

FCC Test Report

Report No.: AGC00803231005FR03

FCC ID : 2AKHJ-MD360

APPLICATION PURPOSE : Original Equipment

PRODUCT DESIGNATION: Wireless Mouse

BRAND NAME : N/A

MODEL NAME : MD360

CLIENT: Shenzhen Hangshi Electronic Technology Co., Ltd

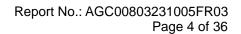
DATE OF ISSUE : Nov. 23, 2023

STANDARD(S) : FCC Part 15 Subpart C Section 15.249

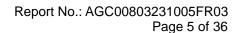
REPORT VERSION: V1.0

Attestation of Global Compliance (Shenzhen) Co., Ltd

Page 2 of 36


Report Revise Record

Report Version	Revise Time	Issued Date	Valid Version	Notes
V1.0	/	Nov. 23, 2023	Valid	Initial release


TABLE OF CONTENTS

1. VERIFICATION OF CONFORMITY	5
2. GENERAL INFORMATION	6
2.1. PRODUCT DESCRIPTION	6
2.2. TABLE OF CARRIER FREQUENCYS	6
3. MEASUREMENT UNCERTAINTY	7
4. DESCRIPTION OF TEST MODES	8
5. SYSTEM TEST CONFIGURATION	9
5.1. CONFIGURATION OF EUT SYSTEM	9
5.2. EQUIPMENT USED IN EUT SYSTEM	9
5.3. SUMMARY OF TEST RESULTS	10
6. TEST FACILITY	11
7. TEST EQUIPMENT LIST	12
8. RADIATED EMISSION	14
8.1TEST LIMIT	14
8.2. MEASUREMENT PROCEDURE	15
8.3. TEST SETUP	17
8.4. TEST RESULT	18
9. BAND EDGE EMISSION	24
9.1TEST LIMIT	24
9.2. MEASUREMENT PROCEDURE	24
9.3 TEST SETUP	24
9.4 TEST RESULT	24
10. 20DB BANDWIDTH	29
10.1. MEASUREMENT PROCEDURE	29
10.2. TEST SET-UP	29
10.3. LIMITS AND MEASUREMENT RESULTS	29
11. FCC LINE CONDUCTED EMISSION TEST	32

ΑP	PENDIX II: PHOTOGRAPHS OF TEST EUT	.36
ΑF	PENDIX I: PHOTOGRAPHS OF TEST SETUP	.36
	11.5. TEST RESULT OF LINE CONDUCTED EMISSION TEST	.33
	11.4. FINAL PROCEDURE OF LINE CONDUCTED EMISSION TEST	.33
	11.3. PRELIMINARY PROCEDURE OF LINE CONDUCTED EMISSION TEST	.33
	11.2. BLOCK DIAGRAM OF LINE CONDUCTED EMISSION TEST	.32
	11.1. LIMITS OF LINE CONDUCTED EMISSION TEST	.32

1. VERIFICATION OF CONFORMITY

Applicant	Shenzhen Hangshi Electronic Technology Co., Ltd			
Address	2nd Floor, A1 Building, G Area, Democracy West Industry Area, Shajing Town, Bao'an District, Shenzhen, China.			
Manufacturer	Shenzhen Hangshi Electronic Technology Co., Ltd			
Address	2nd Floor, A1 Building, G Area, Democracy West Industry Area, Shajing Town, Bao'an District, Shenzhen, China.			
Factory	henzhen Hangshi Electronic Technology Co., Ltd			
Address	2nd Floor, A1 Building, G Area, Democracy West Industry Area, Shajing Town, Bao'an District, Shenzhen, China.			
Product Designation	Wireless Mouse			
Brand Name	N/A			
Test Model	MD360			
Series Model	N/A			
Declaration of Difference	N/A			
Date of receipt of test item	Oct. 24, 2023			
Date of test	Oct. 24, 2023 - Nov. 23, 2023			
Deviation	None			
Condition of Test Sample	Normal			
Test Result	Pass			
Report Template	AGCRT-US-BR/RF			

Note: The test results of this report relate only to the tested sample identified in this report.

Cool Cheng
(Project Engineer)

Reviewed By

Calvin Liu
(Reviewer)

Max Zhang
(Authorized Officer)

Nov. 23, 2023

Page 6 of 36

2. GENERAL INFORMATION

2.1. PRODUCT DESCRIPTION

A major technical description of EUT is described as following

Attriagor teerminear description of Ee F is described as following			
Operation Frequency	2.403 GHz to 2.480GHz		
Maximum field strength	96.52dBuV/m(peak)@3m		
Modulation	GFSK		
Number of channels	16		
Hardware Version	V1.0		
Software Version	V3.0		
Antenna Designation	PCB Antenna		
Antenna Gain	2.34dBi		
Power Supply	DC 3.7V by battery or DC 5V by adapter		

2.2. TABLE OF CARRIER FREQUENCYS

Frequency Band	Channel Number	Frequency	Channel Number	Frequency
	1	2403	9	2441
	2	2407	10	2445
	3	2414	11	2453
0400 0400 5ML	4	2419	12	2456
2400~2483.5MHz	5	2422	13	2463
	6	2426	14	2466
	7	2436	15	2473
	8	2439	16	2480

Page 7 of 36

3. MEASUREMENT UNCERTAINTY

The reported uncertainty of measurement y ±U, where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of k=2, providing a level of confidence of approximately 95%.

- Uncertainty of Conducted Emission, Uc = ±2.9 dB
- Uncertainty of Radiated Emission below 1GHz, Uc = ±3.9 dB
- Uncertainty of Radiated Emission above 1GHz, Uc = ±4.9 dB
- Uncertainty of Occupied Channel Bandwidth: Uc = ±2 %

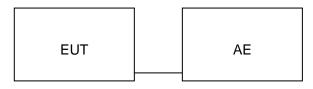
Page 8 of 36

4. DESCRIPTION OF TEST MODES

NO.	TEST MODE DESCRIPTION
1	Low channel GFSK
2	Middle channel GFSK
3	High channel GFSK

Note: 1. All the test modes can be supply by battery, only the result of the worst case was recorded in the report, if no other cases.

