

FCC Test Report

Part 15 Subpart C FCC ID: 2AZOI12XIH

Client Information:

Applicant add.: Plot No. 38, Institutional Area, Sector 32, Gurugram, Haryana-122001, India

Product Information:

EUT Name:

Wi-Fi 6 Dual Band 8x8:8 Indoor Access Point with Integrated Antenna (6 dBi) [DC powered]

Model No.: ion12xi_h

Brand Name:

Series Model: N/A

Standards: FCC PART 15 Subpart C section 15.247

AA Electro Magnetic Test Laboratory Private Limited

Add. : Plot No 174, Udyog Vihar - Phase 4, Sector 18, Gurgaon, Haryana, India

Date of Receipt:	Nov. 10, 2023	Date of Test:	Nov. 10, 2023~ Dec. 29, 2023
Date of Issue:	Jan. 17, 2024	Test Result:	Pass

Declaration of Conformity: Declaration of conformity of the results is based as per the standard limits

This device described above has been tested by AA Electro Magnetic Test Laboratory Private Limited, and the test results show that the equipment under test (EUT) is in compliance with the FCC requirements. And it is applicable only to the tested sample identified in the report.

*This test report must not be used by the client to claim product endorsement by any agency of the U.S. government.

Prepared By (+ signature) Ankur Kumar:

Reviewed & Approved by: (+ signature)

Dr. Lenin Raja (Authorized Representative) (/ lenin83/)

1 Contents

COVED		Page
COVER		
1 0	CONTENTS	2
2 V	/ERSION	3
3 T	TEST SUMMARY	4
3.1	COMPLIANCE WITH FCC PART 15 SUBPART C	4
3.2	MEASUREMENT UNCERTAINTY	5
3.3	TEST LOCATION	5
4 T	TEST FACILITY	6
4.1	DEVIATION FROM STANDARD	6
4.2	ABNORMALITIES FROM STANDARD CONDITIONS	6
5 G	GENERAL INFORMATION	7
5.1	GENERAL DESCRIPTION OF EUT	7
5.2	EUT PERIPHERAL LIST	10
5.3	TEST PERIPHERAL LIST	10
6 E	EQUIPMENTS LIST FOR ALL TEST ITEMS	11
7 T	TEST RESULT	13
7.1	DESCRIPTION OF TEST CONDITIONS	13
7.2	ANTENNA REQUIREMENT	14
7.3	CONDUCTION EMISSIONS MEASUREMENT	15
7.4	RADIATED EMISSIONS MEASUREMENT	19
7.5	6 dB Bandwidth	42
7.6	MAXIMUM CONDUCTED OUTPUT POWER	83
7.7	PEAK POWER SPECTRAL DENSITY	125
7.8	BAND EDGES REQUIREMENT	167
7.9	CONDUCTED SPURIOUS EMISSIONS	193

2 Version

Revision Record									
VersionChapterDateModifierRemark									

3 Test Summary

3.1 Compliance with FCC Part 15 subpart C

TEST	TEST REQUIREMENT	TEST METHOD	RESULT
	FCC PART 15 C	FCC PART 15 C	
Antenna Requirement	section 15.247 (c) and Section 15.203	section 15.247 (c) and Section 15.203	PASS
Conducted Emissions at Mains	FCC PART 15 C	ANSI C63.10: Clause 6.2	PASS
Terminals	section 15.207	ANSI C05.10. Clause 0.2	1755
Radiated Spurious Emission (30 MHz to 25 GHz)	FCC PART 15 C section 15.209 &15.247(d)	ANSI C63.10: Clause 6.4, 6.5 and 6.6	PASS
6 dB Bandwidth	FCC PART 15 C section 15.247 (a)(2)	ANSI C63.10: Clause 6.9.1	PASS
Maximum Conducted Output Power	FCC PART 15 C section 15.247(b)(3)	558074 D01 15.247 Meas Guidance v0502 Clause 9.1.2	PASS
Peak Power Spectral Density	FCC PART 15 C section 15.247(e)	ANSI C63.10: Clause 6.11.2.3	PASS
Band Edges Measurement	FCC PART 15 C section 15.247 (d) &15.205	558074 D01 15.247 Meas Guidance v0502 Clause 13.3.1	PASS
Conducted Spurious Emission (30MHz to 25GHz)	FCC PART 15 C section 15.209 &15.247(d)	ANSI C63.10: Clause 6.7	PASS

Remark:

 $N\!/A:$ not applicable. Refer to the relative section for the details.

