SAR TEST REPORT

For

Digital Ally, Inc.

Body Worn Camera

Test Model: FirstVu PRO

Additional Model No.:/

Prepared for : Digital Ally, Inc.

Address : 14001 Marshall Drive Lenexa, Kansas 66215 United States

Prepared by : Shenzhen LCS Compliance Testing Laboratory Ltd.

101, 201 Bldg A & 301 Bldg C, Juji Industrial Park

Address : Yabianxueziwei, Shajing Street, Baoan District, Shenzhen,

518000, China

Tel : (86)755-82591330 Fax : (86)755-82591332 Web : www.LCS-cert.com

Mail : webmaster@LCS-cert.com

Date of receipt of test sample : March 09, 2022

Number of tested samples :

Sample number : 220304071A -1, 220304071A -2

Serial number : Prototype

Date of Test : March 09, 2022 ~ March 29, 2022

Date of Report : May 05, 2022

Scan code to check authenticity

	SAR TEST REPORT
Report Reference No:	LCS220304071AE001
Date Of Issue:	April 01, 2022
Testing Laboratory Name::	Shenzhen LCS Compliance Testing Laboratory Ltd.
Address:	101, 201 Bldg A & 301 Bldg C, Juji Industrial Park Yabianxueziwei, Shajing Street, Baoan District, Shenzhen, 518000, China
Testing Location/ Procedure:	Full application of Harmonised standards ■
	Partial application of Harmonised standards □
	Other standard testing method
Applicant's Name:	Digital Ally, Inc.
Address:	14001 Marshall Drive Lenexa, Kansas 66215 United States
Test Specification:	
Standard:	IEEE Std C95.1-2019& IEEE Std 1528™-2013 & FCC Part 2.1093
Test Report Form No:	LCSEMC-1.0
TRF Originator:	Shenzhen LCS Compliance Testing Laboratory Ltd.
Master TRF:	

Shenzhen LCS Compliance Testing Laboratory Ltd. All rights reserved.

This publication may be reproduced in whole or in part for non-commercial purposes as long as the Shenzhen LCS Compliance Testing Laboratory Ltd. is acknowledged as copyright owner and source of the material. Shenzhen LCS Compliance Testing Laboratory Ltd. takes noresponsibility for and will not assume liability for damages resulting from the reader's interpretation of the reproduced material due to its placement and context.

Compiled by:	Supervised by:	Approved by:
Jayzhan	Jin Wang	Grino Vimoz
Jay Zhan/ File administrators	Jin Wang/ Technique principal	Gavin Liang/ Manager

SAR -- TEST REPORT

Test Report No. :	LCS220304071AE001	April 01, 2022 Date of issue
-------------------	-------------------	---------------------------------

Type / Model..... : FirstVu PRO EUT..... : Body Worn Camera Applicant..... : Digital Ally, Inc. Address..... : 14001 Marshall Drive Lenexa, Kansas 66215 United States Telephone..... : / Fax..... Manufacturer..... : Digital Ally, Inc. : 14001 Marshall Drive Lenexa, Kansas 66215 United States Address..... Telephone..... : / Fax..... : / : Digital Ally, Inc. Factory..... : 14001 Marshall Drive Lenexa, Kansas 66215 United States Address..... Telephone..... : / Fax.....

Test Result	Positive
-------------	----------

The test report merely corresponds to the test sample.

It is not permitted to copy extracts of these test result without the written permission of the test laboratory.

Revison History

Revision	Issue Date	Revisions	Revised By
000	April 01, 2022	Initial Issue	Gavin Liang
001	May 05, 2022	See notes	Gavin Liang

Note: This report is based on the report No. <u>LCS220304071AE</u> to Modify information. This report is invalid without original report.

TABLE OF CONTENTS

1. TES'	ST STANDARDS AND TEST DESCRIPTION	6
	TEST STANDARDS	
	TEST DESCRIPTION	
	GENERAL REMARKS	
	PRODUCT DESCRIPTION	
2. TES'	T ENVIRONMENT	10
	TEST FACILITY	
	SAR LIMITS	
	EQUIPMENTS USED DURING THE TEST	
3. SAR	R MEASUREMENTS SYSTEM CONFIGURATION	12
	SARMEASUREMENT SET-UP	
	OPENSAR E-FIELD PROBE SYSTEM	
	PHANTOMS	
	Device Holder	
3.6.		
3.7.	TISSUE DIELECTRIC PARAMETERS FOR HEAD AND BODY PHANTOMS	
3.8.	TISSUE EQUIVALENT LIQUID PROPERTIES	
3.9.		
	. SAR MEASUREMENT PROCEDURE	
	Power Reduction	
	Power Drift	
4. TES'	T CONDITIONS AND RESULTS	26
	CONDUCTED POWER RESULTS	
4.2.	TRANSMIT ANTENNAS AND SAR MEASUREMENT POSITION	
4.3.		
4.4.	SIMULTANEOUS TX SAR CONSIDERATIONS	
4.5.	SAR MEASUREMENT VARIABILITY	
4.6.		
4.7.	, , , , , , , , , , , , , , , , , , , ,	
4.9.		
	LIBRATION CERTIFICATES	
5.1	PROBE-EPGO324 CALIBRATION CERTIFICATE	63
5.2	SID750Dipole Calibration Ceriticate	
5.3	SID835DIPOLE CALIBRATION CERITICATE	
5.4	SID1800 DIPOLE CALIBRATION CERTIFICATE	
5.5	SID1900 DIPOLE CALIBRATION CERTIFICATE	
5.6	SID2450 DIPOLE CALIBRATION CERITICATE	
5.7	SID5G-6G DIPOLE CALIBRATION CERITICATE	
6. PHO	OTOGRAPHS OF THE LIQUID	141
7. PHO	OTOGRAPHS OF THE TEST	145
o rim		146

EST STANDARDS AND TEST DESCRIPTION

1.1. Test Standards

IEEE Std C95.1-2019: IEEE Standard for Safety Levels with Respect to Human Exposure to Electric, Magnetic, and Electromagnetic Fields, 0 Hz to 300 GHz. It specifies the maximum exposure limit of 1.6 W/kg as averaged over any 1 gram of tissue for portable devices being used within 20 cm of the user in the uncontrolled environment.

IEEE Std 1528™-2013: IEEE Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques.

FCC Part 2.1093 Radiofrequency Radiation Exposure Evaluation: Portable Devices

KDB447498 D01 General RF Exposure Guidance v06: Mobile and Portable Device RF Exposure

Procedures and Equipment Authorization Policies

KDB447498 D02 SAR Procedures for Dongle Xmtr v02r01: SAR Measurement Procedures For USB Dongle Transmitters.

KDB865664 D01 SAR Measurement 100 MHz to 6 GHz v01r04 : SAR Measurement Requirements for 100 MHz to 6 GHz

KDB865664 D02 RF Exposure Reporting v01r02: RF Exposure Compliance Reporting and Documentation Considerations

KDB 248227 D01 802.11 Wi-Fi SAR v02r02: SAR GUIDANCE FOR IEEE 802.11 (Wi-Fi) TRANSMITTERS KDB 941225 D05 SAR for LTE Devices: SAR Evaluation Considerations For LTE Devices

1.2. Test Description

The EUT battery must be fully charged and checked periodically during the test to ascertain uniform power. And Test device is identical prototype.

1.3. General Remarks

Date of receipt of test sample	:	March 09, 2022
Testing commenced on	:	March 09, 2022
Testing concluded on	:	March 29, 2022

1.4. Product Description

The Digital Ally, Inc.'s Model: FirstVu PRO or the "EUT" as referred to in this report; more general information as follows, for more details, refer to the user's manual of the EUT.

General Description	
EUT:	Body Worn Camera
Model/Type reference:	FirstVu PRO
Additional Model No.	1
Model Declaration:	1
Hardware Version	V1.00
Software Version	G7_1.02.078MG04
Power supply:	Input: DC 5V, 1A
Tower suppry.	DC 3.8V by Rechargeable Lithium-ion Battery, 900mAh
Hotspot:	Supported
Exposure category	General population/uncontrolled environment
EUT Type Production Unit	
Device Type Portable Device	

The EUT is Body Worn Camera. the Body Worn Camera is intended for WLAN transmission. It is equipped with WiFi2.4G; WiFi5.2G; WiFi5.3G; WiFi5.8G; LTE 2,4,5,12. For more information see the following datasheet

Technical Characteristics			
LTE			
Operation Band: LTE FDD band 2, 4, 5, 12			
Modulation Type: QPSK/16QAM			
Power Class:	Class 3		
Release Version:	R8		
	PIFA Antenna		
	2.0dBi (max.) For E-UTRA Band 2		
Antenna Description:	2.0dBi (max.) For E-UTRA Band 4		
	2.0dBi (max.) For E-UTRA Band 5		
	2.0dBi (max.) For E-UTRA Band 12		
WIFI 2.4G			
Supported Standards:	IEEE 802.11b/802.11g/802.11n(HT20 and HT40)		
Frequency Range:	2412MHz-2462MHz		
Operation frequency:	2412-2462MHz for 11b/g/n(HT20)		
Operation frequency.	2422-2452MHz for 11n(HT40)		
Type of Modulation:	IEEE 802.11b: DSSS(CCK,DQPSK,DBPSK);		
Type of Modulation.	IEEE 802.11g/n: OFDM(64QAM, 16QAM, QPSK, BPSK)		
Channel number:	11 channels for 20MHz bandwidth (2412~2462MHz)		
Chame number.	7 channels for 40MHz bandwidth (2422~2452MHz)		
Channel separation:	5MHz		
Antenna Description:	PIFA Antenna, -1.2dBi (MAX)		
WIFI 5G			
Frequency Range:	5180-5240MHz, 5260-5320MHz		
Channel Number:	4 Channels for 20MHz bandwidth(5180MHz-5240MHz)		
	4 Channels for 20MHz bandwidth(5260MHz-5320MHz)		
	2 channels for 40MHz bandwidth(5190MHz~5230MHz)		
	2 channels for 40MHz bandwidth(5270MHz~5310MHz)		
	1 channels for 80MHz bandwidth(5210MHz)		
	1 channels for 80MHz bandwidth(5290MHz)		
Modulation Type:	IEEE 802.11a/n/ac: OFDM (256QAM, 64QAM, 16QAM, QPSK, BPSK)		
Antenna Description:	PIFA Antenna, -2.5dBi (MAX)		
WIFI 5.8G			
Frequency Range:	5745MHz-5825MHz		
Channel Number:	5 channels for 20MHz bandwidth(5745-5825MHz)		
	2 channels for 40MHz bandwidth(5755~5795MHz)		
	1 channels for 80MHz bandwidth(5775MHz)		
Modulation Type:	IEEE 802.11a/n/ac: OFDM (256QAM, 64QAM, 16QAM, QPSK, BPSK)		
Antenna Description:	PIFA Antenna, -2.5dBi (MAX)		

Bluetooth	
Frequency Range:	2402MHz ~ 2480MHz
Channel Number:	79 channels for Bluetooth V4.2(DSS)
	40 channels for Bluetooth V4.2(DTS)
Channel Spacing:	1MHz for Bluetooth V4.2 (DSS)
	2MHz for Bluetooth V4.2 (DTS)
Modulation Type:	GFSK, π/4-DQPSK, 8-DPSK for Bluetooth V4.2(DSS)
	GFSK for Bluetooth V4.2 (DTS)
Bluetooth Version:	V4.2
Antenna Description:	PIFA Antenna, -1.2dBi (MAX)

ement of Compliance

The maximum of results of SAR found during testing for FirstVu PRO are follows:

<Highest Reported standalone SAR Summary>

		Hotspot	Body-worn	
	Frequency Band	(Report SAR _{1-g} (W/kg)	(Report SAR _{1-g} (W/kg)	
		(Separation Distance 10mm)		
Classment		(No using body - worn accessories)		
Class	LTE band 2	0.302	0.274	
	LTE band 4	0.540	0.513	
	LTE band 5	0.511	0.491	
	LTE band 12	0.506	0.488	
DTS	WIFI2.4G	0.229	0.209	
	WIFI5.2G	0.197	0.167	
NII	WIFI5.3G	/	0.108	
	WIFI5.8G	0.079	0.054	

This device is in compliance with Specific Absorption Rate (SAR) for general population/uncontrolled exposure limits (1.6 W/kg) specified in FCC 47 CFR part 2 (2.1093) and ANSI/IEEE C95.1-2019, and had been tested in accordance with the measurement methods and procedures specified in IEEE 1528-2013.

<Highest Reported simultaneous SAR Summary>

 mulaneous oak oummary>				
Exposure Position	Classment Class	Highest Reported Simultaneous Transmission SAR _{1-g} (W/kg)		
Body-worn	PCB			
(hotspot open. No using body - worn accessories)	DTS	0.769		

<Highest Reported standalone SAR Summary>

	_	Hotspot	Body-worn
	Frequency	(Report SAR _{1-g} (W/kg)	(Report SAR _{1-g} (W/kg)
	Band	(Separation Distance 0)	nm)(Using body - worn
Classment		acces	sories)
Class	LTE band 2	0.274	0.248
	LTE band 4	0.518	0.484
	LTE band 5	0.477	0.448
	LTE band 12	0.478	0.452
DTS	WIFI2.4G	0.211	0.187
	WIFI5.2G	0.164	0.143
NII	WIFI5.3G	/	0.084
	WIFI5.8G	0.066	0.041

This device is in compliance with Specific Absorption Rate (SAR) for general population/uncontrolled exposure limits (1.6 W/kg) specified in FCC 47 CFR part 2 (2.1093) and ANSI/IEEE C95.1-2019, and had been tested in accordance with the measurement methods and procedures specified in IEEE 1528-2013.

<Highest Reported simultaneous SAR Summary>

Exposure Position	Classment Class	Highest Reported Simultaneous Transmission SAR _{1-g} (W/kg)
Body-worn	PCB	
(hotspot open, Using body - worn accessories)	DTS	0.729

2. TEST ENVIRONMENT

2.1. Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

Site Description

EMC Lab. : NVLAP Accreditation Code is 600167-0.

FCC Designation Number is CN5024.

CAB identifier is CN0071.

CNAS Registration Number is L4595.

2.2. Environmental conditions

During the measurement the environmental conditions were within the listed ranges:

Temperature:	18-25 ° C
Humidity:	40-65 %
Atmospheric pressure:	950-1050mbar

2.3. SAR Limits

FCC Limit (1g Tissue)

	SAR (W/kg)				
EXPOSURE LIMITS	(General Population / Uncontrolled Exposure Environment)	(Occupational / Controlled Exposure Environment)			
Spatial Average(averaged over the whole body)	0.08	0.4			
Spatial Peak(averaged over any 1 g of tissue)	1.6	8.0			
Spatial Peak(hands/wrists/ feet/anklesaveraged over 10 g)	4.0	20.0			

Population/Uncontrolled Environments are defined as locations where there is the exposure of individual who have no knowledge or control of their exposure.

Occupational/Controlled Environments are defined as locations where there is exposure that may be incurred by people who are aware of the potential for exposure (i.e. as a result of employment or occupation).

2.4. Equipments Used during the Test

Item	Equipment	Manufacturer	Model No.	Serial No.	Cal Date	Due Date
1	PC	Lenovo	G5005	MY42081102	N/A	N/A
2	SAR Measurement system	SATIMO	4014_01	SAR_4014_01	N/A	N/A
3	Signal Generator	Agilent	E4438C	MY49072627	2021-06-11	2022-06-10
4	Multimeter	Keithley	MiltiMeter 2000	4059164	2021-11-13	2022-11-12
5	S-parameter Network Analyzer	Agilent	8753ES	US38432944	2021-11-13	2022-11-12
6	Wideband Radio Communication Tester	R&S	CMW500	103818-1	2021-11-20	2022-11-19
7	E-Field PROBE	MVG	SSE2	SN 31/17 EPGO324	2021-10-06	2022-10-05
8	DIPOLE 750	SATIMO	SID 750	SN 30/14 DIP 0G750-302	2021-09-29	2024-09-28
9	DIPOLE 835	SATIMO	SID 835	SN 07/14 DIP 0G835-303	2021-09-29	2024-09-28
10	DIPOLE 1800	SATIMO	SID 1800	SN 07/14 DIP 1G800-301	2021-09-29	2024-09-28
11	DIPOLE 1900	SATIMO	SID 1900	SN 38/18 DIP 1G900-466	2021-09-22	2024-09-21
12	DIPOLE 2450	SATIMO	SID 2450	SN 07/14 DIP 2G450-306	2021-09-29	2024-09-28
13	DIPOLE 5000-6000	MVG	SWG5500	SN 49/16 WGA 43	2021-09-22	2024-09-21
14	COMOSAR OPENCoaxial Probe	SATIMO	OCPG 68	SN 40/14 OCPG68	2021-11-13	2022-11-12
15	SAR Locator	SATIMO	VPS51	SN 40/14 VPS51	2021-11-13	2022-11-12
16	Communication Antenna	SATIMO	ANTA57	SN 39/14 ANTA57	2021-11-13	2022-11-12
17	FEATURE PHONEPOSITIONING DEVICE	SATIMO	MSH98	SN 40/14 MSH98	N/A	N/A
18	DUMMY PROBE	SATIMO	DP60	SN 03/14 DP60	N/A	N/A
19	SAM PHANTOM	SATIMO	SAM117	SN 40/14 SAM117	N/A	N/A
20	Liquid measurement Kit	HP	85033D	3423A03482	2021-11-13	2022-11-12
21	Power meter	Agilent	E4419B	MY45104493	2021-06-11	2022-06-10
22	Power meter	Agilent	E4419B	MY45100308	2021-11-20	2022-11-19
23	Power sensor	Agilent	E9301H	MY41495616	2021-11-20	2022-11-19
24	Power sensor	Agilent	E9301H	MY41495234	2021-06-11	2022-06-10
25	Directional Coupler	MCLI/USA	4426-20	03746	2021-06-11	2022-06-10

Note:

- 1) Per KDB865664D01 requirements for dipole calibration, the test laboratory has adopted three year extended calibration interval. Each measured dipole is expected to evalute with following criteria at least on annual interval.
- a) There is no physical damage on the dipole;
- b) System check with specific dipole is within 10% of calibrated values;
- c) The most recent return-loss results, measued at least annually, deviates by no more than 20% from the previous measurement;
- d) The most recent measurement of the real or imaginary parts of the impedance, measured at least annually is within 5Ω from the provious measurement.
- 2) Network analyzer probe calibration against air, distilled water and a shorting block performed before measuring liquid parameters.