- 2. For Radiated Emission, 3axis were chosen for testing for each applicable mode.
- 3. The EUT used fully-charged battery when tested.


Page 9 of 36

5. SYSTEM TEST CONFIGURATION 5.1. CONFIGURATION OF EUT SYSTEM

Configure 1:

Configure 2:

5.2. EQUIPMENT USED IN EUT SYSTEM

The following peripheral devices and interface cables were connected during the measurement:

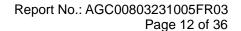
No.	Equipment	Model No.	Manufacturer	Specification Information	Cable
1	Adapter	Jinbaotong	K-T10E0502000 E		
2	Redmi Notebook PC	Redmi	XMA2002-AB		1.2m,unshielded
3	Huawei Notebook Adapter	Huawei	HW-200325CP0		1.2m,unshielded

☐ Test Accessories Come From The Manufacturer

No.	Equipment	Model No.	Manufacturer	Specification Information	Cable
1					

Page 10 of 36

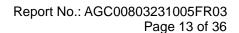
5.3. SUMMARY OF TEST RESULTS


FCC RULES	DESCRIPTION OF TEST	RESULT
§15.249(a) §15.209	Radiated Emission	Compliant
§15.249(d)	Band Edges	Compliant
§15.207	Conduction Emission	Compliant
§15.215	Band Width	Compliant

Page 11 of 36

6. TEST FACILITY

Test Site	Attestation of Global Compliance (Shenzhen) Co., Ltd
Location 1-2/F, Building 19, Junfeng Industrial Park, Chongqing Road, Heping Com Fuhai Street, Bao'an District, Shenzhen, Guangdong, China	
Designation Number	CN1259
FCC Test Firm Registration Number	975832
A2LA Cert. No.	5054.02
Description	Attestation of Global Compliance(Shenzhen) Co., Ltd is accredited by A2LA



7. TEST EQUIPMENT LIST

• F	RF Conducted Test System								
Used	Equipment No.	Test Equipment	Manufacturer	Model No.	Serial No.	Last Cal. Date (YY-MM-DD)	Next Cal. Date (YY-MM-DD)		
	AGC-ER-E036	Spectrum Analyzer	Agilent	N9020A	MY49100060	2023-06-01	2024-05-31		
	AGC-ER-E062	Power Sensor	Agilent	U2021XA	MY54110007	2023-03-03	2024-03-02		
	AGC-ER-E063	Power Sensor	Agilent	U2021XA	MY54110009	2023-03-03	2024-03-02		
	AGC-EM-A152	6dB Attenuator	Eeatsheep	LM-XX-6-5W	N/A	2023-06-09	2024-06-08		
\boxtimes	AGC-ER-E083	Signal Generator	Agilent	E4421B	US39340815	2023-06-01	2024-05-31		
	N/A	RF Connection Cable	N/A	1#	N/A	Each time	N/A		
\boxtimes	N/A	RF Connection Cable	N/A	2#	N/A	Each time	N/A		

• F	Radiated Spurious Emission								
Used	Equipment No.	Test Equipment	Manufacturer	Model No.	Serial No.	Last Cal. Date (YY-MM-DD)	Next Cal. Date (YY-MM-DD)		
	AGC-EM-E046	EMI Test Receiver	R&S	ESCI	10096	2023-02-18	2024-02-17		
\boxtimes	AGC-EM-E116	EMI Test Receiver	R&S	ESCI	100034	2023-06-03	2024-06-02		
\boxtimes	AGC-EM-E061	Spectrum Analyzer	Agilent	N9010A	MY53470504	2023-06-01	2024-05-31		
\boxtimes	AGC-EM-E086	Loop Antenna	ZHINAN	ZN30900C	18051	2022-03-12	2024-03-11		
\boxtimes	AGC-EM-E001	Wideband Antenna	SCHWARZBECK	VULB9168	D69250	2023-05-11	2025-05-10		
\boxtimes	AGC-EM-E029	Broadband Ridged Horn Antenna	ETS	3117	00034609	2023-03-23	2024-03-22		
\boxtimes	AGC-EM-E082	Horn Antenna	SCHWARZBECK	BBHA 9170	#768	2023-09-24	2025-09-23		
	AGC-EM-E146	Pre-amplifier	ETS	3117-PA	00246148	2022-08-04	2024-08-03		
\boxtimes	AGC-EM-A119	2.4G Filter	SongYi	N/A	N/A	2023-06-01	2024-05-31		
	AGC-EM-A138	6dB Attenuator	Eeatsheep	LM-XX-6-5W	N/A	2023-06-09	2024-06-08		
	AGC-EM-A139	6dB Attenuator	Eeatsheep	LM-XX-6-5W	N/A	2023-06-09	2024-06-08		

A	AC Power Line Conducted Emission									
Illsed I Equipment No. 1 Test Equipment Manufacturer Model No. 1 Serial No. 1							Next Cal. Date (YY-MM-DD)			
\boxtimes	AGC-EM-E045	EMI Test Receiver	R&S	ESPI	101206	2023-06-03	2024-06-02			
\boxtimes	AGC-EM-E023	AMN	R&S	100086	ESH2-Z5	2023-06-03	2024/06/02			
\boxtimes	AGC-EM-A130	6dB Attenuator	Eeatsheep	LM-XX-6-5W	DC-6GZ	2023-06-09	2024-06-08			

 Te 	Test Software								
Used	Equipment No.	Test Equipment	Manufacturer	Model No.	Version Information				
	AGC-EM-S001	CE Test System	R&S	ES-K1	V1.71				
\boxtimes	AGC-EM-S003	RE Test System	FARA	EZ-EMC	V.RA-03A				
\boxtimes	AGC-ER-S012	BT/WIFI-Test System	Tonscend	JS1120-2	2.6				
	AGC-EM-S011	RSE Test System	Tonscend	TS+-Ver2.1(JS36-RSE)	4.0.0.0				