EUT: In this whole report EUT means Equipment Under Test.

Tx: In this whole report Tx (or tx) means Transmitter.

Rx: In this whole report Rx (or rx) means Receiver.

RF: In this whole report RF means Radio Frequency.

ANSI C63.10: the detail version is ANSI C63.10:2013 in the whole report.

3.2 Measurement Uncertainty

All measurements involve certain levels of uncertainties, the following measurements uncertainty Levels have estimated based on standards CISPR 16-4-2, the maximum value of the uncertainty as below:

No.	Item	Uncertainty
1	Conducted Emission Test	2.69dB
2	Radiated Emission Test	3.09 dB
3.	Peak power density	0.78dB
4.	Maximum Conducted Output Power	0.78dB
5.	Band edge	0.76dB
6.	Conducted Spurious Emissions	1.58dB

3.3 Test Location

All tests were performed at:

AA Electro Magnetic Test Laboratory Private Limited

Plot No 174, Udyog Vihar - Phase 4, Sector 18, Gurgaon, Haryana, India

Tel.: +91-0124-4235350

4 Test Facility

The test facility is recognized, certified or accredited by the following organizations:

ILAC / NABL Accreditation No.: TC-8597

Three 3m Semi-Anechoic Chamber, 1 full-Anechoic chamber and 2 Shielding Rooms of AA Electro Magnetic Test Laboratory Private Limited have been registered by National Accreditation Board for Testing and Calibration Laboratories (NABL).

ILAC -A2LA Accreditation No.: 5593.01

Three 3m Semi-Anechoic Chamber, 1 full-Anechoic chamber and 2 Shielding Rooms of AA Electro Magnetic Test Laboratory Private Limited have been registered American Association of Laboratory Accreditation (A2LA.)

FCC- Recognition No.: 137777

Three 3m Semi-Anechoic Chamber, 1 full-Anechoic chamber and 2 Shielding Rooms of AA Electro Magnetic Test Laboratory Private Limited have been registered by Federal Communications Commission (FCC).

ISED Recognition No.: 26046

Three 3m Semi-Anechoic Chamber, 1 full-Anechoic chamber and 2 Shielding Rooms of AA Electro Magnetic Test Laboratory Private Limited have been registered by Institute for Social and Economic Development. (ISED)

VCCI- Registration No: 4053

Three 3m Semi-Anechoic Chamber, 1 full-Anechoic chamber and 2 Shielding Rooms of AA Electro Magnetic Test Laboratory Private Limited have been registered by Voluntary Control Council for Interference.(VCCI)

TEC Designation No.: IND063

Three 3m Semi-Anechoic Chamber, 1 full-Anechoic chamber and 2 Shielding Rooms of AA Electro Magnetic Test Laboratory Private Limited have been registered by Telecommunication Engineering (TEC) Center.

BIS Recognition No: 816586

BIS recognized as per CRS scheme for IT electronics, LED control gears, Lamp, Inverter / UPS are recognized as per LRS 2020.

4.1 Deviation from standard

None

4.2 Abnormalities from standard conditions

None

5 General Information

5.1 General Description of EUT

Manufacturer:	HFCL limited					
Manufacturer Address:	Plot No. 38, Institutional Area, Sector 32, Gurugram, Haryana-122001, India					
EUT Name:	Wi-Fi 6 Dual Band 8x8:8 Indoor Access Point with Integrated Antenna (6 dBi) [DC powered]					
Model No:	ion12xi_h					
Brand Name:	iO by HFCL					
Serial No.	2307721900090					
Operation frequency:		or 802.11b/g/n(HT20)/ax(
Number of Channels:	2422-2452MHz for 802.11n(HT40)/ax(HE40) 11 Channels for 802.11b/g/n(HT20) 7 Channels for 802.11n(HT40)/ax(HE40)					
Modulation Technology:	802.11b: CCK/DQPSK/DBPSK 802.11g/n: BPSK/QPSK/16QAM/64QAM 802.11n(HT40): OFDM (BPSK/QPSK/16QAM/64QAM/256QAM 802.11ax(HE40): OFDM (BPSK/QPSK/16QAM/64QAM/256QAM/1024QAM)					
Transmit Data Rate:	•	8/24/36/48/54 Mbps .2/14.4/21.7/28.9/43.3/57 ICS0-MCS9	8/65/72.2 Mbps			
Channel Separation:	5MHz					
Antenna Type:	Folded Monopole					
Antenna Gain:	6 dBi					
Antenna Function Description:		802.11b/g 802.11nHT20/HT40 802.11axHE20/HE40	ANT0,ANT1,ANT2,ANT3			
H/W No.:	C1					
S/W No.:	1.0.0.25					
Power Supply Range:	ower Supply Range: Input For EUT: DC+12V,5A(max)					