SAR MEASUREMENTS SYSTEM CONFIGURATION

3.1. SARMeasurement Set-up

The OPENSAR system for performing compliance tests consist of the following items:

A standard high precision 6-axis robot (KUKA) with controller and software.

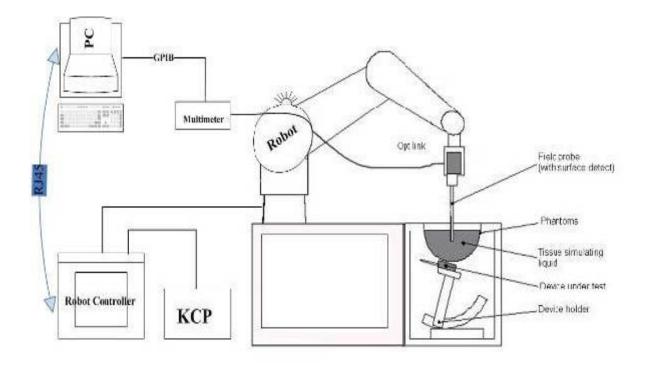
KUKA Control Panel (KCP)

A dosimetric probe, i.e., an isotropic E-field probe optimized and calibrated for usage in tissue simulating liquid. The probe is equipped with a Video Positioning System(VPS).

The stress sensor is composed with mechanical and electronic when the electronic part detects a change on the electro-mechanical switch, It sends an "Emergency signal" to the robot controller that to stop robot's moves

A computer operating Windows XP.

OPENSAR software


Remote control with teaches pendant and additional circuitry for robot safety such as warning lamps, etc.

The SAM phantom enabling testing left-hand right-hand and body usage.

The Position device for handheld EUT

Tissue simulating liquid mixed according to the given recipes.

System validation dipoles to validate the proper functioning of the system.

.2. OPENSAR E-field Probe System

The SAR measurements were conducted with the dosimetric probe EPGO324 (manufactured by MVG), designed in the classical triangular configuration and optimized for dosimetric evaluation.

Probe Specification

ConstructionSymmetrical design with triangular core

Interleaved sensors

Built-in shielding against static charges

PEEK enclosure material (resistant to organic solvents, e.g., DGBE)

CalibrationISO/IEC 17025 calibration service available.

Frequency 450 MHz to 6 GHz;

Linearity:0.25dB(450 MHz to 6 GHz)

Directivity 0.25 dB in HSL (rotation around probe axis)

0.5 dB in tissue material (rotation normal to probe

axis)

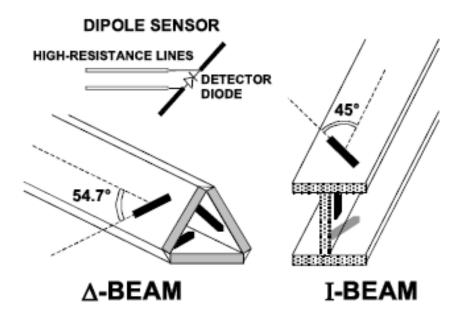
Dynamic Range 0.01W/kg to > 100 W/kg;

Linearity: 0.25 dB

Dimensions Overall length: 330 mm (Tip: 16mm)

Tip diameter: 5 mm (Body: 8 mm)

Distance from probe tip to sensor centers: 2.5 mm


Application General dosimetry up to 6 GHz

Dosimetry in strong gradient fields Compliance tests of Mobile Phones

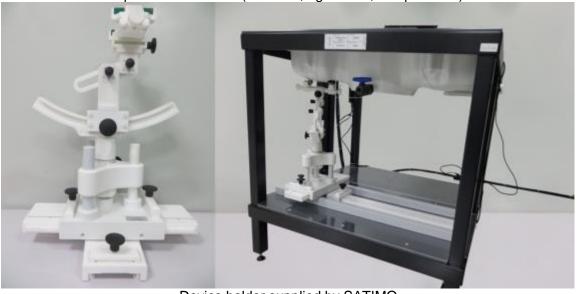
Isotropic E-Field Probe

The isotropic E-Field probe has been fully calibrated and assessed for isotropicity, and boundary effect within a controlled environment. Depending on the frequency for which the probe is calibrated the method utilized for calibration will change.

The E-Field probe utilizes a triangular sensor arrangement as detailed in the diagram below:

Phantoms

The SAM Phantom SAM117 is constructed of a fiberglass shell integrated in a wooden table. The shape of the shell is in compliance with the specification set in IEEE 1528 and EN62209-1, EN62209-2. The phantom enables the dosimetric evaluation of left and right hand phone usage as well as body mounted usage at the flat phantom region. A cover prevents the evaporation of the liquid. Reference markings on the Phantom allow the complete setup of all predefined phantom positions and measurement grids by manually teaching three points in the robo


System checking was performed using the flat section, whilst Head SAR tests used the left and right head profile sections. Body SAR testing also used the flat section between the head profiles.

SAM Twin Phantom

3.4. Device Holder

In combination with the Generic Twin PhantomSAM117, the Mounting Device enables the rotation of the mounted transmitter in spherical coordinates whereby the rotation points is the ear opening. The devices can be easily, accurately, and repeatedly positioned according to the FCC specifications. The device holder can be locked at different phantom locations (left head, right head, flat phantom).

Device holder supplied by SATIMO

5.5. Scanning Procedure

The procedure for assessing the peak spatial-average SAR value consists of the following steps

Power Reference Measurement

The reference and drift jobs are useful jobs for monitoring the power drift of the device under test in the batch process. Both jobs measure the field at a specified reference position, at a selectable distance from the phantom surface. The reference position can be either the selected section's grid reference point or a user point in this section. The reference job projects the selected point onto the phantom surface, orients the probe perpendicularly to the surface, and approaches the surface using the selected detection method.

Area Scan

The Area Scan is used as a fast scan in two dimensions to find the area of high field values before running a detailed measurement around the hot spot.Before starting the area scan a grid spacing of 15 mm x 15 mm is set. During the scan the distance of the probe to the phantom remains unchanged. After finishing area scan, the field maxima within a range of 2 dB will be ascertained.

	≤ 3 GHz	> 3 GHz		
Maximum distance from closest measurement point (geometric center of probe sensors) to phantom surface	$5 \text{ mm} \pm 1 \text{ mm}$	$\frac{1}{2} \cdot \delta \cdot \ln(2) \text{ mm} \pm 0.5 \text{ mm}$		
Maximum probe angle from probe axis to phantom surface normal at the measurement location	30° ± 1°	20° ± 1°		
	\leq 2 GHz: \leq 15 mm 2 – 3 GHz: \leq 12 mm	$3 - 4 \text{ GHz}$: $\leq 12 \text{ mm}$ $4 - 6 \text{ GHz}$: $\leq 10 \text{ mm}$		
Maximum area scan spatial resolution: Δx_{Area} , Δy_{Area}	When the x or y dimension of the test device, in the measurement plane orientation, is smaller than the above, the measurement resolution must be \leq the corresponding x or y dimension of the test device with at least one measurement point on the test device.			

Zoom Scan

Zoom Scans are used to estimate the peak spatial SAR values within a cubic averaging volume containing 1 g and 10 g of simulated tissue. The default Zoom Scan is done by 7x7x7 points within a cube whose base is centered around the maxima found in the preceding area scan.

o deficied dround the maxima round in the proceeding drou south.								
Maximum zoom scan	spatial res	olution: Δx_{Zoom} , Δy_{Zoom}	\leq 2 GHz: \leq 8 mm 2 – 3 GHz: \leq 5 mm*	$3 - 4 \text{ GHz: } \le 5 \text{ mm}^*$ $4 - 6 \text{ GHz: } \le 4 \text{ mm}^*$				
	uniform grid: Δz _{Zoom} (n)		≤ 5 mm	$3 - 4 \text{ GHz}: \le 4 \text{ mm}$ $4 - 5 \text{ GHz}: \le 3 \text{ mm}$ $5 - 6 \text{ GHz}: \le 2 \text{ mm}$				
Maximum zoom scan spatial resolution, normal to phantom surface	graded	Δz _{Zoom} (1): between 1 st two points closest to phantom surface	≤ 4 mm	$3 - 4 \text{ GHz} \le 3 \text{ mm}$ $4 - 5 \text{ GHz} \le 2.5 \text{ mm}$ $5 - 6 \text{ GHz} \le 2 \text{ mm}$				
	grid	Δz _{Zoom} (n>1): between subsequent points	$\leq 1.5 \cdot \Delta z_{Zoom}(n-1) \text{ mm}$					
Minimum zoom scan volume	x, y, z		$\geq 30 \; mm$	$3 - 4 \text{ GHz: } \ge 28 \text{ mm}$ $4 - 5 \text{ GHz: } \ge 25 \text{ mm}$ $5 - 6 \text{ GHz: } \ge 22 \text{ mm}$				

Note: δ is the penetration depth of a plane-wave at normal incidence to the tissue medium; see IEEE Std 1528-2013 for details.

^{*} When zoom scan is required and the <u>reported</u> SAR from the <u>area scan based 1-g SAR estimation</u> procedures of KDB Publication 447498 is ≤ 1.4 W/kg, ≤ 8 mm, ≤ 7 mm and ≤ 5 mm zoom scan resolution may be applied, respectively, for 2 GHz to 3 GHz, 3 GHz to 4 GHz and 4 GHz to 6 GHz.

er Drift measurement

The drift job measures the field at the same location as the most recent reference job within the same procedure, and with the same settings. The drift measurement gives the field difference in dB from the reading conducted within the last reference measurement. Several drift measurements are possible for one reference measurement. This allows a user to monitor the power drift of the device under test within a batch process. In the properties of the Drift job, the user can specify a limit for the drift and have OPENSAR software stop the measurements if this limit is exceeded.

3.6. Data Storage and Evaluation

Data Storage

The OPENSAR software stores the acquired data from the data acquisition electronics as raw data (in microvolt readings from the probe sensors), together with all necessary software parameters for the data evaluation (probe calibration data, liquid parameters and device frequency and modulation data) in measurement files. The software evaluates the desired unit and format for output each time the data is visualized or exported. This allows verification of the complete software setup even after the measurement and allows correction of incorrect parameter settings. For example, if a measurement has been performed with a wrong crest factor parameter in the device setup, the parameter can be corrected afterwards and the data can be re-evaluated.

The measured data can be visualized or exported in different units or formats, depending on the selected probe type ([V/m], [A/m], [°C], [mW/g], [mW/cm²], [dBrel], etc.). Some of these units are not available in certain situations or show meaningless results, e.g., a SAR output in a lossless media will always be zero. Raw data can also be exported to perform the evaluation with other software packages.

Data Evaluation

The OPENSAR software automatically executes the following procedures to calculate the field units from the microvolt readings at the probe connector. The parameters used in the evaluation are stored in the configuration modules of the software:

Probe parameters: - Sensitivity Normi, ai0, ai1, ai2

Conversion factor ConvFiDiode compression point Dcpi

Device parameters: - Frequency f

- Crest factor cf

 $\label{eq:definition} \text{Media parameters: - Conductivity} \qquad \qquad \sigma$

- Density ρ

These parameters must be set correctly in the software. They can be found in the component documents or they can be imported into the software from the configuration files issued for the OPENSAR components. In the direct measuring mode of the multimeter option, the parameters of the actual system setup are used. In the scan visualization and export modes, the parameters stored in the corresponding document files are used.

The first step of the evaluation is a linearization of the filtered input signal to account for the compression characteristics of the detector diode. The compensation depends on the input signal, the diode type and the DC-transmission factor from the diode to the evaluation electronics. If the exciting field is pulsed, the crest factor of the signal must be known to correctly compensate for peak power. The formula for each channel can be given as:

$$V_i = U_i + U_i^2 \cdot \frac{cf}{dcp_i}$$

With Vi =compensated signal of channel i (i = x, y, z)

Ui = input signal of channel i (i = x, y, z)

cf = crest factor of exciting field

dcpi = diode compression point

From the compensated input signals the primary field data for each channel can be evaluated:

E – field
probes :
$$E_i = \sqrt{\frac{V_i}{Norm_i \cdot ConvF}}$$

$$\mbox{H} - \mbox{fieldprobes}: \qquad \mbox{H_i} = \sqrt{V_i} \cdot \frac{a_{i0} + a_{i1}f + a_{i2}f^2}{f}$$

(i = x, y, z)(i = x, y, z)With Vi = compensated signal of channel i = sensor sensitivity of channel i Normi

[mV/(V/m)2] for E-field Probes

ConvF = sensitivity enhancement in solution = sensor sensitivity factors for H-field probes

= carrier frequency [GHz] f

= electric field strength of channel i in V/m Εi Ηi = magnetic field strength of channel i in A/m

The RSS value of the field components gives the total field strength (Hermitian magnitude):

$$E_{tot} = \sqrt{E_x^2 + E_y^2 + E_z^2}$$

The primary field data are used to calculate the derived field units. $SAR = E_{tot}^2 \cdot \frac{\sigma}{\rho \cdot 1'000}$

$$SAR = E_{tot}^2 \cdot \frac{\sigma}{\rho \cdot 1'000}$$

= local specific absorption rate in mW/g with SAR

= total field strength in V/m Etot

= conductivity in [mho/m] or [Siemens/m]

= equivalent tissue density in g/cm3

Note that the density is normally set to 1 (or 1.06), to account for actual brain density rather than the density of the simulation liquid.

3.7. Tissue Dielectric Parameters for Head and Body Phantoms

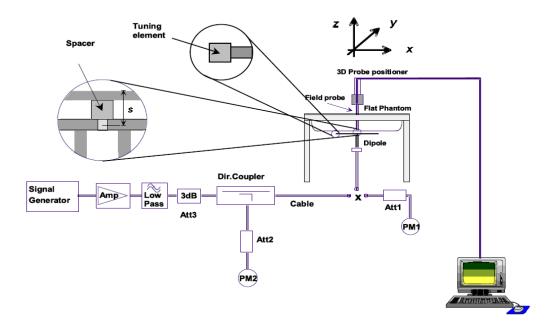
The liquid is consisted of water, salt, Glycol, Sugar, Preventol and Cellulose. The liquid has previously been proven to be suited for worst-case. It's satisfying the latest tissue dielectric parameters requirements proposed by the KDB865664.

The composition of the tissue simulating liquid

Frequency (MHz)	Bactericide	DGBE	HEC	NaCl	Sucrose	1,2- Propan ediol	X100	Water	Conductivity	Permittivity
	%	%	%	%	%	%	%	%	σ	εr
750	/	/	/	0.79	/	64.81	/	34.40	0.97	41.8
835	/	/	/	0.79	/	64.81	/	34.40	0.97	41.8
900	/	/	/	0.79	/	64.81	/	34.40	0.97	41.8
1800	/	13.84	/	0.35	/	/	30.45	55.36	1.38	41.0
1900	/	13.84	/	0.35	/	/	30.45	55.36	1.38	41.0
2000	/	7.99	/	0.16	/	/	19.97	71.88	1.55	41.1
2450	/	7.99	/	0.16	/	/	19.97	71.88	1.88	40.3
2600	/	7.99	/	0.16	/	/	19.97	71.88	1.88	40.3

Target Frequency	He	ad	В	ody
(MHz)	٤r	σ(S/m)	٤r	σ(S/m)
150	52.3	0.76	61.9	0.80
300	45.3	0.87	58.2	0.92
450	43.5	0.87	56.7	0.94
835	41.5	0.90	55.2	0.97
900	41.5	0.97	55.0	1.05
915	41.5	0.98	55.0	1.06
1450	40.5	1.20	54.0	1.30
1610	40.3	1.29	53.8	1.40
1800-2000	40.0	1.40	53.3	1.52
2450	39.2	1.80	52.7	1.95
2600	39.0	1.96	52.5	2.16
3000	38.5	2.40	52.0	2.73
5800	35.3	5.27	48.2	6.00

3.8. Tissue equivalent liquid properties


Dielectric Performance of Head and Body Tissue Simulating Liquid

Test Eng	Test Engineer: Jay Zhan									
Tissue	Measured	Targe	t Tissue		Measure	d Tissue		Liquid	Test Data	
Type	Frequency (MHz)	σ	εr	σ	Dev.	εr	Dev.	Temp.		
750H	750	0.99	56.57	0.97	-2.02%	57.24	1.18%	20.2	03/09/2022	
835H	835	0.90	41.50	0.86	-4.44%	40.14	-3.28%	20.3	03/11/2022	
1800H	1800	1.52	53.30	1.50	-1.32%	52.11	-2.23%	21.4	03/12/2022	
1900H	1900	1.40	40.00	1.37	-2.14%	39.23	-1.93%	21.3	03/15/2022	
2450H	2450	1.80	39.20	1.76	-2.22%	40.12	2.35%	22.2	03/19/2022	
5200H	5200	5.30	49.00	5.25	-0.94%	48.80	-0.41%	23.4	03/25/2022	
5300H	5280	4.76	35.90	4.80	0.82%	35.95	0.14%	22.0	03/27/2022	
5800H	5800	6.00	48.20	6.05	0.83%	48.46	0.54%	22.2	03/29/2022	

3.9. System Check

The purpose of the system check is to verify that the system operates within its specifications at the decice test frequency. The system check is simple check of repeatability to make sure that the system works correctly at the time of the compliance test;

System check results have to be equal or near the values determined during dipole calibration with the relevant liquids and test system (±10 %).

The output power on dipole port must be calibrated to 20 dBm (100mW) before dipole is connected.

Photo of Dipole Setup

istification for Extended SAR Dipole Calibrations

Referring to KDB 865664D01V01r04, if dipoles are verified in return loss (<-20dB, within 20% of prior calibration), and in impedance (within 5 ohm of prior calibration), the annual calibration is not necessary and the calibration interval can be extended. While calibration intervals not exceed 3 years.

