<br>Access Criteria | Measured Maximum<br>Transmission Time<br>(Second) | Limit<br>(Second) | Results |
|----------------------------------|---------------------------------------------------|-------------------|---------|
| First                            | 18594                                             | 28,800            | Pass    |
| Second                           | 18691                                             | 28,950            | Pass    |

### 5) System Acknowledgement

### Test result:

| Test                                              | Time taken<br>(second) | Limit<br>(second) | Result |
|---------------------------------------------------|------------------------|-------------------|--------|
| Initial Connection<br>acknowledgement             | 0.31                   | 1                 | Pass   |
| Change of access criteria for control information | N/A                    | 30                | N/A    |
| Transmission cease time                           | 3.92                   | 30                | Pass   |

Note: N/A=Not Applicable

### 6) Least Interfered Channel (LIC)

Calculation of monitoring threshold limits for isochroous devices: Lower threshold:  $TL = -174+10Log_{10}B + ML + P_{MAX}-P_{EUT}$  (dBm) Where: B=Emission bandwidth (Hz) ML = dB the threshold may exceed thermal noise (30 for T<sub>L</sub>)  $P_{MAX} = 5Log_{10}B-10$ (dBm)  $P_{EUT} = Transmitted power (dBm)$ 

### **Calculated thresholds:**

| Monitor<br>Threshold | B(MHz) | M <sub>L</sub> (dB) | P <sub>MAX</sub> (dBm) | P <sub>EUT</sub> (dBm) | Threshold<br>(dBm) |
|----------------------|--------|---------------------|------------------------|------------------------|--------------------|
| Lower threshold      | 1.455  | 30                  | 20.81                  | 19.57                  | -81.13             |

Note: 1. The upper threshold is applicable as the EUT utilizes more than 20 duplex system channels

### Test result: LIC procedure test:

| Interference (Refer to ANSI C63.17 clause 7.3.3)                                                                                                                                                    | Reaction of<br>EUT     | Results |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|---------|
| a) Apply the interference on $f_1$ at level $T_L+U_M+7dB$ and the interference on $f_2$ at level $T_L+U_M$ . Initiate transmission and verify the transmission only on $f_2$ . Repeat 5 times.      | EUT transmits on $f_2$ | Pass    |
| b) Apply the interference on $f_1$ at level $T_L+U_M$ and the interference on $f_2$ at level $T_L+U_M+7dB$ . Initiate transmission and verify the transmission only on $f_1$ . Repeat 5 times.      | EUT transmits on $f_1$ | Pass    |
| c) Apply the interference on $f_1$ at level $T_L+U_M+1dB$ the interference on $f_2$ at level $T_L+U_M-6dB$ . Initiate transmission and verify the transmission only on $f_2$ . Repeat 5 times.      | EUT transmits on $f_2$ | Pass    |
| d) Apply the interference on $f_1$ at level $T_L+U_M$ -6dB and the interference on $f_2$ at level $T_L+U_M$ +1dB. Initiate transmission and verify the transmission only on $f_1$ . Repeat 5 times. | EUT transmits on $f_1$ | Pass    |

### Selected channel confirmation:

| Interference (Refer to ANSI C63.17 clause 7.3.4)                                                                                                                                                                                                                             | Reaction of<br>EUT     | Results |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|---------|
| a) Apply the interference on $f_1$ at level $T_U+U_M$ and no interference on $f_2$ .<br>Initiate transmission and verify the transmission only on $f_2$ . Then terminate it.                                                                                                 | EUT transmits on $f_2$ | Pass    |
| b) Apply the interference on $f_2$ at level $T_L+U_M$ and immediately remove all interference from $f_1$ . The EUT should immediately attempt transmission on $f_1$ (but at least 20 ms after the interference on $f_2$ is applied), verify the transmission only on $f_1$ . | EUT transmission $f_1$ | Pass    |