Condition of Sample on	Good
receipt:	
Note:	1 .For a more detailed features description, please refer to the manufacturer's
	specifications or the User's Manual.
	2. Antenna gain and antenna type provided by manufacturer.
Opinions and Interpretations:	See the specific Note / Annexure if any in the whole /full report.

EUT channels and frequencies list:

 Test frequencies are lowest channel: 2412 MHz, middle channel: 2437 MHz and highest channel: 2462 MHz for 802.11b/g/n(HT20)/ax(HE20)

Channel	Frequency (MHz)	Channel	Frequency (MHz)
1	2412	7	2442
2	2417	8	2447
3	2422	9	2452
4	2427	10	2457
5	2432	11	2462
6	2437		

 Test frequencies are lowest channel: 2422 MHz, middle channel: 2437 MHz and highest channel: 2452 MHz for 802.11n(HT40)/ax(HE40)

Channel	Frequency (MHz)	Channel	Frequency (MHz)
3	2422	7	2442
4	2427	8	2447
5	2432	9	2452
6	2437		

5.2 EUT Peripheral List

No.	Equipment	Manufacturer	EMC Compliance	Model No.	Serial No.	Power cord	signal cable
1	DC Adaptor	MeanWell	FCC Part 18	GSM60U12-P1J	-	1m unshielded	NA
						Cable	

5.3 Test Peripheral List

No.	Equipment	Manufacturer	EMC Compliance	Model No.	Serial No.	Power cord	signal cable
1	Laptop	DELL	N/A	Latitude 3490	5M2Z1W2	2m unshielded	N/A

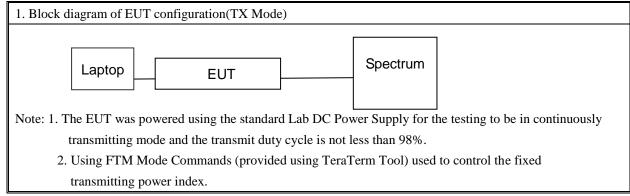
6 Equipments List for All Test Items

No	Test Equipment	Manufacturer	Model No	Serial No	Cal. Date	Cal.Due Date
1	Spectrum Analyzer	Rohde and Schwarz	FSP	101163	2022/02/08	2024/02/07
2	Loop antenna	DAZE Beijing	ZN30900C	18052	2021/09/15	2023/09/15
3	Hi power horn antenna	DAZE Beijing	ZN30700	18012	2021/09/15	2023/09/15
4	MXA Signal Analyzer	Keysight	N9020A	6272323218	2023/07/27	2025/07/27
5	Horn antenna	DAZE Beijing	ZN30703	18005	2021/09/15	2023/09/15
6	Pre amplifier	KELIANDA	LNA-0009295	-	2023/01/13	2024/01/13
7	Pre amplifier	KELIANDA	CF-00218	-	2023/01/13	2024/01/13
8	Biconical Antenna	DAZE Beijing	ZN30505C	17038	2021/09/15	2023/09/15
9	EMI-RECEIVER	Schwarzbeck	FCKL	1528194	2023/01/13	2024/01/13
10	LISN Kyoritsu KNW-407 8		8-1789-5	2023/01/13	2024/01/13	
11	Network-LISN	SCHWAR ZBECK	NNBM8125	81251314	2023/01/13	2024/01/13
12	Network-LISN	SCHWAR ZBECK	NNBM8125	81251315	2023/01/13	2024/01/13
13	PULSELIMITER	Rohde and Schwarz	ESH3-Z2	100681	2023/01/13	2024/01/13
14	50Ω Coaxial Switch	DAIWA	1565157	-	2023/01/13	2024/01/13
15	50Ω Coaxial Switch	-	-	-	2023/01/13	2024/01/13
16	Wireless signal power meter	DARE!!	RPR3006W	RFSW190220	2023/01/13	2024/01/13
17	Signal Generator	KEYSIGHT	N5181A	512071	2023/01/13	2024/01/13