SID750 SN 07/14 DIP 0G750-302 Extend Dipole Calibrations

			Real		Imaginary	
Date of Measurement	Return-Loss (dB)	Delta (%)	Impedance (ohm)	Delta (ohm)	Impedance (ohm)	Delta (ohm)
2018-10-01	-34.80		50.7		1.6	
2019-10-01	-34.35	-1.29	51.2	0.5	1.5	-0.1
2020-10-01	-34.42	-1.09	51.3	0.4	1.5	-0.1

SID835 SN 07/14 DIP 0G835-303 Extend Dipole Calibrations

Date of Measurement	Return-Loss (dB)	Delta (%)	Real Impedance (ohm)	Delta (ohm)	Imaginary Impedance (ohm)	Delta (ohm)
2018-10-01	-24.49		54.9		2.8	
2019-10-01	-24.17	-1.31	54.5	-0.4	2.6	-0.2
2020-10-01	-24.20	-1.18	54.3	-0.6	2.5	-0.3

SID1800 SN 30/14 DIP 1G800-301 Extend Dipole Calibrations

Date of Measurement	Return-Loss (dB)	Delta (%)	Real Impedance (ohm)	Delta (ohm)	Imaginary Impedance (ohm)	Delta (ohm)
2018-10-01	-20.26		43.1		6.9	
2019-10-01	-20.13	-0.64	42.9	-0.2	6.7	-0.2
2020-10-01	-20.15	-0.54	42.8	-0.3	6.6	-0.3

SID1900 SN 38/18 DIP 1G900-466 Extend Dipole Calibrations

Date of Measurement	Return-Loss (dB)	Delta (%)	Real Impedance (ohm)	Delta (ohm)	Imaginary Impedance (ohm)	Delta (ohm)
2018-09-01	-26.43		50.5		4.7	
2019-09-01	-26.33	-0.38	50.2	-0.3	4.5	-0.2
2020-09-01	-26.30	-0.49	50.1	-0.4	4.2	-0.5

SID2450 SN 07/14 DIP 2G450-306 Extend Dipole Calibrations

_	0.22.00 0.1 0.7 1.1 20.00 000 2.10.00 000 00.00								
	Date of Measurement	Return-Loss (dB)	Delta (%)	Real Impedance (ohm)	Delta (ohm)	Imaginary Impedance (ohm)	Delta (ohm)		
ſ	2018-10-01	-25.59		44.7		-1.1			
	2019-10-01	-25.68	0.35	44.8	0.1	-1.0	0.1		
	2020-10-01	-25.75	0.63	44.5	-0.2	-1.2	-0.1		

SID5200 SN 49/16 DIP WGA43 Extend Dipole Calibrations

Date of Measurement	Return-Loss (dB)	Delta (%)	Real Impedance (ohm)	Delta (ohm)	Imaginary Impedance (ohm)	Delta (ohm)
2018-09-24	-8.59		19.38		13.50	
2019-09-24	-8.62	0.35	19.25	-0.13	13.47	-0.03
2020-09-24	-8.63	0.47	19.26	-0.12	13.45	-0.05

SID5300 SN 49/16 DIP WGA43 Extend Dipole Calibrations

	CIBCOCC CIT TO TO BIT WORK TO Externa Bipolo Calibrations							
Date of Measurement	Return-Loss (dB)	Delta (%)	Real Impedance (ohm)	Delta (ohm)	Imaginary Impedance (ohm)	Delta (ohm)		
2018-09-24	-10.58		77.13		1.81			
2019-09-24	-10.55	0.28	77.15	0.02	1.74	-0.07		
2020-09-24	-10.54	0.09	77.12	-0.03	1.08	-0.01		

SID5800 SN 49/16 DIP WGA43 Extend Dipole Calibrations

Date of Measurement	Return-Loss (dB)	Delta (%)	Real Impedance (ohm)	Delta (ohm)	Imaginary Impedance (ohm)	Delta (ohm)
2018-09-24	-11.37		54.79		25.47	
2019-09-24	-11.42	0.44	54.68	-0.11	25.26	-0.21
2020-09-24	-11.44	0.62	54.80	0.10	25.28	-0.19

Mixtur						1W Ta	rget	Differ perce			
e Type	Frequency (MHz)	Power	SAR _{1g} (W/Kg)	SAR _{10g} (W/Kg)	Drift (%)	SAR _{1g} (W/Kg)	SAR ₁₀ (W/Kg	1g	10g	Liquid Temp	Date
		100 mW	0.870	0.562							
Head	750	Normalize to 1 Watt	8.70	5.62	1.44	8.77	5.78	-0.80%	-2.77%	20.2	03/09/2022
		100 mW	0.975	0.632							
Head	835	Normalize to 1 Watt	9.75	6.32	-0.21	9.60	6.20	1.56%	1.94%	20.3	03/11/2022
		100 mW	3.853	2.055							
Head	1800	Normalize to 1 Watt	38.53	20.55	1.62	39.03	20.65	-1.28%	-0.48%	21.4	03/12/2022
		100 mW	3.921	2.068							
Head	1900	Normalize to 1 Watt	39.21	20.68	-1.17	40.03	20.55	-2.05%	0.63%	21.3	03/15/2022
		100 mW	5.224	2.343							
Head	2450	Normalize to 1 Watt	52.24	23.43	0.24	53.89	24.15	-3.06%	-2.98%	22.2	03/19/2022
		100 mW	15.467	5.512							
Head	5200	Normalize to 1 Watt	154.67	55.12	-3.02	159.00	56.90	-2.72%	-3.13%	23.4	03/25/2022
		100 mW	16.456	5.731							
Head	5280	Normalize to 1 Watt	164.56	57.31	3.21	164.59	9 57.40	0.02%	0.16%	22.0	03/27/2022
		100 mW	18.293	6.177							
Head	5800	Normalize to 1 Watt	182.93	61.77	-1.01	181.20	61.50	0.95%	0.44%	22.2	03/29/2022

5.10. SAR measurement procedure

The measurement procedures are as follows:

3.10.1 Conducted power measurement

- a. For WWAN power measurement, use base station simulator connection with RF cable, at maximum power in each supported wireless interface and frequency band.
- b. Read the WWAN RF power level from the base station simulator.
- c. For WLAN/BT power measurement, use engineering software to configure EUT WLAN/BT continuously Transmission, at maximum RF power in each supported wireless interface and frequency band.
- d. Connect EUT RF port through RF cable to the power meter, and measure WLAN/BT output power.

3.10.2 WIFI Test Configuration

The SAR measurement and test reduction procedures are structured according to either the DSSS or OFDM transmission mode configurations used in each standalone frequency band and aggregated band. For devices that operate in exposure configurations that require multiple test positions, additional SAR test reduction may be applied. The maximum output power specified for production units, including tune-up tolerance, are used to determine initial SAR test requirements for the 802.11 transmission modes in a frequency band. SAR is measured using the highest measured maximum output power channel for the initial test configuration. SAR measurement and test reduction for the remaining 802.11 modes and test channels are determined according to measured or specified maximum output power and reported SAR of the initial measurements. The general test reduction and SAR measurement approaches are summarized in the following:

- 1. The maximum output power specified for production units are determined for all applicable 802.11 transmission modes in each standalone and aggregated frequency band. Maximum output power is measured for the highest maximum output power configuration(s) in each frequency band according to the default power measurement procedures.
- 2. For OFDM transmission configurations in the 2.4 GHz and 5 GHz bands, an "initial test configuration" is first determined for each standalone and aggregated frequency band according to the maximum output power and tune-up tolerance specified for production units.
- a. When the same maximum power is specified for multiple transmission modes in a frequency band, the largest channel bandwidth, lowest order modulation, lowest data rate and lowest order 802.11a/g/n/ac mode is used for SAR measurement, on the highest measured output power channel in the initial test configuration, for each frequency band.
- b. SAR is measured for OFDM configurations using the initial test configuration procedures. Additional frequency band specific SAR test reduction may be considered for individual frequency bands
- c. Depending on the reported SAR of the highest maximum output power channel tested in the initial test configuration, SAR test reduction may apply to subsequent highest output channels in the initial test configuration to reduce the number of SAR measurements.
- 3. The Initial test configuration does not apply to DSSS. The 2.4 GHz band SAR test requirements and 802.11b DSSS procedures are used to establish the transmission configurations required for SAR measurement.
- 4. An "initial test position" is applied to further reduce the number of SAR tests for devices operating in next to the ear, UMPC mini-tablet or hotspot mode exposure configurations that require multiple test positions.
- a. SAR is measured for 802.11b according to the 2.4 GHz DSSS procedure using the exposure condition established by the initial test position.
- b. SAR is measured for 2.4 GHz and 5 GHz OFDM configurations using the initial test configuration. 802.11b/g/n operating modes are tested independently according to the service requirements in each frequency band. 802.11b/g/n modes are tested on the maximum average output channel.
- 5. The Initial test position does not apply to devices that require a fixed exposure test position. SAR is measured in a fixed exposure test position for these devices in 802.11b according to the 2.4 GHz DSSS procedure or in 2.4 GHz and 5 GHz OFDM configurations using the initial test configuration procedures.
- 6. The "subsequent test configuration" procedures are applied to determine if additional SAR measurements are required for the remaining OFDM transmission modes that have not been tested in the initial test configuration. SAR test exclusion is determined according to reported SAR in the initial test configuration and maximum output power specified or measured for these other OFDM configurations.

2.4 GHz and 5GHz SAR Procedures

Separate SAR procedures are applied to DSSS and OFDM configurations in the 2.4 GHz band to simplify DSSS test requirements. For 802.11b DSSS SAR measurements, DSSS SAR procedure applies to fixed exposure test position and initial test position procedure applies to multiple exposure test positions. When

SAR measurement is required for an OFDM configuration, the initial test configuration, subsequent test configuration and initial test position procedures are applied. The SAR test exclusion requirements for 802.11g/n OFDM configurations are described in section 5.2.2.

1. 802.11b DSSS SAR Test Requirements

SAR is measured for 2.4 GHz 802.11b DSSS using either a fixed test position or, when applicable, the initial test position procedure. SAR test reduction is determined according to the following:

- a. When the reported SAR of the highest measured maximum output power channel (section 3.1) for the exposure configuration is ≤ 0.8 W/kg, no further SAR testing is required for 802.11b DSSS in that exposure configuration.
- b. When the reported SAR is > 0.8 W/kg, SAR is required for that exposure configuration using the next highest measured output power channel. When any reported SAR is > 1.2 W/kg, SAR is required for the third channel; i.e., all channels require testing.
- 1. 2.4 GHz 802.11g/n OFDM SAR Test Exclusion Requirements

When SAR measurement is required for 2.4 GHz 802.11g/n OFDM configurations, the measurement and test reduction procedures for OFDM are applied (section 5.3). SAR is not required for the following 2.4 GHz OFDM conditions.

- a. When KDB Publication 447498 SAR test exclusion applies to the OFDM configuration
- b. When the highest reported SAR for DSSS is adjusted by the ratio of OFDM to DSSS specified maximum output power and the adjusted SAR is ≤ 1.2 W/kg.
- 2. SAR Test Requirements for OFDM Configurations

When SAR measurement is required for 802.11 a/g/n/ac OFDM configurations, each standalone and frequency aggregated band is considered separately for SAR test reduction. When the same transmitter and antenna(s) are used for U-NII-1 and U-NII-2A bands, additional SAR test reduction applies. When band gap channels between U-NII-2C band and 5.8 GHz U-NII-3 or §15.247 band are supported, the highest maximum output power transmission mode configuration and maximum output power channel across the bands must be used to determine SAR test reduction, according to the initial test configuration and subsequent test configuration requirements.20 In applying the initial test configuration and subsequent test configuration procedures, the 802.11 transmission configuration with the highest specified maximum output power and the channel within a test configuration with the highest measured maximum output power should be clearly distinguished to apply the procedures.

- 3. OFDM Transmission Mode SAR Test Configuration and Channel Selection Requirements The initial test configuration for 2.4 GHz and 5 GHz OFDM transmission modes is determined by the 802.11 configuration with the highest maximum output power specified for production units, including tune-up tolerance, in each standalone and aggregated frequency band. SAR for the initial test configuration is measured using the highest maximum output power channel determined by the default power measurement procedures (section 4). When multiple configurations in a frequency band have the same specified maximum output power, the initial test configuration is determined according to the following steps applied sequentially.
- a. The largest channel bandwidth configuration is selected among the multiple configurations with the same specified maximum output power.
- b. If multiple configurations have the same specified maximum output power and largest channel bandwidth, the lowest order modulation among the largest channel bandwidth configurations is selected.
- c. If multiple configurations have the same specified maximum output power, largest channel bandwidth and lowest order modulation, the lowest data rate configuration among these configurations is selected.
- d. When multiple transmission modes (802.11a/g/n/ac) have the same specified maximum output power, largest channel bandwidth, lowest order modulation and lowest data rate, the lowest order 802.11 mode is selected; i.e., 802.11a is chosen over 802.11n then 802.11ac or 802.11g is chosen over 802.11n.

After an initial test configuration is determined, if multiple test channels have the same measured maximum output power, the channel chosen for SAR measurement is determined according to the following. These channel selection procedures apply to both the initial test configuration and subsequent test configuration(s), with respect to the default power measurement procedures or additional power measurements required for further SAR test reduction. The same procedures also apply to subsequent highest output power channel(s) selection.

- a. Channels with measured maximum output power within ¼ dB of each other are considered to have the same maximum output.
- b. When there are multiple test channels with the same measured maximum output power, the channel closest to mid-band frequency is selected for SAR measurement.
- c. When there are multiple test channels with the same measured maximum output power and equal separation from mid-band frequency; for example, high and low channels or two mid-band channels, the higher frequency (number) channel is selected for SAR measurement.

nitial Test Configuration Procedures

An initial test configuration is determined for OFDM transmission modes according to the channel bandwidth, modulation and data rate combination(s) with the highest maximum output power specified for production units in each standalone and aggregated frequency band. SAR is measured using the highest measured maximum output power channel. For configurations with the same specified or measured maximum output power, additional transmission mode and test channel selection procedures are required (see section 5.3.2). SAR test reduction of subsequent highest output test channels is based on the reported SAR of the initial test configuration.

For next to the ear, hotspot mode and UMC mini-tablet exposure configurations where multiple test positions are required, the initial test position procedure is applied to minimize the number of test positions required for SAR measurement using the initial test configuration transmission mode.23 For fixed exposure conditions that do not have multiple SAR test positions, SAR is measured in the transmission mode determined by the initial test configuration. When the reported SAR of the initial test configuration is > 0.8 W/kg, SAR measurement is required for the subsequent next highest measured output power channel(s) in the initial test configuration until the reported SAR is $\leq 1.2 \text{ W/kg}$ or all required channels are tested.

Subsequent Test Configuration Procedures

SAR measurement requirements for the remaining 802.11 transmission mode configurations that have not been tested in the initial test configuration are determined separately for each standalone and aggregated frequency band, in each exposure condition, according to the maximum output power specified for production units. The initial test position procedure is applied to next to the ear, UMPC mini-tablet and hotspot mode configurations. When the same maximum output power is specified for multiple transmission modes, the procedures in section 5.3.2 are applied to determine the test configuration. Additional power measurements may be required to determine if SAR measurements are required for subsequent highest output power channels in a subsequent test configuration. The subsequent test configuration and SAR measurement procedures are described in the following.

- a. When SAR test exclusion provisions of KDB Publication 447498 are applicable and SAR measurement is not required for the initial test configuration, SAR is also not required for the next highest maximum output power transmission mode subsequent test configuration(s) in that frequency band or aggregated band and exposure configuration.
- b. When the highest reported SAR for the initial test configuration (when applicable, include subsequent highest output channels), according to the initial test position or fixed exposure position requirements, is adjusted by the ratio of the subsequent test configuration to initial test configuration specified maximum output power and the adjusted SAR is ≤ 1.2 W/kg, SAR is not required for that subsequent test configuration.
- The number of channels in the initial test configuration and subsequent test configuration can be different due to differences in channel bandwidth. When SAR measurement is required for a subsequent test configuration and the channel bandwidth is smaller than that in the initial test configuration, all channels in the subsequent test configuration that overlap with the larger bandwidth channel tested in the initial test configuration should be used to determine the highest maximum output power channel. This step requires additional power measurement to identify the highest maximum output power channel in the subsequent test configuration to determine SAR test reduction.
- 1). SAR should first be measured for the channel with highest measured output power in the subsequent test configuration.
- 2). SAR for subsequent highest measured maximum output power channels in the subsequent test configuration is required only when the reported SAR of the preceding higher maximum output power channel(s) in the subsequent test configuration is > 1.2 W/kg or until all required channels are tested. a) For channels with the same measured maximum output power, SAR should be measured using the channel closest to the center frequency of the larger channel bandwidth channel in the initial test configuration.
- d. SAR measurements for the remaining highest specified maximum output power OFDM transmission mode configurations that have not been tested in the initial test configuration (highest maximum output) or subsequent test configuration(s) (subsequent next highest maximum output power) is determined by applying the subsequent test configuration procedures in this section to the remaining configurations according to the following:
- 1) replace "subsequent test configuration" with "next subsequent test configuration" (i.e., subsequent next highest specified maximum output power configuration)
- 2) replace "initial test configuration" with "all tested higher output power configurations.

3.11. Power Reduction

The product without any power reduction.

.12. Power Drift

To control the output power stability during the SAR test, SAR system calculates the power drift by measuring the E-field at the same location at the beginning and at the end of the measurement for each test position. This ensures that the power drift during one measurement is within 5%.

4. TEST CONDITIONS AND RESULTS

4.1. Conducted Power Results

According KDB 447498D01 General RF Exposure Guidance v06 Section 4.1 2) states that "Unless it is specified differently in the published RF exposure KDB procedures, these requirements also apply to test reduction and test exclusion considerations. Time-averaged maximum conducted output power applies to SAR and, as required by § 2.1091(c), time-averaged ERP applies to MPE. When an antenna port is not available on the device to support conducted power measurement, such as FRS and certain Part 15 transmitters with built-in integral antennas, the maximum output power allowed for production units should be used to determine RF exposure test exclusion and compliance."

