

TEST REPORT

Product Name	:	Tablet
Model Number	:	xTablet T1185
FCC ID	:	O86T1185

Prepared for Address	:	MobileDemand, L.C. 1501 Boyson Sq Dr, Ste 101 Hiawatha, Iowa, 52233, United States
Prepared by Address	:	EMTEK (SHENZHEN) CO., LTD. Building 69, Majialong Industry Zone, Nanshan District, Shenzhen, Guangdong, China
		Tel: (0755) 26954280 Fax: (0755) 26954282
Report Number	:	ENS2207140201W00203R

	-	
Date(s) of Tests	:	July 28, 2022 to August 31, 2022
Date of Issue	:	August 31, 2022

深圳信测标准技术服务股份有限公司 地址:广东省深圳市南山区马家龙工业区69栋 网址:Http://www.emtek.com.cn 邮箱:cs.rep@emtek.com.cn

TABLE OF CONTENTS

1 EUT TECHNICAL DESCRIPTION	5
2 SUMMARY OF TEST RESULT	6
3 TEST METHODOLOGY	7
3.1 GENERAL DESCRIPTION OF APPLIED STANDARDS3.2 MEASUREMENT EQUIPMENT USED3.3 DESCRIPTION OF TEST MODES	7
4 FACILITIES AND ACCREDITATIONS	9
4.1 FACILITIES 4.2 EQUIPMENT 4.3 LABORATORY ACCREDITATIONS AND LISTINGS	9 9
5 TEST SYSTEM UNCERTAINTY	
6 SETUP OF EQUIPMENT UNDER TEST	
 6.1 RADIO FREQUENCY TEST SETUP 1 6.2 RADIO FREQUENCY TEST SETUP 2 6.3 CONDUCTED EMISSION TEST SETUP 6.4 BLOCK DIAGRAM CONFIGURATION OF TEST SYSTEM 6.5 SUPPORT EQUIPMENT 	
7 TEST REQUIREMENTS	
 7.1 MINIMUM (6DB) OCCUPIED BANDWIDTH	

Modified Information

Version	Report No.	Revision Date	Summary
Ver.1.0	ENS2207140201W00203R	1	Original Report
	0		
	N		

TEST RESULT CERTIFICATION

Applicant	:	MobileDemand, L.C.
Address	:	1501 Boyson Sq Dr, Ste 101 Hiawatha, Iowa, 52233, United States
Manufacturer	:	MobileDemand, L.C.
Address	:	No.88 East Qianjin Road, Kunshan city, Jiangsu province, China
EUT	:	Tablet
Model Name	:	xTablet T1185
Trademark	:	MobileDemand

Measurement Procedure Used:

APPLICABLE STANDARDS			
STANDARD TEST RESULT			
FCC 47 CFR Part 15 , Subpart C	PASS		

The above equipment was tested by EMTEK (SHENZHEN) CO., LTD. The test data, data evaluation, test procedures, and equipment configurations shown in this report were made in accordance with the procedures given in ANSI C63.10 (2013) and the energy emitted by the sample EUT tested as described in this report is in compliance with the requirements of FCC Rules Part 2 and Part 15.247.

The test results of this report relate only to the tested sample identified in this report.

Date of Test	:	July 28, 2022 to August 31, 2022
Prepared by	: .	Una yu
		Una Yu/Editor
Reviewer	:	The Ha SHENZHEN,
	-	Joe Xia/Supervisor
		. LTC
Approved & Authorized Signer :		WALC *
	-	Lisa Wang/Manager Estin ^G

1 EUT TECHNICAL DESCRIPTION

Characteristics	Description	
Product	Tablet	
Model Number	xTablet T1185	
IEEE 802.11 WLAN Mode Supported	 № 802.11b № 802.11g № 802.11n(20MHz channel bandwidth) № 802.11n(40MHz channel bandwidth) 	
Modulation	DSSS with DBPSK/DQPSK/CCK for 802.11b OFDM with BPSK/QPSK/16QAM/64QAM for 802.11g/n	
Operating Frequency Range	2412-2462MHz for 802.11b/g/n(HT20) 2422-2452MHz for 802.11n(HT40)	
Number of Channels	11 channels for 802.11b/g/n(HT20) 7 Channels for 802.11n(HT40)	
Antenna Type	PIFAAntenna	
Antenna Gain	Ant 1:2.8dBi, Ant 2:1.9dBi	
Max Transmit Power	Ant1:16.61dBm Ant2:17.13dBm Ant1+Ant2:19.48dBm	
Power Supply	Rechargeable Li-ion Cylindrical Battery 7.2V, 9447mAh, 68Wh Adapter : Model: A18-065N3A Input: 100-240V~1.7A, 50-60Hz Output: 19V, 3.42A, 65W	
Temperature Range	-10°C ~ +50°C	

2 SUMMARY OF TEST RESULT

FCC Part Clause	Test Parameter	Verdict	Remark
15.247(a)(2)	DTS (6dB) Bandwidth	PASS	
15.247(b)(3)	Maximum Peak Conducted Output Power	PASS	
15.247(e)	Maximum Power Spectral Density Level	PASS	
15.247(d)	Unwanted Emission Into Non-Restricted Frequency Bands	PASS	
15.247(d) 15.209	Unwanted Emission Into Restricted Frequency Bands (conducted)	PASS	
15.247(d) 15.209	Radiated Spurious Emission	PASS	
15.207	Conducted Emission Test	PASS	
15.247(b)	Antenna Application	PASS	
	NOTE1: N/A (Not Applicable). NOTE2: According to FCC OET KDB 558074, the report use radiated measurements in the restricted frequency bands. In addition, the radiated test is also performed to ensure the emissions emanating from the device cabinet also comply with the applicable limits.		

RELATED SUBMITTAL(S) / GRANT(S):

This submittal(s) (test report) is intended for FCC ID: O86T1185 filing to comply with Section 15.247 of the FCC Part 15, Subpart C Rules.

3 TEST METHODOLOGY

3.1 GENERAL DESCRIPTION OF APPLIED STANDARDS

According to its specifications, the EUT must comply with the requirements of the following standards: FCC 47 CFR Part 2, Subpart J

FCC 47 CFR Part 15, Subpart C

FCC KDB 558074 D01 15.247 Meas Guidance v05r02

FCC KDB 662911 D01 Multiple Transmitter Output v02r01

3.2 MEASUREMENT EQUIPMENT USED

For Conducted Emission Test

Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Interval
EMI Test Receiver	Rohde & Schwarz	ESCI	101384	2022/5/14	1Year
AMN	Rohde & Schwarz	ENV216	101161	2022/5/14	1Year

For Spurious Emissions Test

Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Interval
EMI Test Receiver	Rohde & Schwarz	ESU 26	100154	2022/5/14	1Year
Spectrum Analyzer	Rohde & Schwarz	FSV40	100967	2022/5/14	1Year
Pre-Amplifie	Lunar EM	LNA30M3G-25	J101000007 0	2022/5/14	1Year
Pre-Amplifier	HP	8447F	2944A07999	2022/5/14	1Year
Pre-Amplifie	SKET	LNPA_0118G-45	SK20190518 01	2022/5/14	1Year
Pre-Amplifie	Lunar EM	LNA1G18-48	J1011131010 001	2022/5/14	1Year
Loop Antenna	Schwarzbeck	FMZB1519	1519-012	2021/6/12	2 Year
Bilog Antenna	Schwarzbeck	VULB9163	659	2021/8/22	2 Year
Bilog Antenna	Schwarzbeck	VULB9163	712	2021/7/5	2 Year
Horn antenna	Schwarzbeck	BBHA9120D	9120D-1177	2021/6/12	2 Year
Horn antenna	Schwarzbeck	BBHA9170	9170-399	2021/6/12	2 Year
Wideband Radio Communication Tester	R&S	CMW500	140822	2022/5/15	1Year
Thermometer	Hegao	HTC-1	\	2022/5/17	1Year

For Other Test

Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Interval
Signal Analyzer	Agilent	N9010A	MY53470879	2022/5/14	1Year
Vector Signal Generater	Agilent	N5182B	MY53050878	2022/5/14	1Year
Analog Signal Generator	Agilent	N5171B	MY53050553	2022/5/14	1Year
Power Meter	Agilent	PS-X10-100	\	2022/5/15	1Year
Blocking Box	THEDA	AD211	TW5451140	2022/5/14	1Year
Switchgroup	THEDA	ETF-025(VASC6	TW5451008	N/A	N/A
MIMO Matrix Switch	THEDA	4P5TM18	TW5451009	N/A	N/A
Thermometer	Hegao	HTC-1	N	2022/5/17	1Year

深圳信测标准技术服务股份有限公司 地址:广东省深圳市南山区马家龙工业区69栋 网址:Http://www.emtek.com.cn 邮箱:cs.rep@emtek.com.cn

3.3 DESCRIPTION OF TEST MODES

The EUT has been tested under its typical operating condition.

The EUT configuration for testing is installed on RF field strength measurement to meet the Commissions requirement and operating in a manner which intends to maximize its emission characteristics in a continuous normal application.

The Transmitter was operated in the normal operating mode. The TX frequency was fixed which was for the purpose of the measurements.

Test of channel included the lowest and middle and highest frequency to perform the test, then record on this report.

Those data rates (802.11b: 1 Mbps; 802.11g: 6 Mbps; 802.11n (HT20): MCS0) were used for all test.

Pre-defined engineering program for regulatory testing used to control the EUT for staying in continuous transmitting and receiving mode is programmed.

Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)			
1	2412	5	2432	9	2452			
2	2417	6	2437	10	2457			
3	2422	7	2442	11	2462			
4	2427	8	2447					

Frequency and Channel list for 802.11 b/g/n(HT20):

Test Frequency and Channel for 802.11 b/g/n(HT20):

Lowest F	Lowest Frequency		st Frequency Middle Frequency		Highest Frequency	
Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)	
1	2412	6	2437	11	2462	

Multi-antenna correlation:

	Transmit Signals are Correlated
I ▼1	Directional gain = 10 log[(10 ^{G1/20} + 10 ^{G2/20} + + 10 ^{GN/20})2 /N _{ANT}] dBi
	All Transmit Signals are Completely Uncorrelated
	Directional gain = 10 log[(10 ^{G1/10} + 10 ^{G2/10} + + 10 ^{GN/10)})/N _{ANT}] dBi

Ant 1:2.8dBi, Ant 2:1.9dBi

ANT1+ANT2:

Directional gain = 10 log [(10^{2.8/20} + 10^{1.9/20})²/2] dBi=5.37 dBi

深圳信测标准技术服务股份有限公司地址:广东省深圳市南山区马家龙工业区69栋网址:Http://www.emtek.com.cn 邮箱:cs.rep@emtek.com.cn

4 FACILITIES AND ACCREDITATIONS

4.1 FACILITIES

All measurement facilities used to collect the measurement data are located at:

EMTEK (Shenzhen) Co., Ltd.

Building 69, Majialong Industry Zone District, Nanshan District, Shenzhen, China.

The sites are constructed in conformance with the requirements of ANSI C63.7, ANSI C63.4 and CISPR Publication 22.

4.2 EQUIPMENT

Radiated emissions are measured with one or more of the following types of linearly polarized antennas: tuned dipole, biconical, log periodic, bi-log, and/or ridged waveguide, horn. Spectrum analyzers with preselectors and quasi-peak detectors are used to perform radiated measurements.

Conducted emissions are measured with Line Impedance Stabilization Networks and EMI Test Receivers.

Calibrated wideband preamplifiers, coaxial cables, and coaxial attenuators are also used for making measurements.

All receiving equipment conforms to CISPR Publication 16-1, "Radio Interference Measuring Apparatus and Measurement Methods".

4.3 LABORATORY ACCREDITATIONS AND LISTINGS

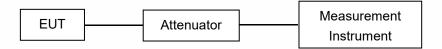
Site Description EMC Lab.	 Accredited by CNAS The Certificate Registration Number is L2291 The Laboratory has been assessed and proved to be in compliance with CNAS-CL01 (identical to ISO/IEC 17025:2017)
	Accredited by FCC Designation Number: CN1204 Test Firm Registration Number: 882943
	Accredited by A2LA The Certificate Number is 4321.01
	Accredited by Industry Canada The Conformity Assessment Body Identifier is CN0008
Name of Firm Site Location	 EMTEK (SHENZHEN) CO., LTD. Building 69, Majialong Industry Zone, Nanshan District, Shenzhen, Guangdong, China

深圳信测标准技术服务股份有限公司地址:广东省深圳市南山区马家龙工业区69栋网址:Http://www.emtek.com.cn邮箱:cs.rep@emtek.com.cn

5 TEST SYSTEM UNCERTAINTY

The following measurement uncertainty levels have been estimated for tests performed on the apparatus:

Parameter	Uncertainty
Radio Frequency	±1x10^-5
Maximum Peak Output Power Test	±1.0dB
Conducted Emissions Test	±2.0dB
Radiated Emission Test	±2.0dB
Occupied Bandwidth Test	±1.0dB
Band Edge Test	±3dB
All emission, radiated	±3dB
Antenna Port Emission	±3dB
Temperature	±0.5°C
Humidity	±3%


Measurement Uncertainty for a level of Confidence of 95%

6 SETUP OF EQUIPMENT UNDER TEST

6.1 RADIO FREQUENCY TEST SETUP 1

The WLAN component's antenna ports(s) of the EUT are connected to the measurement instrument per an appropriate attenuator. The EUT is controlled by PC/software to emit the specified signals for the purpose of measurements.

6.2 RADIO FREQUENCY TEST SETUP 2

The test site semi-anechoic chamber has met the requirement of NSA tolerance 4 dB according to the standards: ANSI C63.10. The test distance is 3m.The setup is according to the requirements in Section 13.1.4.1 of ANSI C63.10-2013 and CAN/CSA-CEI/IEC CISPR 22.

The maximal emission value is acquired by adjusting the antenna height, polarisation and turntable azimuth. Normally, the height range of antenna is 1 m to 4 m, the azimuth range of turntable is 0° to 360°, and the receive antenna has two polarizations Vertical (V) and Horizontal (H).

Below 30MHz:

The EUT is placed on a turntable 0.8 meters above the ground in the chamber, 3 meter away from the antenna (loop antenna). The Antenna should be positioned with its plane vertical at the specified distance from the EUT and rotated about its vertical axis for maximum response at each azimuth about the EUT. The center of the loop shall be 1 m above the ground. For certain applications, the loop antenna plane may also need to be positioned horizontally at the specified distance from the EUT.

Above 30MHz:

The EUT is placed on a turntable 0.8 meters above the ground in the chamber, 3 meter away from the antenna. The maximal emission value is acquired by adjusting the antenna height, polarisation and turntable azimuth. Normally, the height range of antenna is 1 m to 4 m, the azimuth range of turntable is 0° to 360° , and the receive antenna has two polarizations Vertical (V) and Horizontal (H).