AA Electro Magnetic Test Laboratory Private Limited

Report No.: AAEMT/RF/231110-04-02

18	RF Vector Signal Generator	Keysight	N5182B	512094	2023/01/13	2024/01/13
19	Spectrum analyzer	R&S	FSV-40N	101385	2023/01/13	2024/01/13
20	Radio Communication Tester	R&S	CMW 500	124589	2021/09/15	2023/09/15
21	Signal Generator	R&S	SMP02	837017/004 836593/005	2021/09/15	2023/09/15
22	DC Regulated Power	Metravi	RPS-3005	669076	2022/12/13	2023/12/12
23	Climatic Chamber	Sunrise Scientific Instruments	-	-	2022/11/22	2023/11/21
24	Attenuators	AGILENT	8494B	-	-	-
25	Attenuators	AGILENT	8495B	-	-	-



7 Test Result

7.1 Description of Test conditions

(1) EUT was tested in normal configuration (Please See following Block diagram)

(2) E.U.T. test conditions:

15.31(e): For intentional radiators, measurements of the variation of the input power or the

radiated signal level of the fundamental frequency component of the emission, as appropriate,

shall be performed with the supply voltage varied between 85% and 115% of the nominal

rated supply voltage. For battery operated equipment, the equipment tests shall be performed using a new battery.

15.32: Power supplies and CPU boards used with personal computers and for which separate authorizations are required to be obtained shall be tested as follows: Testing shall be in accordance with the procedures specified in Section 15.31 of this part.

(3) Test frequencies:

According to the 15.31(m) Measurements on intentional radiators or receivers, other than

TV broadcast receivers, shall be performed and. If required reported for each band in which

the device can be operated with the device operating at the number of frequencies in each band specified in the following table:

Frequency range over	Number of	Location in
which device operates	frequencies	the range of operation
1 MHz or less	1	Middle
1 to 10 MHz	2	1 near top and 1 near bottom
More than 10 MHz	3	1 near top, 1 near middle and 1 near bottom

(4) Frequency range of radiated measurements:

According to the 15.33, the test range will be up to the tenth harmonic of the highest fundamental frequency.

(5) Pre-test the EUT in all transmitting mode at the lowest, middle and highest channel with different data rate and conducted to determine the worst-case mode, only the worst-case results are recorded in this report.

AAEMT/A2LA/TRF/FCC-15C/22_01_REV1

7.2 Antenna Requirement

7.2.1 Standard requirement

15.203 requirement: For intentional device, according to 15.203: an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device.

15.247(c) (1)(i) requirement: (i) Systems operating in the 2400-2483.5 MHz band that is used exclusively for fixed. Point-to-point operations may employ transmitting antennas with directional gain greater than 6dBi provided the maximum conducted output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6dBi.

7.2.2 EUT Antenna

The antenna is a Folded Monopole Antenna with Cable which is connected to the board using a N-type to U.FL cable which is connected to the board via U.FL connector. Antenna gain is maximum 6dBi from 2.4GHz to 2.5 GHz

7.3 Conduction Emissions Measurement

Test Requirement:	FCC Part 15 C section 15.207
Test Method:	ANSI C63.10: Clause 6.2
Frequency Range:	150 kHz to 30 MHz
Detector:	Peak for pre-scan (9kHz Resolution Bandwidth)

Test Limit

Frequency Range	Limit (dBµV)			
(MHz)	Quasi-peak	Average		
0.15 to 0.50	66 to 56	56 to 46		
0.50 to 5	56	46		
5 to 30	60	50		
NOTE 1 The limit decreases linearly with t	he logarithm of the frequency	in the range 0,15 MHz to 0,50		
MHz.				

EUT Operation:

Test in normal operating mode. For intentional radiators, measurements of the variation of the input power or the radiated signal level of the fundamental frequency component of the emission, as appropriate, shall be performed with the supply voltage varied between 85% and 115% of the nominal rated supply voltage.

Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates and antenna ports (if EUT with antenna diversity architecture).

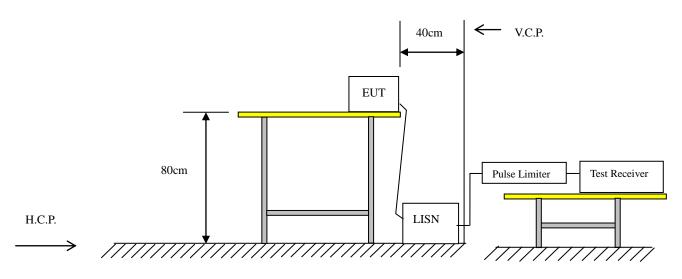
Test procedure

1. The mains terminal disturbance voltage test was conducted in a shielded room.

2. The EUT was connected to AC power source through a LISN 1 (Line Impedance Stabilization Network) which provides $50\Omega/50\mu$ H + 5Ω linear impedance. The power cables of all other units of the EUT were connected to a second LISN 2, which was bonded to the ground reference plane in the same way as the LISN 1 for the unit being measured. A multiple socket outlet strip was used to connect multiple power cables to a single LISN provided the rating of the LISN was not exceeded.

3. The tabletop EUT was placed upon a non-metallic table 0.8m above the ground reference plane. And for floor-standing arrangement, the EUT was placed on the horizontal ground reference plane, but separated from metallic contact with the ground reference plane by 0.1m of insulation.

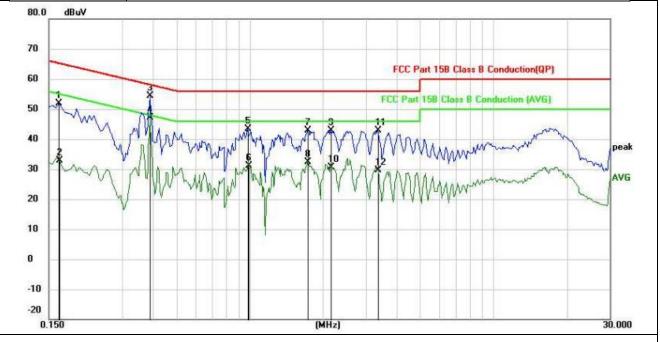
4. The test was performed with a vertical ground reference plane. The rear of the EUT shall be 0,4 m from the vertical ground reference plane. The vertical ground reference plane was bonded to the horizontal ground reference plane. The LISN 1 was placed 0,8 m from the boundary of the unit under test and bonded to a ground reference plane for LISNs mounted on top of the ground reference plane. This distance was between the closest points of the LISN 1 and the EUT. All other units of the EUT and associated equipment was at least 0,8 m from the LISN 2.



AA Electro Magnetic Test Laboratory Private Limited

Report No.: AAEMT/RF/231110-04-02

Test setup

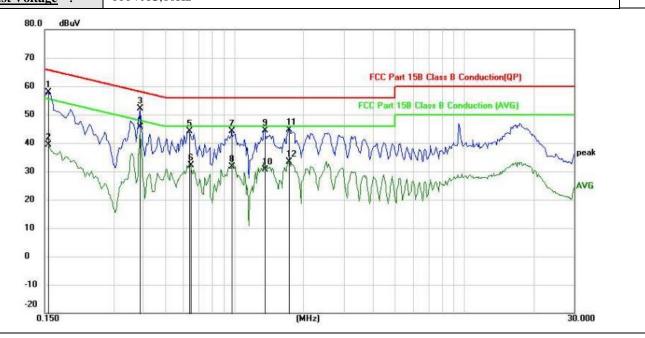


7.3.1 Test results

EUT:	Wi-Fi 6 Dual Band 8x8:8 Indoor Access	Model Name. :	ion12xi_h
	Point with Integrated Antenna (6 dBi)		
	[DC powered]		
Temperature:	24.5 °C	Relative Humidity	52%
		:	
Pressure:	1010hPa	Test Date :	2023-11-15
Test Mode:	TX (11Mbps) CH1 (worst case)	Phase :	Line
Test Voltage :	110VAC,60Hz		

Remark: Factor = LISN factor + Cable Loss + Pulse limiter factor.