LTE Band2

BW	Frequency	RB Con	figuration	Average Po	ower [dBm]
(MHz)	(MHz)	Size	Offset	QPSK	16QAM
		1	0	22.67	21.66
		1	3	22.46	21.71
		1	5	22.40	21.42
	1850.7	3	0	22.54	21.58
		3	2	22.59	21.55
		3	3	22.56	21.84
		6	0	21.77	20.76
		1	0	22.50	22.04
		1	3	22.83	22.08
		1	5	22.58	21.87
1.4	1880.0	3	0	22.77	21.77
		3	2	22.68	21.51
		3	3	22.75	21.37
		6	0	21.83	20.89
		1	0	23.67	22.74
		1	3	23.64	22.93
		1	5	23.76	22.98
	1909.3	3	0	23.63	22.49
		3	2	23.53	22.48
		3	3	23.48	22.43
		6	0	22.71	21.68
		1	0	22.66	22.15
		1	7	22.82	21.73
		1	14	22.62	21.66
	1851.5	8	0	21.98	20.97
		8	4	21.91	20.97
		8	7	21.93	20.91
		15	0	21.95	21.09
		1	0	22.74	21.91
		1	7	22.89	22.10
		1	14	22.71	21.73
3	1880.0	8	0	21.96	20.98
		8	4	21.96	21.09
		8	7	21.89	20.93
		15	0	21.96	21.00
		1	0	23.56	22.57
		1	7	23.80	22.58
		1	14	23.54	22.61
	1908.5	8	0	22.76	21.96
		8	4	22.70	21.79
		8	7	22.76	21.95
		15	0	22.72	21.83
		1	0	22.78	21.64
5	1852.5	1	12	22.92	21.68
		1	24	22.82	21.65

Shenzhen LCS	S Compliance Testing	g Laboratory Ltd.	FCC ID: WPZ-FVPRO	Report No.: I	LCS220304071AE00
· ·		12	0	21.96	21.08
		12	6	21.97	20.90
		12	13	21.95	20.89
		25	0	21.92	21.05
		1	0	22.84	21.87
		1	12	23.12	22.00
		1	24	22.88	21.87
	1880.0	12	0	22.06	21.06
		12	6	21.96	21.05
		12	13	21.98	21.15
		25	0	22.02	21.02
		1	0	23.58	22.41
		1	12	23.75	22.57
		1	24	23.70	22.60
	1907.5	12	0	22.83	21.77
		12	6	22.86	21.94
		12	13	22.76	21.84
		25	0	22.75	21.84
		1	0	22.61	21.77
		1	24	22.85	22.34
		1	49	22.71	21.91
	1855.0	25	0	21.92	20.94
		25	12	21.94	20.95
		25	25	21.95	20.96
		50	0	21.93	20.93
		1	0	22.78	22.00
		1	24	23.18	22.17
		1	49	22.92	21.86
10	1880.0	25	0	21.95	20.91
		25	12	22.03	21.08
		25	25	21.97	21.02
		50	0	21.92	20.96
		1	0	23.41	22.48
		1	24	23.77	23.26
		1	49	23.70	22.74
	1905.0	25	0	22.66	21.60
		25	12	22.65	21.78
		25	25	22.82	21.80
		50	0	22.67	21.73
		1	0	22.67	21.87
		1	37	22.80	21.96
		1	74	22.77	21.99
	1857.5	37	0	21.94	21.95
		37	18	21.95	21.96
		37	38	21.87	21.87
		75	0	21.96	21.05
		1	0	22.68	21.86
		1	37	22.94	21.76
		1	74	22.65	21.90
15	1880.0	37	0	21.78	21.77
		37	18	21.77	21.77
		37	38	21.84	21.84
		75	0	21.84	20.90
		1	0	23.47	22.58
		1	37	23.62	22.65
		1	74	23.75	22.80
	1902.5	37	0	22.65	22.64
		37	18	22.72	22.72
		37	38	22.72	22.72
		75	0	22.71	21.84
<u> </u>	ı	1	-		

Shenzhen LCS	S Compliance Testing	g Laboratory Ltd.	FCC ID: WPZ-FVPRO	Report No.: LCS220304071AE001		
		1	0	22.58	21.86	
		1	49	23.15	21.76	
		1	99	22.64	21.90	
	1860.0	50	0	21.98	21.77	
		50	25	21.93	21.77	
		50	50	21.93	21.84	
		100	0	21.94	20.90	
		1	0	22.70	21.80	
		1	49	23.21	22.55	
		1	99	23.17	22.09	
20	1880.0	50	0	21.88	20.93	
		50	25	21.87	20.96	
		50	50	21.91	21.05	
		100	0	21.84	20.98	
		1	0	23.34	22.20	
		1	49	23.76	22.73	
		1	99	23.84	22.04	
	1900.0	50	0	22.57	20.92	
		50	25	22.53	20.93	
		50	50	22.78	21.03	
		100	0	22.57	20.95	

LTE Band4

BW	Frequency		figuration	Average Po	ower [dBm]
(MHz)	(MHz)	Size	Offset	QPSK	16QAM
		1	0	22.45	21.47
		1	3	22.44	21.68
		1	5	22.43	21.51
	1710.7	3	0	22.46	21.34
		3	2	22.51	21.61
		3	3	22.55	21.60
		6	0	21.52	20.39
		1	0	22.82	21.81
		1	3	22.97	22.20
		1	5	22.87	21.69
1.4	1732.5	3	0	22.65	21.70
		3	2	22.73	21.70
		3	3	22.80	21.64
		6	0	21.76	20.89
		1	0	22.55	21.68
		1	3	22.56	22.04
		1	5	22.59	21.62
	1754.3	3	0	22.40	21.31
		3	2	22.42	21.31
		3	3	22.48	21.46
		6	0	21.49	20.53
		1	0	22.46	21.40
		1	7	22.45	21.20
		1	14	22.43	21.25
	1711.5	8	0	21.53	20.65
		8	4	21.53	20.46
		8	7	21.45	20.35
2		15	0	21.35	20.32
3		1	0	22.73	21.73
		1	7	22.75	22.00
		1	14	22.68	21.64
	1732.5	8	0	21.75	20.75
		8	4	21.76	20.66
		8	7	21.83	20.85
		15	0	21.78	20.79

Shenzhen LCS	Compliance Testing	<u>Laboratory Ltd.</u>	FCC ID: WPZ-FVPR	O Report No.: I	<u>LCS220304071AE0</u>
V		1	0	22.44	21.52
		1	7	22.39	21.63
		1	14	22.51	21.55
	1753.5	8	0	21.56	20.64
		8	4	21.50	20.28
		8	7	21.55	20.35
		15	0	21.47	20.27
		1	0	22.41	21.03
		1	12	22.41	20.98
		1	24	22.26	21.34
	1712.5	12	0	21.35	20.33
		12	6	21.46	20.33
		12	13	21.46	20.44
		25	0	21.43	20.40
		1	0	22.74	21.63
		1	12	22.95	21.62
		1	24	22.65	21.62
5	1732.5	12	0	21.69	20.70
ŭ	110210	12	6	21.71	20.59
		12	13	21.75	20.71
		25	0	21.76	20.72
		1	0	22.37	21.53
		1	12	22.49	21.65
		1	24	22.60	21.77
	1752.5	12	0	21.47	20.03
	1702.0	12	6	21.43	20.34
		12	13	21.60	20.43
		25	0	21.49	20.51
		1	0	22.45	21.48
		1	24	22.53	21.96
		1	49	22.58	21.45
	1715.0	25	0	21.48	20.53
	1710.0	25	12	21.48	20.44
		25	25	21.35	20.32
		50	0	21.54	20.47
		1	0	22.52	21.92
		1	24	22.86	21.93
		1	49	22.67	21.92
10	1732.5	25	0	21.77	20.89
10	1702.0	25	12	21.79	20.71
		25	25	21.81	20.83
		50	0	21.75	20.58
		1	0	22.65	21.87
		1	24	22.76	21.82
		1	49	22.72	22.05
	1750.0	25	0	21.45	20.65
	1750.0	25	12	21.46	20.46
		25	25	21.45	20.65
		50	0	21.50	20.48
		1	0	22.50	21.60
		1	37	22.63	21.49
		1	74	22.65	21.69
	1717.5	37	0	21.43	21.43
	1717.5	37	18	21.43	21.44
15		37	38	21.43	21.55
10		75	0	21.44	20.39
		1	0	22.34	21.54
		1	37	22.67	21.66
	1732.5	1	74	22.50	21.54
		37	0	21.70	21.70
		31	l U	21.70	21.70

Shenzhen LCS	S Compliance Testin	g Laboratory Ltd.	FCC ID: WPZ-FVPRO	Report No.:	LCS220304071AE001
V		37	18	21.69	21.75
		37	38	21.75	21.75
		75	0	21.75	20.66
		1	0	22.67	22.10
		1	37	22.69	22.41
		1	74	22.73	22.05
	1747.5	37	0	21.52	21.52
		37	18	21.44	21.44
		37	38	21.44	21.44
		75	0	21.45	20.43
		1	0	22.38	21.60
		1	49	22.88	22.03
		1	99	22.54	21.82
	1720.0	50	0	21.36	20.53
		50	25	21.40	20.45
		50	50	21.59	20.66
		100	0	21.48	20.53
		1	0	22.57	22.08
		1	49	23.07	22.61
		1	99	22.84	21.99
20	1732.5	50	0	21.70	20.61
		50	25	21.72	20.61
		50	50	21.69	20.59
		100	0	21.68	20.67
		1	0	22.91	21.58
		1	49	22.78	21.32
		1	99	22.80	21.51
	1745.0	50	0	21.65	20.69
		50	25	21.74	20.68
		50	50	21.55	20.49
		100	0	21.68	20.55

LTE Band5					
BW	Frequency		iguration	Average Po	ower [dBm]
(MHz)	(MHz)	Size	Offset	QPSK	16QAM
		1	0	23.75	22.57
		1	3	23.78	22.96
		1	5	23.78	22.48
	824.7	3	0	23.62	22.76
		3	2	23.51	22.75
		3	3	23.63	22.76
		6	0	22.68	21.70
		1	0	23.21	22.48
		1	3	23.43	22.49
		1	5	23.27	22.38
1.4	836.5	3	0	23.24	22.23
		3	2	23.32	22.32
		3	3	23.27	22.32
		6	0	22.27	21.17
		1	0	23.62	22.47
		1	3	23.42	22.69
		1	5	23.40	22.70
	848.3	3	0	23.29	22.17
		3	2	23.31	22.14
		3	3	23.21	22.14
		6	0	22.27	21.34
		1	0	23.76	22.43
3	925 E	1	7	23.45	22.27
<u>ه</u>	825.5	1	14	23.39	22.75
		8	0	22.69	22.59

Shenzhen LCS	Compliance Testin	g Laboratory Ltd.	FCC ID: WPZ-FVPRO	Report No.:	LCS220304071AE00
· ·		8	4	22.69	22.38
		8	7	22.53	21.90
		15	0	22.65	21.55
		1	0	23.30	21.72
		1	7	23.45	21.74
		1	14	23.68	22.29
	836.5	8	0	22.19	22.43
		8	4	22.35	22.02
		8	7	22.41	21.30
		15	0	22.35	21.54
		1	0	23.17	21.58
		1	7	23.31	21.06
		1	14	23.29	22.65
	847.5	8	0	22.32	22.38
		8	4	22.26	22.24
		8	7	22.43	21.44
		15	0	22.27	21.18
		1	0	23.62	22.52
		1	12	23.68	22.11
		1	24	23.34	22.26
	826.5	12	0	22.66	21.72
		12	6	22.65	21.65
		12	13	22.61	21.48
		25	0	22.56	21.54
		1	0	23.36	22.31
		1	12	23.48	22.42
_	000 5	1	24	23.37	22.56
5	836.5	12	0	22.37	21.37
		12 12	6	22.32	21.38
		25	13	22.38 22.27	21.42 21.34
		1	0	23.28	22.26
		1	12	23.11	22.35
		1	24	23.20	22.41
	846.5	12	0	22.30	21.33
	0.0.0	12	6	22.24	21.26
		12	13	22.32	21.37
		25	0	22.29	21.41
_		1	0	23.53	22.75
		1	24	23.29	22.20
		1	49	23.14	22.16
	829.0	25	0	22.59	21.63
		25	12	22.59	21.54
		25	25	22.40	21.19
		50	0	22.49	21.42
		1	0	22.93	22.38
		1	24	23.22	22.40
		1	49	23.34	21.93
10	836.5	25	0	22.42	21.54
		25	12	22.35	21.36
		25	25	22.35	21.38
		50	0	22.32	21.33 22.46
		1	24	23.16 23.31	22.46
		1	49	23.24	22.49
	844.0	25	0	22.32	21.31
	044.0	25	12	22.33	21.31
		25	25	22.31	21.51
		50	0	22.35	21.42
L	I				

LTE Band 12

LTE Band 12 BW	Frequency		nfiguration	Average P	ower [dBm]
(MHz)	(MHz)	Size	Offset	QPSK	16QAM
,		1	0	24.60	24.91
		1	3	24.56	24.91
		1	5	24.68	24.96
	699.7	3	0	24.54	24.57
		3	2	24.61	24.49
		3	3	24.50	24.71
		6	0	24.57	23.66
		1	0	24.38	24.65
		1	3	24.47	24.52
		<u>.</u> 1	5	24.33	24.82
1.4	707.5	3	0	24.68	24.33
	-	3	2	24.51	24.05
	-	3	3	24.46	24.53
	_	6	0	24.56	23.46
		1	0	24.69	25.22
		1	3	24.49	24.54
		1	5	24.49	24.49
	715.3	3	0	24.30	24.49
	/ 13.3	<u>3</u>	2	24.31	24.16
	-	<u>3</u>	3	24.31	24.16
	_				
		6	0	24.33	23.13
	_	1	7	24.32	24.34
	700.5	1		24.54	24.99
		1	14	24.37	24.29
		8	0	24.48	23.88
		8	4	24.49	23.54
	_	8	7	24.51	23.90
		15	0	24.51	23.64
	_	1	0	24.48	24.09
	_	1	7	24.11	24.63
_		1	14	24.26	24.35
3	707.5	8	0	24.40	23.11
		8	4	24.42	23.38
		8	7	24.39	23.51
		15	0	24.41	23.22
		1	0	24.38	24.87
		1	7	24.27	23.87
	_	1	14	24.17	24.61
	714.5	8	0	24.26	23.27
		8	4	24.31	23.53
		8	7	24.32	23.57
		15	0	24.54	23.41
		1	0	24.51	23.81
		1	12	24.45	24.83
		1	24	24.24	24.54
	701.5	12	0	24.38	23.41
	Γ	12	6	24.57	23.42
		12	13	24.52	23.24
5		25	0	24.52	23.31
ວ		1	0	24.55	23.52
		1	12	24.32	24.31
		1	24	24.57	24.24
	707.5	12	0	24.31	23.09
	-	12	6	24.40	23.09
		12	13	24.35	23.41
		25	0	24.26	23.37

		1	0	24.43	24.39
		1	12	24.40	24.16
	713.5	1	24	23.96	24.40
		12	0	24.29	23.35
		12	6	24.34	23.19
		12	13	24.18	23.13
		25	0	24.22	23.25
		1	0	24.33	24.10
		1	24	24.52	24.29
		1	49	24.29	24.04
	704	25	0	24.50	23.29
		25	12	24.53	23.49
		25	25	24.49	23.42
		50	0	24.55	23.35
		1	0	24.35	24.72
		1	24	24.63	24.65
		1	49	24.20	24.23
10	707.5	25	0	24.44	23.51
		25	12	24.44	23.51
		25	25	24.47	23.26
		50	0	24.41	23.30
		1	0	24.52	24.46
		1	24	24.70	25.02
		1	49	24.32	24.92
	711.0	25	0	24.47	23.33
		25	12	24.37	23.53
		25	25	24.43	23.25
		50	0	24.49	23.20

<WLAN 2.4GHz Conducted Power>

Mode	Channel	Frequency (MHz)	Data rate (Mbps)	Average Output Power (dBm)
		, ,	1	20.57
	4	2412	2	20.50
	1	2412	5.5	20.44
			11	20.36
			1	21.06
IEEE 802.11b	6	2437	2	20.95
IEEE OUZ.IID	O	2437	5.5	20.89
			11	20.81
			1	21.15
	11	2462	2	21.10
			5.5	21.03
			11	20.92
		2412	6	12.22
	1		9	12.16
			12	12.08
			18	12.03
			24	11.94
			36	11.86
IEEE 002 11a			48	11.75
IEEE 802.11g			54	11.71
			6	15.75
			9	15.68
	6	2437	12	15.62
	O	2437	18	15.41
			24	15.32
			36	15.12

Shenzhen LCS Cor	mpliance Testing Labora	ntory Ltd. FCC ID: W	/PZ-FVPRO Report N	No.: LCS220304071AE00
Y			48	15.06
			54	14.98
			6	17.25
			9	17.18
			12	17.11
	11	2462	18	17.06
	11	2402	24	17.00
			36	16.94
			48	16.88
			54	16.81
			MCS0	14.27
			MCS1	14.21
			MCS2	14.14
	1	2412	MCS3	14.08
	'	2412	MCS4	14.01
			MCS5	13.94
			MCS6	13.86
			MCS7	13.74
			MCS0	15.88
			MCS1	15.81
			MCS2	15.74
IEEE 802.11n	6	2437	MCS3	15.66
HT20	6		MCS4	15.60
			MCS5	15.54
			MCS6	15.48
			MCS7	15.40
		2462	MCS0	17.34
			MCS1	17.27
			MCS2	17.20
	11		MCS3	17.14
			MCS4	17.07
			MCS5	17.03
			MCS6	16.96
			MCS7	16.89
			MCS0	13.07
			MCS1	13.00
			MCS2	12.95
	3	2422	MCS3	12.89
		2422	MCS4	12.81
			MCS5	12.74
			MCS6	12.66
			MCS7	12.60
			MCS0	17.17
			MCS1	17.11
			MCS2	17.06
IEEE 802.11n	6	2437	MCS3	17.00
HT40	U	2431	MCS4	16.93
			MCS5	16.84
			MCS6	16.78
			MCS7	16.71
			MCS0	13.48
			MCS1	13.41
			MCS2	13.33
	9	2452	MCS3	13.24
	9	2402	MCS4	13.16
			MCS5	13.11
			MCS6	13.04
			MCS7	12.98

one.SAR is not required for the following 2.4 GHz OFDM conditions as the highest reported SAR for DSSS is adjusted by the ratio of OFDM to DSSS specified maximum output power and the adjusted SAR is ≤ 1.2 W/kg.

