
Shenzhen CTA Testing Technology Co., Ltd.

Room 106, Building 1, Yibaolai Industrial Park, Qiaotou Community, Fuhai Street, Bao'an District, Shenzhen, China

ESTING FCC	
Report Reference No	
Compiled by (position+printed name+signature) Supervised by	File administrators Joan Wu
(position+printed name+signature)	Project Engineer Zoey Cao
Approved by (position+printed name+signature)	RF Manager Eric Wang
Date of issue	: Apr. 03, 2025
Testing Laboratory Name	Shenzhen CTA Testing Technology Co., Ltd.
Address	Room 106, Building 1, Yibaolai Industrial Park, Qiaotou Community, Fuhai Street, Baoʻan District, Shenzhen, China
Applicant's name	Rosa Marcela Cruz Estrada
Address	: 8A calle Poniente numero 5 entre 2A y 4a Ave Sur, Tapachula, Mexico
CTATES.	FCC CFR Title 47 Part 2, Part 22H, Part 24E
Standard Shenzhen CTA Testing Technology This publication may be reproduced Shenzhen CTA Testing Technology C Shenzhen CTA Testing Technology C damages resulting from the reader's	ANSI/TIA-603-E-2016 KDB 971168 D01 y Co., Ltd. All rights reserved. in whole or in part for non-commercial purposes as long as the
Standard Shenzhen CTA Testing Technology This publication may be reproduced Shenzhen CTA Testing Technology C Shenzhen CTA Testing Technology C damages resulting from the reader's context.	ANSI/TIA-603-E-2016 KDB 971168 D01 Co., Ltd. All rights reserved. in whole or in part for non-commercial purposes as long as the Co., Ltd. is acknowledged as copyright owner and source of the materia Co., Ltd. takes no responsibility for and will not assume liability for interpretation of the reproduced material due to its placement and
Standard Shenzhen CTA Testing Technology This publication may be reproduced Shenzhen CTA Testing Technology C Shenzhen CTA Testing Technology C damages resulting from the reader's context. Test item description	ANSI/TIA-603-E-2016 KDB 971168 D01 / Co., Ltd. All rights reserved. in whole or in part for non-commercial purposes as long as the Co., Ltd. is acknowledged as copyright owner and source of the materia Co., Ltd. takes no responsibility for and will not assume liability for interpretation of the reproduced material due to its placement and Mobile Phone
Standard Shenzhen CTA Testing Technology This publication may be reproduced Shenzhen CTA Testing Technology C Shenzhen CTA Testing Technology C damages resulting from the reader's context. Test item description	ANSI/TIA-603-E-2016 KDB 971168 D01 / Co., Ltd. All rights reserved. in whole or in part for non-commercial purposes as long as the co., Ltd. is acknowledged as copyright owner and source of the materia co., Ltd. takes no responsibility for and will not assume liability for interpretation of the reproduced material due to its placement and Mobile Phone : MARKPHONE
Standard Shenzhen CTA Testing Technology This publication may be reproduced Shenzhen CTA Testing Technology C Shenzhen CTA Testing Technology C damages resulting from the reader's context. Test item description Trade Mark Manufacturer	ANSI/TIA-603-E-2016 KDB 971168 D01 / Co., Ltd. All rights reserved. in whole or in part for non-commercial purposes as long as the co., Ltd. is acknowledged as copyright owner and source of the materia co., Ltd. takes no responsibility for and will not assume liability for interpretation of the reproduced material due to its placement and Mobile Phone : MARKPHONE
Standard Shenzhen CTA Testing Technology This publication may be reproduced Shenzhen CTA Testing Technology C Shenzhen CTA Testing Technology C damages resulting from the reader's context. Test item description Trade Mark Manufacturer Model/Type reference	ANSI/TIA-603-E-2016 KDB 971168 D01 / Co., Ltd. All rights reserved. in whole or in part for non-commercial purposes as long as the co., Ltd. is acknowledged as copyright owner and source of the materia co., Ltd. takes no responsibility for and will not assume liability for interpretation of the reproduced material due to its placement and Mobile Phone : MARKPHONE
Standard Shenzhen CTA Testing Technology This publication may be reproduced Shenzhen CTA Testing Technology C Shenzhen CTA Testing Technology C damages resulting from the reader's context. Test item description Trade Mark Manufacturer Model/Type reference Listed Models	ANSI/TIA-603-E-2016 KDB 971168 D01 / Co., Ltd. All rights reserved. in whole or in part for non-commercial purposes as long as the co., Ltd. is acknowledged as copyright owner and source of the materia co., Ltd. takes no responsibility for and will not assume liability for interpretation of the reproduced material due to its placement and Mobile Phone : MARKPHONE : Rosa Marcela Cruz Estrada : Stone : N/A
Shenzhen CTA Testing Technology C Shenzhen CTA Testing Technology C	ANSI/TIA-603-E-2016 KDB 971168 D01 / Co., Ltd. All rights reserved. in whole or in part for non-commercial purposes as long as the co., Ltd. is acknowledged as copyright owner and source of the materia co., Ltd. takes no responsibility for and will not assume liability for interpretation of the reproduced material due to its placement and Mobile Phone MARKPHONE Rosa Marcela Cruz Estrada Stone N/A QPSK

TESTIN

ING

Contents

R	eport I	10.: CTA25032500802	Page 3 of 30	
		Contents		
1	SU№	MARY		
	1.1	TEST STANDARDS		
	1.2	Test Description		
	1.3	Address of the test laboratory	4	
	1.4	Test Facility		
	1.5			
2	GEN	ERAL INFORMATION		
	2.1	Environmental conditions General Description of EUT		
	2.2	General Description of EUT	6	
	2.3	Description of Test Modes and Test Frequency		
	2.4	Equipments Used during the Test		
	2.5	Related Submittal(s) / Grant (s)		
	2.6	GModifications		
3	TES	T CONDITIONS AND RESULTS		
(A)	3.1	Output Power		
	3.2	Occupied Bandwidth		
	3.3	Band Edge compliance		
	3.4	Spurious Emission		
	3.5	Spurious Emission Peak-to-Average Ratio (PAR)		
	3.6	Frequency Stability under Temperature & Voltage Variations		
4	Test	Setup Photos of the EUT		
5	Exte	rnal and Internal Photos of the EUT		

1 SUMMARY

1.1 TEST STANDARDS

The tests were performed according to following standards:

FCC Part 2: FREQUENCY ALLOCA-TIONS AND RADIO TREATY MAT-TERS; GENERAL RULES AND REG-ULATIONS

FCC Part 22 Subpart H: PRIVATE LAND MOBILE RADIO SERVICES.

FCC Part 24 Subpart E: PUBLIC MOBILE SERVICES

ANSI/TIA-603-E-2016: Land Mobile FM or PM Communications Equipment Measurement and Performance Standards.