Above 1GHz:

The EUT is placed on a turntable 1.5 meters above the ground in the chamber, 3 meter away from the antenna. The maximal emission value is acquired by adjusting the antenna height, polarisation and turntable azimuth. Normally, the height range of antenna is 1 m to 4 m, the azimuth range of turntable is 0° to 360° , and the receive antenna has two polarizations Vertical (V) and Horizontal (H).

Measurements shall be taken, using the following steps, at a test site that has been validated using the procedures of ANSI C63.4 or the latest CISPR 16-1-4 for measurements above 1 GHz, so as to simulate a near free-space environment (see RSS-Gen for applicable versions of ANSI and CISPR standards). (1) Line the ground plane with absorbers between the transmitter and the receive antenna to minimize reflections. The absorbers used should have a minimum-rated attenuation of 20 dB through the measurement frequency range of interest. The absorbers shall be positioned to replicate the layout used when compliance with the applicable acceptability criterion was achieved, as set forth in the aforementioned standards on site validation.

(2) Set the height of the receive antenna to 1.5 m. The receive antenna must be one that was designed and fabricated to operate over the entire frequency range of interest, for example, an appropriate standard gain horn.

(3) The distance between the receive antenna and the radiating source shall be sufficient in order to ensure far-field conditions.

(4) Mount the transmitter at a height of 1.5 m.

(5) Configure the device under test (DUT) to produce the maximum power spectral density as measured while assessing compliance with Section 6.2.2 (i.e. channel frequency, modulation type and data rate). If the DUT is equipped with a detachable antenna and the antenna is intended for remote installation (i.e.

tower-mounted), the DUT may be substituted with a suitable signal generator. The level and frequency settings on the generator shall be set so as to reproduce the maximum power spectral density, measured within a 1 MHz bandwidth, obtained while assessing compliance to Section 6.2.2. (6) Position the transmitter or the radiating antenna so that elevation pattern measurements can be taken.

(7) Find the 0° reference point in the horizontal plane.

(8) Care should be taken when positioning the receive antenna to avoid cross-polarization. Antennas of known mounting polarization should be assessed with the receive antenna oriented in the same polarity. If the polarization of the transmit antenna is unknown or the transmit antenna can be mounted in either polarization, e.i.r.p. measurements should be performed to find which mounting polarity provides the highest e.i.r.p. value. Testing shall be carried out with the receive antenna and the DUT mounted in each polarity.

(9) The emission shall be centred on the display of the spectrum analyzer with the following settings: i. If the power spectral density of the DUT was assessed with a peak detector and the antenna cannot be detached from the DUT, the spectrum analyzer shall be set to a peak detector with a resolution bandwidth and video bandwidth of 1 MHz.

ii. If the power spectral density of the DUT was assessed using a sample detector with power averaging and the antenna cannot be detached from the DUT, the spectrum analyzer shall be set to a sample detector, configured to produce 100 power averages and set with a resolution bandwidth, as well as a video bandwidth of 1 MHz.

iii. If the antenna can be detached from the DUT, a continuous wave (CW) signal equal to that of the power spectral density measurement may be used, the spectrum analyzer shall be set to peak detector with a resolution bandwidth and video bandwidth of 1 MHz.

(10) Rotate the turntable 360° recording the field strength at each step. Throughout the main beam of the antenna, the step size shall be kept to a maximum of 1°.

Once outside the main beam of the antenna, the maximum step size shall be as follows, when compared to the requirements of Section 6.2.2:

i. Between 0° and 8°, maximum step size of 2°;

ii. Between 8° and 40°, maximum step size of 4°;

iii. Between 40° and 45°, maximum step size of 1°;

iv. Between 45° and 90°, maximum step size of 5°.

Once the mask reaches 90°, the mask will be inverted and the step size will follow in the same manner as above.

For the purpose of this procedure, the main beam of the antenna is defined as the 3 dB beamwidth. (11) Convert the measured field strength values in terms of e.i.r.p. density (dBW/1 MHz) using the following equation:

e.i.r.p density(dBW/MHz)=10log((E*r)²/30)

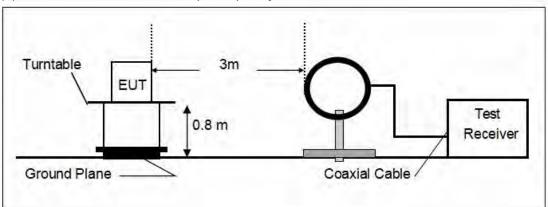
E = field strength in V/m

r = measurement distance in metres

(12) Plot the results against the emission mask with reference to the horizontal plane.

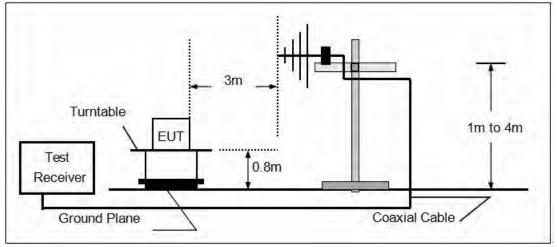
(13) Using the plot, the 0° can be rotated to determine the worst-case installation tilt angle.

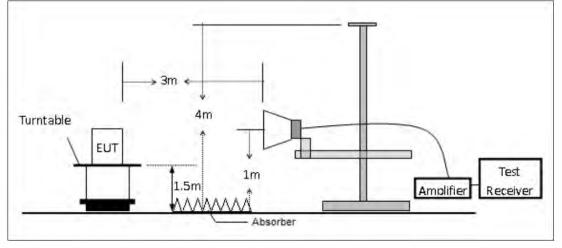
(14) Testing shall be performed using the highest gain antenna for every antenna type, if applicable.


(15) Antenna type(s), antenna model number(s), and worst-case tilt angle(s) necessary to remain

compliant with the elevation mask requirement set forth in Section 6.2.2(3) of RSS-247 shall be clearly indicated in the user manual.

The following figure is an example of a polar elevation mask measured using the Method 1 reference to $dB\mu V/m$ at 3 m.


深圳信测标准技术服务股份有限公司地址:广东省深圳市南山区马家龙工业区69栋网址:Http://www.emtek.com.cn邮箱:cs.rep@emtek.com.cn

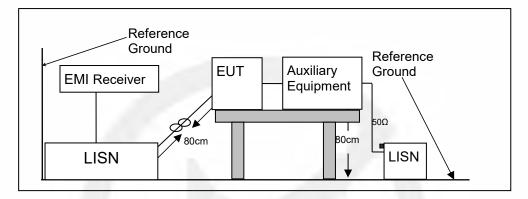


(a) Radiated Emission Test Set-Up, Frequency Below 30MHz

(b) Radiated Emission Test Set-Up, Frequency Below 1000MHz

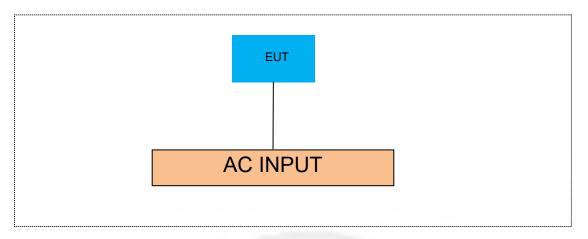
(c) Radiated Emission Test Set-Up, Frequency above 1000MHz

深圳信测标准技术服务股份有限公司 地址:广东省深圳市南山区马家龙工业区69栋 网址:Http://www.emtek.com.cn 邮箱:cs.rep@emtek.com.cn



6.3 CONDUCTED EMISSION TEST SETUP

The mains cable of the EUT (maybe per AC/DC Adapter) must be connected to LISN. The LISN shall be placed 0.8 m from the boundary of EUT and bonded to a ground reference plane for LISN mounted on top of the ground reference plane. This distance is between the closest points of the LISN and the EUT. All other units of the EUT and associated equipment shall be at least 0.8m from the LISN.


Ground connections, where required for safety purposes, shall be connected to the reference ground point of the LISN and, where not otherwise provided or specified by the manufacturer, shall be of same length as the mains cable and run parallel to the mains connection at a separation distance of not more than 0.8 m.

According to the requirements in Section 13.1.4.1 of ANSI C63.10-2013 Conducted emissions from the EUT measured in the frequency range between 0.15 MHz and 30 MHz using CISPR Quasi-Peak and average detector mode.

6.4 BLOCK DIAGRAM CONFIGURATION OF TEST SYSTEM

6.5 SUPPORT EQUIPMENT

EUT Cable List and Details			
Cable Description	Length (m)	Shielded/Unshielded	With / Without Ferrite

Auxiliary Cable List and Details					
Cable Description	Length (m)	Shielded/Unshielded	With / Without Ferrite		

Auxiliary Equipment List and Details					
Description	Manufacturer	Model	Serial Number		

Notes:

1. All the equipment/cables were placed in the worst-case configuration to maximize the emission during the test.

2. Grounding was established in accordance with the manufacturer's requirements and conditions for the intended use.

深圳信测标准技术服务股份有限公司 地址:广东省深圳市南山区马家龙工业区69栋 网址:Http://www.emtek.com.cn 邮箱:cs.rep@emtek.com.cn

7 **TEST REQUIREMENTS**

7.1 MINIMUM (6DB) OCCUPIED BANDWIDTH

7.1.1 Applicable Standard

According to FCC Part15.247 (a)(2) and KDB 558074 D01 15.247 Meas Guidance v05r02.

7.1.2 **Conformance Limit**

The minimum -6 dB bandwidth shall be at least 500 kHz.

7.1.3 **Test Configuration**

Test according to clause 6.1 radio frequency test setup 1.

7.1.4 **Test Procedure**

The EUT was operating in WIFI mode and controlled its channel. Printed out the test result from the spectrum by hard copy function.

The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement.

Set to the maximum power setting and enable the EUT transmit continuously

Set RBW = 100 kHz.

Set the video bandwidth (VBW) =300 kHz.

Set Span=2 times OBW.

Set Detector = Peak.

Set Trace mode = max hold.

Set Sweep = auto couple.

Allow the trace to stabilize.

Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission. Measure and record the results in the test report.

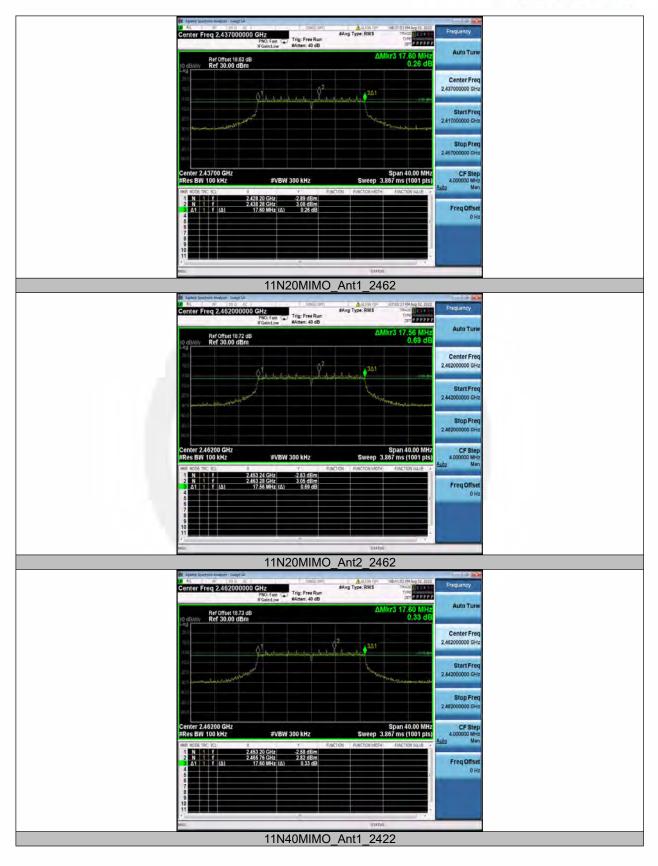
7.1.5 Test Results

Temperature :	25 ℃	ATM Pressure::	1011 mbar
Humidity :	45 %	Test By:	XXH

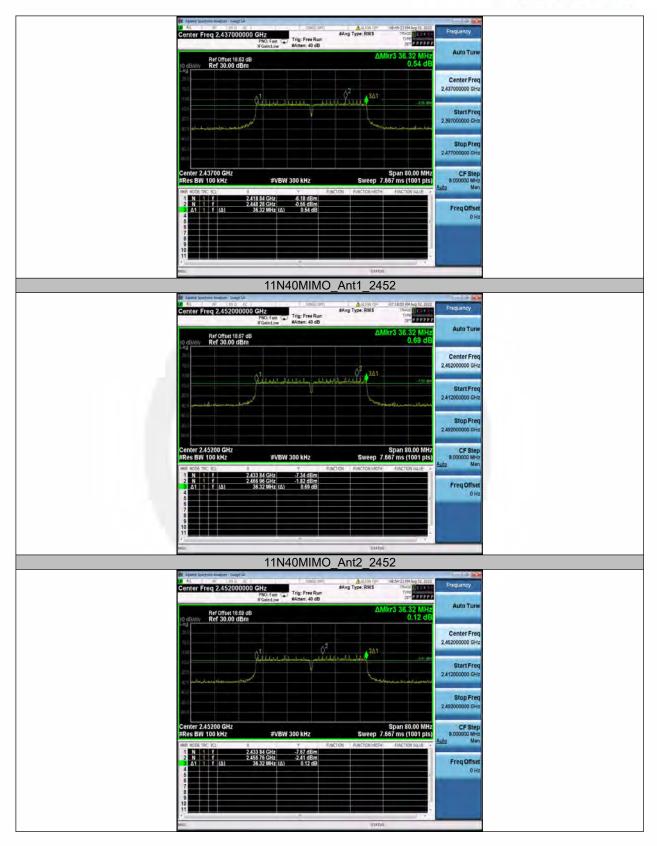
TestMode	Antenna	Frequency[MHz]	DTS BW [MHz]	FL[MHz]	FH[MHz]	Limit[MHz]	Verdict
	Ant1	2412	10.080	2406.960	2417.040	0.5	PASS
	Ant2	2412	10.120	2406.960	2417.080	0.5	PASS
11B	Ant1	2437	10.120	2431.960	2442.080	0.5	PASS
IID	Ant2	2437	10.080	2431.960	2442.040	0.5	PASS
	Ant1	2462	10.120	2456.960	2467.080	0.5	PASS
	Ant2	2462	10.120	2456.960	2467.080	0.5	PASS
	Ant1	2412	16.360	2403.840	2420.200	0.5	PASS
	Ant2	2412	16.320	2403.840	2420.160	0.5	PASS
11G	Ant1	2437	16.360	2428.840	2445.200	0.5	PASS
IIG	Ant2	2437	16.360	2428.840	2445.200	0.5	PASS
	Ant1	2462	16.360	2453.840	2470.200	0.5	PASS
	Ant2	2462	16.320	2453.840	2470.160	0.5	PASS
	Ant1	2412	17.560	2403.240	2420.800	0.5	PASS
	Ant2	2412	17.520	2403.240	2420.760	0.5	PASS
11N20MIMO	Ant1	2437	17.560	2428.240	2445.800	0.5	PASS
	Ant2	2437	17.600	2428.200	2445.800	0.5	PASS
	Ant1	2462	17.560	2453.240	2470.800	0.5	PASS
	Ant2	2462	17.600	2453.200	2470.800	0.5	PASS
	Ant1	2422	36.320	2403.840	2440.160	0.5	PASS
	Ant2	2422	36.320	2403.840	2440.160	0.5	PASS
11N40MIMO	Ant1	2437	36.320	2418.840	2455.160	0.5	PASS
	Ant2	2437	36.320	2418.840	2455.160	0.5	PASS
	Ant1	2452	36.320	2433.840	2470.160	0.5	PASS
	Ant2	2452	36.320	2433.840	2470.160	0.5	PASS



深圳信测标准技术服务股份有限公司 地址:广东省深圳市南山区马家龙工业区69栋 网址:Http://www.emtek.com.cn 邮箱:cs.rep@emtek.com.cn







7.2 MAXIMUM PEAK CONDUCTED OUTPUT POWER

7.2.1 Applicable Standard

According to FCC Part15.247 (b)(3) and KDB 558074 D01 15.247 Meas Guidance v05r02.