Page 14 of 36

8. RADIATED EMISSION

8.1TEST LIMIT

Standard FCC15.249

Fundamental	Field Strength of Fundamental	Field Strength of Harmonics	
Frequency	(millivolts/meter)	(microvolts/meter)	
900-928MHz	50	500	
2400-2483.5MHz	50	500	
5725-5875MHz	50	500	
24.0-24.25GHz	250	2500	

Standard FCC 15.209

Frequency	Distance	Field Strengths Limit		
(MHz)	Meters	μ V/m	dB(μV)/m	
0.009 ~ 0.490	300	2400/F(kHz)		
0.490 ~ 1.705	30	24000/F(kHz)		
1.705 ~ 30	30	30		
30 ~ 88	3	100	40.0	
88 ~ 216	3	150	43.5	
216 ~ 960	3	200	46.0	
960 ~ 1000	3	500	54.0	
Above 1000	3	Other:74.0 dB(µV)/m (Average)	(Peak) 54.0 dB(μV)/m	

Remark:

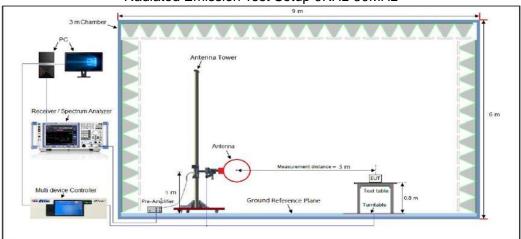
- (1) Emission level dB μ V = 20 log Emission level μ V/m
- (2) The smaller limit shall apply at the cross point between two frequency bands.
- (3) Distance is the distance in meters between the measuring instrument, antenna and the closest point of any part of the device or system.

Page 15 of 36

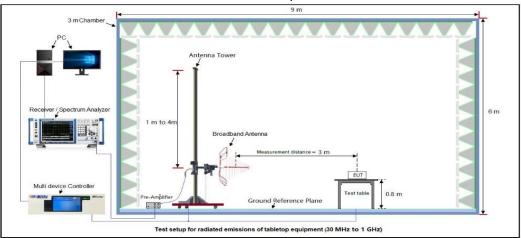
8.2. MEASUREMENT PROCEDURE

- 1. The measuring distance of 3m shall be used for measurements. The EUT was placed on the top of a rotating table 0.8 meter above the ground at a 3 meter semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation(Below 1GHz)
- 2. The measuring distance of 3m shall used for measurements. The EUT was placed on the top of a rotating table 1.5 meter above the ground at a 3 meter semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation(Above 1GHz)
- 3. The height of the test antenna shall vary between 1m to 4m.Both horizontal and vertical polarization Of the antenna are set to make the measurement.
- 4. The initial step in collecting radiated emission data is a receive peak detector mode. Pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured.
- 5. All readings are peak unless otherwise stated QP in column of Note. Peak denoted that the Peak reading compliance with the QP limits and then QP Mode measurement didn't perform(Below 1GHz)
- 6. All readings are Peak mode value unless otherwise stated AVG in column of Note. If the Peak mode measured value compliance with the Peak limits and lower than AVG Limits, the EUT shall be deemed to meet Peak & AVG limits and then only Peak mode was measured, but AVG mode didn't perform.(Above 1GHz)

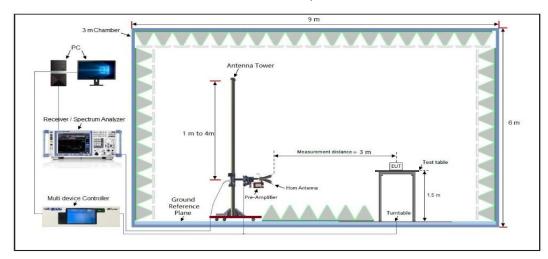
Page 16 of 36


The following table is the setting of spectrum analyzer and receiver.

Spectrum Parameter	Setting
Start ~Stop Frequency	9KHz~150KHz/RB 200Hz for QP
Start ~Stop Frequency	150KHz~30MHz/RB 9KHz for QP
Start ~Stop Frequency	30MHz~1000MHz/RB 120KHz for QP
Start ~Stop Frequency	Fundamental: 2.4~2.483GHz RBW 2MHz/ VBW 6MHz for Peak, RBW 2MHz/ VBW 10Hz for Average Harmonics: 1GHz~25GHz RBW 1MHz/ VBW 3MHz for Peak, RBW 1MHz/ VBW 10Hz for Average
Receiver Parameter	Setting
Start ~Stop Frequency	9KHz~150KHz/RB 200Hz for QP
Start ~Stop Frequency	150KHz~30MHz/RB 9KHz for QP
Start ~Stop Frequency	30MHz~1000MHz/RB 120KHz for QP



8.3. TEST SETUP

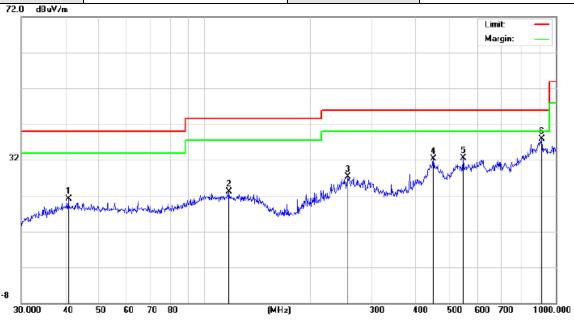

Radiated Emission Test Setup 9KHz-30MHz

Radiated Emission Test Setup 30MHz-1000MHz

Radiated Emission Test Setup Above 1000MHz

Any report having not been signed by authorized approver, or having been altered without authorization, or having not been stamped by the "Dedicated Testing/Inspection Stamp" is deemed to be invalid. Copying or excerpting portion of, or altering the content of the report is not permitted without the written authorization of AGC. The test results presented in the report apply only to the tested sample. Any objections to report issued by AGC should be submitted to AGC within 15days after the issuance of the test report. Further enquiry of validity or verification of the test report should be addressed to AGC by agc01@agccert.com.