ANSI C63.10-2013 Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40 GHz

FCCKDB971168D01 Power Meas License Digital Systems

1.2 Test Description

Test Item	Section in CFR 47	Result
RF Output Power	Part 2.1046 Part 22.913 (a)(2) Part 24.232 ©	Pass
Peak-to-Average Ratio	Part 24.232 (d)	Pass
99% & -26 dB Occupied Bandwidth	Part 2.1049 Part 22.917 Part 24.238	Pass
Spurious Emissions at Antenna Terminal	Part 2.1051 Part 22.917 (a) Part 24.238 (a)	Pass
Field Strength of Spurious Radiation	Part 2.1053 Part 22.917 (a) Part 24.238 (a)	Pass
Out of band emission, Band Edge	Part 22.917 (a) Part 24.238 (a)	Pass
Frequency stability	Part 2.1055 Part 22.355 Part 24.235	Pass

1.3 Address of the test laboratory

Shenzhen CTA Testing Technology Co., Ltd.

Room 106, Building 1, Yibaolai Industrial Park, Qiaotou Community, Fuhai Street, Bao'an District, Shenzhen, China

The 3m-Semi anechoic test site fulfils CISPR 16-1-4 according to ANSI C63.4:2014 and CISPR 16-1-4:2010 SVSWR requirement for radiated emission above 1GHz.

1.4 Test Facility

The test facility is recognized, certified, or accredited by the following organizations: FCC-Registration No.: 517856 Designation Number: CN1318

Shenzhen CTA Testing Technology Co., Ltd. Has been listed on the US Federal Communications Commission list of test facilities recognized to perform electromagnetic emissions measurements.

Industry Canada Registration Number. Is: 27890 CAB identifier: CN0127

The Laboratory has been registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing.

A2LA-Lab Cert. No.: 6534.01

Shenzhen CTA Testing Technology Co., Ltd. Has been listed by American Association for Laboratory Accreditation to perform electromagnetic emission measurement.

The 3m-Semi anechoic test site fulfils CISPR 16-1-4 according to ANSI C63.10 and CISPR 16-1-4:2010.

1.5 Statement of the measurement uncertainty

The data and results referenced in this document are true and accurate. The reader is cautioned that there may be errors within the calibration limits of the equipment and facilities. The measurement uncertainty was calculated for all measurements listed in this test report acc. To TR-100028-01" Electromagnetic compatibility and Radio spectrum Matters (ERM);Uncertainties in the measurement of mobile radio equipment characteristics; Part 1" and TR-100028-02 "Electromagnetic compatibility and Radio spectrum Matters (ERM);Uncertainties in the measurement characteristics; Part 2" and is documented in the Shenzhen CTA Testing Technology Co., Ltd. Quality system acc. To DIN EN ISO/IEC 17025. Furthermore, component and process variability of devices similar to that tested may result in additional deviation. The manufacturer has the sole responsibility of continued compliance of the device. Hereafter the best measurement capability for Shenzhen CTA Testing Technology Co., Ltd. :

	Test	Range	Measuremen t Uncertainty	Notes	STING
	Radiated Emission	30~1000MHz	4.06 dB	C (1)	
	Radiated Emission	1~18GHz	5.14 dB	(1)	
	Radiated Emission	18-40GHz	5.38 dB	(1)	G
	Conducted Disturbance	0.15~30MHz	2.14 dB	(1)	C C
	Output Peak power	30MHz~18GHz	0.55 dB	(1)	
	Power spectral density	G	0.57 dB	(1)	
	Spectrum bandwidth	TESTI	1.1%	(1)	
	Radiated spurious emission (30MHz-1GHz)	30~1000MHz	4.10 dB	³ (1)	
	Radiated spurious emission (1GHz-18GHz)	1~18GHz	4.32 dB	(1)	TEST
	Radiated spurious emission (18GHz-40GHz)	18-40GHz	5.54 dB	(1)	CTATEST
STIN	1) This uncertainty represents a			pproxima	ately the
CTATESTIN	95% confidence level using a	coverage factor of k=2	•		

(1) This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

2 **GENERAL INFORMATION**

2.1 Environmental conditions

Date of receipt of test sample	:	Mar. 25, 2025]
Testing commenced on	:	Mar. 25, 2025	-
Testing concluded on	:	Apr. 03, 2025	-ING
			ATESTI
		Apr. 03, 2025	

During the measurement the environmental co	onditions were within the listed ranges:	TES	
Normal Temperature:	25°C	CTA'	
Relative Humidity:	55 %	(61)	
Air Pressure:	101 kPa	Constant of the second s	

2.2 General Description of EUT

Mobile Phone
Stone
DC 3.7V From battery and DC 5.0V From external circuit
Model: Stone Input: AC 100-240V 50/60Hz 0.15A Output: DC 5V 500mA
Z699T_V3.0
Z699T_JL43A_MARKPHONE_UMS9117L_V02_202504012014
CTA250325008-1# (Engineer sample) CTA250325008-2# (Normal sample)
FDD Band II & Band V
Power Class 3
QPSK for WCDMA/HSUPA/HSDPA,16QAM for HSPA+
R8 TING
PIFA antenna
FDD Band II: 1.23 dBi FDD Band V: -0.04 dBi
refer to the user's manual of the EUT.

2.3 Description of Test Modes and Test Frequency

The EUT has been tested under typical operating condition. The CUM200 used to control the EUT staying in continuous transmitting and receiving mode for testing. Regards to the frequency band operation : the lowest, middle and highest frequency of channel were selected to perform the test, then shown on this report.

Test Frequency:

FDD Band II		FDD Band V		
Channel	Frequency (MHz)	Channel	Frequency (MHz)	
9262	1852.4	4132	826.40	
9400	1880.0	4182	836.60	
9538	1907.6	4233	846.60	

Test Modes:

The test mode(s) are selected according to relevant radio technology specifications.

Test Mode	Test Modes Description
Mode 1	WCDMA system, QPSK modulation
Mode 2	HSDPA system, QPSK modulation
Mode 3	HSUPA system, QPSK modulation

Note:

1. As HSDPA and HSUPA with the same emission designator, test result recorded in this report at the worst case Mode 1 with RCM 12.2Kbps only after exploratory scan.