7.2.2 Conformance Limit

The maximum conducted output power of the intentional radiator for systems using digital modulation in the 2400 - 2483.5 MHz bands shall not exceed: 1 Watt (30dBm).

7.2.3 Test Configuration

Test according to clause 6.1 radio frequency test setup.

7.2.4 Test Procedure

a) Set span to at least 1.5 times the OBW.

b) Set RBW = 1-5% of the OBW, not to exceed 1 MHz.

c) Set VBW \geq 3 x RBW.

d) Number of points in sweep $\ge 2 \times \text{span} / \text{RBW}$. (This gives bin-to-bin spacing $\le \text{RBW}/2$, so that narrowband signals are not lost between frequency bins.)

e) Sweep time = auto.

f) Detector = RMS (i.e., power averaging), if available. Otherwise, use sample detector mode.

g) If transmit duty cycle < 98 %, use a sweep trigger with the level set to enable triggering only on full power pulses. The transmitter shall operate at maximum power control level for the entire duration of every sweep. If the EUT transmits continuously (i.e., with no off intervals) or at duty cycle \ge 98 %, and if each transmission is entirely at the maximum power control level, then the trigger shall be set to "free run".

h) Trace average at least 100 traces in power averaging (i.e., RMS) mode.

i) Compute power by integrating the spectrum across the OBW of the signal using the instrument's band power measurement function, with band limits set equal to the OBW band edges. If the instrument does not have a band power function, sum the spectrum levels (in power units) at intervals equal to the RBW extending across the entire OBW of the spectrum.

According to FCC Part 15.247(b)(4):

Conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. If transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

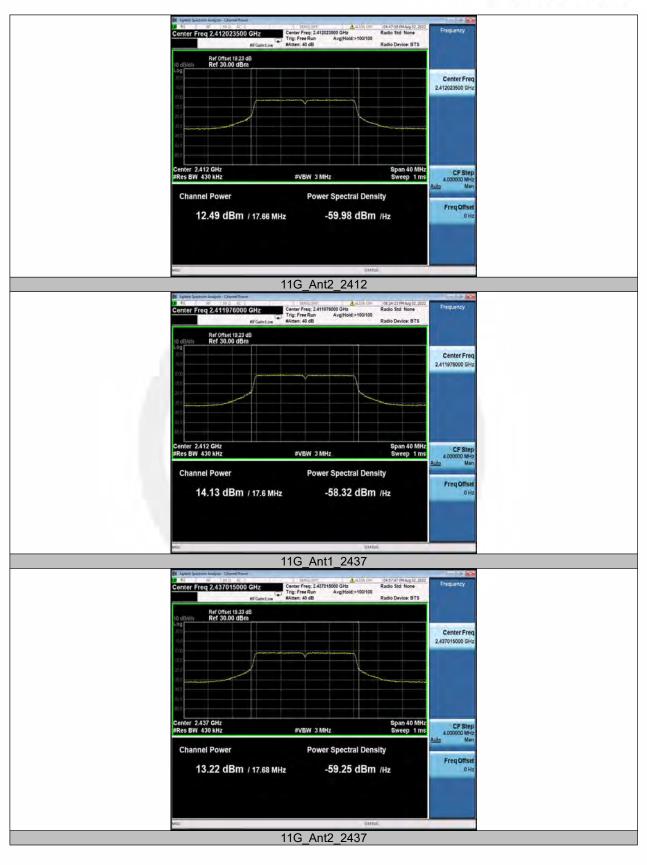
Note: If antenna Gain exceeds 6 dBi, then Output power Limit=30-(Gain- 6).

7.2.5 Test Results

Temperature :	25 ℃	ATM Pressure:	1011 mbar
Humidity :	45 %	Test By:	XXH

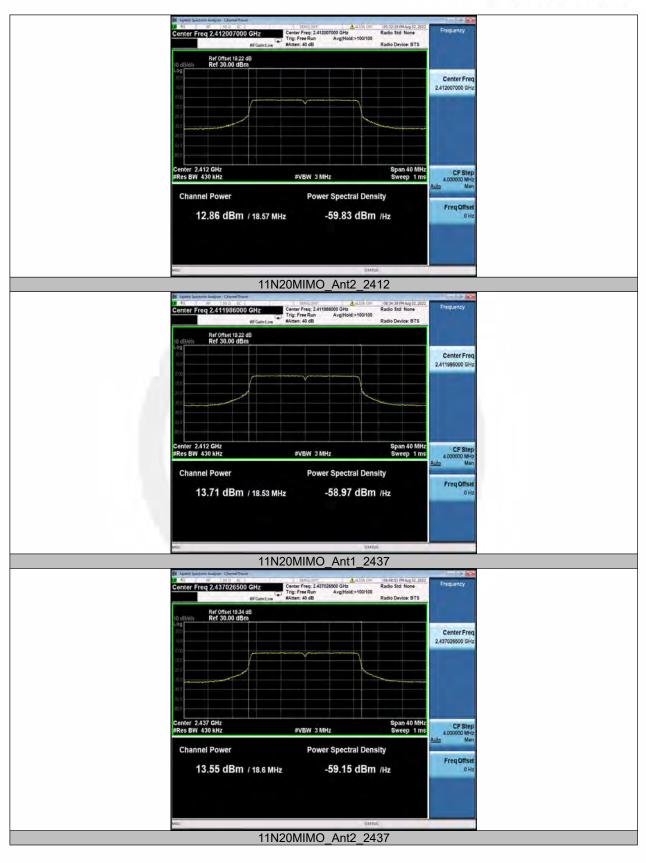
深圳信测标准技术服务股份有限公司地址:广东省深圳市南山区马家龙工业区69栋网址:Http://www.emtek.com.cn邮箱:cs.rep@emtek.com.cn

Test Mode	Antenna	Frequency [MHz]	Set Power	Peak Powert[dBm]	Conducted Limit[dBm]	EIRP [dBm]	EIRP Limit[dBm]	Verdict
11B	Ant1	2412		12.82	≤30.00	15.62	≤36.00	PASS
	Ant2	2412		13.33	≤30.00	15.23	≤36.00	PASS
	Ant1	2437		12.77	≤30.00	15.57	≤36.00	PASS
	Ant2	2437		13.06	≤30.00	14.96	≤36.00	PASS
	Ant1	2462		13.14	≤30.00	15.94	≤36.00	PASS
	Ant2	2462		13.22	≤30.00	15.12	≤36.00	PASS
11G	Ant1	2412		12.49	≤30.00	15.29	≤36.00	PASS
	Ant2	2412		14.13	≤30.00	16.03	≤36.00	PASS
	Ant1	2437		13.22	≤30.00	16.02	≤36.00	PASS
	Ant2	2437		13.41	≤30.00	15.31	≤36.00	PASS
	Ant1	2462		13.61	≤30.00	16.41	≤36.00	PASS
	Ant2	2462		13.43	≤30.00	15.33	≤36.00	PASS
	Ant1	2412		12.86	≤30.00	15.66	≤36.00	PASS
11N20MIMO	Ant2	2412		13.71	≤30.00	15.61	≤36.00	PASS
	total	2412		16.32	≤30.00	21.69	≤36.00	PASS
	Ant1	2437		13.55	≤30.00	16.35	≤36.00	PASS
	Ant2	2437		13.38	≤30.00	15.28	≤36.00	PASS
	total	2437		16.48	≤30.00	21.85	≤36.00	PASS
	Ant1	2462		13.36	≤30.00	16.16	≤36.00	PASS
	Ant2	2462		13.54	≤30.00	15.44	≤36.00	PASS
	total	2462		16.46	≤30.00	21.83	≤36.00	PASS
11N40MIMO	Ant1	2422		10.68	≤30.00	13.48	≤36.00	PASS
	Ant2	2422		10.34	≤30.00	12.24	≤36.00	PASS
	total	2422		13.52	≤30.00	18.89	≤36.00	PASS
	Ant1	2437		13.06	≤30.00	15.86	≤36.00	PASS
	Ant2	2437		12.96	≤30.00	14.86	≤36.00	PASS
	total	2437		16.02	≤30.00	21.39	≤36.00	PASS
	Ant1	2452		11.83	≤30.00	14.63	≤36.00	PASS
	Ant2	2452		11.14	≤30.00	13.04	≤36.00	PASS
	total	2452		14.51	≤30.00	19.88	≤36.00	PASS


Output power 11B Ant1 2412 SENCE INT ALLON CO-Center Free: 2.412010500 GHz Trig: Free Run Avg(Hold:>1001100 #Atten: 40 dB Radio Std: None Center Freq 2.412010500 GH Radio Device: BTS Ref Offset 18.51 dB Ref 30.00 dBm Center Freq 2.412010500 GHz Span 40 MHz Sweep 1 ms enter 2.412 GHz Res BW 430 kHz CF Ste #VBW 3 MHz **Channel Power** Power Spectral Density Freq Off 12.82 dBm / 14.73 MHz -58.87 dBm /Hz 11B Ant2 2412 SENSE INT A 400N OFF Center Freq: 2.412008000 GHz Trig: Free Run Avg|Hold:>100H00 Radio Std: None er Freq 2.412008000 GHz requency Radio Device: BTS Ref Offset 18.65 dB Ref 30.00 dBm Center Fred Center 2.412 GHz Res BW 430 kHz Span 40 MHz Sweep 1 ms CF Ste #VBW 3 MHz **Channel Power** Power Spectral Density Freq Off 13.33 dBm / 14.58 MHz -58.31 dBm /Hz 11B Ant1 2437 Center Freq: 2.437011000 GHz Trig: Free Run AvgiHold>100/10 #Atten: 40 dB 04:26:42 PM Aug 02; 2 Radio Std: None eq 2.437011000 GHz old:>100/100 Radio Device: BTS Ref Offset 18.61 dB Ref 30.00 dBm Center Freq 2,437011000 GHz Span 40 MHz Sweep 1 ms Center 2.437 GHz #Res BW 430 kHz CF Step #VBW 3 MHz Channel Power Power Spectral Density Freq Off -58.97 dBm /Hz 12.77 dBm / 14.91 MHz 0 11B_Ant2_2437

深圳信测标准技术服务股份有限公司 地址:广东省深圳市南山区马家龙工业区69栋 网址:Http://www.emtek.com.cn 邮箱:cs.rep@emtek.com.cn EMTEK (Shenzhen) Co., Ltd. Add: Building 69, Majialong Industry Zone, Nanshan District, Shenzhen, Guangdong, China Http://www.emtek.com.cn E-mail: cs.rep@emtek.com.cn





Apung Spectra Australian - Claimed Rower Autor Care Control Freq 2.437081500 CHz Center Freq 2.437081500 CHz Control Freq
#FGilinLow AvgMold>100H00 #FGilinLow AAtter: 40 dB Radio Device: BTS
10 d5/d1y Ref 30.00 dBm
Log
2,437081600 GHz
Center 2,437 GHz Span 80 MHz
#VBW 3 MHz Sweep 1 ms Bootoo MHz Auto Man
Channel Power Power Spectral Density
12.96 dBm / 37.36 MHz -62.76 dBm /Hz Freq Onset
 and and and and and and and and and and
11N40MIMO_Ant1_2452
Agues Spectrum Agues - Clannel Rowe A Kar Solo S C Solo S C Solo S C Solo S C Center Freq: 2.452100500 GHz Center Freq: 2.452100500 GHz Center Freq: 2.452100500 GHz
Center Freq 2.452100500 GHz BFCalic.tow Trig: Free Run AugMold>100/100 Free Run AugMold>100/100 Radio Sad: None Argin Free Run AugMold>Radio Sad: None
Ref Offset 19.39 dB
200 Center Freq 2.452100600 GHz
Center 2.452 GHz Span 80 MHz CF Step #Res BW 820 kHz #VBW 3 MHz Sweep 1 ms 800000 MHz
Channel Power Power Spectral Density
FreeDoffset
11.83 dBm / 37.56 MHz -63.92 dBm /Hz
and and a state of the state of
11N40MIMO Ant2 2452
1 Egypt (extended balager - Channel Banar
Center Freq 2.452111500 GHz Center Freq: 2.452111500 GHz Radio Sair Nove Trig Free Run Avg/Nod> Radio Sair Nove Avg/Nod> Frequency Radio Sair Nove
IN CONTLON
Ref Offiset 19:46 dB 10 dS/dB/ Ref 30:00 dBm
200 Center Freq 2.452111500 GHz
010 Advertised to the commentation of the commentations
Center 2.452 GHz Span 80 MHz CF Step #Res BW 820 kHz #VBW 3 MHz Sweep 1 ms 800000 MHz
Auto Man
Channel Power Spectral Density
11.14 dBm / 37.71 MHz -64.62 dBm /Hz Freq Offset
Mag. STATUS

深圳信测标准技术服务股份有限公司 地址:广东省深圳市南山区马家龙工业区69栋 网址:Http://www.emtek.com.cn 邮箱:cs.rep@emtek.com.cn

7.3 MAXIMUM POWER SPECTRAL DENSITY

7.3.1 Applicable Standard

According to FCC Part15.247(e) and KDB 558074 D01 15.247 Meas Guidance v05r02.

7.3.2 Conformance Limit

The transmitter power spectral density conducted from the transmitter to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission. This power spectral density shall be determined in accordance with the provisions of section 5.4(d), (i.e. the power spectral density shall be determined using the same method as is used to determine the conducted output power).

7.3.3 Test Configuration

Test according to clause 6.1 radio frequency test setup 1.

7.3.4 Test Procedure

This procedure shall be used if maximum peak conducted output power was used to demonstrate compliance

The transmitter output (antenna port) was connected to the spectrum analyzer.

Set analyzer center frequency to DTS channel center frequency.