<WLAN 5.2G Conducted Power>

Mode	Channel	Frequency (MHz)	Average Conducted Output Power(dBm)	Worst Case Test Rate Data
	36	5180	13.51	MCS0
IEEE 802.11a	40	5200	13.57	MCS0
	48	5240	13.03	MCS0
	36	5180	12.83	MCS0
IEEE 802.11n HT20	40	5200	13.02	MCS0
	48	5240	12.76	MCS0
IEEE 802.11n HT40	38	5190	13.01	MCS0
1EEE 002.1111 H140	46	5230	13.35	MCS0
	36	5180	13.74	MCS0
IEEE 802.11AC20	40	5200	13.52	MCS0
	48	5240	13.30	MCS0
IEEE 902 11 A C 40	38	5190	13.41	MCS0
IEEE 802.11AC40	46	5230	13.38	MCS0

<WLAN 5.3G Conducted Power>

Mode	Channel	Frequency (MHz)	Average Conducted Output Power(dBm)	Worst Case Test Rate Data
	52	5260	13.29	MCS0
IEEE 802.11a	56	5280	13.16	MCS0
	64	5320	12.75	MCS0
	52	5260	13.98	MCS0
IEEE 802.11n HT20	56	5280	13.76	MCS0
	64	5320	13.76	MCS0
IEEE 802.11n HT40	52	5260	10.40	MCS0
1EEE 002.1111 H140	56	5280	10.04	MCS0
	64	5320	13.62	MCS0
IEEE 802.11ac VHT20	54	5270	13.50	MCS0
	62	5310	13.30	MCS0
IEEE 802.11ac VHT40	54	5270	11.56	MCS0
ILLE 002.11ac VIII40	62	5310	11.10	MCS0

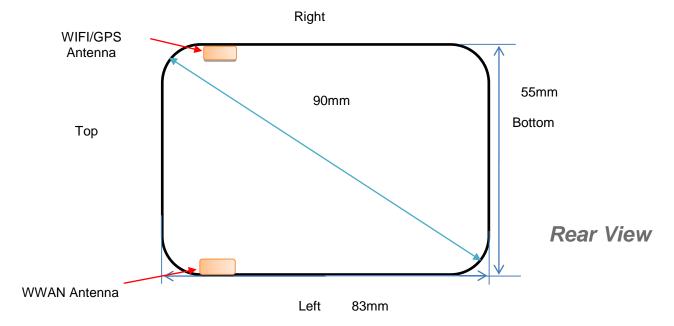
<WLAN 5.8GHz Conducted Power>

Mode	Channel	Frequency (MHz)	11.36	Worst Case Test Rate Data
	149	5745	7.38	MCS0
IEEE 802.11a	157	5785	11.32	MCS0
	165	5825	9.45	MCS0
	149	5745	7.66	MCS0
IEEE 802.11n HT20	157	5785	9.90	MCS0
	165	5825	8.22	MCS0
IEEE 802.11n HT40	151	5755	14.25	MCS0
1666 002.1111 11 140	159	5795	13.32	MCS0
	149	5745	7.69	MCS0
IEEE 802.11AC20	157	5785	9.82	MCS0
	165	5825	8.30	MCS0
IEEE 802 11 A C 40	151	5755	13.87	MCS0
IEEE 802.11AC40	159	5795	14.36	MCS0

<BT Conducted Power>

Mode	channel	Frequency (MHz)	Conducted AVG output power (dBm)
	0	2402	1.20
BLE	19	2440	0.88
	39	2480	0.97
	0	2402	5.69
GFSK	39	2441	5.44
	78	2480	5.49
	0	2402	5.78
π/4-DQPSK	39	2441	5.55
	78	2480	5.52
	0	2402	6.20
8DPSK	39	2441	6.04
	78	2480	6.06

Per KDB 447498 D01v06, the 1-g and 10-g SAR test exclusion thresholds for 100 MHz to 6 GHz at test separation distances ≤ 50 mm are determined by:


[(max. power of channel, including tune-up tolerance, mW)/(min. test separation distance, mm)] $[\sqrt{f(GHz)}] \le 3.0$ for 1-g SAR and ≤ 7.5 for 10-g extremity SAR

- · f(GHz) is the RF channel transmit frequency in GHz
- · Power and distance are rounded to the nearest mW and mm before calculation
- · The result is rounded to one decimal place for comparison

Bluetooth Turn up	Separation Distance (mm)	Frequency	Exclusion
Power (dBm)		(GHz)	Thresholds
6.5	5	2.45	1.4

Per KDB 447498 D01v06, when the minimum test separation distance is < 5 mm, a distance of 5 mm is applied to determine SAR test exclusion. The test exclusion threshold is 1.4< 3.0, SAR testing is not required.

Transmit Antennas and SAR Measurement Position

	Distance of The Antenna to the EUT surface and edge (mm)												
Antennas Front Back Top Side Bottom Side Left Side Right Side													
WWAN	<5	<5	<5	61	<5	46							
WLAN/BT	<5	<5	<5	60	47	<5							

Positions for SAR tests; Hotspot mode												
Antennas Front Back Top Side Bottom Side Left Side Right Side												
WWAN	Yes	Yes	Yes	No	Yes	No						
WLAN/BT	Yes	Yes	Yes	No	No	Yes						

- 1. SAR is required only for both back and edge with the most conservation exposure condition
- 2. For Body mode, SAR is not required when the main antenna to edge is >2.5cm (refer to EUT photographs)

SAR Measurement Results

The calculated SAR is obtained by the following formula:

Reported SAR=Measured SAR*10^{(Ptarget-Pmeasured))/10} Scaling factor=10^{(Ptarget-Pmeasured))/10}

Reported SAR= Measured SAR* Scaling factor

Where

P_{target} is the power of manufacturing upper limit;

P_{measured} is the measured power;

Measured SAR is measured SAR at measured power which including power drift)

Reported SAR which including Power Drift and Scaling factor

Duty Cycle

Test Mode	Duty Cycle
LTE	1:1
WLAN2450	1:1
WLAN5200	1:1
WLAN5300	1:1
WLAN5800	1:1

4.3.1 SAR Results

SAR Values [LTE Band 2]

				0 7	400 <u>[</u>	,				
Ch.	Freq. (MHz)	Channel Type (20M)	Test Position	Conducted Power (dBm)	Maximum Allowed Power (dBm)	Power Drift (%)	Scaling Factor	SAR _{1-g} res	rults(W/kg) Reported	Graph Results
	measure	ed / reported S	SAR numbers	s - Body (hotspo	t open, distanc	e 10mm)	(No using	body - worn a	ccessories)	
19100	1900.0	1RB	Front	23.84	24.00	-0.24	1.038	0.291	0.302	Plot 1
19100	1900.0	1RB	Back	23.84	24.00	1.41	1.038	0.265	0.275	
19100	1900.0	1RB	Left	23.84	24.00	3.54	1.038	0.242	0.251	
19100	1900.0	1RB	Тор	23.84	24.00	0.14	1.038	0.231	0.240	
19100	1900.0	50%RB	Front	22.78	23.00	0.05	1.052	0.150	0.158	
19100	1900.0	50%RB	Back	22.78	23.00	-3.65	1.052	0.146	0.154	
19100	1900.0	50%RB	Left	22.78	23.00	0.55	1.052	0.124	0.130	
19100	1900.0	50%RB	Top	22.78	23.00	-1.44	1.052	0.116	0.122	

SAR Values [LTE Band 2]

		Channel		Conducted	Maximum	Power		SAR _{1-g} res	ults(W/kg)	
Ch.	Freq. (MHz)	Type (20M)	Test Position	Power (dBm)	Allowed Power (dBm)	Drift (%)	Scaling Factor	Measured	Reported	Graph Results
	meas	ured / reporte	ed SAR numb	ers - Body (hots	pot open, dista	nce 0mm) (using boo	dy - worn acc	essories)	
19100	1900.0	1RB	Front	23.84	24.00	0.14	1.038	0.264	0.274	
19100	1900.0	50%RB	Front	22.78	23.00	1.45	1.052	0.129	0.136	

SAR Values [LTE Band 4]

Ch.	Freq. (MHz)	Channel Type (20M)	Test Position	Conducted Power (dBm)	Maximum Allowed Power (dBm)	Power Drift (%)	Scaling Factor	SAR _{1-g} res	rults(W/kg) Reported	Graph Results
	measure	ed / reported S	SAR numbers	s - Body (hotspo	t open, distanc	e 10mm)	No using	body - worn a	ccessories)	
20175	1732.5	1RB	Front	23.07	23.50	0.23	1.104	0.489	0.540	Plot 2
20175	1732.5	1RB	Rear	23.07	23.50	0.00	1.104	0.332	0.367	
20175	1732.5	1RB	Left	23.07	23.50	-2.54	1.104	0.312	0.344	
20175	1732.5	1RB	Top	23.07	23.50	0.10	1.104	0.301	0.332	
20300	1745.0	50%RB	Front	21.74	22.00	2.54	1.062	0.241	0.256	
20300	1745.0	50%RB	Rear	21.74	22.00	-3.33	1.062	0.164	0.174	
20300	1745.0	50%RB	Left	21.74	22.00	0.44	1.062	0.153	0.162	
20300	1745.0	50%RB	Top	21.74	22.00	3.98	1.062	0.144	0.153	

SAR Values [LTE Band 4]

		Channel		Conducted	Maximum	Power		SAR _{1-g} res	ults(W/kg)			
Ch.	Freq. (MHz)	Туре	Test Position	Power	Allowed Power	Drift	Scaling Factor	Measured	Reported	Graph Results		
	(111112)	(20M)	7 00/110/1	(dBm)	(dBm)	(%)	7 40107	mododrod	ποροποα	riocano		
	meas	ured / reporte	ed SAR numb	ers - Body (hots	pot open, dista	nce 0mm) (using bo	dy - worn acc	essories)			
20175	1732.5	1RB	Front	23.07	23.50	2.15	1.104	0.469	0.518			
20300	1745.0	50%RB	Front	21.74	22.00	4.87	1.062	0.216	0.229			

SAR Values [LTE Band 5]

				SAN Vali	ues [LIE Dai	աշլ				
Ch.	Freq. (MHz)	Channel Type (20M)	Test Position	Conducted Power (dBm)	Maximum Allowed Power (dBm)	Power Drift (%)	Scaling Factor	SAR _{1-g} res	Reported	Graph Results
	measure	ed / reported S	SAR numbers	s - Body (hotspo	t open, distanc	e 10mm)	(No using	body - worn a	accessories)	
20407	829.0	1RB	Front	23.53	24.00	-0.84	1.114	0.459	0.511	Plot 3
20407	829.0	1RB	Back	23.53	24.00	-0.07	1.114	0.371	0.413	
20407	829.0	1RB	Left	23.53	24.00	3.54	1.114	0.364	0.406	
20407	829.0	1RB	Top	23.53	24.00	-3.45	1.114	0.341	0.380	
20525	836.5	50%RB	Front	22.59	23.00	0.57	1.099	0.245	0.269	
20525	836.5	50%RB	Back	22.59	23.00	0.06	1.099	0.168	0.185	
20525	836.5	50%RB	Left	22.59	23.00	-3.99	1.099	0.152	0.167	
20525	836.5	50%RB	Top	22.59	23.00	0.58	1.099	0.143	0.157	

SAR Values [LTE Band 5]

					<u> </u>					
	_	Channel	_	Conducted	Maximum	Power		SAR _{1-g} res	ults(W/kg)	
Ch.	Freq. (MHz)	Туре	Test Position	Power	Allowed Power	Drift	Scaling Factor	Measured	Reported	Graph Results
	(1711 12)	(20M)	1 OSILIOI1	(dBm)	(dBm)	(%)	i actor	Measureu	Перопеа	Nesuns
	meas	ured / reporte	ed SAR numb	ers - Body (hots	spot open, dista	nce 0mm) (using bo	dy - worn acc	essories)	
20407	829.0	1RB	Front	23.53	24.00	-2.14	1.114	0.428	0.477	
20525	836.5	50%RB	Front	22.59	23.00	1.45	1.099	0.220	0.242	

SAR Values [LTE Band 12]

		Channel		Con	ducted	Maximum	Power		SAR1-g rea	sults(W/kg)	
Ch.	Freq. (MHz)	Type (10M)	Test Position	Po	ower IBm)	Allowed Power (dBm)	Drift (%)	Scaling Factor	Measured	Reported	Graph Results
	meas	sured / reporte	ed SAR nun	nbers - B	ody (hotspo	ot open, distand	ce 10mm)	(No using	body - worn	accessories)	
2313	0 711.	0 1RB	F	ront	24.70	25.00	-0.32	1.072	0.472	0.506	Plot 4
2313	0 711.	0 1RB	F	ear	24.70	25.00	-1.86	1.072	0.364	0.390	
2313	0 711.	0 1RB		.eft	24.70	25.00	3.66	1.072	0.341	0.365	
2313	0 711.	0 1RB		ор	24.70	25.00	0.01	1.072	0.332	0.356	
2309	5 707.	5 50%R	B F	ront	24.53	25.00	-2.55	1.114	0.261	0.291	
2309	5 707.	5 50%R	В В	ear	24.53	25.00	-3.66	1.114	0.210	0.234	
2309	5 707.	5 50%R	B l	.eft	24.53	25.00	0.50	1.114	0.186	0.207	
2309	5 707.	5 50%R	В	ор	24.53	25.00	-3.55	1.114	0.179	0.199	

SAR Values [LTE Band 12]

					Or iii Vaii		.∽ .–,				
		Channel		Con	ducted	Maximum	Power		SAR1-g res	sults(W/kg)	
Ch.	Freq. (MHz)	Type (10M)	Test Position	Po	ower Bm)	Allowed Power (dBm)	Drift (%)	Scaling Factor	Measured	Reported	Graph Results
	me	easured / repo	rted SAR nu	mbers -	Body (hot	spot open, dista	ance 0mm	n) (using bo	dy - worn acc	cessories)	
2313	0 711.	0 1RB	Fro	nt	24.70	25.00	3.44	1.072	0.446	0.478	
2309	5 707.	5 50%RE	3 Fro	nt	24.53	25.00	-0.58	1.114	0.243	0.271	

SAR Values [WIFI2.4G]

				O/ V	aracs [TTII 12	•]				
				Condu	Maximum	Power		SAR1-g res	ults(W/kg)	
Ch.	Freq.	Service	Test	cted	Allowed	Drift	Scaling			Graph
OH.	(MHz)	Gervice	Position	Power	Power	(%)	Factor	Measured	Reported	Results
				(dBm)	(dBm)					
	mea	asured / reported -	SAR numbers - Bo	ody (hotsp	ot open, distai	nce 10mm)) (No using	g body - worn a	accessories)	
11	2462	802.11b	Front	21.15	21.50	-0.81	1.084	0.211	0.229	Plot 5
11	2462	802.11b	Back	21.15	21.50	-2.03	1.084	0.129	0.140	
11	2462	802.11b	Right	21.15	21.50	3.54	1.084	0.112	0.121	
11	2462	802.11b	Top	21.15	21.50	0.01	1.084	0.103	0.112	

SAR Values [WIFI2.4G]

C	ch.	Freq. (MHz)	Service	Test Position	Condu cted Power (dBm)	Maximum Allowed Power (dBm)	Power Drift (%)	Scaling Factor	SAR1-g res	rults(W/kg) Reported	Graph Results
		r	neasured / reporte	ed SAR numbers -	Body (ho	tspot open, dis	stance 0mr	n) (using bo	ody - worn acc	essories)	
1	1	2462	802.11b	Front	21.15	21.50	2.45	1.084	0.195	0.211	

SAR Values [WIFI5.2G]

					_							
				Con	ducted	Maximum	Power		SAR _{1-g} res	ults(W/kg)		
Ch.	Freq. (MHz)	Service	Test Position	Power (dBm)		Allowed Power (dBm)	Drift (%)	Scaling Factor	Measured	Reported	Graph Results	
	measured / reported SAR numbers - Body (hotspot open, distance 10mm) (No using body - worn accessories)											
36	5180	802.11AC2	20 Fron	t	13.74	14.00	0.22	1.062	0.186	0.197	Plot 6	
36	5180	802.11AC2	20 Rea	r	13.74	14.00	-1.50	1.062	0.147	0.156		
36	5180	802.11AC2	20 Righ	t	13.74	14.00	2.55	1.062	0.130	0.138		
36	5180	802.11AC2	20 Top		13.74	14.00	1.69	1.062	0.121	0.128		

SAR Values [WIFI5.2G]

Ch.	Freq. (MHz)	Service	Test Position	Conducted Power (dBm)	Maximum Allowed Power (dBm)	Power Drift (%)	Scaling Factor	SAR _{1-g} res	Reported	Graph Results
measured / reported SAR numbers - Body (hotspot open, distance 0mm) (using body - worn accessories)										
36	5180	802.11AC	20 Fron	t 13.74	14.00	3.14	1.062	0.154	0.164	