Tel: +86-755 2523 4088 E-mail: agc@agccert.com Web: http://www.agccert.com/

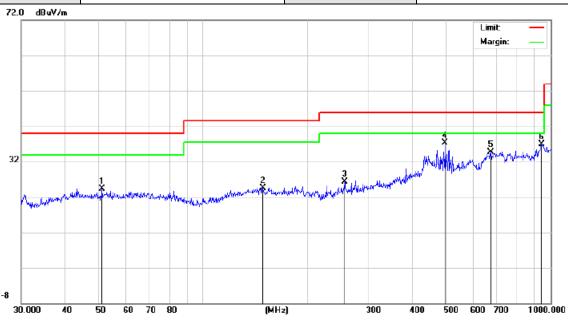

8.4. TEST RESULT

RADIATED EMISSION BELOW 30MHz

No emission found between lowest internal used/generated frequencies to 30MHz.

RADIATED EMISSION 30MHz-1GHZ

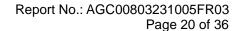
EUT	Wireless Mouse	Model Name	MD360
Temperature	23.6°C	Relative Humidity	61.4%
Pressure	1010 hPa	Test Voltage	DC 3.7V
Test Mode	Mode 3	Polarization	Horizontal



No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB	dBuV/m	dB/m	dB	Detector
1		40.8446	7.25	13.84	21.09	40.00	-18.91	peak
2		117.3603	6.76	16.37	23.13	43.50	-20.37	peak
3		255.6231	12.38	14.93	27.31	46.00	-18.69	peak
4		447.9822	7.42	24.82	32.24	46.00	-13.76	peak
5		545.1826	8.43	23.98	32.41	46.00	-13.59	peak
6	*	912.8620	7.89	30.00	37.89	46.00	-8.11	peak

RESULT: PASS

EUT	Wireless Mouse	Model Name	MD360
Temperature	23.6°C	Relative Humidity	61.4%
Pressure	1010 hPa	Test Voltage	DC 3.7V
Test Mode	Mode 3	Polarization	Vertical



No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB	dBuV/m	dB/m	dB	Detector
1		51.3005	7.29	17.01	24.30	40.00	-15.70	peak
2	1	148.4410	6.36	18.20	24.56	43.50	-18.94	peak
3	2	255.6231	8.87	17.53	26.40	46.00	-19.60	peak
4	* 4	197.6765	13.23	24.07	37.30	46.00	-8.70	peak
5	6	672.8444	7.09	27.63	34.72	46.00	-11.28	peak
6	6	942.1305	6.01	30.91	36.92	46.00	-9.08	peak

RESULT: PASS

Note: 1. Factor=Antenna Factor + Cable loss, Margin= Limit -Level.

2. The "Factor" value can be calculated automatically by software of measurement system.

FIELD STRENGTH OF FUNDAMENTAL

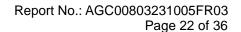
EUT :	Wireless Mouse	Model Name	MD360
Temperature :	20 ℃	Relative Humidity:	48%
Pressure :	1010 hPa	Test Voltage :	DC 3.7V
Test Modulation :	GFSK	Polarization :	Horizontal

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Value Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	
2403	82.13	13.46	95.59	114	-18.41	peak
2403	65.41	13.46	78.87	94	-15.13	AVG
2441	82.03	13.88	95.91	114	-18.09	peak
2441	64.95	13.88	78.83	94	-15.17	AVG
2480	82.41	14.11	96.52	114	-17.48	peak
2480	64.69	14.11	78.80	94	-15.20	AVG
Remark:						

Factor = Antenna Factor + Cable Loss - Pre-amplifier.

EUT:	Wireless Mouse	Model Name	MD360
Temperature :	20 ℃	Relative Humidity:	48%
Pressure :	1010 hPa	Test Voltage :	DC 3.7V
Test Modulation :	GFSK	Polarization :	Vertical

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Value Type	
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)		
2403	78.62	13.46	92.08	114	-21.92	peak	
2403	61.48	13.46	74.94	94	-19.06	AVG	
2441	79.66	13.88	93.54	114	-20.46	peak	
2441	62.03	13.88	75.91	94	-18.09	AVG	
2480	79.98	14.11	94.09	114	-19.91	peak	
2480	63.74	14.11	77.85	94	-16.15	AVG	
Remark:	Remark:						
Factor = Ar	Factor = Antenna Factor + Cable Loss - Pre-amplifier.						


RADIATED EMISSION ABOVE 1GHZ FOR BR/EDR

EUT :	Wireless Mouse	Model Name	MD360
Temperature :	23.6°C	Relative Humidity	61.4%
Pressure :	1010 hPa	Test Voltage :	DC 3.7V
Test Mode :	Mode 1	Polarization :	Horizontal

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Value Type		
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)			
4806	45.36	7.12	52.48	74	-21.52	peak		
4806	34.28	7.12	41.40	54	-12.60	AVG		
7209	41.05	9.84	50.89	74	-23.11	peak		
7209	30.27	9.84	40.11	54	-13.89	AVG		
	Remark:							
Factor = Ar	Factor = Antenna Factor + Cable Loss – Pre-amplifier.							

EUT:	Wireless Mouse	Model Name	MD360
Temperature :	23.6°C	Relative Humidity	61.4%
Pressure :	1010 hPa	Test Voltage :	DC 3.7V
Test Mode :	Mode 1	Polarization :	Vertical

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Value Type	
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)		
4806	45.26	7.12	52.38	74	-21.62	peak	
4806	35.18	7.12	42.30	54	-11.70	AVG	
7209	39.64	9.84	49.48	74	-24.52	peak	
7209	28.31	9.84	38.15	54	-15.85	AVG	
Remark:							
Factor = A	actor = Antenna Factor + Cable Loss – Pre-amplifier.						