Set the span to 1.5 times the DTS bandwidth.

Set the RBW to: 3 kHz.

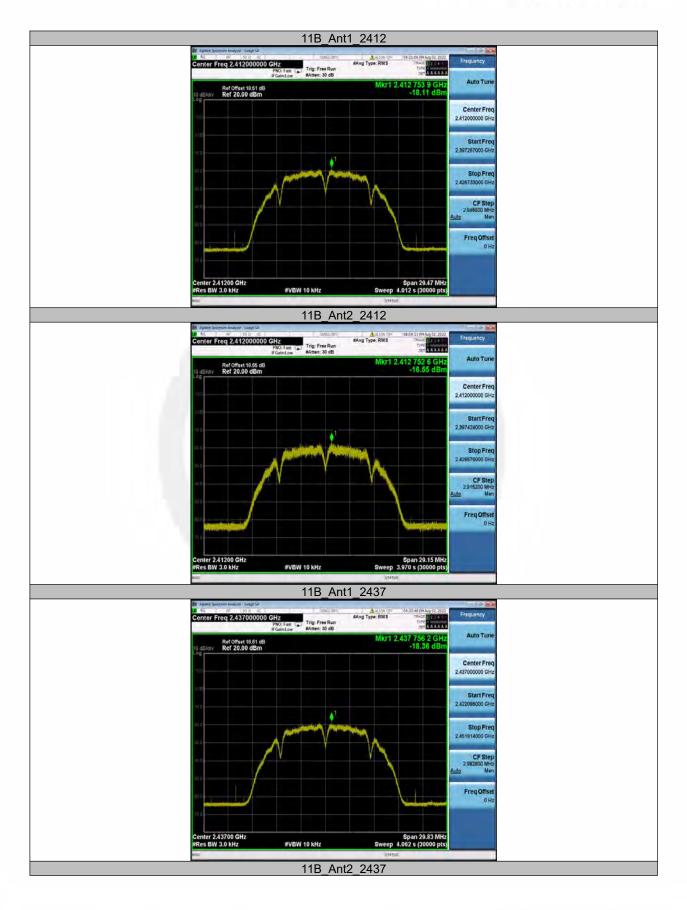
Set the VBW to: 10 kHz.

Set Detector = peak.

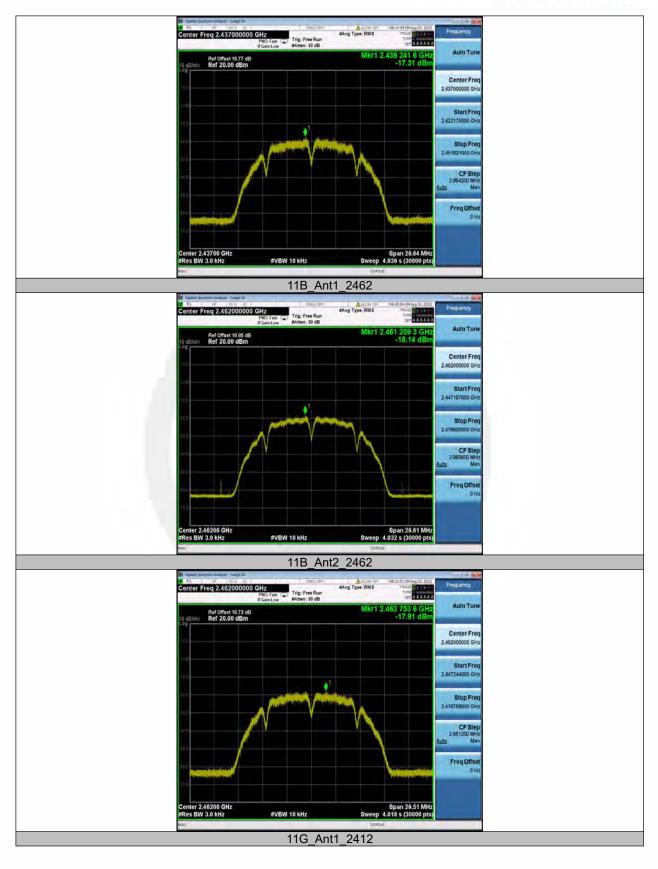
Set Sweep time = auto couple.

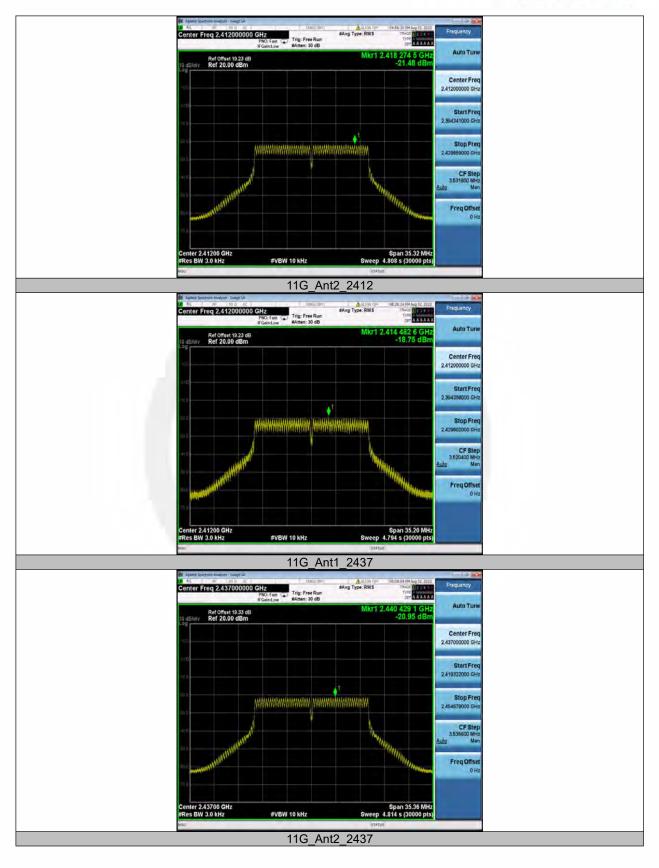
Set Trace mode = max hold. Allow trace to fully stabilize.

Use the peak marker function to determine the maximum amplitude level within the RBW.

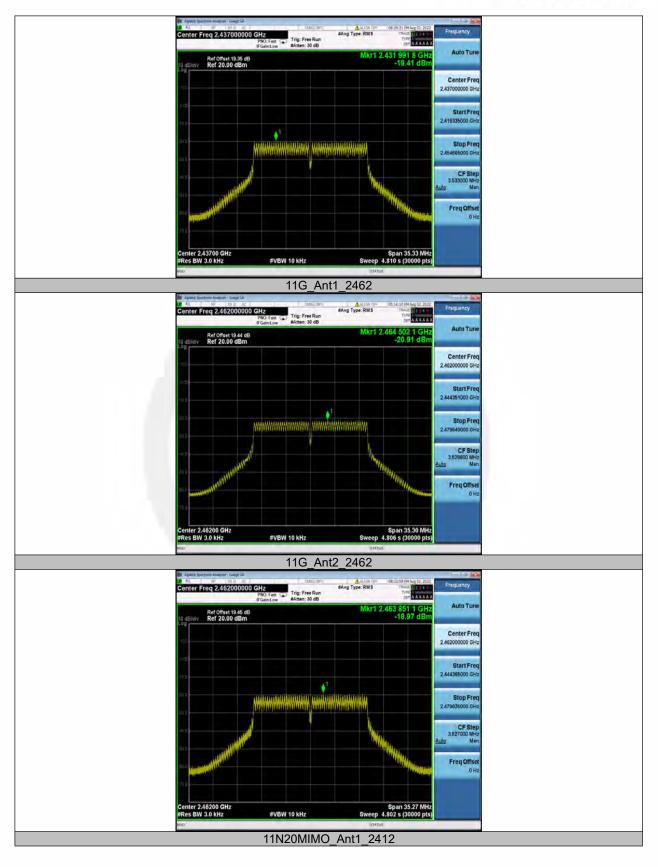

7.3.5 Test Results

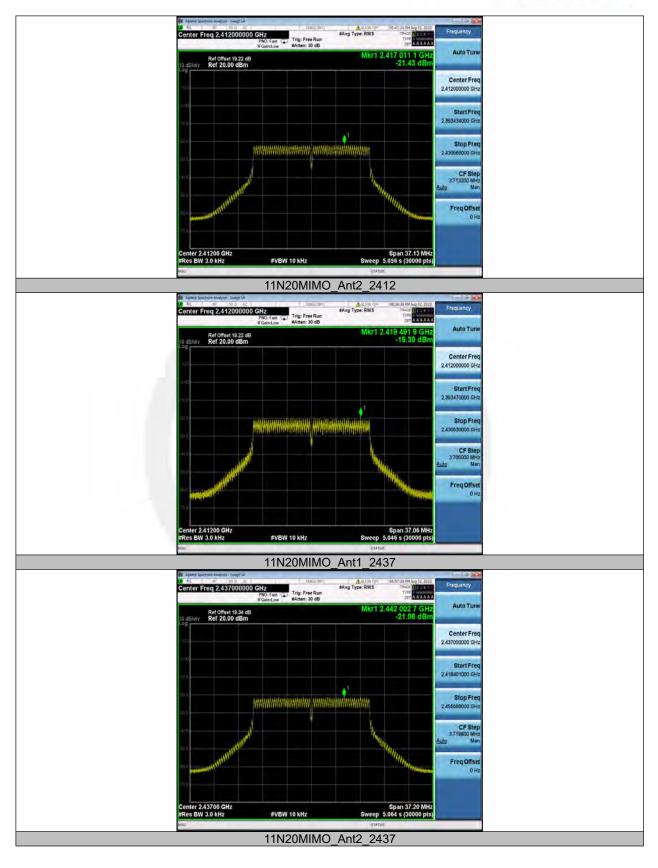
Temperature :	25 ℃	ATM Pressure::	1011 mbar
Humidity :	45 %	Test By:	XXH

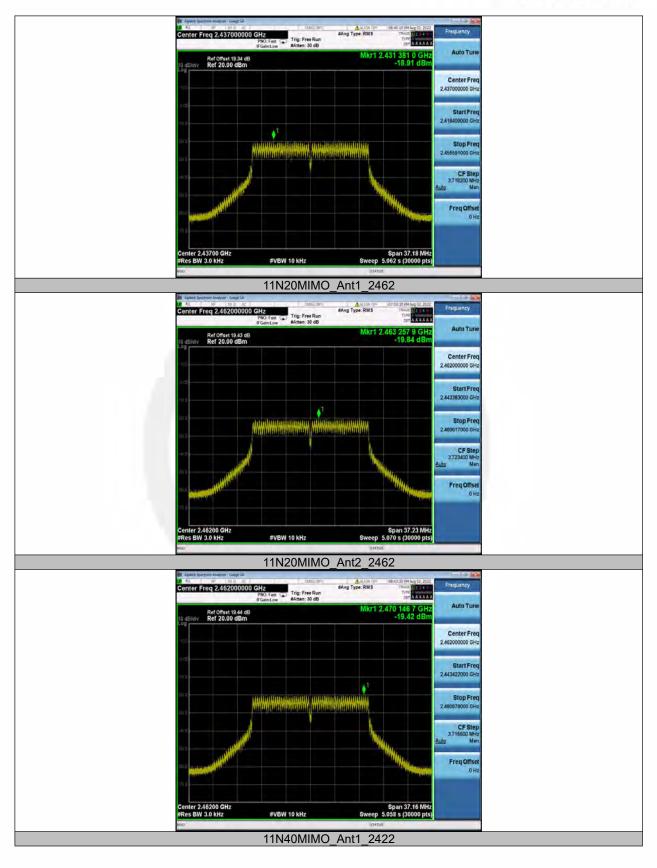

TestMode	Antenna	Frequency[MHz]	Result[dBm/3-100kHz]	Limit[dBm/3kHz]	Verdict
	Ant1	2412	-18.11	≤8.00	PASS
11B	Ant2	2412	-16.55	≤8.00	PASS
	Ant1	2437	-18.36	≤8.00	PASS
IID	Ant2	2437	-17.31	≤8.00	PASS
	Ant1	2462	-18.14	≤8.00	PASS
	Ant2	2462	-17.91	≤8.00	PASS
	Ant1	2412	-21.48	≤8.00	PASS
	Ant2	2412	-18.75	≤8.00	PASS
11G	Ant1	2437	-20.95	≤8.00	PASS
IIG	Ant2	2437	-19.41	≤8.00	PASS
	Ant1	2462	-20.91	≤8.00	PASS
	Ant2	2462	-18.97	≤8.00	PASS
	Ant1	2412	-21.43	≤8.00	PASS
	Ant2	2412	-19.3	≤8.00	PASS
	total	2412	-17.23	≤8.00	PASS
	Ant1	2437	-21.06	≤8.00	PASS
11N20MIMO	Ant2	2437	-18.91	≤8.00	PASS
	total	2437	-16.84	≤8.00	PASS
	Ant1	2462	-19.84	≤8.00	PASS
	Ant2	2462	-19.42	≤8.00	PASS
	total	2462	-16.61	≤8.00	PASS
	Ant1	2422	-24.93	≤8.00	PASS
	Ant2	2422	-25.45	≤8.00	PASS
	total	2422	-22.17	≤8.00	PASS
	Ant1	2437	-22.63	≤8.00	PASS
11N40MIMO	Ant2	2437	-23.29	≤8.00	PASS
	total	2437	-19.94	≤8.00	PASS
	Ant1	2452	-24.05	≤8.00	PASS
	Ant2	2452	-24.18	≤8.00	PASS
	total	2452	-21.10	≤8.00	PASS