2.4 Equipments Used during the Test

Te et Emilie ment	Manufacture	Madal Na	Equipment	Calibration	Calibratio
Test Equipment	Manufacturer	Model No.	No.	Date	Due Date
LISN	R&S	ENV216	CTA-308	2024/08/03	2025/08/02
LISN	R&S	ENV216	CTA-314	2024/08/03	2025/08/02
EMI Test Receiver	R&S	ESPI	CTA-307	2024/08/03	2025/08/0
EMI Test Receiver	R&S	ESCI	CTA-306	2024/08/03	2025/08/0
Spectrum Analyzer	Agilent	N9020A	CTA-301	2024/08/03	2025/08/0
Spectrum Analyzer	R&S	FSU	CTA-337	2024/08/03	2025/08/0
Vector Signal generator	Agilent	N5182A	CTA-305	2024/08/03	2025/08/0
Analog Signal Generator	R&S	SML03	CTA-304	2024/08/03	2025/08/0
WIDEBAND RADIO COMMUNICATIO N TESTER	CMW500	R&S	CTA-302	2024/08/03	2025/08/0
Temperature and humidity meter	Chigo	ZG-7020	CTA-326	2024/08/03	2025/08/0
Ultra-Broadband Antenna	Schwarzbeck	VULB9163	CTA-310	2023/10/17	2026/10/1
Horn Antenna	Schwarzbeck	BBHA 9120D	CTA-309	2023/10/13	2026/10/1
Loop Antenna	Zhinan	ZN30900C	CTA-311	2023/10/17	2026/10/1
Broadband Horn Antenna	A-INFOMW	LB-180500H- 2.4F	CTA-336	2023/09/13	2026/09/1
Amplifier	Schwarzbeck	BBV 9745	CTA-312	2024/08/03	2025/08/0
Amplifier	Taiwan chengyi	EMC051845B	CTA-313	2024/08/03	2025/08/0
Directional coupler	NARDA	4226-10	CTA-303	2024/08/03	2025/08/0
High-Pass Filter	XingBo	XBLBQ-GTA18	CTA-402	2024/08/03	2025/08/0
High-Pass Filter	XingBo	XBLBQ-GTA27	CTA-403	2024/08/03	2025/08/0
Automated filter bank	Tonscend	JS0806-F	CTA-404	2024/08/03	2025/08/0
Power Sensor	Agilent	U2021XA	CTA-405	2024/08/03	2025/08/0
Amplifier	Schwarzbeck	BBV9719	CTA-406	2024/08/03	2025/08/0
C.	(Con Con	TATES	GA CTAT	ESTING	

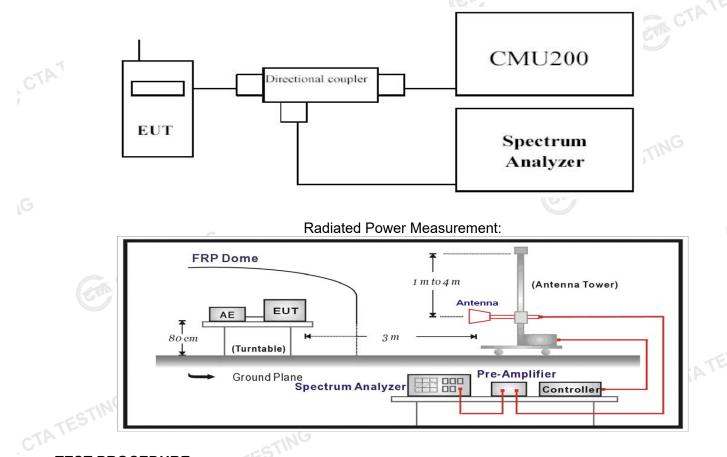
Test Equipment	Manufacturer	Model No.	Version number	Calibration Date	Calibration Due Date	
EMI Test Software	Tonscend	TS®JS32-RE	5.0.0.2	N/A	N/A	
EMI Test Software	Tonscend	TS®JS32-CE	5.0.0.1	N/A	N/A	
RF Test Software	Tonscend	TS®JS1120-3	3.1.65	N/A	N/A	
RF Test Software	Tonscend	TS®JS1120	3.1.46	N/A	N/A	
			CTA CTA		CECTA	ies'
2.5 Related Subn	nittal(s) / Grant (s)				
This submittal(s) (te	st report) is filing to	o comply with of the	FCC Part 22	and Part 24 Rul	les.	

2.5 Related Submittal(s) / Grant (s)

2.6 Modifications

CTA TESTING No modifications were implemented to meet testing criteria.

TEST CONDITIONS AND RESULTS 3


3.1 Output Power

LIMIT

WCDMA Band V: 7W WCDMA Band II: 2W The Peak-to-Average Ratio (PAR) of the transmission may not exceed 13 Db. CTATESTING

TEST CONFIGURATION

Conducted Power Measurement

TEST PROCEDURE

The EUT was setup according to EIA/TIA 603C

Conducted Power Measurement:

- Place the EUT on a bench and set it in transmitting mode. a)
- Connect a low loss RF cable from the antenna port to a spectrum analyzer and CMU200 by a b) Directional Couple.
- EUT Communicate with CMU200 then selects a channel for testing. C)
- d) Add a correction factor to the display of spectrum, and then test.

Radiated Power Measurement:

- The EUT shall be placed at the specified height on a support, and in the position closest to a) normal use as declared by provider.
- The test antenna shall be oriented initially for vertical polarization and shall be chosen to b) correspond to the frequency of the transmitter
- The output of the test antenna shall be connected to the measuring receiver. c)
- The transmitter shall be switched on and the measuring receiver shall be tuned to the frequency d) of the transmitter under test. STING

- e) The test antenna shall be raised and lowered through the specified range of height until a maximum signal level is detected by the measuring receiver.
- f) The transmitter shall then be rotated through 360° in the horizontal plane, until the maximum signal level is detected by the measuring receiver.
- g) The test antenna shall be raised and lowered again through the specified range of height until a maximum signal level is detected by the measuring receiver.
- h) The maximum signal level detected by the measuring receiver shall be noted.
- i) The transmitter shall be replaced by a substitution antenna.
- j) The substitution antenna shall be orientated for vertical polarization and the length of the substitution antenna shall be adjusted to correspond to the frequency of the transmitter.
- k) The substitution antenna shall be connected to a calibrated signal generator.
- I) If necessary, the input attenuator setting of the measuring receiver shall be adjusted in order to increase the sensitivity of the measuring receiver.
- m) The test antenna shall be raised and lowered through the specified range of height to ensure that the maximum signal is received.
 - n) The input signal to the substitution antenna shall be adjusted to the level that produces a level detected by the measuring receiver, that is equal to the level noted while the transmitter radiated power was measured, corrected for the change of input attenuator setting of the measuring receiver.
 - o) The measurement shall be repeated with the test antenna and the substitution antenna orientated for horizontal polarization.
 - p) The measure of the effective radiated power is the larger of the two levels recorded at the input to the substitution antenna, corrected for gain of the substitution antenna if necessary.