SAR Values [5.3G]

					a.a.o. [o.o	~ _				
				Condu	Maximum	Power		SAR1-g res	ults(W/kg)	
Ch.	Freq.	Service	Test	cted	Allowed	Drift	Scaling			Graph
0	(MHz)		Position	Power (dBm)	Power (dBm)	(%)	Factor	Measured	Reported	Results
		measured / reported	<u>d SAR numb</u>	<u>ers - Body</u>	/ (distance 10r	<u>nm) (No u</u>	sing body -	worn accesso	ories)	
52	5260	802.11n HT20	Front	13.98	14.00	0.73	1.005	0.108	0.108	
52	5260	802.11n HT20	Rear	13.98	14.00	-1.09	1.005	0.075	0.075	Plot 7
52	5260	802.11n HT20	Right	13.98	14.00	0.14	1.005	0.065	0.065	
52	5260	802.11n HT20	Top	13.98	14.00	3.54	1.005	0.054	0.054	

SAR Values [5.3G]

_					O A I	values [5.5	<u>'''</u>				
Ī					Condu	Maximum	Power		SAR1-g res	ults(W/kg)	
	Ch.	Freq.	Service	Test	cted	Allowed	Drift	Scaling			Graph
	CH.	(MHz)	Service	Position	Power	Power	(%)	Factor	Measured	Reported	Results
					(dBm)	(dBm)	(%)				
			measured / repor	ted SAR nur	nbers - Bo	ody (distance (mm) (usin	g body - w	orn accessorie	es)	
Ī	52	5260	802.11n HT20	Front	13.98	14.00	3.21	1.005	0.084	0.084	

SAR Values [WIFI5.8G]

					Col	nducted	Maximum	Power		SAR _{1-g} res	ults(W/kg)	
Ch.	Freq. (MHz)	Service	Test Position		Power (dBm)		Allowed Power (dBm)	Drift (%)	Scaling Factor	Measured	Reported	Graph Results
	measured / reported SAR numbers - Body (hotspot open, distance 10mm) (No using body - worn accessories)											
151	5755	802.11n l	HT40	Fro	nt	14.25	14.50	0.00	1.059	0.075	0.079	Plot 8
151	5755	802.11n l	HT40	Rea	ar	14.25	14.50	-1.36	1.059	0.015	0.016	
151	5755	802.11n l	HT40	Rig	ht	14.25	14.50	-0.54	1.059	0.009	0.010	
151	5755	802.11n l	HT40	То	р	14.25	14.50	0.65	1.059	0.006	0.006	

Shenzhen LCS Compliance Testing Lab

SAR Values [WIFI5.8G]

Ch.	Freq. (MHz)	Service	Tes Posit	t	Conducted Power (dBm)	Maximum Allowed Power (dBm)	Power Drift (%)	Scaling Factor	SAR _{1-g} res	cults(W/kg) Reported	Graph Results
measured / reported SAR numbers - Body (hotspot open, distance 0mm) (using body - worn accessories)											
151	5755	802.11n l	HT40	Front	14.25	14.50	0.00	1.059	0.062	0.066	

Remark:

- 1. The value with blue color is the maximum SAR Value of each test band.
- 2. Per FCC KDB Publication 447498 D01, if the reported (scaled) SAR measured at the middle channel or highest output power channel for each test configuration is \leq 0.8 W/kg then testing at the other channels is optional for such test configuration(s).
- 3. When the same maximum output power is specified for both bands, begin SAR measurement in U-NII-2A band by applying the OFDM SAR requirements.19 If the highest reported SAR for a test configuration is ≤ 1.2 W/kg, SAR is not required for U-NII-1 band for that configuration (802.11 mode and exposure condition); otherwise, each band is tested independently for SAR.
- 4. When different maximum output power is specified for the bands, begin SAR measurement in the band with higher specified maximum output power. The highest reported SAR for the tested configuration is adjusted by the ratio of lower to higher specified maximum output power for the two bands. When the adjusted SAR is ≤ 1.2 W/kg, SAR is not required for the band with lower maximum output power in that test configuration; otherwise, each band is tested independently for SAR.

4.3.2 Standalone SAR Test Exclusion Considerations and Estimated SAR

Per KDB447498 requires when the standalone SAR test exclusion of section 4.3.1 is applied to an antenna that transmits simultaneously with other antennas, the standalone SAR must be estimated according to the following to determine simultaneous transmission SAR test exclusion;

• (max. power of channel, including tune-up tolerance, mW)/(min. test separation distance, mm)] • [√f(GHz)/x] W/kg for test separation distances ≤ 50 mm:

where x = 7.5 for 1-g SAR, and x = 18.75 for 10-g SAR.

• 0.4 W/kg for 1-g SAR and 1.0 W/kg for 10-g SAR, when the test separation distances is > 50 mm Per FCC KD B447498 D01, simultaneous transmission SAR test exclusion may be applied when the sum of the 1g SAR for all the transmitting antenna in a specific a physical test configuration is ≤1.6 W/Kg.When the sum is greater than the SAR limit, SAR test exclusion is determined by the SAR to peak location separation ratio.

Ratio=
$$\frac{(SAR_1+SAR_2)^{1.5}}{(peak location separation,mm)} < 0.04$$

	Estimated stand alone SAR												
Communication system	Frequency (MHz)	Configuration	Maximum Power (dBm)	Separation Distance (mm)	Estimated SAR _{1-g} (W/kg)								
Bluetooth*	2450	Hotspot	6.50	10	0.187								
Bluetooth*	2450	Body-worn	6.50	10	0.187								

Remark:

- Bluetooth*- Including Lower power Bluetooth 1.
- Maximum average power including tune-up tolerance; 2.
- When the minimum test separation distance is < 5 mm, a distance of 5 mm is applied to determine 3. SAR test exclusion
- Body as body use distance is 10mm from manufacturer declaration of user manual

4.4. Simultaneous TX SAR Considerations

4.4.1 Introduction

Simultaneous transmission SAR test exclusion is determined for each operating configuration and exposure condition according to the reported standalone SAR of each applicable simultaneous transmiting antenna. The device has 4 antennas, WWAN main antenna, WWAN diversity antenna(RX only), and WiFi/BT antenna supports 2.4Wi-Fi and BT.The 2 TX antennas can always transmit simultaneously. The work mode combination is showed as below table.;

Application Simultaneous Transmission information:

Combination No.	Mode
1	WWAN+WIFI
2	WWAN+BT

4.4.2 Evaluation of Simultaneous SAR

Body Hotspot Exposure Conditions(No using body - worn accessories) SAR for WiFi and LTE

Papartad SAR1 a(\M/ka)			Test I	Position		
Reported SAR1-g(W/kg)	Front	Rear	Left	Right	Bottom	Тор
LTE Band2	0.302	0.275	0.251	/	/	0.240
LTE Band4	0.540	0.367	0.344	/	/	0.332
LTE Band5	0.511	0.413	0.406	1	1	0.380
LTE Band12	0.506	0.390	0.365	/	/	0.356
WiFi2.4G	0.229	0.140	1	0.121	1	0.112
WiFi5.2G	0.197	0.156	/	0.138	/	0.128
WiFi5.3G	0.108	0.075	/	0.065	/	0.054
WiFi5.8G	0.079	0.016	/	0.010	/	0.006
MAX. ΣSAR1-g (W/kg)	0.769	0.569	0.406	0.138	/	0.508
SAR1-g Limit (W/kg)	1.6	1.6	1.6	1.6	1.6	1.6
Peak location separation ratio	no	no	no	no	no	no
Simut Meas. Required	no	no	no	no	no	no

Simultaneous transmission SAR for BT and LTE(No using body - worn accessories)

Reported SAR1-g(W/kg)		Test Position									
Reported SART-g(vv/kg)	Front	Rear	Left	Right	Bottom	Тор					
LTE Band2	0.302	0.275	0.251	/	/	0.240					
LTE Band4	0.540	0.367	0.344	/	/	0.332					
LTE Band5	0.511	0.413	0.406	1	1	0.380					
LTE Band12	0.506	0.390	0.365	/	/	0.356					
BT Estimated SAR1-g (W/kg)	0.187	0.187	1	0.187	1	0.187					
MAX. ΣSAR1-g (W/kg)	0.727	0.600	0.406	0.187	/	0.567					
SAR1-g Limit (W/kg)	1.6	1.6	1.6	1.6	1.6	1.6					
Peak location separation ratio	no	no	no	no	no	no					
Simut Meas. Required	no	no	no	no	no	no					

Body Hotspot Exposure Conditions(using body - worn accessories) SAR for WiFi and LTE

Reported SAR1-g(W/kg)			Test I	Position		
Reported SART-g(W/kg)	Front	Rear	Left	Right	Bottom	Тор
LTE Band2	0.274	/	/	/	/	/
LTE Band4	0.518	/	/	/	/	/
LTE Band5	0.477	/	/	/	1	/
LTE Band12	0.478	/	/	/	/	/
WiFi2.4G	0.211	/	/	/	1	/
WiFi5.2G	0.164	/	/	/	/	/
WiFi5.3G	0.084	/	/	/	/	/
WiFi5.8G	0.079	/	/	/	/	/
MAX. ΣSAR1-g (W/kg)	0.729	/	/	/	/	/
SAR1-g Limit (W/kg)	1.6	1.6	1.6	1.6	1.6	1.6
Peak location separation ratio	no	no	no	no	no	no
Simut Meas. Required	no	no	no	no	no	no

Simultaneous transmission SAR for BT and LTE

Poportod SAR1 g(M/kg)	Test Position					
Reported SAR1-g(W/kg)	Front	Rear	Left	Right	Bottom	Тор
LTE Band2	0.274	/	/	/	/	/
LTE Band4	0.518	/	/	/	/	/
LTE Band5	0.477	1	1	1	1	1
LTE Band12	0.478	/	/	/	/	/
BT Estimated SAR1-g (W/kg)	0.187	1	1	1	1	1
MAX. ΣSAR1-g (W/kg)	0.705	/	/	/	/	/
SAR1-g Limit (W/kg)	1.6	1.6	1.6	1.6	1.6	1.6
Peak location separation ratio	no	no	no	no	no	no
Simut Meas. Required	no	no	no	no	no	no

Note:

- 1. The WiFi and BT share same antenna, so cannot transmit at same time.
- 2. The value with **block** color is the maximum values of standalone
- 3. The value with blue color is the maximum values of ∑SAR_{1-g}

4.5. SAR Measurement Variability

According to KDB865664, Repeated measurements are required only when the measured SAR is ≥ 0.80 W/kg. If the measured SAR value of the initial repeated measurement is < 1.45 W/kg with ≤ 20% variation, only one repeated measurement is required to reaffirm that the results are not expected to have substantial variations, which may introduce significant compliance concerns. A second repeated measurement is required only if the measured result for the initial repeated measurement is within 10% of the SAR limit and vary by more than 20%, which are often related to device and measurement setup difficulties. The following procedures are applied to determine if repeated measurements are required. The same procedures should be adapted for measurements according to extremity and occupational exposure limits by applying a factor of 2.5 for extremity exposure and a factor of 5 for occupational exposure to the corresponding SAR thresholds.19 The repeated measurement results must be clearly identified in the SAR report. All measured SAR, including the repeated results, must be considered to determine compliance and for reporting according to KDB 690783.Repeated measurement is not required when the original highest measured SAR is < 0.80 W/kg; steps 2) through 4) do not apply.

- 1) When the original highest measured SAR is ≥ 0.80 W/kg, repeat that measurement once.
- 2) Perform a second repeated measurement only if the ratio of largest to smallest SAR for the original and first repeated measurements is > 1.20 or when the original or repeated measurement is ≥ 1.45 W/kg (~ 10% from the 1-g SAR limit).
- 3) Perform a third repeated measurement only if the original, first or second repeated measurement is ≥ 1.5 W/kg and the ratio of largest to smallest SAR for the original, first and second repeated measurements is > 1.20.
- 4) Perform a third repeated measurement only if the original, first or second repeated measurement is ≥ 1.5 W/kg and the ratio of largest to smallest SAR for the original, first and second repeated measurements is > 1.20

Fraguenay		RF		Panastad	Highest	First Re	epeated
Frequency Band (MHz)	Air Interface	Exposure Configuration	Test Position	Repeated SAR (yes/no)	Measured SAR _{1-g} (W/Kg)	Measued SAR _{1-g} (W/Kg)	Largest to Smallest SAR Ratio
750	LTE Band 12	Standalone	Body-Front	no	0.472	n/a	n/a
850	LTE Band 5	Standalone	Body-Front	no	0.459	n/a	n/a
1800	LTE Band 4	Standalone	Body-Front	no	0.489	n/a	n/a
1900	LTE Band 2	Standalone	Body-Front	no	0.291	n/a	n/a
2450	2.4GWLAN	Standalone	Body-Front	no	0.211	n/a	n/a
5200	5.2GWLAN	Standalone	Body-Front	no	0.186	n/a	n/a
5280	5.3GWLAN	Standalone	Body-Front	no	0.108	n/a	n/a
5800	5.8GWLAN	Standalone	Body-Front	no	0.075	n/a	n/a

Remark:

- 1. Second Repeated Measurement is not required since the ratio of the largest to smallest SAR for the original and first repeated measurement is not > 1.20 or 3 (1-g or 10-g respectively)
- 2. All modes tested, recording only the worst mode (maximum SAR value).

4.6. General description of test procedures

- 1. Test positions as described in the tables above are in accordance with the specified test standard.
- 2. Tests in body position were performed in that configuration, which generates the highest time based averaged output power (see conducted power results).
- 3. According to IEEE 1528 the SAR test shall be performed at middle channel. Testing of top and bottom channel is optional.
- 4. According to KDB 447498 D01 testing of other required channels within the operating mode of a frequency band is not required when the reported 1-g or 10-g SAR for the mid-band or highest output power channel is:
 - ≤ 0.8 W/kg or 2.0 W/kg, for 1-g or 10-g respectively, when the transmission band is ≤ 100 MHz
 - \bullet ≤ 0.6 W/kg or 1.5 W/kg, for 1-g or 10-g respectively, when the transmission band is between 100 MHz and 200 MHz
 - ≤ 0.4 W/kg or 1.0 W/kg, for 1-g or 10-g respectively, when the transmission band is ≥ 200 MHz
- 5. IEEE 1528-2003 require the middle channel to be tested first. This generally applies to wireless devices that are designed to operate in technologies with tight tolerances for maximum output power variations across channels in the band. When the maximum output power variation across the

required test channels is $> \frac{1}{2}$ dB, instead of the middle channel, the highest output power channel must be used.

- 6. When the same maximum output power is specified for both bands, begin SAR measurement in U-NII-2A band by applying the OFDM SAR requirements.19 If the highest reported SAR for a test configuration is ≤ 1.2 W/kg, SAR is not required for U-NII-1 band for that configuration (802.11 mode and exposure condition); otherwise, each band is tested independently for SAR.
- 7. When different maximum output power is specified for the bands, begin SAR measurement in the band with higher specified maximum output power. The highest reported SAR for the tested configuration is adjusted by the ratio of lower to higher specified maximum output power for the two bands. When the adjusted SAR is ≤ 1.2 W/kg, SAR is not required for the band with lower maximum output power in that test configuration; otherwise, each band is tested independently for SAR.

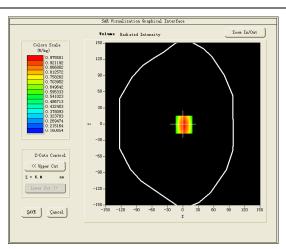
4.7. Measurement Uncertainty (450MHz-6GHz)

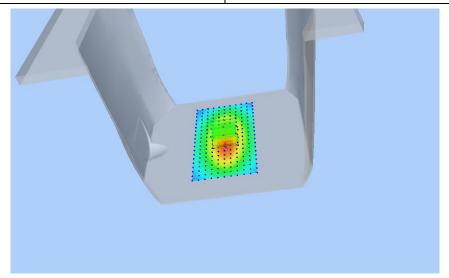
Not required as SAR measurement uncertainty analysis is required in SAR reports only when the highest measured SAR in a frequency band is \geq 1.5 W/kg for 1-g SAR according to KDB865664D01.