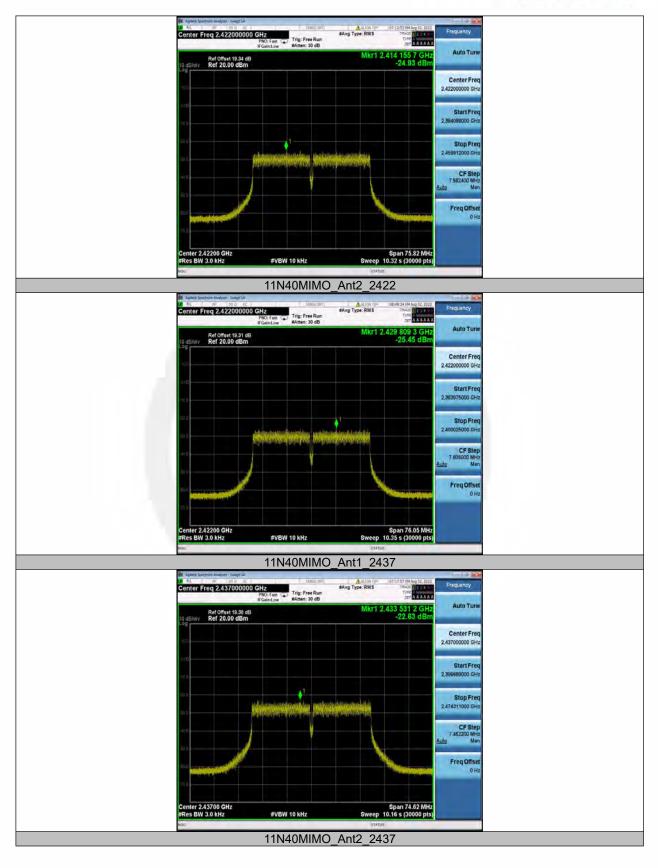


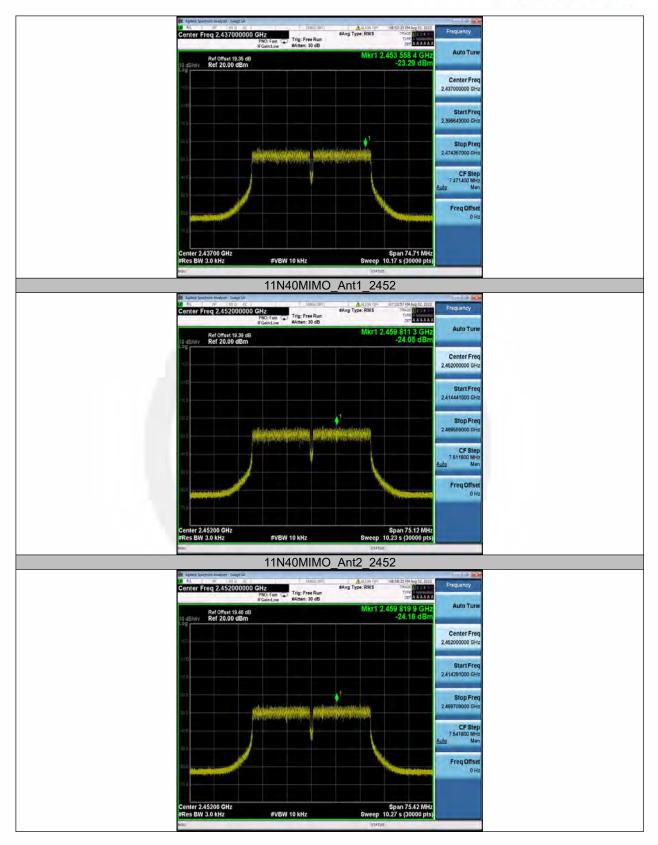
深圳信测标准技术服务股份有限公司 地址:广东省深圳市南山区马家龙工业区69栋 网址:Http://www.emtek.com.cn 邮箱:cs.rep@emtek.com.cn











Report No. ENS2207140201W00203R

7.4 UNWANTED SPURIOUS EMISSIONS

7.4.1 Applicable Standard

According to FCC Part15.247(d) and KDB 558074 D01 15.247 Meas Guidance v05r02.

7.4.2 Conformance Limit

According to FCC Part 15.247(d):

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated device is operating, the RF power that is produced shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided that the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of root-mean-square averaging over a time interval, as permitted undersection 5.4(d), the attenuation required shall be 30 dB instead of 20 dB. Attenuation below the general field strength limits specified in RSS-Gen is not required.

7.4.3 Test Configuration

Test according to clause 6.1 radio frequency test setup 1.

7.4.4 Test Procedure

The transmitter output (antenna port) was connected to the spectrum analyzer.

Reference level measurement

Establish a reference level by using the following procedure:

Set instrument center frequency to DTS channel center frequency.

Set the span to \geq 1.5 times the DTS bandwidth.

Set the RBW = 100 kHz.

Set the VBW \ge 3 x RBW.

Set Detector = peak.

Set Sweep time = auto couple.

Set Trace mode = max hold.

Allow trace to fully stabilize.

Use the peak marker function to determine the maximum PSD level.

Note that the channel found to contain the maximum PSD level can be used to establish the reference level.

Emission level measurement

Set the center frequency and span to encompass frequency range to be measured.

Set the RBW = 100 kHz.

Set the VBW =300 kHz.

Set Detector = peak.

Sweep time = auto couple.

Trace mode = max hold.

Allow trace to fully stabilize.

Use the peak marker function to determine the maximum amplitude level.

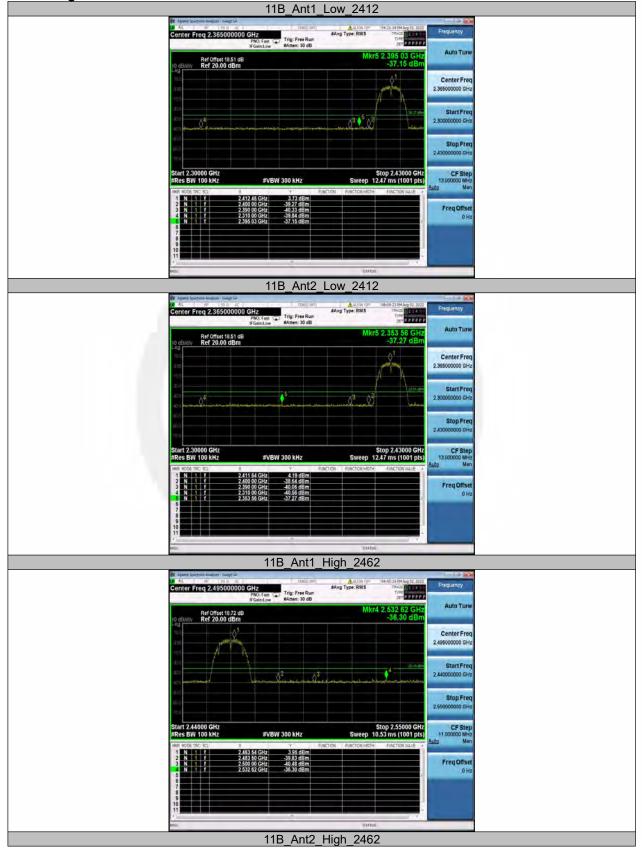
Ensure that the amplitude of all unwanted emissions outside of the authorized frequency band (excluding restricted frequency bands) are attenuated by at least the minimum requirements. Report the three highest emissions relative to the limit.

7.4.5 Test Results

深圳信测标准技术服务股份有限公司 地址:广东省深圳市南山区马家龙工业区69栋 网址:Http://www.emtek.com.cn 邮箱:cs.rep@emtek.com.cn

All modulation modes were tested, and the worst data is shown in the table below:

Bana bage modearemente									
TestMode	Antenna	ChName	Frequency[MHz]	RefLevel[dBm]	Result[dBm]	Limit[dBm]	Verdict		
	Ant1	Low	2412	3.73	-37.15	≤-26.27	PASS		
11B	Ant2	Low	2412	4.19	-37.27	≤-25.81	PASS		
IID	Ant1	High	2462	3.95	-36.3	≤-26.05	PASS		
	Ant2	High	2462	4.16	-36.15	≤-25.84	PASS		

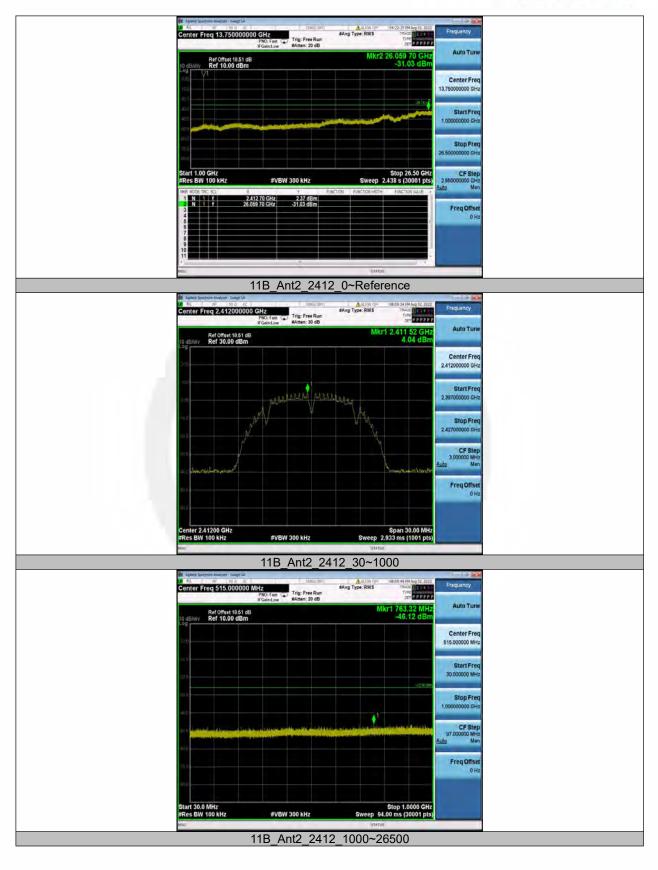

Band edge measurements

Emission level measurement

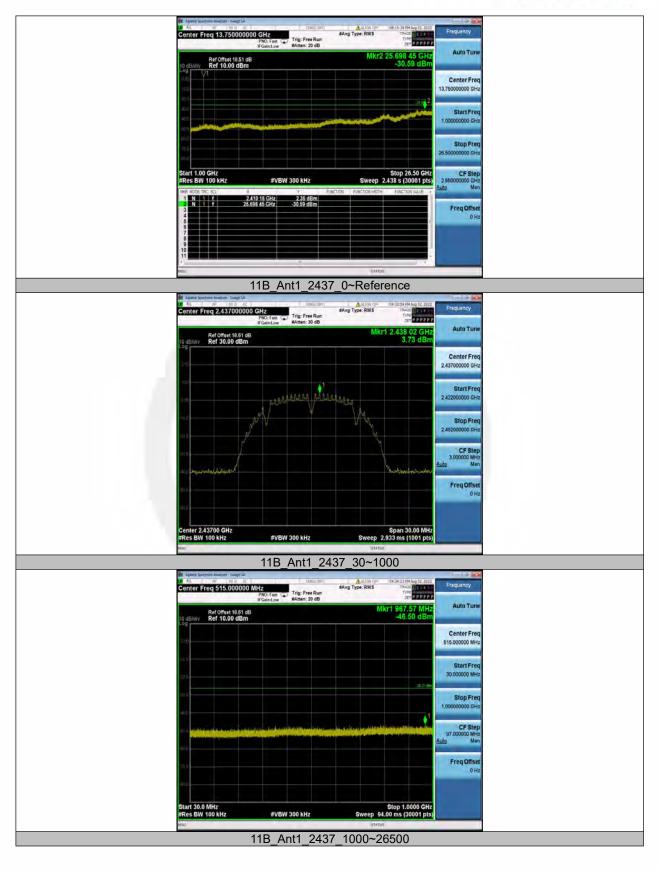
TestMode	Antenna	Frequency[MHz]	FreqRange [Mhz]	RefLevel [dBm]	Result [dBm]	Limit [dBm]	Verdict
			Reference	3.86	3.86		PASS
	Ant1	2412	30~1000	3.86	-46.13	≤-26.14	PASS
			1000~26500	3.86	-31.03	≤-26.14	PASS
			Reference	4.04	4.04		PASS
	Ant2	2412	30~1000	4.04	-46.12	≤-25.96	PASS
			1000~26500	4.04	-30.59	≤-25.96	PASS
			Reference	3.73	3.73		PASS
	Ant1	2437	30~1000	3.73	-46.5	≤-26.27	PASS
110			1000~26500	3.73	-30.32	≤-26.27	PASS
11B		2437	Reference	3.61	3.61		PASS
	Ant2		30~1000	3.61	-46.72	≤-26.39	PASS
			1000~26500	3.61	-30.76	≤-26.39	PASS
		nt1 2462	Reference	3.89	3.89		PASS
	Ant1		30~1000	3.89	-46.1	≤-26.11	PASS
			1000~26500	3.89	-30.86	≤-26.11	PASS
			Reference	4.11	4.11		PASS
	Ant2	2462	30~1000	4.11	-45.83	≤-25.89	PASS
			1000~26500	4.11	-30.95	≤-25.89	PASS
			Reference	2.66	2.66		PASS
11N20MIMO	Ant1	2412	30~1000	2.66	-46.17	≤-27.34	PASS
			1000~26500	2.66	-29.91	≤-27.34	PASS

Band edge measurements

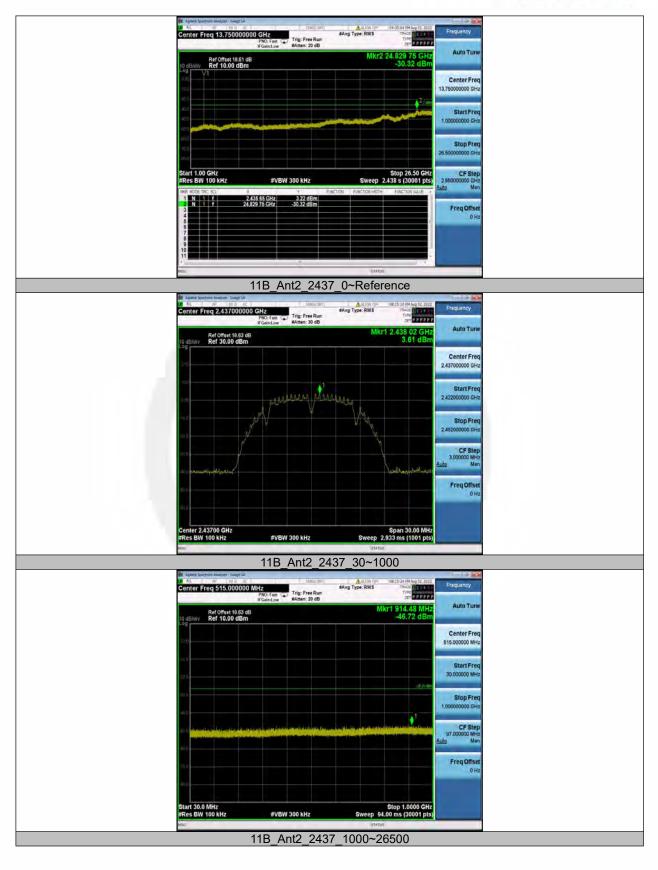
深圳信测标准技术服务股份有限公司 地址:广东省深圳市南山区马家龙工业区69栋 网址:Http://www.emtek.com.cn 邮箱:cs.rep@emtek.com.cn