TEST RESULTS

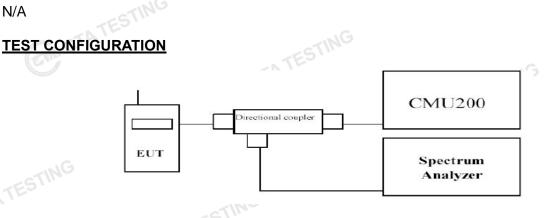
Conducted Measurement:

	Bond	FDD	Band II result (dB	sm)	1
Item	Band				
	ARFCN	9262	9400	9538	
RMC	12.2kbps RMC	23.43	23.66	23.05	
	Sub – Test 1	22.41	22.70	21.97	1
	Sub – Test 2	21.08	21.10	20.47	
HSDPA	Sub – Test 3	20.94	20.70	20.82	
	Sub – Test 4	20.24	20.65	19.56	
	Sub – Test 1	22.60	22.24	21.72	1
	Sub – Test 2	20.53	21.48	20.67	
HSUPA	Sub – Test 3	20.33	21.52	20.72	
	Sub – Test 4	19.51	19.62	20.09	1
χP	Sub – Test 5	19.50	19.98	19.54	
	TATES	ING	·		-

	Dand	FDD	Band V result (dE	Bm)
ltem	Band		Test Channel	
	ARFCN	4132	4183	4233
RMC	12.2kbps RMC	23.14	23.75	23.01
HSDPA	Sub - Test 1	22.08	22.45	21.94
	Sub - Test 2	20.90	21.48	21.47
	Sub - Test 3	21.93	21.23	21.63
	Sub - Test 4	20.12	20.35	23.01 21.94 21.47 21.63 20.59 22.72 21.62 21.62 22.09 20.59
	Sub - Test 1	21.96	22.11	22.72
	Sub - Test 2	21.00	21.50	21.62
HSUPA	Sub - Test 3	21.88	21.63	22.09
	Sub - Test 4	20.22	20.75	20.59
	Sub - Test 5	20.70	21.48	21.76
				21.70

Radiated Measurement:

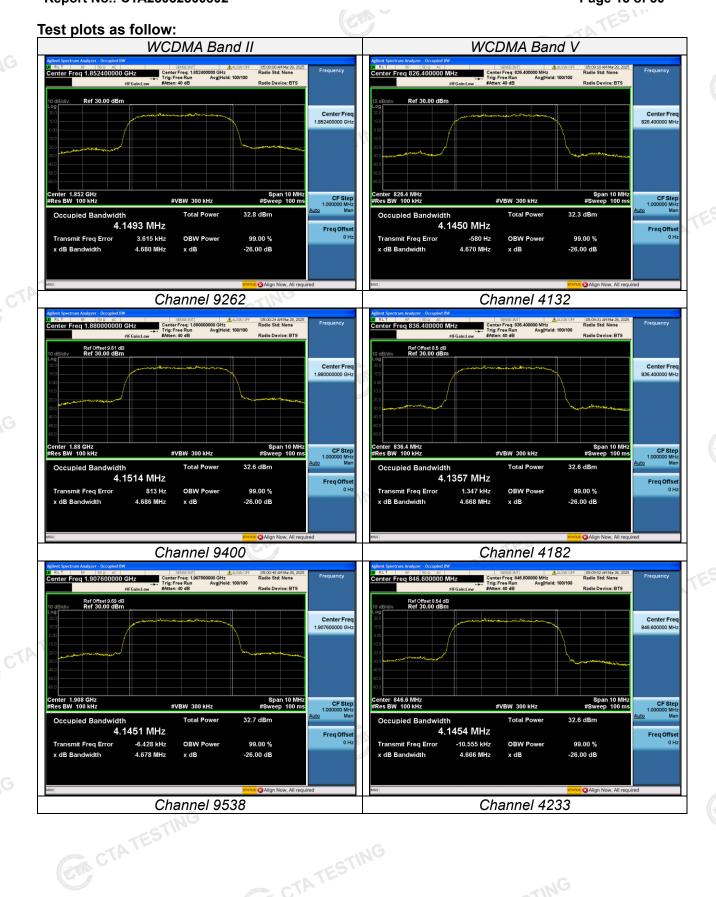
Note: 1. The field strength of radiation emission was measured in the following position: EUT standup position (Zaxis), lie-down position (X, Y axis). The data show in this report only with the worst case setup. After exploratory measurement the worst case of Z axis was reported. Note: 2. We test the H direction and V direction and V direction is worse.


C V			WCE	MA BAN	וו כ				_
Channel	P _{Mea} (dBm)	P _{cl} (dB)	G _a Antenna Gain(dB)	P _{Ag} (dB)	EIRP (dBm)	Limit (dBm)	Margin (dB)	Polarization	
9262	-18.97	3.41	10.24	33.6	21.46	33.01	-11.55	V	TE
9400	-18.58	3.49	10.24	33.6	21.77	33.01	-11.24	VcTP	
9538	-17.95	3.55	10.23	33.6	22.33	33.01	-10.68	V	
INC								and the second sec	-

	9400	-18.5	8 3	5.49 1	0.24	- 33	.6	21.77	33.01	-11.24	VC
	9538	-17.9	5 3	5.55 1	0.23	33	.6	22.33	33.01	-10.68	V
	TESTING		·		wci	OMA E	BAND	v			
GIP	Channel	P _{Mea} (dBm)	P _{cl} (dB)	G _a Antenna Gain(dB)	Corre (dE		P _{Ag} (dB)	ERP (dBm)	G (dBm)	Margin (dB)	Polarization
	4132	-20.43	2.42	8.45	36.8	32	2.15	20.27	38.45	-18.18	V
	4183	-19.05	2.46	8.45	36.8	32	2.15	21.61	38.45	-16.84	STV
	4233	-19.44	2.53	8.36	36.8	32	2.15	21.06	38.45	-17.39	V
	Remark:										
	1. EIRP=F	•	<i>,</i> ,	B)+P _{Ag} (dB)	. ,		ha aai	n of the d	inala		

2. ERP = EIRP – 2.15dBi as EIRP by subtracting the gain of the dipole. . JOE

3.2 Occupied Bandwidth LIMIT

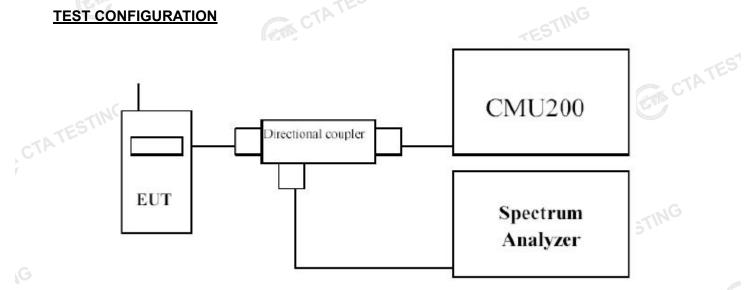

TEST PROCEDURE

- TESTING The EUT's output RF connector was connected with a short cable to the spectrum analyzer 1.
- RBW was set to about 1% of emission BW, VBW≥3 times RBW. 2.
- -26dBc display line was placed on the screen (or 99% bandwidth), the occupied bandwidth is 3. the delta frequency between the two points where the display line intersects the signal trace.