EUT:	Wireless Mouse	Model Name	MD360
Temperature :	23.6°C	Relative Humidity	61.4%
Pressure :	1010 hPa	Test Voltage :	DC 3.7V
Test Mode :	Mode 2	Polarization :	Horizontal

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Value Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	
4882	44.29	7.12	51.41	74	-22.59	peak
4882	36.24	7.12	43.36	54	-10.64	AVG
7323	40.15	9.84	49.99	74	-24.01	peak
7323	29.85	9.84	39.69	54	-14.31	AVG
Remark:					•	•

Factor = Antenna Factor + Cable Loss – Pre-amplifier.

EUT :	Wireless Mouse	Model Name	MD360
Temperature :	23.6°C	Relative Humidity	61.4%
Pressure :	1010 hPa	Test Voltage :	DC 3.7V
Test Mode :	Mode 2	Polarization :	Vertical

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Value Type		
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)			
4882	45.28	7.12	52.40	74	-21.60	peak		
4882	32.54	7.12	39.66	54	-14.34	AVG		
7323	40.35	9.84	50.19	74	-23.81	peak		
7323	7323 28.46 9.84 38.30 54 -15.70 AVG							
Remark:								
Factor = A	Factor = Antenna Factor + Cable Loss – Pre-amplifier.							

EUT:	Wireless Mouse	Model Name	MD360
Temperature :	23.6°C	Relative Humidity	61.4%
Pressure :	1010 hPa	Test Voltage :	DC 3.7V
Test Mode :	Mode 3	Polarization :	Horizontal

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Value Type		
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)			
4960	45.36	7.12	52.48	74	-21.52	peak		
4960	36.24	7.12	43.36	54	-10.64	AVG		
7440	40.25	9.84	50.09	74	-23.91	peak		
7440 31.42 9.84 41.26 54 -12.74 AVG								
Remark:								
Factor - A	Factor = Antenna Factor + Cable Loss - Pre-amplifier							

actor = Antenna Factor + Cable Loss -

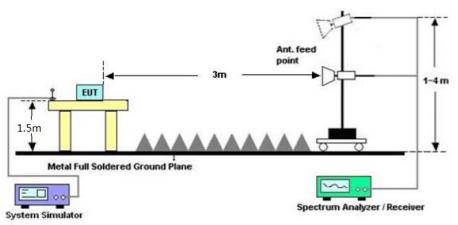
EUT :	Wireless Mouse	Model Name	MD360
Temperature :	23.6°C	Relative Humidity	61.4%
Pressure :	1010 hPa	Test Voltage :	DC 3.7V
Test Mode :	Mode 3	Polarization :	Vertical

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Value Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	
4960	44.19	7.12	51.31	74	-22.69	peak
4960	33.47	7.12	40.59	54	-13.41	AVG
7440	38.42	9.84	48.26	74	-25.74	peak
7440	27.15	9.84	36.99	54	-17.01	AVG
Remark:					-	-
Factor = A	ntenna Factor +	Cable Loss -	Pre-amplifier.			

Note: Other emissions from 8G to 25 GHz are considered as ambient noise. No recording in the test report. Factor=Antenna Factor + Cable loss - Amplifier gain, Margin=Measurement-Limit. The "Factor" value can be calculated automatically by software of measurement system.

9. BAND EDGE EMISSION

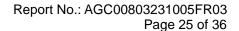
9.1TEST LIMIT


Frequency Band	Limit of the Fiel	d Strength (dBμV/m)
Frequency Band	Peak	Average
f≤2400MHz	74	54
f≥2483.5MHz	74	54

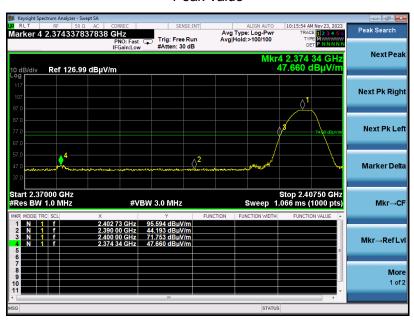
9.2. MEASUREMENT PROCEDURE

- 1. The EUT operates at transmitting mode. The operate channel is tested to verify the largest transmission and spurious emissions power at the continuous transmission mode.
- 2. Set the spectrum analyzer in the following setting in order to capture the lower and upper band-edges of the emission: (a) PEAK: RBW=1MHz, VBW=3MHz / Sweep=AUTO
- (b) AVERAGE: RBW=1MHz; VBW=1/on time / Sweep=AUTO
- 3. Other procedures refer to clause 8.2.

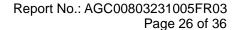
9.3 TEST SETUP


RADIATED EMISSION TEST SETUP

9.4 TEST RESULT


Note:

- 1. Factor=Antenna Factor + Cable loss Amplifier gain. Field Strength=Factor + Reading level
- 2. The factor had been edited in the "Input Correction" of the Spectrum Analyzer. So the Amplitude of test plots is equal to Reading level plus the Factor in dB. Use the A dB(μ V) to represent the Amplitude. Use the F dB(μ V/m) to represent the Field Strength. So A=F.



EUT:	Wireless Mouse	Model Name	MD360
Temperature :	20 ℃	Relative Humidtity:	48%
Pressure :	1010 hPa	Test Voltage :	DC5V
Test Mode :	Mode 1	Polarization:	Horizontal

Average Value

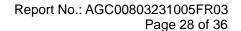
EUT:	Wireless Mouse	Model Name	MD360
Temperature :	20 ℃	Relative Humidtity:	48%
Pressure :	1010 hPa	Test Voltage :	DC5V
Test Mode :	Mode 1	Polarization :	Vertical

Average Value

Any report having not been signed by authorized approver, or having been altered without authorization, or having not been stamped by the "Dedicated Testing/Inspection Stamp" is deemed to be invalid. Copying or excerpting portion of, or altering the content of the report is not permitted without the written authorization of AGC. The test results presented in the report apply only to the tested sample. Any objections to report issued by AGC should be submitted to AGC within 15days after the issuance of the test report. Further enquiry of validity or verification of the test report should be addressed to AGC by agc01@agccert.com.