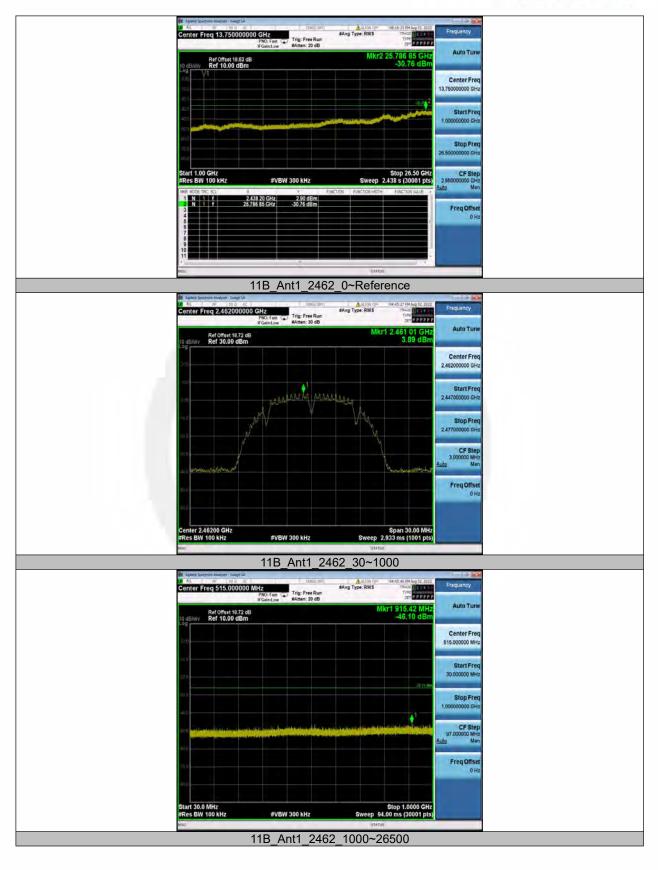

🙀 Against Sportnum Analyzur - Swept Sa	
ALL IPP Stol ALLIA (FP ALLIA (FP) ALLIA (FP) ALLIA (FP) ALLIA (FP) </td <td>Frequency</td>	Frequency
Ref offset 18.73 dB Mkr4 2.528 00 GHz 10 dBidly Ref 20.00 dBm -36.15 dBm -36.15 dBm	Auto Tune
	Center Freq 2.495000000 GHz
	Start Freq 2.440000000 GHz
80) 80) 70	Stop Freq 2.550000000 GHz
Start 2.44000 GHz Stop 2.55000 GHz #Res BW 100 kHz #VBW 300 kHz Sweep 10.53 ms (1001 pts) DMI MCG TRC SQ X Y Factory Harcton Harc	CF Step 11.000000 MHz Auto Men
1 1 2.482.99 CHz 4.16 dBm 2 N 1 7.248.95 CHz 3.72.48m 3 N 1 7.259.00 CHz -30.96 dBm 3 N 1 7.252.00 CHz -30.96 dBm 6 5 5 5	Freq Offset 0 Hz
Mili STATUS	

Emission level measurement

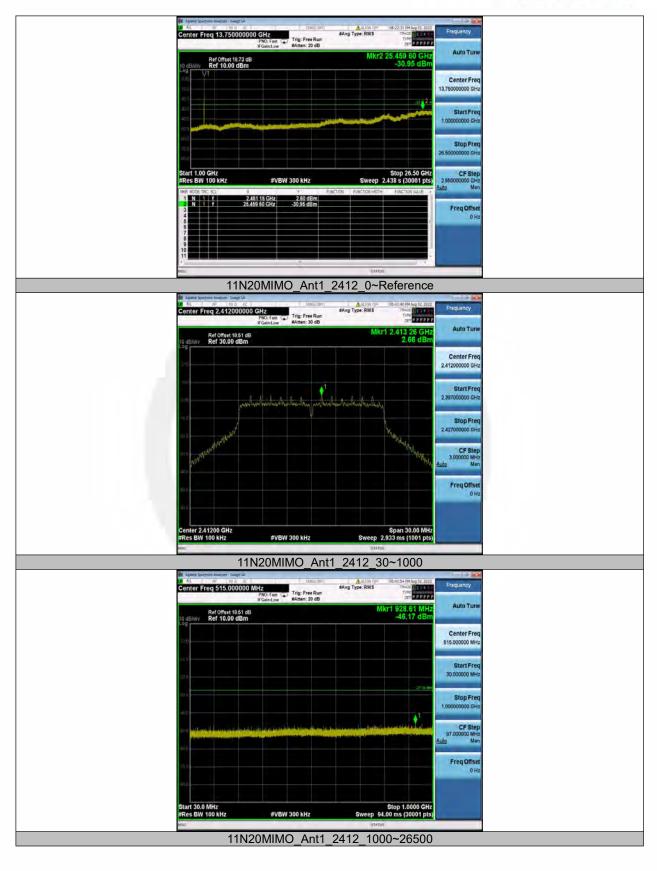


深圳信测标准技术服务股份有限公司地址:广东省深圳市南山区马家龙工业区69栋 网址:Http://www.emtek.com.cn邮箱:cs.rep@emtek.com.cn





Report No. ENS2207140201W00203R



Report No. ENS2207140201W00203R

Against Spectrum Analyzer - Swept SA			1-10 00
Center Freq 13.7500000		Avg Type: RMS 7740 274 105:42:45 FM Aug 02, 2022 #Avg Type: RMS 77402 274 1790 274 1	Frequency
10 dB/dly Ref Offset 18.51 o Ref 10.00 dBm	dB N	Mkr2 25.660 20 GHz -29.91 dBm	Auto Tune
4 000 10 0 30 0			Center Freq 13.750000000 GHz
			Start Freq 1.000000000 GHz
66.0 10.0 			Stop Freq 26.50000000 GHz
Start 1.00 GHz #Res BW 100 kHz	#VBW 300 kHz	Stop 26.50 GHz Sweep 2.438 s (30001 pts)	CF Step 2.55000000 GHz Auto Man
	2.416 10 GHz 178 dBm 5.660 20 GHz -28191 dBm		Freq Offset 0 Hz
Lettin.		STATUS	

7.5 RADIATED EMISSION

7.5.1 Applicable Standard

According to FCC Part 15.247(d) and 15.209 and KDB 558074 D01 15.247 Meas Guidance v05r02.

7.5.2 Conformance Limit

According to FCC Part 15.247(d): radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).

According to FCC Part15.205, Restricted bands:

According to 1 CO 1 art 13.200, restricted bands.							
MHz MHz		GHz					
16.42-16.423	399.9-410	4.5-5.15					
16.69475-16.69525	608-614	5.35-5.46					
16.80425-16.80475	960-1240	7.25-7.75					
25.5-25.67	1300-1427	8.025-8.5					
37.5-38.25	1435-1626.5	9.0-9.2					
73-74.6	1645.5-1646.5	9.3-9.5					
74.8-75.2	1660-1710	10.6-12.7					
123-138	2200-2300	14.47-14.5					
149.9-150.05	2310-2390	15.35-16.2					
156.52475-156.52525	2483.5-2500	17.7-21.4					
156.7-156.9	2690-2900	22.01-23.12					
162.0125-167.17	3260-3267	23.6-24.0					
167.72-173.2	3332-3339	31.2-31.8					
240-285	3345.8-3358	36.43-36.5					
322-335.4	3600-4400	(2)					
	MHz 16.42-16.423 16.69475-16.69525 16.80425-16.80475 25.5-25.67 37.5-38.25 73-74.6 74.8-75.2 123-138 149.9-150.05 156.52475-156.52525 156.7-156.9 162.0125-167.17 167.72-173.2 240-285	MHzMHz16.42-16.423399.9-41016.69475-16.69525608-61416.80425-16.80475960-124025.5-25.671300-142737.5-38.251435-1626.573-74.61645.5-1646.574.8-75.21660-1710123-1382200-2300149.9-150.052310-2390156.52475-156.525252483.5-2500162.0125-167.173260-3267167.72-173.23332-3339240-2853345.8-3358					

According to FCC Part15.205 the level of any transmitter spurious emission in Restricted bands shall not exceed the level of the emission specified in the following table.

Restricted	Field Strength (µV/m)	Field Strength	Measurement
Frequency(MHz)		(dBµV/m)	Distance
0.009-0.490	2400/F(KHz)	20 log (uV/m)	300
0.490-1.705	24000/F(KHz)	20 log (uV/m)	30
1.705-30	30	29.5	30
30-88	100	40	3
88-216	150	43.5	3
216-960	200	46	3
Above 960	500	54	3

7.5.3 Test Configuration

Test according to clause 6.2 radio frequency test setup 2.

7.5.4 Test Procedure

This test is required for any spurious emission that falls in a Restricted Band, as defined in Section 15.205. It must be performed with the highest gain of each type of antenna proposed for use with the EUT. Use the following spectrum analyzer settings:

For Above 1GHz: The EUT was placed on a turn table which is 1.5m above ground plane. Maximum procedure was performed on the highest emissions to ensure EUT compliance. Span = wide enough to fully capture the emission being measured. RBW = 1 MHz. VBW \geq RBW. Sweep = auto.

深圳信测标准技术服务股份有限公司地址:广东省深圳市南山区马家龙工业区69栋 网址:Http://www.emtek.com.cn 邮箱:cs.rep@emtek.com.cn

Detector function = peak. Trace = max hold.

For Below 1GHz: The EUT was placed on a turn table which is 0.8m above ground plane. Maximum procedure was performed on the highest emissions to ensure EUT compliance. Span = wide enough to fully capture the emission being measured. RBW = 100 kHz. VBW \geq RBW. Sweep = auto. Detector function = peak. Trace = max hold.

For Below 30MHz:

The EUT was placed on a turn table which is 0.8m above ground plane. Maximum procedure was performed on the highest emissions to ensure EUT compliance. Span = wide enough to fully capture the emission being measured. RBW = 9kHz. VBW \geq RBW. Sweep = auto. Detector function = peak. Trace = max hold.

For Below 150KHz: The EUT was placed on a turn table which is 0.8m above ground plane. Maximum procedure was performed on the highest emissions to ensure EUT compliance. Span = wide enough to fully capture the emission being measured. RBW = 200Hz. VBW \geq RBW. Sweep = auto. Detector function = peak. Trace = max hold.

Follow the guidelines in ANSI C63.10 with respect to maximizing the emission by rotating the EUT, measuring the emission while the EUT is situated in three orthogonal planes (if appropriate), adjusting the measurement antenna height and polarization, etc. A pre-amp and a high pass filter are required for this test, in order to provide the measuring system with sufficient sensitivity. Allow the trace to stabilize. The peak reading of the emission, after being corrected by the antenna factor, cable loss, pre-amp gain, etc., is the peak field strength, which must comply with the limit. Submit this data.

Now set the VBW to 10 Hz, while maintaining all of the other instrument settings. This peak level, once corrected, must comply with the limit. If the dwell time per channel of the hopping signal is less than 100 ms, then the reading obtained with the 10 Hz VBW may be further adjusted by a "duty cycle correction factor", derived from 20log(dwell time/100 ms), in an effort to demonstrate compliance with the limit. Submit this data.

Repeat above procedures until all frequency measured was complete.

7.5.5 Test Results

Temperature:	28.1° C
Relative Humidity:	43%
ATM Pressure:	1011 mbar

深圳信测标准技术服务股份有限公司 地址:广东省深圳市南山区马家龙工业区69栋 网址:Http://www.emtek.com.cn 邮箱:cs.rep@emtek.com.cn

Spurious Emission below 30MHz(9KHz to 30MHz)

Freq.	Ant.Pol.	Emission Level(dBuV/m)		Over(dB)			
(MHz)	H/V	PK È	ÁV	PK	AV	PK	AV

Note: Data of measurement within this frequency range shown " -- " in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.

■ Spurious Emission Above 1GHz(1GHz to 25GHz)

All modes have been tested, and the worst result recorded was report as below: Highest gain of each antenna and highest output power is ANT2 and MIMO as below:

ANT2:

Test mode: 802.11 n(20)		Freque	Frequency: Cha		
Freq. (MHz)	Ant.Pol.	Emission Level(dBuV/m)	Limit 3m(dBuV/m)	Over(dB)	Detector
10879.37	V	55.69	74.00	-18.31	peak
10879.37	V	37.72	54.00	-16.28	AVG
14938.51	V	60.19	74.00	-13.81	peak
14938.51	V	42.26	54.00	-11.74	AVG
17932.49	V	65.83	74.00	-8.17	peak
17932.49	V	48.62	54.00	-5.38	AVG
12079.38	Н	55.28	74.00	-18.72	peak
12079.38	Н	38.11	54.00	-15.89	AVG
14412.59	Н	59.31	74.00	-14.69	peak
14412.59	Н	41.33	54.00	-12.67	AVG
17974.00	Н	64.84	74.00	-9.16	peak
17974	Н	46.88	54.00	-7.12	AVG

Test mode: 802.11 n(20) Frequency:

Freq. (MHz)	Ant.Pol.	Emission Level(dBuV/m)	Limit 3m(dBuV/m)	Over(dB)	Detector
10970.95	V	54.63	74.00	-19.37	peak
10970.95	V	36.55	54.00	-17.45	AVG
14284.02	V	59.20	74.00	-14.80	peak
14284.02	V	41.22	54.00	-12.78	AVG
18000.00	V	64.91	74.00	-9.09	peak
18000	V	46.75	54.00	-7.25	AVG
9861.087	Н	54.28	74.00	-19.72	peak
9861.087	Н	36.21	54.00	-17.79	AVG
14383.46	Н	58.61	74.00	-15.39	peak
14383.46	Н	41.20	54.00	-12.80	AVG
18000.00	Н	65.45	74.00	-8.55	peak
18000	Н	48.51	54.00	-5.49	AVG

Channel 6: 2437MHz

Test mode:	802.11 n(20	Frequency:		Channel 11: 2462MHz	
Freq. (MHz)	Ant.Pol.	Emission Level(dBuV/m)	Limit 3m(dBuV/m)	Over(dB)	Detector
10450.94	V	53.91	74.00	-20.09	peak
10450.94	V	35.88	54.00	-18.12	AVG

<mark>深圳信测标准技术服务股份有限公司</mark> 地址:广东省深圳市南山区马家龙工业区69栋 网址:Http://www.emtek.com.cn 邮箱:cs.rep@emtek.com.cn EMTEK (Shenzhen) Co., Ltd. Add: Building 69, Majialong Industry Zone, Nanshan District, Shenzhen, Guangdong, China Http://www.emtek.com.cn E-mail: cs.rep@emtek.com.cn

Report No. ENS2207140201W00203R

15046.85	V	59.31	74.00	-14.69	peak
15046.85	V	41.22	54.00	-12.78	AVG
18000.00	V	66.22	74.00	-7.78	peak
18000	V	48.33	54.00	-5.67	AVG
7569.502	H	50.18	74.00	-23.82	peak
7569.502	H	32.22	54.00	-21.78	AVG
14412.59	Н	58.85	74.00	-15.15	peak
14412.59	Н	40.77	54.00	-13.23	AVG
17953.23	Н	64.77	74.00	-9.23	peak
17953.23	H	46.55	54.00	-7.45	AVG