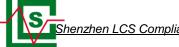
4.8. System Check Results

Test mode:750MHz(Head) Product Description: Validation

Model:Dipole SID750


E-Field Probe: SSE2(SN 31/17 EPGO324)

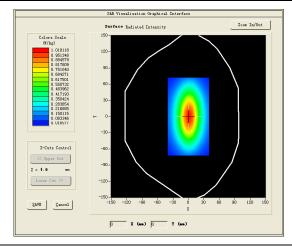

Test Date: March 09, 2022

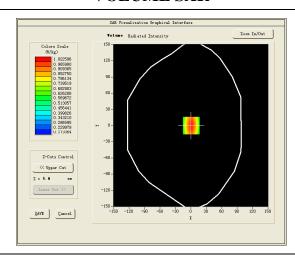

Medium(liquid type)	HSL_750
Frequency (MHz)	750.0000
Relative permittivity (real part)	55.35
Conductivity (S/m)	0.95
Input power	100mW
Crest Factor	1.0
Conversion Factor	1.50
Variation (%)	0.680000
SAR 10g (W/Kg)	0.526122
SAR 1g (W/Kg)	0.841352

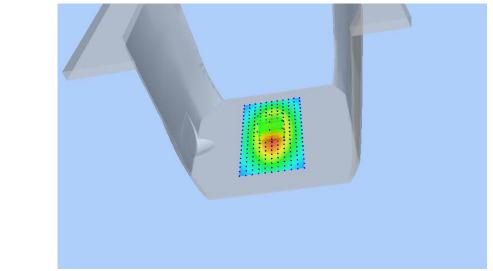
SURFACE SAR

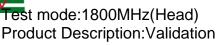
Zoom In/Out SAVE Cancel

Test mode:835MHz(Head) Product Description: Validation

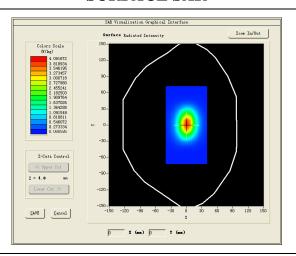

Model:Dipole SID835

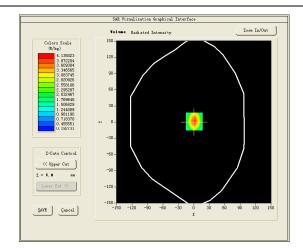

E-Field Probe: SSE2(SN 31/17 EPGO324)

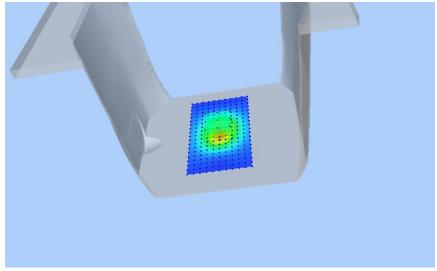

Test Date:March 11, 2022

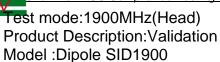

Medium(liquid type)	HSL_850
Frequency (MHz)	835.0000
Relative permittivity (real part)	40.14
Conductivity (S/m)	0.86
Input power	100mW
Crest Factor	1.0
Conversion Factor	2.04
Variation (%)	-0.210000
SAR 10g (W/Kg)	0.632132
SAR 1g (W/Kg)	0.975488

SURFACE SAR

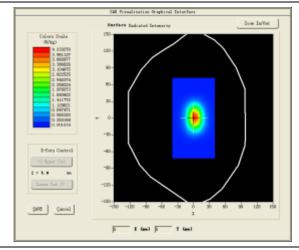

Model: Dipole SID1800

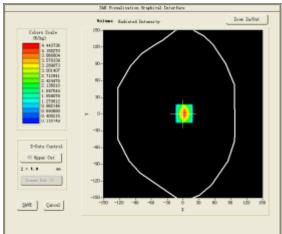

E-Field Probe:SSE2(SN 31/17 EPGO324)

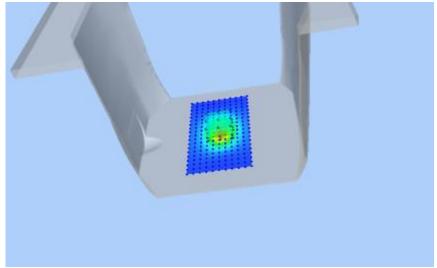

Test Date: March 12, 2022

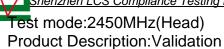

Medium(liquid type)	HSL_1800
Frequency (MHz)	1800.0000
Relative permittivity (real part)	53.45
Conductivity (S/m)	1.56
Input power	100mW
Crest Factor	1.0
Conversion Factor	1.68
Variation (%)	2.010000
SAR 10g (W/Kg)	1.243284
SAR 1g (W/Kg)	3.705458
~	

SURFACE SAR

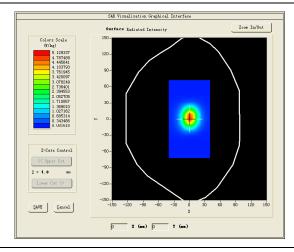


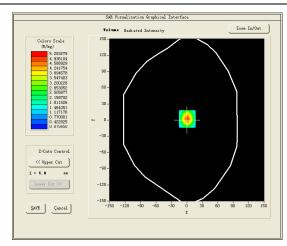

E-Field Probe:SSE2(SN 31/17 EPGO324)

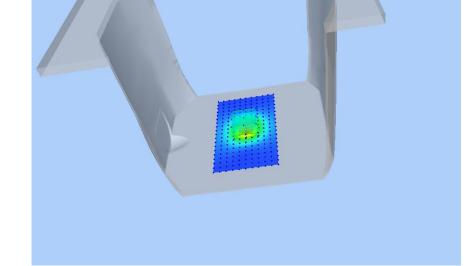

Test Date: March 15, 2022


Medium(liquid type)	HSL_1900
Frequency (MHz)	1900.0000
Relative permittivity (real part)	39.23
Conductivity (S/m)	1.37
Input power	100mW
Crest Factor	1.0
Conversion Factor	2.10
Variation (%)	-1.170000
SAR 10g (W/Kg)	2.068260
SAR 1g (W/Kg)	3.921162

SURFACE SAR

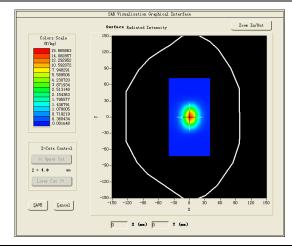

Model:Dipole SID2450

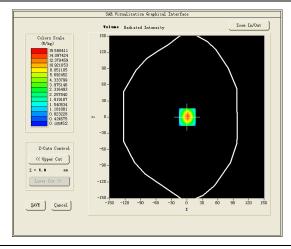

E-Field Probe:SSE2(SN 31/17 EPGO324)

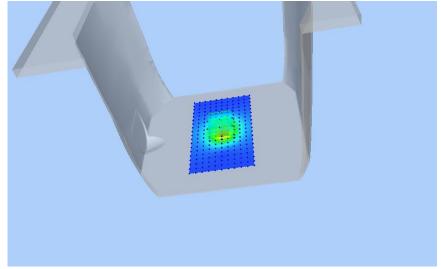

Test Date: March 19, 2022

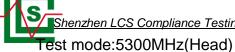
Medium(liquid type)	HSL_2450
Frequency (MHz)	2450.0000
Relative permittivity (real part)	40.12
Conductivity (S/m)	1.76
Input power	100mW
Crest Factor	1.0
Conversion Factor	2.21
Variation (%)	0.240000
SAR 10g (W/Kg)	2.343463
SAR 1g (W/Kg)	5.224016

SURFACE SAR

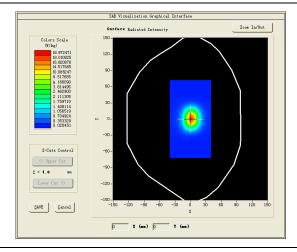


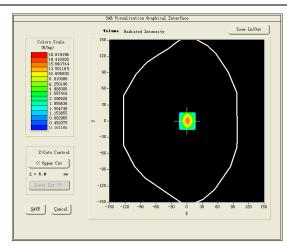

E-Field Probe: SSE2(SN 31/17 EPGO324)

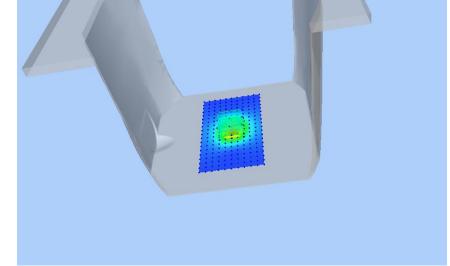

Test Date: March 25, 2022


Medium(liquid type)	MSL_5000
Frequency (MHz)	5200.0000
Relative permittivity (real part)	36.0
Conductivity (S/m)	4.66
Input power	100mW
Crest Factor	1.0
Conversion Factor	1.56
Variation (%)	-3.020000
SAR 10g (W/Kg)	5.512210
SAR 1g (W/Kg)	15.467034

SURFACE SAR


Product Description: Validation Model:Dipole SID5000

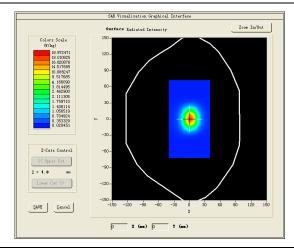

E-Field Probe: SSE2(SN 31/17 EPGO324)

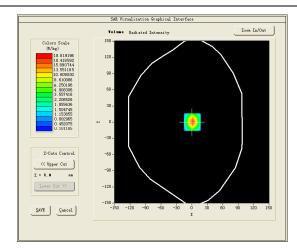

Test Date: March 27, 2022

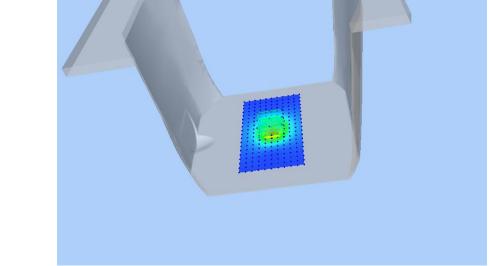
Medium(liquid type)	MSL_5000
Frequency (MHz)	5280.0000
Relative permittivity (real part)	35.3
Conductivity (S/m)	5.27
Input power	100mW
Crest Factor	1.0
Conversion Factor	1.55
Variation (%)	3.210000
SAR 10g (W/Kg)	5.742120
SAR 1g (W/Kg)	16.459222

SURFACE SAR

Test mode:5800MHz(Head) Product Description: Validation


Model:Dipole SID5000


E-Field Probe: SSE2(SN 31/17 EPGO324)


Test Date:March 29, 2022

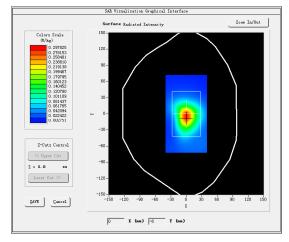
Medium(liquid type)	MSL_5000
Frequency (MHz)	5800.0000
Relative permittivity (real part)	35.3
Conductivity (S/m)	5.27
Input power	100mW
Crest Factor	1.0
Conversion Factor	1.55
Variation (%)	-1.010000
SAR 10g (W/Kg)	6.177085
SAR 1g (W/Kg)	18.293250

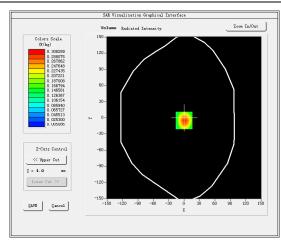
SURFACE SAR

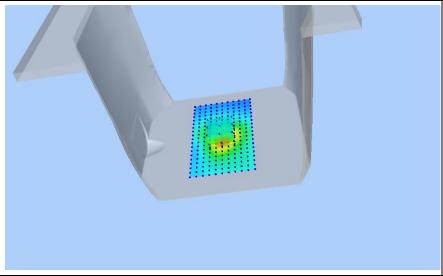
4.9. SAR Test Graph Results

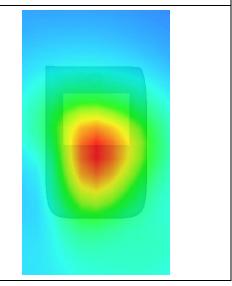
SAR plots for the highest measured SAR in each exposure configuration, wireless mode and frequency band combination

#1

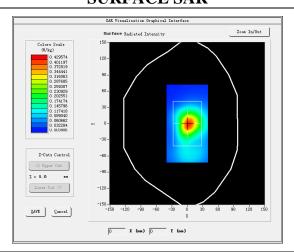

Test Mode: LTE Band 2, 1RB, High channel (Body Front Side) (Hotspot) (No using body - worn accessories)

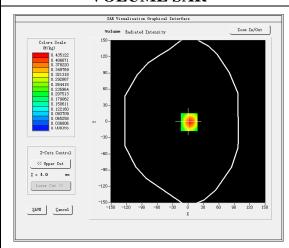

Product Description:Body Worn Camera

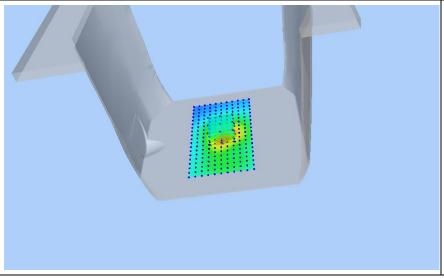

Model:FirstVu PRO


Test Date: March 15, 2022

Medium(liquid type)	MSL_1900
Frequency (MHz)	1900.0000
Relative permittivity (real part)	40.22
Conductivity (S/m)	1.78
E-Field Probe	SN 31/17 EPGO324
Crest Factor	1.0
Conversion Factor	1.68
Sensor	4mm
Area Scan	dx=8mm dy=8mm
Zoom Scan	5x5x7,dx=8mm dy=8mm dz=5mm
Variation (%)	-0.240000
SAR 10g (W/Kg)	0.139344
SAR 1g (W/Kg)	0.290890
SURFACE SAR	VOLUME SAR


Test Mode: LTE Band 4, 1RB, Middle channel(Body Front Side) (Hotspot) (No using body -

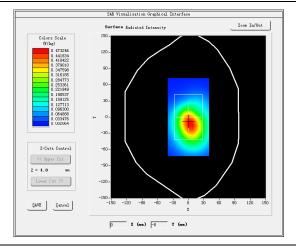

worn accessories)

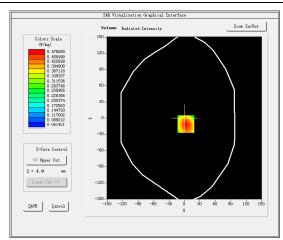

Product Description: Body Worn Camera

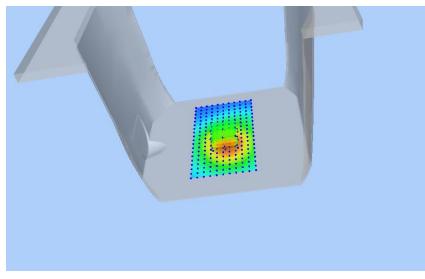
Model: FirstVu PRO Test Date: March 12, 2022

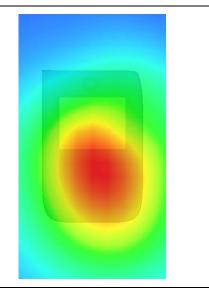
Medium(liquid type)	MSL_1800
Frequency (MHz)	1732.5000
Relative permittivity (real part)	52.92
Conductivity (S/m)	1.50
E-Field Probe	SN 31/17 EPGO324
Crest Factor	1.0
Conversion Factor	1.68
Sensor	4mm
Area Scan	dx=8mm dy=8mm
Zoom Scan	5x5x7,dx=8mm dy=8mm dz=5mm
Variation (%)	0.230000
SAR 10g (W/Kg)	0.230886
SAR 1g (W/Kg)	0.489019
SURFACE SAR	VOLUME SAR

Test Mode: LTE Band 5, 1RB,Low channel(Body Front Side) (Hotspot) (No using body - worn


accessories)

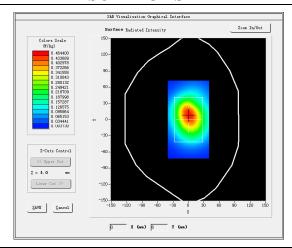

Product Description:Body Worn Camera

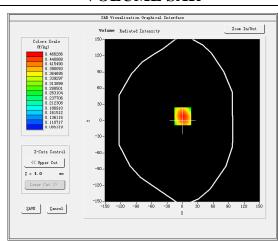

Model:FirstVu PRO

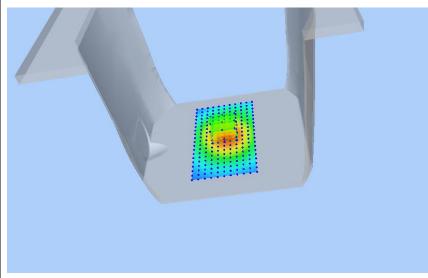

Test Date: March 11, 2022

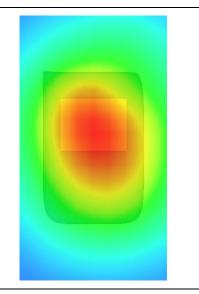
Medium(liquid type)	MSL_835
Frequency (MHz)	829.0000
Relative permittivity (real part)	41.68
Conductivity (S/m)	0.90
E-Field Probe	SN 31/17 EPGO324
Crest Factor	1.0
Conversion Factor	1.55
Sensor	4mm
Area Scan	dx=8mm dy=8mm
Zoom Scan	5x5x7,dx=8mm dy=8mm dz=5mm
Variation (%)	-0.840000
SAR 10g (W/Kg)	0.305529
SAR 1g (W/Kg)	0.458999
SURFACE SAR	VOLUME SAR

Test Mode: LTE Band 12, 1RB, High channel (Body Front Side) (Hotspot) (No using body -

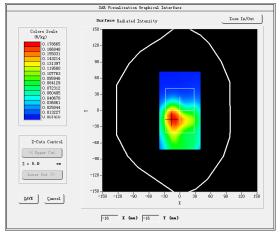

worn accessories)

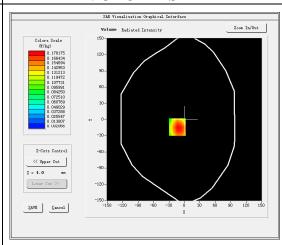

Product Description: Body Worn Camera

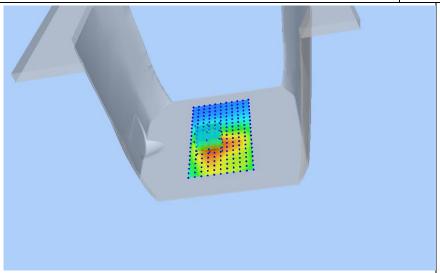

Model: FirstVu PRO

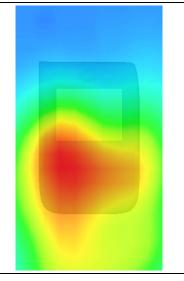

Test Date: March 09, 2022

Medium(liquid type)	MSL_750
Frequency (MHz)	711.0000
Relative permittivity (real part)	55.40
Conductivity (S/m)	0.97
E-Field Probe	SN 31/17 EPGO324
Crest Factor	1.0
Conversion Factor	1.50
Sensor	4mm
Area Scan	dx=8mm dy=8mm
Zoom Scan 5x5x7,dx=8mm dy=8mm dz=5	
Variation (%)	-0.320000
SAR 10g (W/Kg)	0.324810
SAR 1g (W/Kg)	0.471593
SURFACE SAR VOLUME SAR	


Test Mode: 802.11b (WiFi2.4G), High channel (Body Front Side) (Hotspot) (No using body -

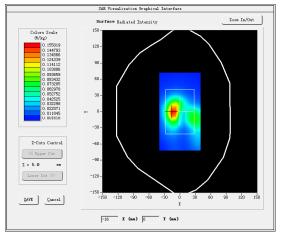

worn accessories)