### 7) Random waiting

Note: This is Not Applicable

### 8) Monitoring Bandwidth and Reaction Time

### Test result: Monitoring Bandwidth:

The antenna of the EUT used for monitoring is the same interior antenna that used for transmission, so the monitoring system bandwidth is equal to the emission bandwidth of the intended transmission

### **Reaction Time Test:**

| No. | Interference Pulse width<br>(µs)                     | Reaction of<br>EUT | Observing<br>time (µs) | Result |
|-----|------------------------------------------------------|--------------------|------------------------|--------|
| 1   | 50 $\mu$ s with level T <sub>L</sub> +U <sub>M</sub> | No transmission    | 25.35                  | Pass   |
| 2   | $35\mu s$ with level $T_L+U_M+6dB$                   | No transmission    | 21.31                  | Pass   |

### 9) Monitoring Antenna

### Test result:

The antenna of the EUT used for transmission is the same interior antenna that used for monitoring.

### 10) Monitoring threshold relaxation

### **Test result:**

This requirement is covered by the results of Least Interfered Channel (LIC).

### **11) Duplex Connections**

### Test result:

| Interference (Refer to ANSI C63.17 § 8.3& § 8.3.2)                                                                               | Reaction of EUT                                        | Results |
|----------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|---------|
| a) Only a single carrier f1 for EUT TDMA systems and<br>on f1 and f2 and corresponding duplex carriers for FDMA<br>systems.      | EUT can transmit                                       | Pass    |
| b) All Tx windows with level TL+UM except one & Rx<br>windows with level TL+UM+7dB except one, which are<br>not the duplex mate. | Connected on the target Rx window and its duplex mate. | Pass    |
| c) All Tx windows with level TL+UM+7dB except one &<br>Rx windows with level TL+UM except one, which are<br>not duplex mate.     | Connected on the target Tx window and its duplex mate. | Pass    |
| d) All Tx & Rx windows with level TU+UM, except one<br>for Tx window & one for Rx window, which are not<br>duplex mate.          | No connection possible                                 | Pass    |

### 12) Alternative monitoring interval

### **Test result:**

| Interference (Refer to ANSI C63.17 § 8.4)                                                                                                                                                   | Reaction of<br>EUT           | Results |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|---------|
| a) Only a single carrier f1 for EUT TDMA systems and on <i>f</i> 1 and <i>f</i> 2 and corresponding duplex carriers for FDMA systems.                                                       | EUT can<br>transmit          | Pass    |
| b) Apply interference with same parameters as EUT transmissions on all Tx windows with level TL+UM on the enabled carrier(s) and no interference on the Rx windows on the enabled carriers. | No connection is established | Pass    |

### 13) Fair Access

### Test result:

### 14) Frame Repetition Stability Frame Period and Jitter

### **Test result:**

Frame Period and Jitter:

| Max. pos. Jitter | s. Jitter Max. neg. Frame period |       | Lir                  | Limit          |  |
|------------------|----------------------------------|-------|----------------------|----------------|--|
| (μs)             | Jitter<br>(µs)                   | (ms)  | Frame Period<br>(ms) | Jitter<br>(µs) |  |
| 0.05             | -0.2                             | 11.33 | 20 or10/X            | 25             |  |

Note: X is a positive whole number.

# **EXHIBIT A - EUT PHOTOGRAPHS**

Please refer to the attachment 2402X97571E-RF-EXP EUT EXTERNAL PHOTOGRAPHS and 2402X97571E-RF-INP EUT INTERNAL PHOTOGRAPHS.

Report Template Version: FCC-15D-V1.0

Bay Area Compliance Laboratories Corp. (Dongguan) Report No.: 2402X97571E-RF-00A

# **EXHIBIT B - TEST SETUP PHOTOGRAPHS**

Please refer to the attachment 2402X97571E-RF-00A-TSP TEST SETUP PHOTOGRAPHS.

\*\*\*\*\* END OF REPORT \*\*\*\*\*

Report Template Version: FCC-15D-V1.0