Tel: +86-755 2523 4088 E-mail: agc@agccert.com Web: http://www.agccert.com/

EUT :	Wireless Mouse	Model Name	MD360
Temperature :	20 ℃	Relative Humidtity:	48%
Pressure :	1010 hPa	Test Voltage :	DC5V
Test Mode :	Mode 3	Polarization :	Horizontal



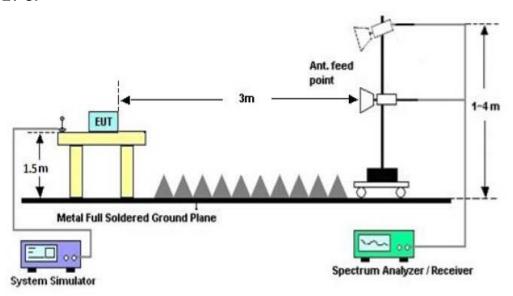
Average Value

Any report having not been signed by authorized approver, or having been altered without authorization, or having not been stamped by the "Dedicated Testing/Inspection Stamp" is deemed to be invalid. Copying or excerpting portion of, or altering the content of the report is not permitted without the written authorization of AGC. The test results presented in the report apply only to the tested sample. Any objections to report issued by AGC should be submitted to AGC within 15days after the issuance of the test report. Further enquiry of validity or verification of the test report should be addressed to AGC by agc01@agccert.com.

Tel: +86-755 2523 4088 E-mail: agc@agccert.com Web: http://www.agccert.com/

EUT:	Wireless Mouse	Model Name	MD360
Temperature :	20 ℃	Relative Humidtity:	48%
Pressure :	1010 hPa	Test Voltage :	DC5V
Test Mode :	Mode 3	Polarization :	Vertical

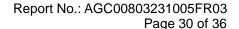
Average Value



10. 20DB BANDWIDTH

10.1. MEASUREMENT PROCEDURE

- 1. Set the EUT Work on the top, the middle and the bottom operation frequency individually.
- 2. Set Span = approximately 2 to 3 times the 20 dB bandwidth, centered on a hoping channel RBW ≥ 1% of the 20 dB bandwidth, VBW ≥ 3RBW; Sweep = auto; Detector function = peak
- 3. Set SPA Trace 1 Max hold, then View.

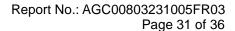

10.2. TEST SET-UP

10.3. LIMITS AND MEASUREMENT RESULTS

TEST ITEM	20DB BANDWIDTH
TEST MODULATION	GFSK

Test Data (MHz)		Criteria
Low Channel	2.364	PASS
Middle Channel	2.357	PASS
High Channel	2.350	PASS

TEST PLOT OF BANDWIDTH FOR LOW CHANNEL



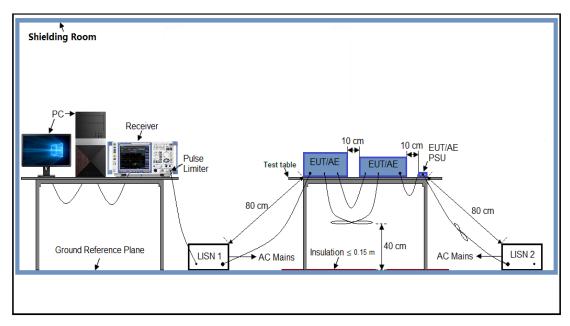
TEST PLOT OF BANDWIDTH FOR MIDDLE CHANNEL

Any report having not been signed by authorized approver, or having been altered without authorization, or having not been stamped by the "Dedicated Testing/Inspection Stamp" is deemed to be invalid. Copying or excerpting portion of, or altering the content of the report is not permitted without the written authorization of AGC. The test results presented in the report apply only to the tested sample. Any objections to report issued by AGC should be submitted to AGC within 15days after the issuance of the test report. Further enquiry of validity or verification of the test report should be addressed to AGC by agc01@agccert.com.

Tel: +86-755 2523 4088 E-mail: agc@agccert.com Web: http://www.agccert.com/

TEST PLOT OF BANDWIDTH FOR HIGH CHANNEL

11. FCC LINE CONDUCTED EMISSION TEST


11.1. LIMITS OF LINE CONDUCTED EMISSION TEST

Fraguenav	Maximum RF	Line Voltage
Frequency	Q.P.(dBuV)	Average(dBuV)
150kHz~500kHz	66-56	56-46
500kHz~5MHz	56	46
5MHz~30MHz	60	50

Note:

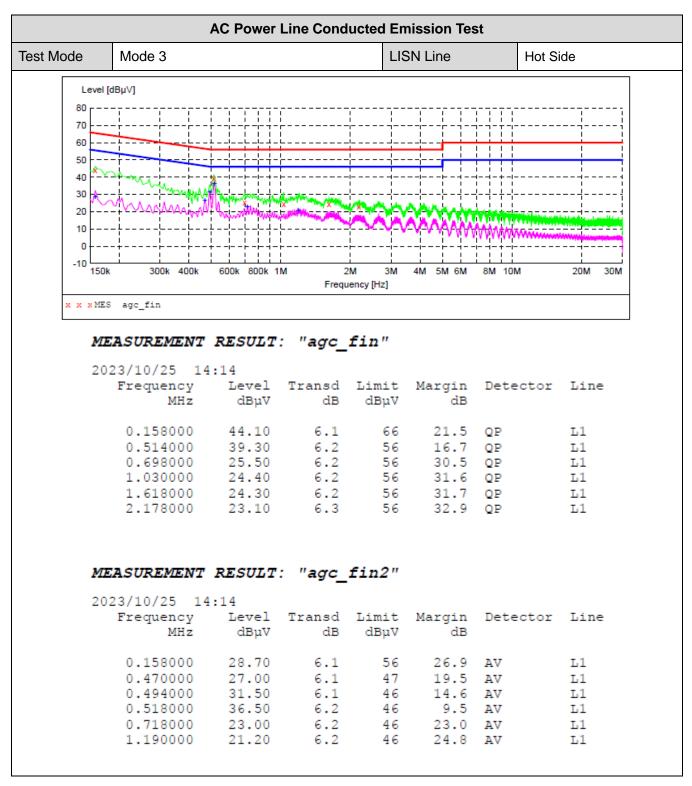
- 1. The lower limit shall apply at the transition frequency.
- 2. The limit decreases linearly with the logarithm of the frequency in the range 0.15 MHz to 0.50 MHz.