EUT Mode	Channel	Frequency (MHz)	99% Occupy bandwidth (MHz)	-26dB bandwidth (MHz)
	9262	1852.4	4.1493	4.680
WCDMA Band II (QPSK)	9400	1880.0	4.1514	4.686
(QFSK)	9538	1907.6	4.1451	4.678
	4132	826.4	4.1450	4.670
WCDMA Band V (QPSK)	4183	836.6	4.1357	4.668
TESTIGION	4233	846.6	4.1454	4.666
	CTATESTI	NG	ATESTING	

TEST RESULTS

Page 15 of 30

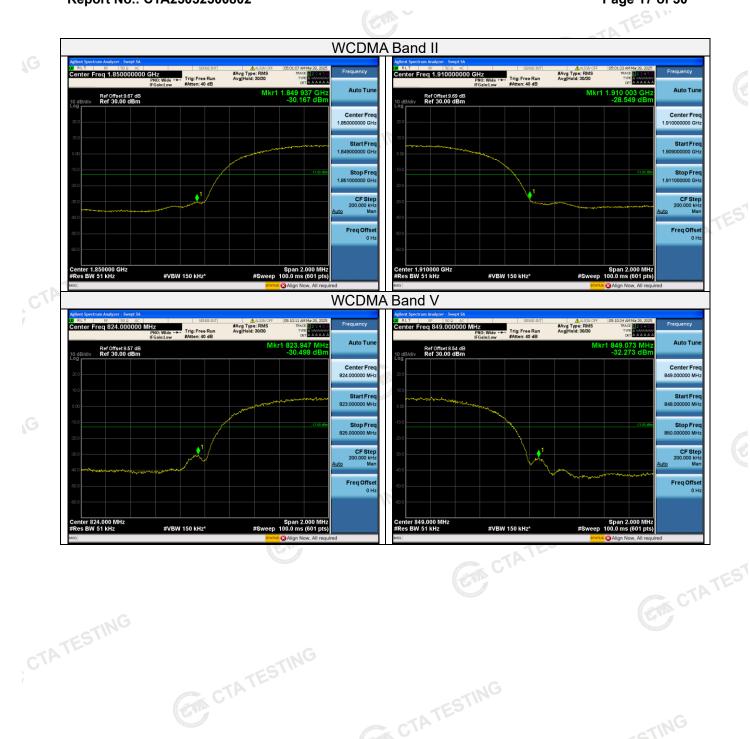


3.3 Band Edge compliance

LIMIT

The power of any emission outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least 43 + 10log (P) dB.

TEST CONFIGURATION



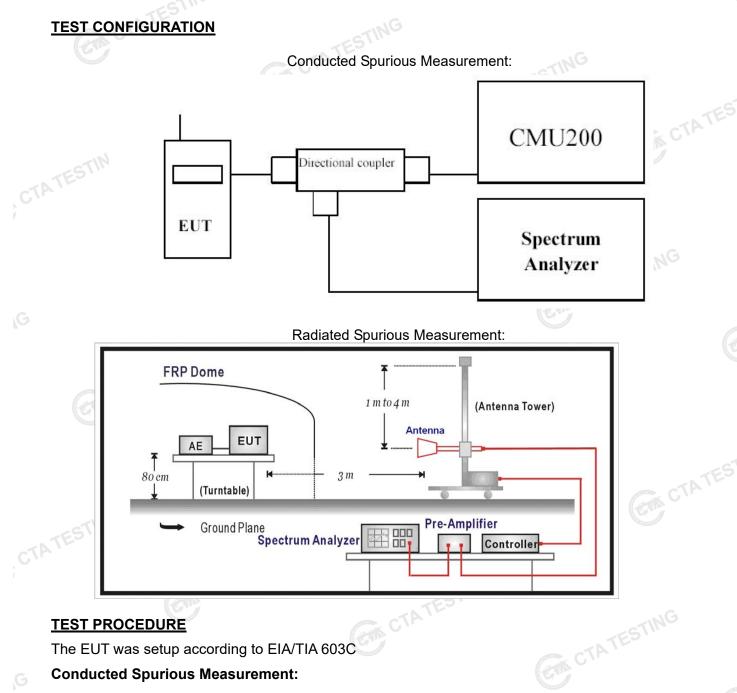
TEST PROCEDURE

In the 1MHz bands immediately outside and adjacent to the frequency block a resolution bandwidth of at least one percent of the emission bandwidth of the fundamental emission of the transmitter GA CTATES may be employed to measure the out of band Emissions.

TEST RESULTS

G

CTATESTING


Gen CTA

CTATESTING

3.4 Spurious Emission

LIMIT

The power of any emission outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least $43 + 10\log(P)$ dB.

TEST PROCEDURE

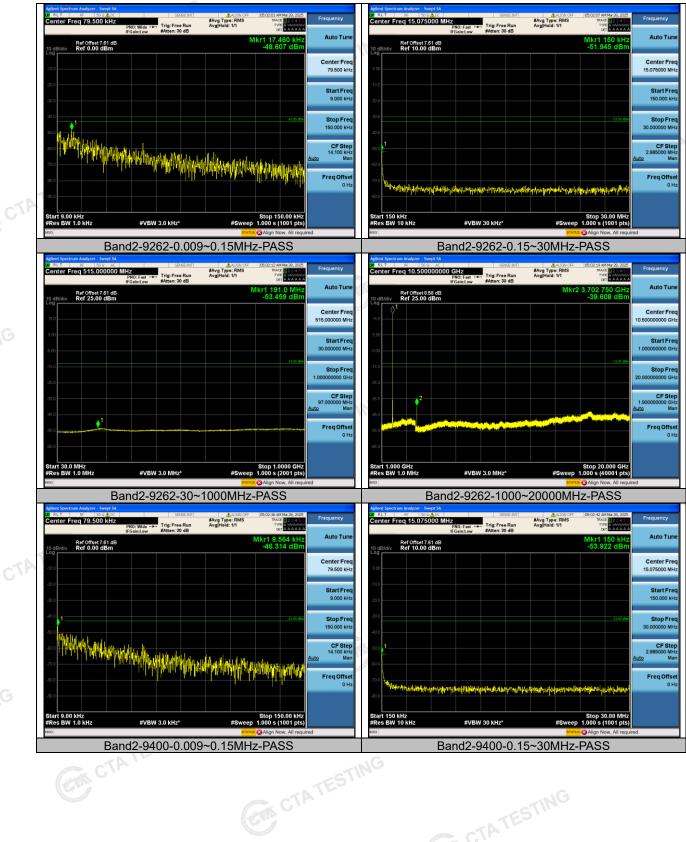
The EUT was setup according to EIA/TIA 603C

Conducted Spurious Measurement:

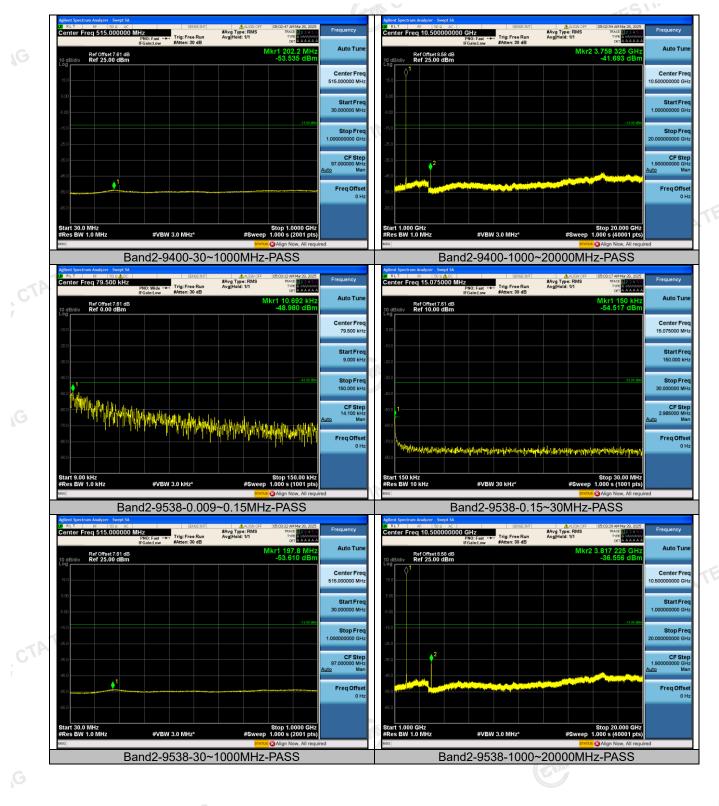
- a) Place the EUT on a bench and set it in transmitting mode.
- b) Connect a low loss RF cable from the antenna port to a spectrum analyzer and CMU200 by a Directional Couple.
- EUT Communicate with CMU200 then selects a channel for testing. c)
- Add a correction factor to the display of spectrum, and then test. d)
- The resolution bandwidth of the spectrum analyzer was set at 1MHz for Part 22 and 1MHz for CTATEST e) Part 24, sufficient scans were taken to show the out of band Emission if any up to10th harmonic.

Radiated Spurious Measurement:

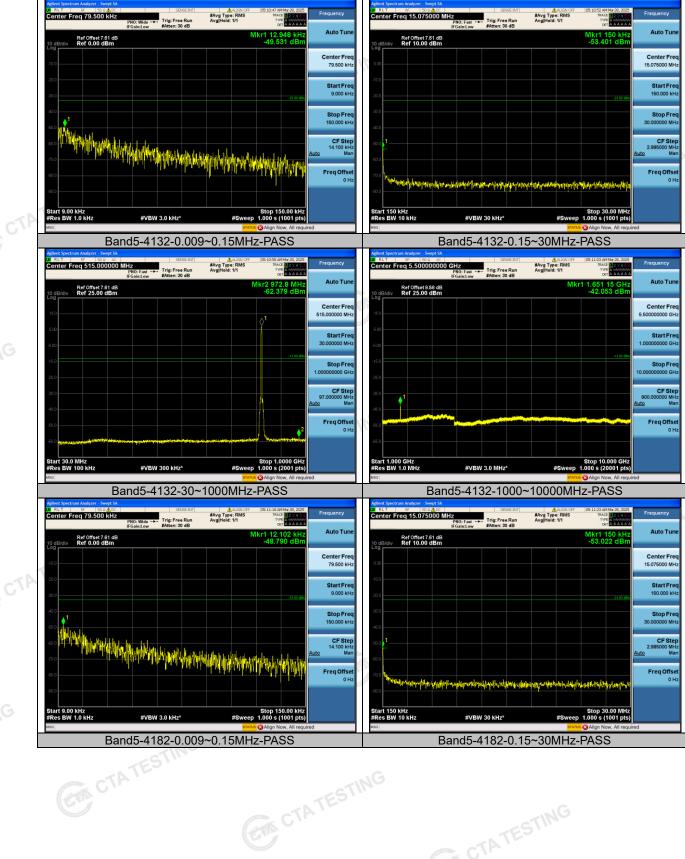
- The EUT shall be placed at the specified height on a support, and in the position closest to a) normal use as declared by provider.
- The test antenna shall be oriented initially for vertical polarization and shall be chosen to b) correspond to the frequency of the transmitter
- The output of the test antenna shall be connected to the measuring receiver. c)
- d) The transmitter shall be switched on and the measuring receiver shall be tuned to the frequency of the transmitter under test.
- e) The test antenna shall be raised and lowered through the specified range of height until a maximum signal level is detected by the measuring receiver.
- The transmitter shall then be rotated through 360° in the horizontal plane, until the maximum f)
- The test antenna shall be raised and lowered again through the specified range of height until a maximum signal level is detected by the measuring receiver. g)
- The maximum signal level detected by the measuring receiver shall be noted. h)
- i) The transmitter shall be replaced by a substitution antenna.
 - The substitution antenna shall be orientated for vertical polarization and the length of the j) substitution antenna shall be adjusted to correspond to the frequency of the transmitter.
 - The substitution antenna shall be connected to a calibrated signal generator. k)
 - If necessary, the input attenuator setting of the measuring receiver shall be adjusted in order to I) increase the sensitivity of the measuring receiver.
 - m) The test antenna shall be raised and lowered through the specified range of height to ensure that the maximum signal is received.
 - The input signal to the substitution antenna shall be adjusted to the level that produces a level n) detected by the measuring receiver, that is equal to the level noted while the transmitter radiated power was measured, corrected for the change of input attenuator setting of the measuring receiver.
 - o) The measurement shall be repeated with the test antenna and the substitution antenna orientated for horizontal polarization.
 - The measure of the effective radiated power is the larger of the two levels recorded at the input p) to the substitution antenna, corrected for gain of the substitution antenna if necessary.
 - CTA TEST The resolution bandwidth of the spectrum analyzer was set at 100 kHz for Part 22 and 1MHz for q) Part 24. The frequency range was checked up to 10th harmonic.


TEST RESULTS

Conducted Measurement:

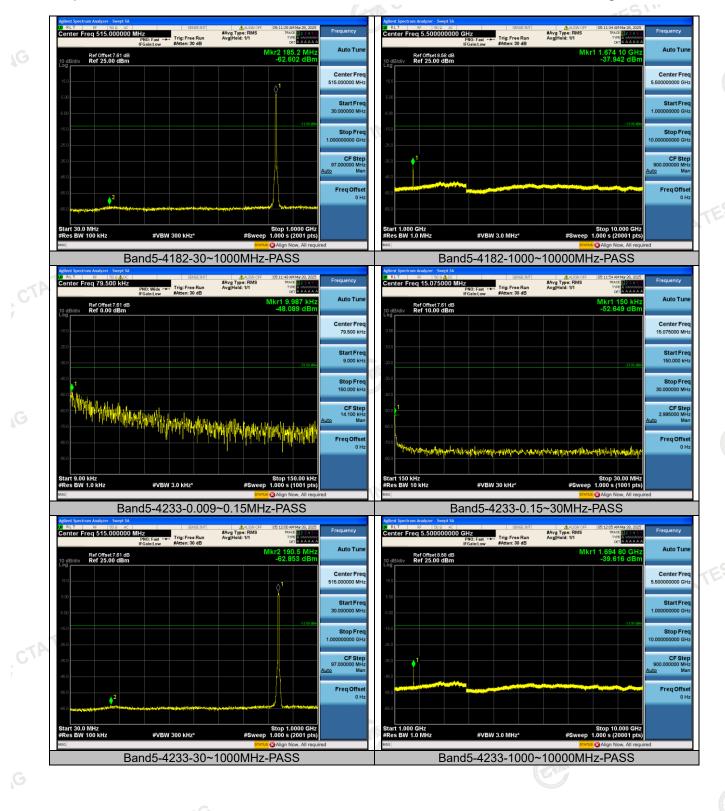

Page 20 of 30 CTATES!