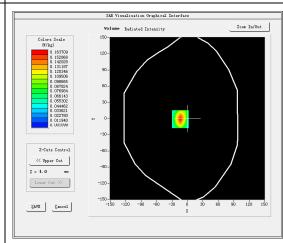

Product Description:Body Worn Camera

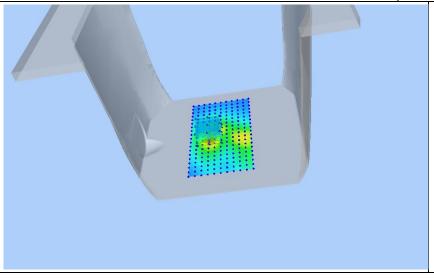

Model:FirstVu PRO Test Date: March 19, 2022

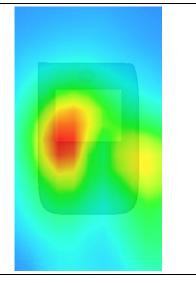
Medium(liquid type)	MSL_2450
Frequency (MHz)	2462.0000
Relative permittivity (real part)	40.03
Conductivity (S/m)	1.79
E-Field Probe	SN 31/17 EPGO324
Crest Factor	1.0
Conversion Factor	1.77
Sensor	4mm
Area Scan	dx=8mm dy=8mm
Zoom Scan	5x5x7,dx=8mm dy=8mm dz=5mm
Variation (%) -0.810000	
SAR 10g (W/Kg) 0.094264	
SAR 1g (W/Kg)	0.210641
SURFACE SAR	VOLUME SAR

Test Mode: 802.11a(WiFi5.2G), Low channel (Body Front Side) (Hotspot) (No using body -


worn accessories)


Product Description:Body Worn Camera


Model:FirstVu PRO


Test Date: March 25, 2022

Medium(liquid type)	MSL_5200
Frequency (MHz)	5180.0000
Relative permittivity (real part)	38.92
Conductivity (S/m)	1.83
E-Field Probe	SN 31/17 EPGO324
Crest Factor	1.0
Conversion Factor	1.91
Sensor	4mm
Area Scan	dx=8mm dy=8mm
Zoom Scan	5x5x7,dx=8mm dy=8mm dz=5mm
Variation (%)	0.220000
SAR 10g (W/Kg) 0.072240	
SAR 1g (W/Kg)	0.186442
SURFACE SAR	VOLUME SAR

Test Mode: 802.11n HT20 (WiFi5.3G),Low channel(Body Front Side)(Body-Worn) (No using

body - worn accessories)

Product Description: Body Worn Camera

Model: FirstVu PRO

Test Date: March 27, 2022		
Medium(liquid type)	MSL_3.5-6G	
Frequency (MHz)	5260.0000	
Relative permittivity (real part)	47.39	
Conductivity (S/m)	6.27	
E-Field Probe	SN 31/17 EPGO324	
Crest Factor	1.0	
Conversion Factor	1.56	
Sensor	4mm	
Area Scan	dx=8mm dy=8mm	
Zoom Scan	5x5x7,dx=8mm dy=8mm dz=5mm	
Variation (%)	0.730000	
SAR 10g (W/Kg)	0.043862	
SAR 1g (W/Kg)	0.108408	
SURFACE SAR	VOLUME SAR	
Colors Scale	Colors Setle	

Test Mode: 802.11a (WiFi5.8G), Low channel (Body Front Side) (Hotspot) (No using body -

worn accessories)

Product Description:Body Worn Camera

Model:FirstVu PRO Test Date:March 29, 2022

Test Date.ivialCit 29, 2022		
Medium(liquid type) MSL_5800		
Frequency (MHz)	5755.0000	
Relative permittivity (real part)	38.92	
Conductivity (S/m)	1.83	
E-Field Probe	SN 31/17 EPGO324	
Crest Factor	1.0	
Conversion Factor	1.91	
Sensor	4mm	
Area Scan	dx=8mm dy=8mm	
Zoom Scan	5x5x7,dx=8mm dy=8mm dz=5mm	
Variation (%)	0.000000	
SAR 10g (W/Kg)	0.024857	
SAR 1g (W/Kg)	0.075092	
SURFACE SAR SAN Visualization Graphical Interface	VOLUME SAR	
Surface Radi sted Intensity Zone Injure Injur	SAM Visualization Graphical Interface Volume Redicted Interface Volume Redicted Interface Tools	

CALIBRATION CERTIFICATES

5.1 Probe-EPGO324 Calibration Certificate

COMOSAR E-Field Probe Calibration Report

Ref: ACR.281.2.18.SATU.A

SHENZHEN LCS COMPLIANCE TESTING LABORATORY LTD.

1F., XINGYUAN INDUSTRIAL PARK, TONGDA ROAD, **BAO'AN BLVD**

BAO'AN DISTRICT, SHENZHEN, GUANGDONG, CHINA MVG COMOSAR DOSIMETRIC E-FIELD PROBE

SERIAL NO.: SN 31/17 EPGO324

Calibrated at MVG US 2105 Barrett Park Dr. - Kennesaw, GA 30144

Calibration Date: 10/06/2021

Summary:

This document presents the method and results from an accredited COMOSAR Dosimetric E-Field Probe calibration performed in MVG USA using the CALISAR / CALIBAIR test bench, for use with a COMOSAR system only. All calibration results are traceable to national metrology

Ref: ACR.281.2.18.SATU.A

_	Name	Function	Date	Signature
Prepared by :	Jérôme LUC	Product Manager	10/6/2021	Jes
Checked by :	Jérôme LUC	Product Manager	10/6/2021	Jes
Approved by:	Kim RUTKOWSKI	Quality Manager	10/6/2021	them thethowski

	Customer Name
Distribution :	Shenzhen LCS
	Compliance Testing
	Laboratory Ltd.

Issue	Date	Modifications
A	10/6/2021	Initial release
-		
25		

Page: 2/10

Ref: ACR.281.2.18.SATU.A

TABLE OF CONTENTS

1	Devi	ce Under Test4	
2	Prod	uct Description	
	2.1	General Information	4
3	Mea	surement Method	
	3.1	Linearity	4
	3.2	Sensitivity	
	3.3	Lower Detection Limit	5
	3.4	Isotropy	
	3.5	Boundary Effect	5
4	Mea	surement Uncertainty5	
5	Calil	oration Measurement Results	
	5.1	Sensitivity in air	6
	5.2	Linearity	7
	5.3	Sensitivity in liquid	
	5.4	Isotropy	8
6	List	of Equipment10	

Page: 3/10

Ref: ACR.281.2.18.SATU.A

1 DEVICE UNDER TEST

Device Under Test		
Device Type	COMOSAR DOSIMETRIC E FIELD PROBE	
Manufacturer	MVG	
Model	SSE2	
Serial Number	SN 31/17 EPGO324	
Product Condition (new / used)	New	
Frequency Range of Probe	0.15 GHz-6GHz	
Resistance of Three Dipoles at Connector	Dipole 1: R1=0.189 MΩ	
	Dipole 2: R2=0.203 MΩ	
	Dipole 3: R3=0.218 MΩ	

A yearly calibration interval is recommended.

2 PRODUCT DESCRIPTION

2.1 GENERAL INFORMATION

MVG's COMOSAR E field Probes are built in accordance to the IEEE 1528, OET 65 Bulletin C and CEI/IEC 62209 standards.

Figure 1 – MVG COMOSAR Dosimetric E field Dipole

Probe Length	330 mm
Length of Individual Dipoles	2 mm
Maximum external diameter	8 mm
Probe Tip External Diameter	2.5 mm
Distance between dipoles / probe extremity	1 mm

3 MEASUREMENT METHOD

The IEEE 1528, OET 65 Bulletin C, CENELEC EN50361 and CEI/IEC 62209 standards provide recommended practices for the probe calibrations, including the performance characteristics of interest and methods by which to assess their affect. All calibrations / measurements performed meet the fore mentioned standards.

3.1 LINEARITY

The evaluation of the linearity was done in free space using the waveguide, performing a power sweep to cover the SAR range 0.01W/kg to 100W/kg.

Page: 4/10

Ref: ACR.281.2.18.SATU.A

3.2 SENSITIVITY

The sensitivity factors of the three dipoles were determined using a two step calibration method (air and tissue simulating liquid) using waveguides as outlined in the standards.

3.3 LOWER DETECTION LIMIT

The lower detection limit was assessed using the same measurement set up as used for the linearity measurement. The required lower detection limit is 10 mW/kg.

3.4 ISOTROPY

The axial isotropy was evaluated by exposing the probe to a reference wave from a standard dipole with the dipole mounted under the flat phantom in the test configuration suggested for system validations and checks. The probe was rotated along its main axis from 0 - 360 degrees in 15 degree steps. The hemispherical isotropy is determined by inserting the probe in a thin plastic box filled with tissue-equivalent liquid, with the plastic box illuminated with the fields from a half wave dipole. The dipole is rotated about its axis $(0^{\circ}-180^{\circ})$ in 15° increments. At each step the probe is rotated about its axis $(0^{\circ}-360^{\circ})$.

3.5 BOUNDARY EFFECT

The boundary effect is defined as the deviation between the SAR measured data and the expected exponential decay in the liquid when the probe is oriented normal to the interface. To evaluate this effect, the liquid filled flat phantom is exposed to fields from either a reference dipole or waveguide. With the probe normal to the phantom surface, the peak spatial average SAR is measured and compared to the analytical value at the surface.

4 MEASUREMENT UNCERTAINTY

The guidelines outlined in the IEEE 1528, OET 65 Bulletin C, CENELEC EN50361 and CEI/IEC 62209 standards were followed to generate the measurement uncertainty associated with an E-field probe calibration using the waveguide technique. All uncertainties listed below represent an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2, traceable to the Internationally Accepted Guides to Measurement Uncertainty.

Uncertainty analysis of the probe calibration in waveguide						
ERROR SOURCES	Uncertainty value (%)	Probability Distribution	Divisor	ci	Standard Uncertainty (%)	
Incident or forward power	3.00%	Rectangular	$\sqrt{3}$	1	1.732%	
Reflected power	3.00%	Rectangular	$\sqrt{3}$	1	1.732%	
Liquid conductivity	5.00%	Rectangular	$\sqrt{3}$	1	2.887%	
Liquid permittivity	4.00%	Rectangular	$\sqrt{3}$	1	2.309%	
Field homogeneity	3.00%	Rectangular	$\sqrt{3}$	1	1.732%	
Field probe positioning	5.00%	Rectangular	$\sqrt{3}$	1	2.887%	

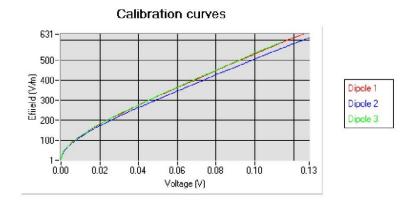
Page: 5/10

Ref: ACR.281.2.18.SATU.A

Field probe linearity	3.00%	Rectangular	$\sqrt{3}$	1	1.732%
Combined standard uncertainty					5.831%
Expanded uncertainty 95 % confidence level k = 2					12.0%

5 CALIBRATION MEASUREMENT RESULTS

Calibration Parameters		
Liquid Temperature	21 °C	
Lab Temperature	21 °C	
Lab Humidity	45 %	

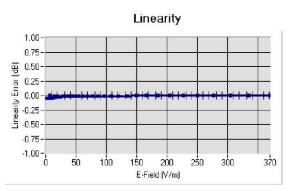

5.1 <u>SENSITIVITY IN AIR</u>

	Normy dipole	
$1 (\mu V/(V/m)^2)$	$2 (\mu V/(V/m)^2)$	$3 (\mu V/(V/m)^2)$
0.80	0.83	0.68

DCP dipole 1	DCP dipole 2	DCP dipole 3
(mV)	(mV)	(mV)
95	90	93

Calibration curves ei=f(V) (i=1,2,3) allow to obtain H-field value using the formula:

$$E = \sqrt{{E_1}^2 + {E_2}^2 + {E_3}^2}$$


Page: 6/10

Ref: ACR.281.2.18.SATU.A

5.2 LINEARITY

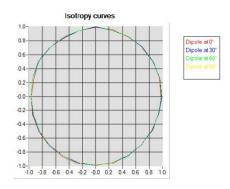
Linearity: I+/-1.13% (+/-0.05dB)

5.3 SENSITIVITY IN LIQUID

<u>Liquid</u>	Frequency (MHz+/- 100MHz)	Permittivity	Epsilon (S/m)	<u>ConvF</u>
HL450	450	42.17	0.86	1.56
BL450	450	57.65	0.95	1.60
HL750	750	40.03	0.93	1.45
BL750	750	56.83	1.00	1.50
HL850	835	42.19	0.90	1.55
BL850	835	54.67	1.01	1.59
HL900	900	42.08	1.01	1.54
BL900	900	55.25	1.08	1.60
HL1800	1800	41.68	1.46	1.65
BL1800	1800	53.86	1.46	1.68
HL1900	1900	38.45	1.45	1.86
BL1900	1900	53.32	1.56	1.93
HL2000	2000	38.26	1.38	1.83
BL2000	2000	52.70	1.51	1.89
HL2300	2300	39.44	1.62	1.95
BL2300	2300	54.52	1.77	2.01
HL2450	2450	37.50	1.80	1.91
BL2450	2450	53.22	1.89	1.95
HL2600	2600	39.80	1.99	1.89
BL2600	2600	52.52	2.23	1.94
HL5200	5200	35.64	4.67	1.50
BL5200	5200	48.64	5.51	1.56
HL5400	5400	36.44	4.87	1.44
BL5400	5400	46.52	5.77	1.47
HL5600	5600	36.66	5.17	1.48
BL5600	5600	46.79	5.77	1.53
HL5800	5800	35.31	5.31	1.50
BL5800	5800	47.04	6.10	1.55

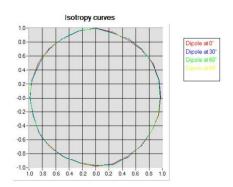
LOWER DETECTION LIMIT: 9mW/kg

Page: 7/10



Ref: ACR.281.2.18.SATU.A

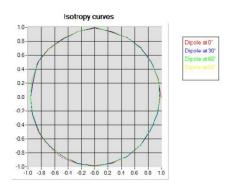
5.4 <u>ISOTROPY</u>


HL900 MHz

- Axial isotropy: 0.05 dB - Hemispherical isotropy: 0.07 dB

HL1800 MHz

- Axial isotropy: 0.06 dB- Hemispherical isotropy: 0.07 dB


Page: 8/10

Ref: ACR.281.2.18.SATU.A

HL5600 MHz

- Axial isotropy: 0.06 dB - Hemispherical isotropy: 0.10 dB

Page: 9/10

Ref: ACR.281.2.18.SATU.A

6 LIST OF EQUIPMENT

Equipment Summary Sheet					
Equipment Description	Manufacturer / Model	Identification No.	Current Calibration Date	Next Calibration Date	
Flat Phantom	MVG	SN-20/09-SAM71	Validated. No cal required.	Validated. No cal required.	
COMOSAR Test Bench	Version 3	NA	Validated. No cal required.	Validated. No cal required.	
Network Analyzer	Rhode & Schwarz ZVA	SN100132	02/2019	02/2022	
Reference Probe	MVG	EP 94 SN 37/08	10/2019	10/2021	
Multimeter	Keithley 2000	1188656	01/2020	01/2023	
Signal Generator	Agilent E4438C	MY49070581	01/2020	01/2023	
Amplifier	Aethercomm	SN 046	Characterized prior to test. No cal required.	Characterized prior to test. No cal required.	
Power Meter	HP E4418A	US38261498	01/2020	01/2023	
Power Sensor	HP ECP-E26A	US37181460	01/2020	01/2023	
Directional Coupler	Narda 4216-20	01386	Characterized prior to test. No cal required.	Characterized prior to test. No cal required.	
Waveguide	Mega Industries	069Y7-158-13-712	Validated. No cal required.	Validated. No cal required.	
Waveguide Transition	Mega Industries	069Y7-158-13-701	Validated. No cal required.	Validated. No cal required.	
Waveguide Termination	Mega Industries	069Y7-158-13-701	Validated. No cal required.	Validated. No cal required.	
Temperature / Humidity Sensor	Control Company	150798832	11/2020	11/2023	

Page: 10/10

2SID750Dipole Calibration Ceriticate

SAR Reference Dipole Calibration Report

Ref: ACR.287.3.14.SATU.A

SHENZHEN LCS COMPLIANCE TESTING LABORATORY LTD.

1F., XINGYUAN INDUSTRIAL PARK, TONGDA ROAD, BAO'AN BLVD BAO'AN DISTRICT, SHENZHEN, GUANGDONG, CHINA SATIMO COMOSAR REFERENCE DIPOLE

> FREQUENCY: 750 MHZ SERIAL NO.: SN 07/14 DIP 0G750-302

Calibrated at SATIMO US 2105 Barrett Park Dr. - Kennesaw, GA 30144

09/29/2021

Summary:

This document presents the method and results from an accredited SAR reference dipole calibration performed in SATIMO USA using the COMOSAR test bench. All calibration results are traceable to national metrology institutions.

SAR REFERENCE DIPOLE CALIBRATION REPORT

Ref: ACR.287.3.14.SATU.A

	Name	Function	Date	Signature
Prepared by :	Jérôme LUC	Product Manager	10/12/2021	Jes
Checked by:	Jérôme LUC	Product Manager	10/12/2021	JES
Approved by:	Kim RUTKOWSKI	Quality Manager	10/12/2021	them Puthowski

	Customer Name
Distribution:	Shenzhen LCS Compliance Testing Laboratory Ltd.

Issue	Date	Modifications
A	10/12/2021	Initial release
3		

Page: 2/11

SAR REFERENCE DIPOLE CALIBRATION REPORT

Ref: ACR.287.3.14.SATU.A

TABLE OF CONTENTS

1	Intro	duction4	
2	Dev	ce Under Test	
3	Prod	uct Description4	
	3.1	General Information	4
4	Mea	surement Method5	
	4.1	Return Loss Requirements	5
	4.2	Mechanical Requirements	
5	Mea	surement Uncertainty5	
	5.1	Return Loss	5
	5.2	Dimension Measurement	
	5.3	Validation Measurement	
6	Cali	oration Measurement Results6	
	6.1	Return Loss and Impedance	6
	6.2	Mechanical Dimensions	
7	Vali	dation measurement	
	7.1	Head Liquid Measurement	7
	7.2	SAR Measurement Result With Head Liquid	7
	7.3	Body Liquid Measurement	9
	7.4	SAR Measurement Result With Body Liquid	9
8	List	of Equipment	

Page: 3/11