		-	Reading	Correct	Measure-	Limit	Over	
NO.	Mk.	Freq.	Level	Factor	ment	Limit	Over	
		MHz	dBuV	dB	dBuV	dBuV	dB	Detector
1		0.1650	40.16	11.83	51.99	65.20	-13.21	QP
2		0.1658	21.13	11.84	32.97	55.16	-22.19	AVG
3		0.3899	43.56	10.76	54.32	58.06	-3.74	QP
4	*	0.3899	36.27	10.76	47.03	48.06	-1.03	AVG
5		0.9798	32.44	10.90	43.34	56.00	-12.66	QP
6		0.9889	20.33	10.90	31.23	46.00	-14.77	AVG
7		1.7298	32.06	10.90	42.96	56.00	-13.04	QP
8		1.7338	21.39	10.90	32.29	46.00	-13.71	AVG
9		2.1499	31.97	10.91	42.88	56.00	-13.12	QP
10		2.1551	19.79	10.91	30.70	46.00	-15.30	AVG
11		3.3599	31.85	10.96	42.81	56.00	-13.19	QP
12		3.3635	18.74	10.96	29.70	46.00	-16.30	AVG



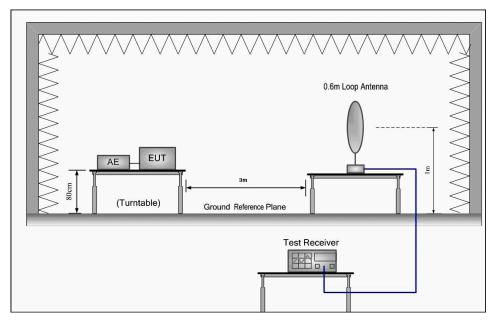
AA Electro Magnetic Test Laboratory Private Limited

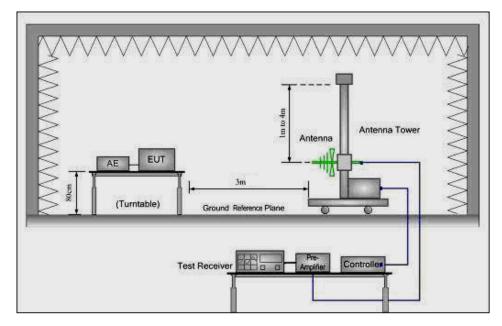
Report No.:	AAEMT/RF/231110-04-02
-------------	-----------------------

EUT:	Wi-Fi 6 Dual Band 8x8:8 Indoor Access	Model Name. :	ion12xi_h
	Point with Integrated Antenna (6 dBi)		
	[DC powered]		
Temperature:	24.5 °C	Relative Humidity:	52%
Pressure:	1010hPa	Test Date :	2023-11-15
Test Mode:	TX (11Mbps) CH1 (worst case)	Phase :	Neutral
Test Voltage :	110VAC,60Hz		

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB	dBuV	dBuV	dB	Detector
1		0.1549	46.16	11.78	57.94	65.73	-7.79	QP
2		0.1554	27.59	11.78	39.37	55.70	-16.33	AVG
3		0.3899	41.29	10.76	52.05	58.06	-6.01	QP
4	*	0.3899	34.99	10.76	45.75	48.06	-2.31	AVG
5		0.6400	33.27	10.82	44.09	56.00	-11.91	QP
6		0.6450	21.19	10.82	32.01	46.00	-13.99	AVG
7		0.9747	33.13	10.89	44.02	56.00	-11.98	QP
8		0.9787	20.75	10.90	31.65	46.00	-14.35	AVG
9		1.3600	33.43	10.90	44.33	56.00	-11.67	QP
10		1.3665	19.78	10.90	30.68	46.00	-15.32	AVG
11		1.7298	33.80	10.90	44.70	56.00	-11.30	QP
12		1.7341	22.51	10.90	33.41	46.00	-12.59	AVG
imum								