WCDMA Band II



CIA

CTATESTING



WCDMA Band V

ATESTING

Page 23 of 30

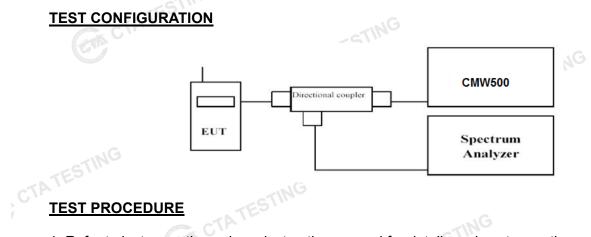
TATESTING

Radiated Measurement:

WCDMA Band II

laulatea	Measuremer	н.							TESI
			r	WCDM	A Band II	1			
Channel	Frequency (MHz)	PMea (dBm)	Pcl (dB)	Diatance	Ga Antenna Gain(dB)	Peak EIRP (dBm)	Limit (dBm)	Margin (dB)	Polarizatio
	3704.80	-41.95	4.27	3.00	12.34	-33.88	-13.00	-20.88	Н
9262	5557.20	-49.49	4.99	3.00	13.52	-40.96	-13.00	-27.96	Н
9202	3704.80	-45.06	4.27	3.00 5	12.34	-36.99	-13.00	-23.99	V
Constant of the	5557.20	-54.47	4.99	3.00	13.52	-45.94	-13.00	-32.94	V
	3760.00	-42.80	4.38	3.00	12.34	-34.84	-13.00	-21.84	Н
9400	5640.00	-52.94	5.01	3.00	13.58	-44.37	-13.00	-31.37	Н
9400	3760.00	-45.33	4.38	3.00	12.34	-37.37	-13.00	-24.37	V
	5640.00	-50.24	5.01	3.00	13.58	-41.67	-13.00	-28.67	V
.0	3815.20	-41.69	4.47	3.00	12.45	-33.71	-13.00	-20.71	(CH)
0520	5722.80	-49.30	5.23	3.00	13.66	-40.87	-13.00	-27.87	
9538	3815.20	-44.79	4.47	3.00	12.45	-36.81	-13.00	-23.81	V
	5722.80	-48.54	5.23	3.00	13.66	-40.11	-13.00	-27.11	V

hannel	Frequency (MHz)	PMea (dBm)	Pcl (dB)	Diatance	Ga Antenna Gain(dB)	Peak EIRP (dBm)	Limit (dBm)	Margin (dB)	Polarization
	-40.63	3.98	3.00	10.98	-33.63	-13.00	-20.63	-40.63	Н
9262	-49.13	4.11	3.00	11.47	-41.77	-13.00	-28.77	-49.13	Н
9202	-44.01	3.98	3.00	10.98	-37.01	-13.00	-24.01	-44.01	V
	-53.76	4.11	3.00	11.47	-46.40	-13.00	-33.40	-53.76	V
	-44.83	4.01	3.00	11.25	-37.59	-13.00	-24.59	-44.83	Н
9400	-46.47	4.15	3.00	11.58	-39.04	-13.00	-26.04	-46.47	Н
9400	-40.17	4.01	3.00	11.25	-32.93	-13.00	-19.93	-40.17	V
	-53.50	4.15	3.00	11.58	-46.07	-13.00	-33.07	-53.50	V
	-41.56	4.07	3.00	11.33	-34.30	-13.00	-21.30	-41.56	Н
9538	-51.38	4.21	3.00	11.67	-43.92	-13.00	-30.92	-51.38	Н
9000	-40.34	4.07	3.00	11.33	-33.08	-13.00	-20.08	-40.34	V
	-52.68	4.21	3.00	11.67	-45.22	-13.00	-32.22	-52.68	V CACTA

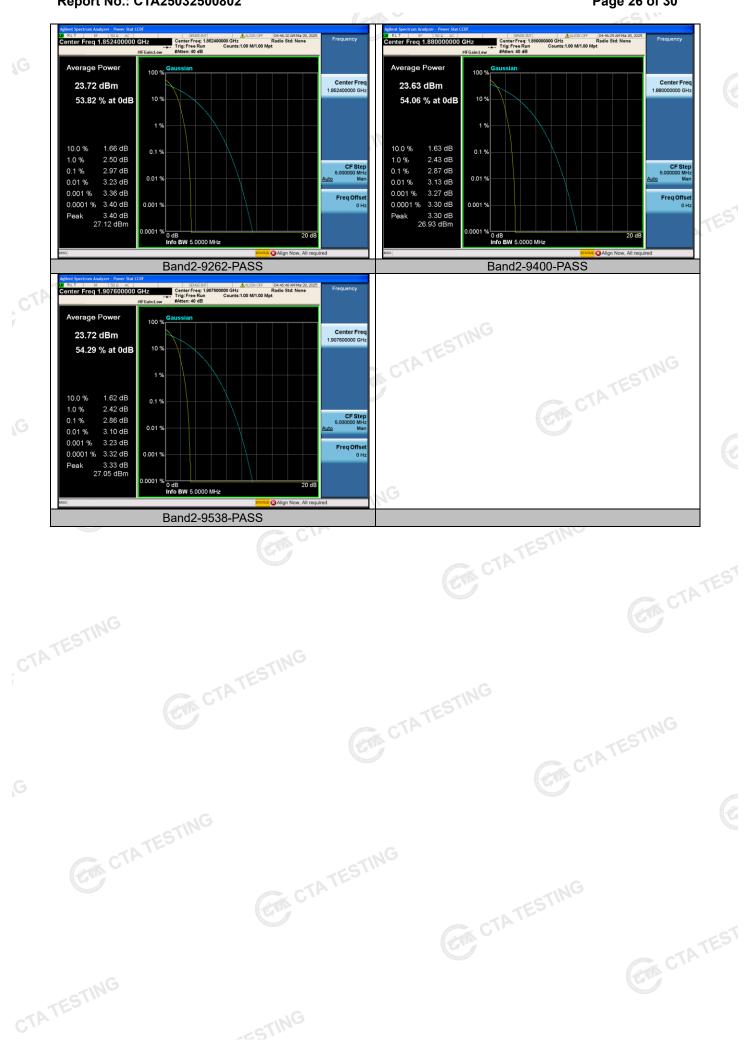

ی...eat@Bm)-Pcl(c ∠. We were not recorded 3. Margin = EIRP– Limit 1. $EIRP=P_{Mea}(dBm)-P_{cl}(dB) + G_a(dBi)$