11.2. BLOCK DIAGRAM OF LINE CONDUCTED EMISSION TEST

Page 33 of 36

11.3. PRELIMINARY PROCEDURE OF LINE CONDUCTED EMISSION TEST

- 1. The equipment was set up as per the test configuration to simulate typical actual usage per the user's manual. When the EUT is a tabletop system, a wooden table with a height of 0.8 meters is used and is placed on the ground plane as per ANSI C63.10-2013 (see Test Facility for the dimensions of the ground plane used). When the EUT is a floor-standing equipment, it is placed on the ground plane which has a 3-12 mm non-conductive covering to insulate the EUT from the ground plane.
- 2. Support equipment, if needed, was placed as per ANSI C63.10-2013.
- 3. All I/O cables were positioned to simulate typical actual usage as per ANSI C63.10-2013.
- 4. All support equipments received AC120V/60Hz power from a LISN, if any.
- 5. The EUT received DC 5V power by adapter which received AC120V/60Hzpower by a LISN.
- 6. The test program was started. Emissions were measured on each current carrying line of the EUT using a spectrum Analyzer / Receiver connected to the LISN powering the EUT. The LISN has two monitoring points: Line 1 (Hot Side) and Line 2 (Neutral Side). Two scans were taken: one with Line 1 connected to Analyzer / Receiver and Line 2 connected to a 50 ohm load; the second scan had Line 1 connected to a 50 ohm load and Line 2 connected to the Analyzer / Receiver.
- 7. Analyzer / Receiver scanned from 150 kHz to 30MHz for emissions in each of the test modes.
- 8. During the above scans, the emissions were maximized by cable manipulation.
- 9. The test mode(s) were scanned during the preliminary test.


Then, the EUT configuration and cable configuration of the above highest emission level were recorded for reference of final testing.

11.4. FINAL PROCEDURE OF LINE CONDUCTED EMISSION TEST

- 1. EUT and support equipment was set up on the test bench as per step 2 of the preliminary test.
- 2. A scan was taken on both power lines, Line 1 and Line 2, recording at least the six highest emissions. Emission frequency and amplitude were recorded into a computer in which correction factors were used to calculate the emission level and compare reading to the applicable limit. If EUT emission level was less –2dB to the A.V. limit in Peak mode, then the emission signal was re-checked using Q.P and Average detector.
- 3. The test data of the worst case condition(s) was reported on the Summary Data page.