MIMO:

inio.					
Test mode:	802.11 n(20)	Freque	ency: C	hannel 1: 2412MHz	
Freq. (MHz)	Ant.Pol.	Emission Level(dBuV/m)	Limit 3m(dBuV/m)	Over(dB)	Detector
10877.980	V	54.39	74.00	-19.61	peak
10877.980	V	36.34	54.00	-17.66	AVG
14939.790	V	59.62	74.00	-14.38	peak
14939.790	V	41.65	54.00	-12.35	AVG
17935.380	V	65.28	74.00	-8.72	peak
17935.380	V	48.45	54.00	-5.55	AVG
12091.070	Н	56.86	74.00	-17.14	peak
12091.070	Н	40.78	54.00	-13.22	AVG
14424.280	Н	57.61	74.00	-16.39	peak
14424.280	Н	45.52	54.00	-8.48	AVG
17971.440	Н	65.23	74.00	-8.77	peak
17971.440	Н	48.54	54.00	-5.46	AVG

Test mode:

802.11 n(20)

Frequency:

Channel 6: 2437MHz

Freq. (MHz)	Ant.Pol.	Emission Level(dBuV/m)	Limit 3m(dBuV/m)	Over(dB)	Detector
10969.560	V	54.50	74.00	-19.5	peak
10969.560	V	36.39	54.00	-17.61	AVG
14285.300	V	59.17	74.00	-14.83	peak
14285.300	V	41.20	54.00	-12.8	AVG
17982.890	V	64.65	74.00	-9.35	peak
17982.890	V	46.56	54.00	-7.44	AVG
9872.777	Н	54.20	74.00	-19.8	peak
9872.777	Н	36.00	54.00	-18	AVG
14395.150	Н	58.45	74.00	-15.55	peak
14395.150	Н	41.06	54.00	-12.94	AVG
17997.440	17997.440 H		74.00	-8.73	peak
17997.440	Н	48.38	54.00	-5.62	AVG

Test mode:	802.11 n(20)) Freque	ency:	Channel 11: 2462MHz		
Freq. (MHz)	Ant.Pol.	Emission Level(dBuV/m)	Limit 3m(dBuV/m)	Over(dB)	Detector	
10449.550	V	53.78	74.00	-20.22	peak	
10449.550	V	35.72	54.00	-18.28	AVG	
15048.130	V	59.28	74.00	-14.72	peak	
15048.130	V	41.20	54.00	-12.8	AVG	
17991.890	V	65.96	74.00	-8.04	peak	
17991.890	V	48.14	54.00	-5.86	AVG	
7581.192	Н	50.10	74.00	-23.9	peak	

深圳信测标准技术服务股份有限公司 地址:广东省深圳市南山区马家龙工业区69栋 网址:Http://www.emtek.com.cn 邮箱:cs.rep@emtek.com.cn

7581.192	Н	32.01	54.00	-21.99	AVG
14424.280	Н	58.69	74.00	-15.31	peak
14424.280	Н	40.63	54.00	-13.37	AVG
17950.670	Н	64.59	74.00	-9.41	peak
17950.670	Н	46.42	54.00	-7.58	AVG

Note: (1) All Readings are Peak Value (VBW=3MHz) and Average Value (VBW=10Hz).

(2) Emission Level= Reading Level+Correct Factor.

(3) Correct Factor= Ant_F + Cab_L - Preamp

(4) The reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.

■ Spurious Emission in Restricted Band 2310-2390MHz and 2483.5-2500MHz All modes have been tested, and the worst result recorded was report as below:

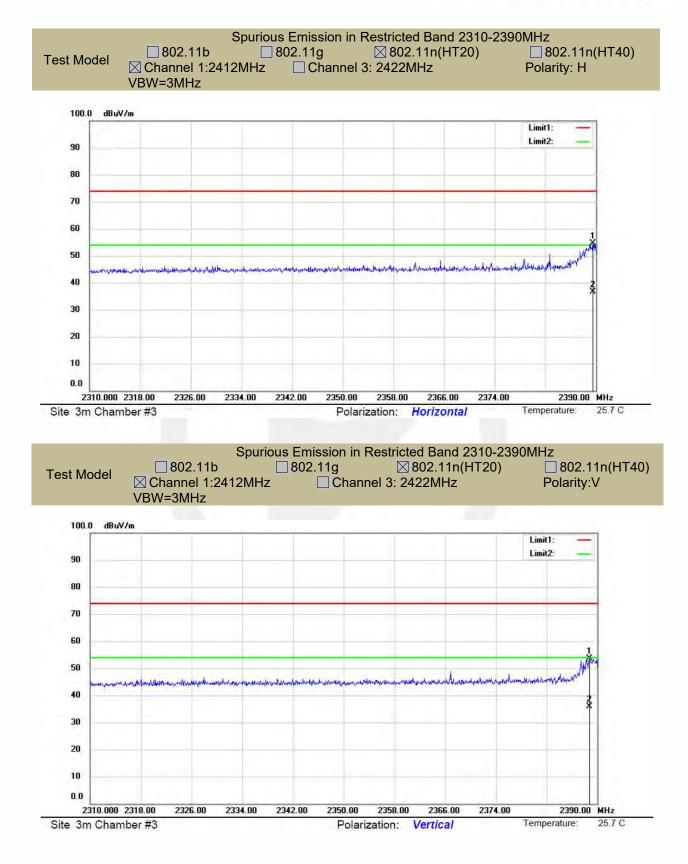
Test mode:	802.11 n(20)) Freque	ency: Cha	annel 1: 2412MHz	
Freq. (MHz)	Ant.Pol.	Emission Level(dBuV/m)	Limit 3m(dBuV/m)	Over(dB)	Detector
2388.792	V 53.67		74.00	-20.33	peak
2388.792	V	35.78	54.00	-18.22	AVG
2389.536	Н	54.51	74.00	-19.49	peak
2389.536	Н	36.54	54.00	-17.46	AVG

Test mode: 802.11 n(20)

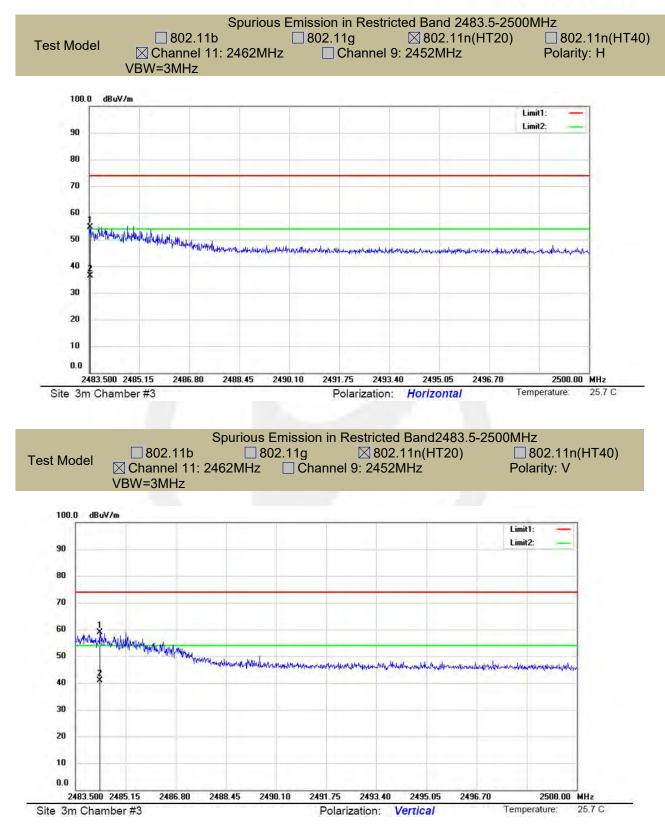
Frequency: Cha

Channel 11: 2462MHz

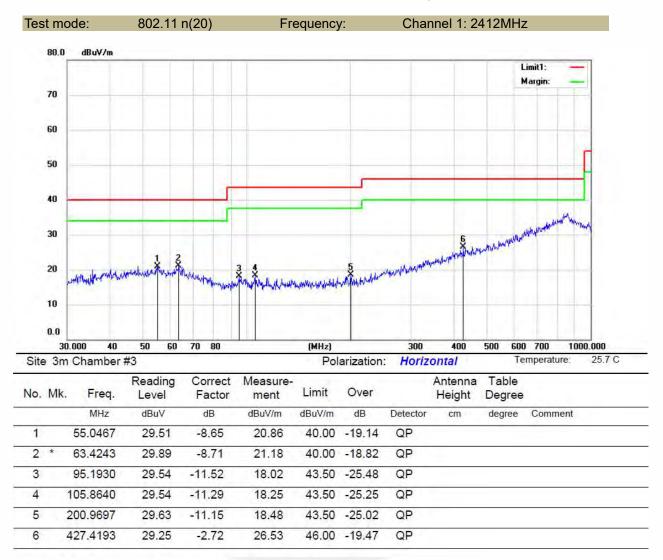
Freq. (MHz)	Ant.Pol.	Emission Level(dBuV/m)	Limit 3m(dBuV/m)	Over(dB)	Detector
2484.305	V	58.83	74.00	-15.17	peak
2484.305	V	40.88	54.00	-13.12	AVG
2483.533	Н	54.56	74.00	-19.44	peak
2483.533	H	36.47	54.00	-17.53	AVG

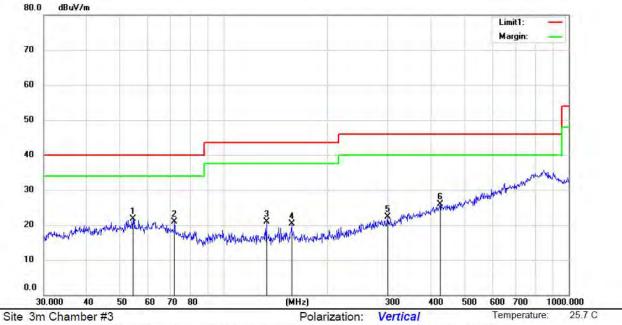

Note: (1) All Readings are Peak Value (VBW=3MHz) and Average Value (VBW=10Hz).

(2) Emission Level= Reading Level+Correct Factor.

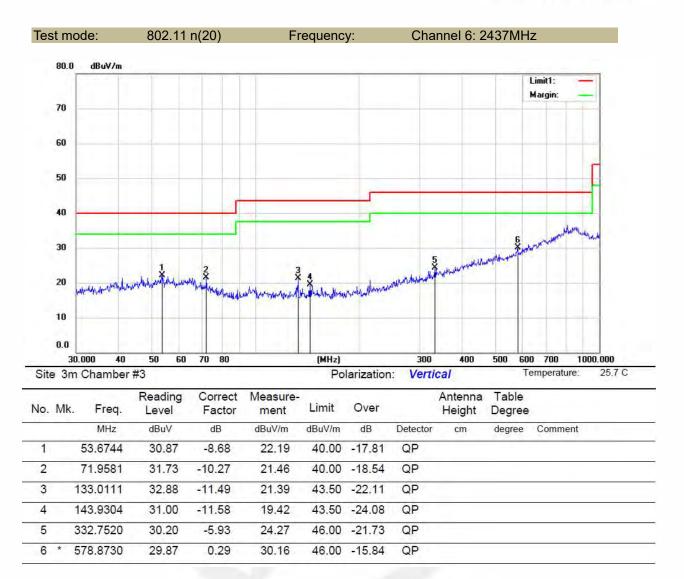

(3) Correct Factor= Ant_F + Cab_L - Preamp

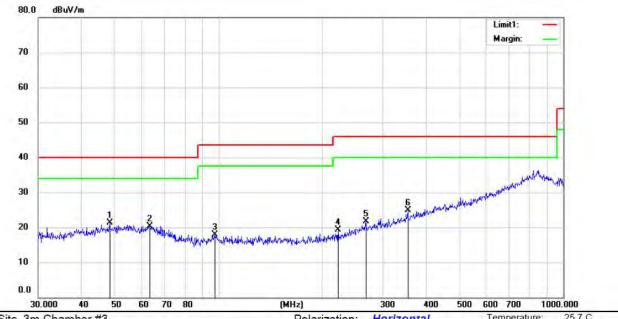
(4) The reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.



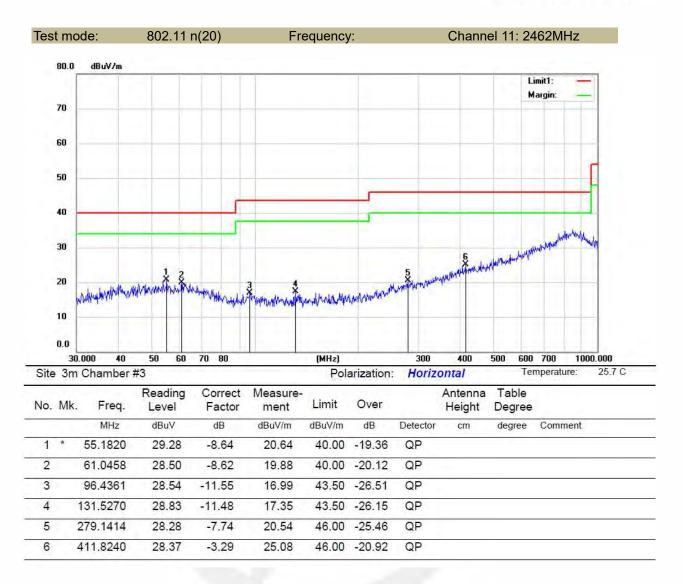


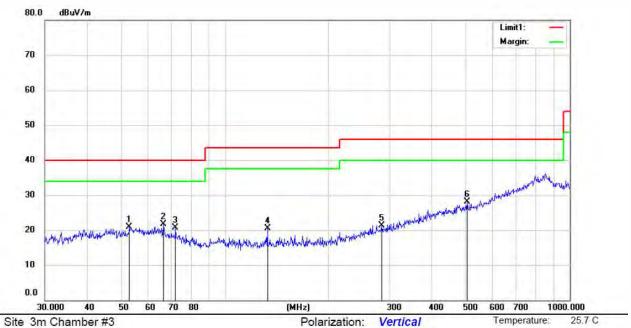
Spurious Emission below 1GHz (30MHz to 1GHz) All modes have been tested, and the worst result recorded was report as below:





Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	5.2	Antenna Height	Table Degree	
÷	MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	cm	degree	Comment
*	54.6046	30.28	-8.67	21.61	40.00	-18.39	QP			
1	71.9581	31.20	-10.27	20.93	40.00	-19.07	QP			
1.7	133.0111	32.40	-11.49	20.91	43.50	-22.59	QP			
	157.4484	31.69	-11.35	20.34	43.50	-23.16	QP			
	298.4774	29.39	-7.03	22.36	46.00	-23.64	QP			
	424.7301	28.74	-2.85	25.89	46.00	-20.11	QP			
	*	MHz * 54.6046	Mk. Freq. Level MHz dBuV * 54.6046 30.28 71.9581 31.20 133.0111 32.40 157.4484 31.69 298.4774 29.39	Mk. Freq. Level Factor MHz dBuV dB * 54.6046 30.28 -8.67 71.9581 31.20 -10.27 133.0111 32.40 -11.49 157.4484 31.69 -11.35 298.4774 29.39 -7.03	Mk. Freq. Level Factor ment MHz dBuV dB dBuV/m * 54.6046 30.28 -8.67 21.61 71.9581 31.20 -10.27 20.93 133.0111 32.40 -11.49 20.91 157.4484 31.69 -11.35 20.34 298.4774 29.39 -7.03 22.36	Mk. Freq. Level Factor ment Limit MHz dBuV dB dBuV/m dBuV/m * 54.6046 30.28 -8.67 21.61 40.00 71.9581 31.20 -10.27 20.93 40.00 133.0111 32.40 -11.49 20.91 43.50 157.4484 31.69 -11.35 20.34 43.50 298.4774 29.39 -7.03 22.36 46.00	Mk. Freq. Level Factor ment Limit Over MHz dBuV dB dBuV/m dBuV/m dB * 54.6046 30.28 -8.67 21.61 40.00 -18.39 71.9581 31.20 -10.27 20.93 40.00 -19.07 133.0111 32.40 -11.49 20.91 43.50 -22.59 157.4484 31.69 -11.35 20.34 43.50 -23.16 298.4774 29.39 -7.03 22.36 46.00 -23.64	Mk. Freq. Level Factor ment Limit Over MHz dBuV dB dBuV/m dBuV/m dB Detector * 54.6046 30.28 -8.67 21.61 40.00 -18.39 QP 71.9581 31.20 -10.27 20.93 40.00 -19.07 QP 133.0111 32.40 -11.49 20.91 43.50 -22.59 QP 157.4484 31.69 -11.35 20.34 43.50 -23.16 QP 298.4774 29.39 -7.03 22.36 46.00 -23.64 QP	Mk. Freq. Level Factor ment Limit Over Height MHz dBuV dB dBuV/m dBuV/m dB Detector cm * 54.6046 30.28 -8.67 21.61 40.00 -18.39 QP 71.9581 31.20 -10.27 20.93 40.00 -19.07 QP 133.0111 32.40 -11.49 20.91 43.50 -22.59 QP 157.4484 31.69 -11.35 20.34 46.00 -23.64 QP 298.4774 29.39 -7.03 22.36 46.00 -23.64 QP	Mk. Freq. Level Factor ment Limit Over Height Degree MHz dBuV dB dBuV/m dB Detector cm degree * 54.6046 30.28 -8.67 21.61 40.00 -18.39 QP - 71.9581 31.20 -10.27 20.93 40.00 -19.07 QP - - 133.0111 32.40 -11.49 20.91 43.50 -22.59 QP - - 157.4484 31.69 -11.35 20.34 43.50 -23.64 QP - - 298.4774 29.39 -7.03 22.36 46.00 -23.64 QP - -





Site	3m	Chamber i	#3			Pol	Polarization: Horizontal				mperature:	25.7 C
No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		Antenna Height	Table Degree		
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	cm	degree	Comment	
1	*	48.4166	30.46	-9.11	21.35	40.00	-18.65	QP				
2	27	63.2023	29.08	-8.69	20.39	40.00	-19.61	QP				
3		97.7983	29.59	-11.59	18.00	43.50	-25.50	QP				
4		222.3257	29.99	-10.61	19.38	46.00	-26.62	QP				
5	3	268.1090	29.94	-8.25	21.69	46.00	-24.31	QP				
6		354.8047	29.97	-5.08	24.89	46.00	-21.11	QP	_			
		10 10 10 10 10 10 10 10 10 10 10 10 10 1					100 March 100 Ma	10 The				

								101000			
Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		Antenna Height	Table Degree		
	MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	cm	degree	Comment	
	52.9453	29.50	-8.60	20.90	40.00	-19.10	QP				
	66.4990	30.78	-9.08	21.70	40.00	-18.30	QP				
	71.9581	30.91	-10.27	20.64	40.00	-19.36	QP				
3	133.0111	32.00	-11.49	20.51	43.50	-22.99	QP				
1	285.5770	28.93	-7.60	21.33	46.00	-24.67	QP				
* [503.1160	29.34	-1.33	28.01	46.00	-17.99	QP				
		MHz 52.9453 66.4990 71.9581 133.0111 285.5770	MHz dBuV 52.9453 29.50 66.4990 30.78 71.9581 30.91 133.0111 32.00 285.5770 28.93	MHz dBuV dB 52.9453 29.50 -8.60 66.4990 30.78 -9.08 71.9581 30.91 -10.27 133.0111 32.00 -11.49 285.5770 28.93 -7.60	MHz dBuV dB dBuV/m 52.9453 29.50 -8.60 20.90 66.4990 30.78 -9.08 21.70 71.9581 30.91 -10.27 20.64 133.0111 32.00 -11.49 20.51 285.5770 28.93 -7.60 21.33	MHz dBuV dB dBuV/m dBuV/m 52.9453 29.50 -8.60 20.90 40.00 66.4990 30.78 -9.08 21.70 40.00 71.9581 30.91 -10.27 20.64 40.00 133.0111 32.00 -11.49 20.51 43.50 285.5770 28.93 -7.60 21.33 46.00	MHz dBuV dB dBuV/m dBuV/m dB 52.9453 29.50 -8.60 20.90 40.00 -19.10 66.4990 30.78 -9.08 21.70 40.00 -18.30 71.9581 30.91 -10.27 20.64 40.00 -19.36 133.0111 32.00 -11.49 20.51 43.50 -22.99 285.5770 28.93 -7.60 21.33 46.00 -24.67	MHz dBuV dB dBuV/m dBuV/m dB Detector 52.9453 29.50 -8.60 20.90 40.00 -19.10 QP 66.4990 30.78 -9.08 21.70 40.00 -18.30 QP 71.9581 30.91 -10.27 20.64 40.00 -19.36 QP 133.0111 32.00 -11.49 20.51 43.50 -22.99 QP 285.5770 28.93 -7.60 21.33 46.00 -24.67 QP	MHz dBuV dB dBuV/m dBuV/m dB Detector cm 52.9453 29.50 -8.60 20.90 40.00 -19.10 QP 66.4990 30.78 -9.08 21.70 40.00 -18.30 QP 71.9581 30.91 -10.27 20.64 40.00 -19.36 QP 133.0111 32.00 -11.49 20.51 43.50 -22.99 QP 285.5770 28.93 -7.60 21.33 46.00 -24.67 QP	MHz dBuV dB dBuV/m dBuV/m dB Detector cm degree 52.9453 29.50 -8.60 20.90 40.00 -19.10 QP 66.4990 30.78 -9.08 21.70 40.00 -18.30 QP 71.9581 30.91 -10.27 20.64 40.00 -19.36 QP 133.0111 32.00 -11.49 20.51 43.50 -22.99 QP 285.5770 28.93 -7.60 21.33 46.00 -24.67 QP	MHz dBuV dB dBuV/m dBuV/m dB Detector cm degree Comment 52.9453 29.50 -8.60 20.90 40.00 -19.10 QP QP 66.4990 30.78 -9.08 21.70 40.00 -18.30 QP 133.0111 32.00 -11.49 20.51 43.50 -22.99 QP 285.5770 28.93 -7.60 21.33 46.00 -24.67 QP 133.011 20.91 21.33 46.00 -24.67 QP 133.011 20.93 -7.60 21.33 46.00 -24.67 QP 133.011 20.93 -7.60 21.33 46.00 -24.67 QP 133.011 10.27 20.64 40.00 -24.67 QP 10.27 20.64 40.00 -19.36 QP 10.27 20.51 43.50

7.6 CONDUCTED EMISSION TEST

7.6.1 Applicable Standard

According to IC RSS-Gen 8.8

7.6.2 Conformance Limit

FCC Part 15, Subpart B, Class B

Conducted Emission Limit								
Frequency(MHz)	Quasi-peak	Average						
0.15-0.5	66-56	56-46						
0.5-5.0	56	46						
5.0-30.0	60	50						

Note:

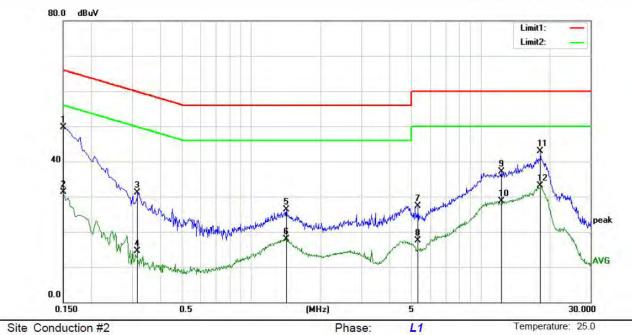
1. The lower limit shall apply at the transition frequencies

2. The limit decreases in line with the logarithm of the frequency in the range of 0.15 to 0.50MHz.

7.6.3 Test Configuration

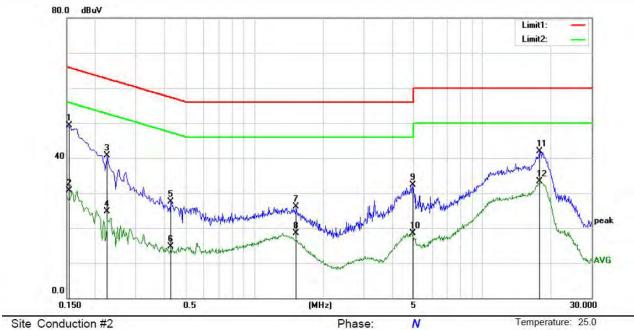
Test according to clause 6.3 conducted emission test setup 3.

7.6.4 Test Procedure


The EUT was placed on a table which is 0.8m above ground plane. Maximum procedure was performed on the highest emissions to ensure EUT compliance. Repeat above procedures until all frequency measured were complete.

7.6.5 Test Results

Pass


深圳信测标准技术服务股份有限公司 地址:广东省深圳市南山区马家龙工业区69栋 网址:Http://www.emtek.com.cn 邮箱:cs.rep@emtek.com.cn

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over			
	1.1	MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment	
1	*	0.1500	39.56	10.09	49.65	66.00	-16.35	QP		
2		0.1500	21.31	10.09	31.40	56.00	-24.60	AVG		
3		0.3180	21.07	10.09	31.16	59.76	-28.60	QP		
4		0.3180	4.48	10.09	14.57	49.76	-35.19	AVG		
5		1.4180	16.18	10.14	26.32	56.00	-29.68	QP		
6		1.4180	7.83	10.14	17.97	46.00	-28.03	AVG		
7		5.3260	17.12	10.26	27.38	60.00	-32.62	QP		
8		5.3260	7.15	10.26	17.41	50.00	-32.59	AVG		
9		12.2860	26.58	10.47	37.05	60.00	-22.95	QP		
10		12.2860	18.25	10.47	28.72	50.00	-21.28	AVG		
11	1	18.1620	32.56	10.43	42.99	60.00	-17.01	QP		
12	-	18.1620	22.76	10.43	33.19	50.00	-16.81	AVG		

	0.000									
No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	ę., .		
		MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment	
1	*	0.1540	39.16	10.09	49.25	65.78	-16.53	QP		
2		0.1540	20.61	10.09	30.70	55.78	-25.08	AVG		
3		0.2260	30.70	10.10	40.80	62.60	-21.80	QP		
4		0.2260	14.69	10.10	24.79	52.60	-27.81	AVG		
5		0.4300	17.33	10.10	27.43	57.25	-29.82	QP		
6		0.4300	4.61	10.10	14.71	47.25	-32.54	AVG		
7		1.5220	15.89	10.15	26.04	56.00	-29.96	QP		
8		1.5220	8.35	10.15	18.50	46.00	-27.50	AVG		
9		4.9380	22.00	10.25	32.25	56.00	-23.75	QP		
10		4.9380	8.34	10.25	18.59	46.00	-27.41	AVG		
11	i	17.6860	31.54	10.44	41.98	60.00	-18.02	QP		
12		17.6860	22.87	10.44	33.31	50.00	-16.69	AVG		

7.7 ANTENNA APPLICATION

7.7.1 Antenna Requirement

Standard	Requirement				
FCC CRF Part15.203	An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited. This requirement does not apply to carrier current devices or to devices operated under the provisions of §15.211, §15.213, §15.217,§15.219, or §15.221. Further, this requirement does not apply to intentional radiators that must be professionally installed, such as perimeter protection systems and some field disturbance sensors, or to other intentional radiators which, in accordance with §15.31(d), must be measured at the installation site. However, the installer shall be responsible for ensuring that the proper antenna is employed so that the limits in this part are not exceeded.				

For intentional device, according to FCC 47 CFR Section 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. And according to FCC 47 CFR Section 15.247 (b), if transmitting antennas of directional gain greater than 6dBi are used, the power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6dBi..

7.7.2 Result

PASS

The EUT PIFA antenna, antenna1 gain is 2.8dBi, antenna2 gain is 1.9dBi.

- Antenna uses a permanently attached antenna which is not replaceable.
- Not using a standard antenna jack or electrical connector for antenna replacement.
- The antenna has to be professionally installed (please provide method of installation).

Which in accordance to section 15.203, please refer to the internal photos.

Frequency(MHz)	Ant_F(dB)	Cab_L(dB)	Preamp(dB)	Correct Factor(dB)
0.009	20.6	0.03	\	20.63
0.15	20.7	0.1	\	20.8
1	20.9	0.15	\	21.05
10	20.1	0.28	\	20.38
30	18.8	0.45	\	19.25
30	11.7	0.62	27.9	-15.58
100	12.5	1.02	27.8	-14.28
300	12.9	1.91	27.5	-12.69
600	19.2	2.92	27	-4.88
800	21.1	3.54	26.6	-1.96
1000	22.3	4.17	26.2	0.27
1000	25.6	1.76	41.4	-14.04
3000	28.9	3.27	43.2	-11.03
5000	31.1	4.2	44.6	-9.3
8000	36.2	5.95	44.7	-2.55
10000	38.4	6.3	43.9	0.8
12000	38.5	7.14	42.3	3.34
15000	40.2	8.15	41.4	6.95
18000	45.4	9.02	41.3	13.12
18000	37.9	1.81	47.9	-8.19
21000	37.9	1.95	48.7	-8.85
25000	39.3	2.01	42.8	-1.49
28000	39.6	2.16	46.0	-4.24
31000	41.2	2.24	44.5	-1.06
34000	41.5	2.29	46.6	-2.81
37000	43.8	2.30	46.4	-0.3
40000	43.2	2.50	42.2	3.5

Detail of factor for radiated emission:

--- End of Report ---

深圳信测标准技术服务股份有限公司 地址:广东省深圳市南山区马家龙工业区69栋 网址:Http://www.emtek.com.cn 邮箱:cs.rep@emtek.com.cn EMTEK (Shenzhen) Co., Ltd. Add: Building 69, Majialong Industry Zone, Nanshan District, Shenzhen, Guangdong, China Http://www.emtek.com.cn E-mail: cs.rep@emtek.com.cn

Report No. ENS2207140201W00203R