2. We were not recorded other points as values lower than limits. CTA TESTING

3.5 Peak-to-Average Ratio (PAR)

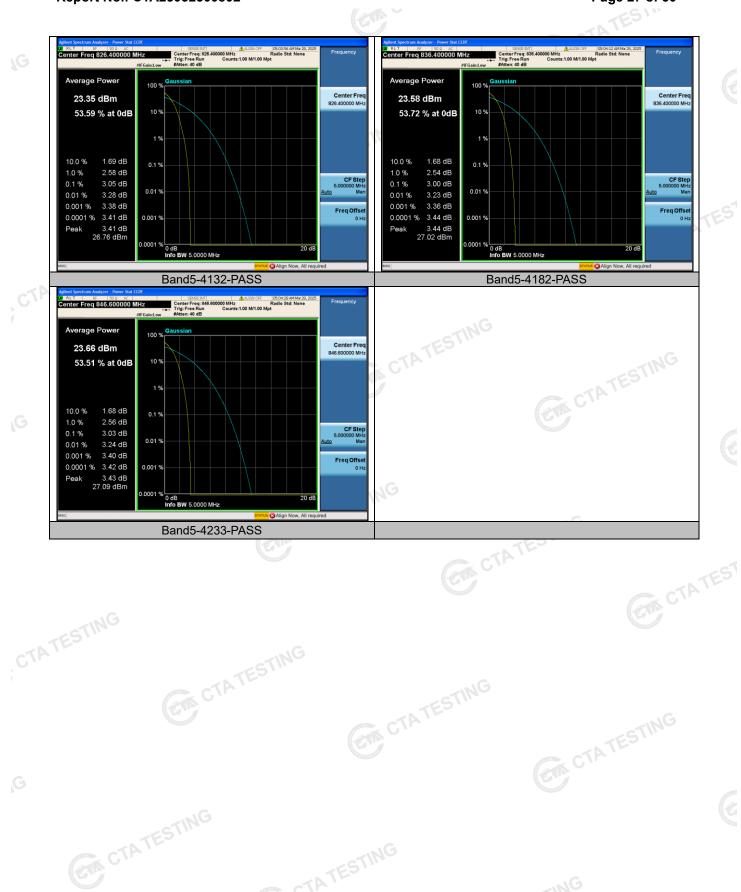
LIMIT

The Peak-to-Average Ratio (PAR) of the transmission may not exceed 13 dB.


TEST PROCEDURE

1. Refer to instrument's analyzer instruction manual for details on how to use the power

 Set resolution/measurement bandwidth ≥ signal's occupied bandwidth;
Set the number of counts to a value that stabilizes the measured CCDF curve;
Set the measurement interval as follows: 1). for continuous transmissions, complete burst transmissions, employ an external trigger that is synchronized with the EUT burst timing sequence, or use the internal burst trigger with a trigger level that allows the burst to stabilize and set the measurement interval to a time that is less than or equal to the burst duration. 5. Record the maximum PAPR level associated with a probability of 0.1%.


TEST RESULTS

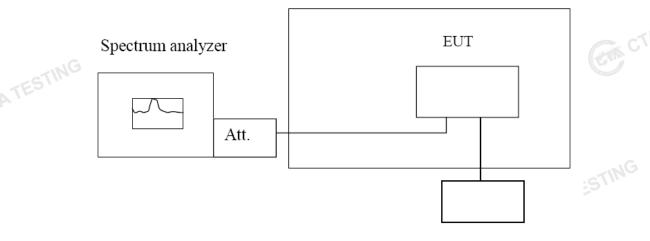
Test mode	Channel	Frequency (MHz)	PAPR Value (dB)	Limits (dB)	Verdict
	9262	1852.4	2.97	13.0	Pass
WCDMA Band II	9400	1880.0	2.87	13.0	Pass
GING	9538	1907.6	2.86	13.0	Pass
FSTIN	4132	826.4	3.05	13.0	Pass
WCDMA Band V	4183	836.6	3.00	13.0	Pass
	4233	846.6	3.03	13.0	Pass
WCDMA Band V		846.6			

Page 26 of 30

Depart No + CTA 250225009

Page 27 of 30

3.6 Frequency Stability under Temperature & Voltage Variations


LIMIT

Cellular Band: ± 2.5 ppm PCS Band: Within the authorized frequency block

TEST CONFIGURATION

Temperature Chamber

Page 28 of 30

Variable Power Supply

TEST PROCEDURE

The EUT was setup according to EIA/TIA 603C

Frequency Stability under Temperature Variations:

The equipment under test was connected to an external AC or DC power supply and input rated voltage. RF output was connected to a frequency counter or spectrum analyzer via feed through attenuators. The EUT was placed inside the temperature chamber. Set the spectrum analyzer RBW

low enough to obtain the desired frequency resolution and measure EUT 20°C operating frequency

as reference frequency. Turn EUT off and set the chamber temperature to -30°C. After the temperature stabilized for approximately 30 minutes recorded the frequency. Repeat step measure with 10°C increased per stage until the highest temperature of +50°C reached.

Frequency Stability under Voltage Variations:

Set chamber temperature to 20°C. Use a variable AC power supply / DC power source to power the EUT and set the voltage to rated voltage. Set the spectrum analyzer RBW low enough to obtain the desired frequency resolution and recorded the frequency.

Reduce the input voltage to specify extreme voltage variation $(\pm 15\%)$ and endpoint, record the maximum frequency change.

TEST RESULTS

	Temperature	Freque	ncy error		Decult
Voltage(V)	(°C)	Hz	ppm	Limit (ppm)	Result
	-30	43	0.022925		
	-20	63	0.033484		
	-10	52	0.027539		
	0	60	0.032072	GING	
3.70	10	68	0.036070	TESTIN	
	20	64	0.033970	±2.5	Pass
	30	46	0.024209		
	40	46	0.024412		
	50	55	0.029304		
4.20	25	67	0.035778		
End point 3.40	25	63	0.033451		
	CTATE				

Voltage (V	Temperature	Frequer	icy error	Limit (ppm)	Result
Voltage (V) (°C)	Hz	ppm	Einine (ppini)	Result
	-30	10	0.012028		
	-20	16	0.019358		
	-10	10	0.011705		
AT.	-10 0	18 6	0.021731		
3.70	10	1E 8	0.009141		
and the second sec	20	11	0.012581	±2.5	Pass
	30	3	0.003527	TES	
	40	19	0.022339		
	50	6	0.006914		
4.20	25	14	0.016227		CT CT
End point 3		16	0.019263		Constant of the second
	CTA TESTING		TESTING		