11.5. TEST RESULT OF LINE CONDUCTED EMISSION TEST

RESULT: PASS

	A	AC Power Line	Conducted E	Emission Test	t	
Test Mode	Mode 3		L	ISN Line	Neutra	al Side
Level [[dBµV]					
80		,,-,-,-				
70						
60	_				1 1 1	-
50					111	- ! - !
40						
30			Market I sales and a			
20	ZWYVYVYVWWWW	Warrant Walder Land of the Control o		NAAAAA	The standard	Held and a part
10			-	- ^-	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	
0					· -	
-10 L 150k	300k 400k	600k 800k 1M	2M 3N	4M 5M 6M	8M 10M	20M 30M
			Frequency [Hz]			
x x x MES	agc_fin					
	EASUREMENT		"agc_fin"			
	0.23/10/25 14 Frequency MHz 0.158000 0.382000 0.406000 0.426000 0.518000 0.762000		ansd Limi dB dBµ 6.1 6 6.1 5 6.1 5 6.1 5	_	Detector QP QP QP QP QP QP QP QP	Line N N N N
20 M.	023/10/25 14 Frequency MHz 0.158000 0.382000 0.406000 0.426000 0.518000 0.762000	:17 Level Tr dBµV 43.70 31.60 30.40 31.10 40.70 28.10 RESULT:	ansd Limi dB dBµ 6.1 6 6.1 5 6.1 5 6.1 5	V dB 6 21.9 8 26.6 8 27.3 7 26.2 6 15.3 6 27.9	QP QP QP QP QP	N N N N
20 M.	023/10/25 14 Frequency MHz 0.158000 0.382000 0.406000 0.426000 0.518000 0.762000 EASUREMENT	:17 Level Tr dBµV 43.70 31.60 30.40 31.10 40.70 28.10 RESULT: '	ansd Limi dB dBµ 6.1 6 6.1 5 6.1 5 6.1 5 6.2 5 6.2 5	V dB 6 21.9 8 26.6 8 27.3 7 26.2 6 15.3 6 27.9	QP QP QP QP QP	N N N N
20 M.	023/10/25 14 Frequency MHz 0.158000 0.382000 0.406000 0.426000 0.518000 0.762000	:17 Level Tr dBµV 43.70 31.60 30.40 31.10 40.70 28.10 RESULT: '	ansd Limi dB dBµ 6.1 6 6.1 5 6.1 5 6.1 5 6.2 5 6.2 5	V dB 6 21.9 8 26.6 8 27.3 7 26.2 6 15.3 6 27.9	QP QP QP QP QP	N N N N
20 M.	023/10/25 14 Frequency MHz 0.158000 0.382000 0.406000 0.426000 0.518000 0.762000 EASUREMENT 023/10/25 14 Frequency MHz	:17 Level Tr dBµV 43.70 31.60 30.40 31.10 40.70 28.10 RESULT: :17 Level Tr dBµV	ansd Limi dB dBµ 6.1 6 6.1 5 6.1 5 6.1 5 6.2 5 6.2 5	V dB 6 21.9 8 26.6 8 27.3 7 26.2 6 15.3 6 27.9 " t Margin V dB	QP QP QP QP QP QP	N N N N N
20 M.	023/10/25 14 Frequency MHz 0.158000 0.382000 0.406000 0.426000 0.518000 0.762000 EASUREMENT 023/10/25 14 Frequency MHz 0.470000	:17 Level Tr dBµV 43.70 31.60 30.40 31.10 40.70 28.10 RESULT: ' :17 Level Tr dBµV 26.70	ansd Limi dB dBµ 6.1 6 6.1 5 6.1 5 6.1 5 6.2 5 6.2 5	V dB 6 21.9 8 26.6 8 27.3 7 26.2 6 15.3 6 27.9 " t Margin V dB 7 19.8	QP QP QP QP QP QP	N N N N N Line
20 M.	023/10/25 14 Frequency MHz 0.158000 0.382000 0.406000 0.426000 0.518000 0.762000 EASUREMENT 023/10/25 14 Frequency MHz 0.470000 0.494000	:17 Level Tr dBµV 43.70 31.60 30.40 31.10 40.70 28.10 RESULT: ' :17 Level Tr dBµV 26.70 31.40	ansd Limi dB dBµ 6.1 6 6.1 5 6.1 5 6.1 5 6.2 5 6.2 5	V dB 6 21.9 8 26.6 8 27.3 7 26.2 6 15.3 6 27.9 " t Margin V dB 7 19.8 6 14.7	QP QP QP QP QP QP AV	N N N N N Line
20 M.	023/10/25 14 Frequency MHz 0.158000 0.382000 0.406000 0.426000 0.518000 0.762000 EASUREMENT 023/10/25 14 Frequency MHz 0.470000	:17 Level Tr dBµV 43.70 31.60 30.40 31.10 40.70 28.10 RESULT: ' :17 Level Tr dBµV 26.70	ansd Limi dB dBµ 6.1 6 6.1 5 6.1 5 6.1 5 6.2 5 6.2 5	V dB 6 21.9 8 26.6 8 27.3 7 26.2 6 15.3 6 27.9 " t Margin V dB 7 19.8	QP QP QP QP QP QP AV AV AV	N N N N N Line
20 M.	023/10/25 14 Frequency MHz 0.158000 0.382000 0.406000 0.426000 0.518000 0.762000 EASUREMENT 023/10/25 14 Frequency MHz 0.470000 0.494000 0.514000	:17 Level Tr dBµV 43.70 31.60 30.40 31.10 40.70 28.10 RESULT: ' :17 Level Tr dBµV 26.70 31.40 37.80	ansd Limi dB dBµ 6.1 6 6.1 5 6.1 5 6.1 5 6.2 5 6.2 5 6.2 5	V dB 6 21.9 8 26.6 8 27.3 7 26.2 6 15.3 6 27.9 " t Margin V dB 7 19.8 6 14.7 6 8.2	QP QP QP QP QP QP AV AV AV AV	N N N N N Line

RESULT: PASS

Page 36 of 36

Appendix I: Photographs of Test Setup

Refer to the Report No.: AGC00803231005AP02

Appendix II: Photographs of Test EUT Refer to the Report No.: AGC00803231005AP03

----END OF REPORT----

Conditions of Issuance of Test Reports

- 1. All samples and goods are accepted by the Attestation of Global Compliance (Shenzhen) Co., Ltd (the "Company") solely for testing and reporting in accordance with the following terms and conditions. The company provides its services on the basis that such terms and conditions constitute express agreement between the company and any person, firm or company requesting its services (the "Clients").
- 2. Any report issued by Company as a result of this application for testing services (the "Report") shall be issued in confidence to the Clients and the Report will be strictly treated as such by the Company. It may not be reproduced either in its entirety or in part and it may not be used for advertising or other unauthorized purposes without the written consent of the Company. The Clients to whom the Report is issued may, however, show or send it, or a certified copy thereof prepared by the Company to its customer, supplier or other persons directly concerned. The Company will not, without the consent of the Clients, enter into any discussion or correspondence with any third party concerning the contents of the Report, unless required by the relevant governmental authorities, laws or court orders.
- 3. The Company shall not be called or be liable to be called to give evidence or testimony on the Report in a court of law without its prior written consent, unless required by the relevant governmental authorities, laws or court orders.
- 4. In the event of the improper use of the report as determined by the Company, the Company reserves the right to withdraw it, and to adopt any other additional remedies which may be appropriate.
- 5. Samples submitted for testing are accepted on the understanding that the Report issued cannot form the basis of, or be the instrument for, any legal action against the Company.
- 6. The Company will not be liable for or accept responsibility for any loss or damage however arising from the use of information contained in any of its Reports or in any communication whatsoever about its said tests or investigations.
- 7.Clients wishing to use the Report in court proceedings or arbitration shall inform the Company to that effect prior to submitting the sample for testing.
- 8. The Company is not responsible for recalling the electronic version of the original report when any revision is made to them. The Client assumes the responsibility to providing the revised version to any interested party who uses them.
- 9. Subject to the variable length of retention time for test data and report stored hereinto as otherwise specifically required by individual accreditation authorities, the Company will only keep the supporting test data and information of the test report for a period of six years. The data and information will be disposed of after the aforementioned retention period has elapsed. Under no circumstances shall we provide any data and information which has been disposed of after retention period. Under no circumstances shall we be liable for damage of any kind, including (but not limited to) compensatory damages, lost profits, lost data, or any form of special, incidental, indirect, consequential or punitive damages of any kind, whether based on breach of contract of warranty, tort (including negligence), product liability or otherwise, even if we are informed in advance of the possibility of such damages.