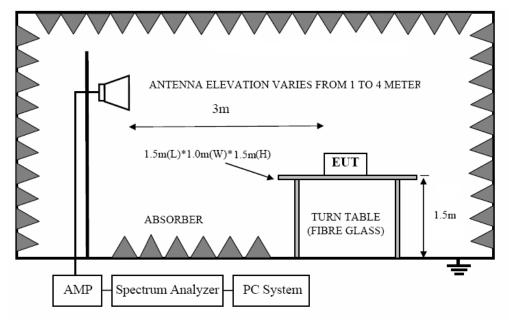
7.4 Radiated Emissions Measurement


Test Requirement:	FCC Part 15 C section 15.247
	(d) In any 100 kHz bandwidth outside the frequency band in which the spread
	spectrum or digitally modulated intentional radiator is operating. The radio
	frequency power that is produced by the intentional radiator shall be at least 20
	dB below that in the 100 kHz bandwidth within the band that
	Contains the highest level of the desired power, based on either an RF conducted
	or a radiated measurement, and provided the transmitter demonstrates compliance
	with the peak conducted power limits.
Test Method:	ANSI C63.10: Clause 6.4, 6.5 and 6.6
Test Status:	Pre-Scan has been conducted to determine the worst-case mode from all possible
	combinations between available modulations, data rates and antenna ports (if
	EUT with antenna diversity architecture). Following channel(s) was (were)
	selected for the final test as listed below.
	Pre-Test the EUT using external Standard DC power source for powering on the
	board.
Detector:	For PK value:
	RBW = 1 MHz for $f \ge 1$ GHz, 100 kHz for $f < 1$ GHz
	$VBW \ge RBW$
	Sweep = auto
	Detector function = peak
	Trace = max hold
	For AV value:
	RBW = 1 MHz for $f \ge 1$ GHz, 100 kHz for $f < 1$ GHz
	VBW =10Hz
	Sweep = auto
	Detector function = peak
	Trace = max hold
15.209 Limit:	40.0 dBµV/m between 30MHz & 88MHz
	43.5 dBµV/m between 88MHz & 216MHz
	46.0 dBµV/m between 216MHz & 960MHz
	54.0 dBµV/m above 960MHz



Test Configuration:

1) 9 kHz to 30 MHz emissions:


2) 30 MHz to 1 GHz emissions:

3) 1 GHz to 40 GHz emissions:

Test procedure:

Test site with RF absorbing material covering the ground plane that met the site validation criterion called out in CISPR 16-1-4:2007 was used to perform radiated emission test above 1 GHz.

The receiver was scanned from 30MHz to 25GHz. When an emission was found, the table was rotated to produce the maximum signal strength. An initial pre-scan was performed for in peak detection mode using the receiver. The EUT was measured for both the Horizontal and Vertical polarities and performed a pre-test three orthogonal planes. For intentional radiators, measurements of the variation of the input power or the radiated signal level of the fundamental frequency component of the emission, as appropriate, shall be performed with the supply voltage varied between 85% and 115% of the nominal rated supply voltage. The worst case emissions were reported.

From 30MHz to 1GHz, read the Quasi-Peak field strength of the emissions with receiver QP detector RBW=120KHz.

Above 1GHz, read the Peak field strength and Average field strength.

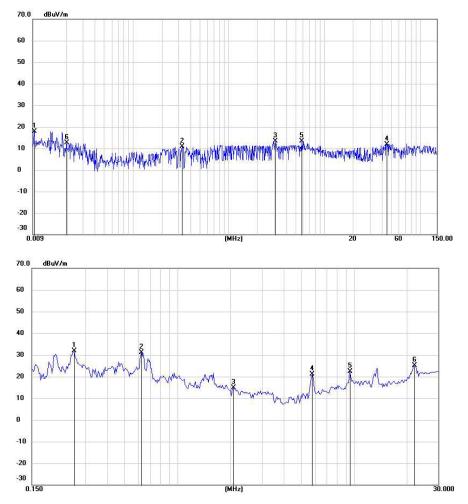
Read the Peak field strength through RBW=1MHz,VBW=3MHz in spectrum analyzer setting;

Read the Average field strength through RBW=1MHz,VBW=10Hz in spectrum analyzer setting;

For measurement at frequency above 1GHz

Place the measurement antenna away from each area of the EUT determined to be a source of emissions at the specified measurement distance, while keeping the measurement antenna aimed at the source of emissions at each frequency of significant emissions, with polarization oriented for maximum response. The measurement antenna may have to be higher or lower than the EUT, depending on the radiation pattern of the emission and staying aimed at the emission source for receiving the maximum signal. The final measurement antenna elevation shall be that which maximizes the emissions. The measurement antenna elevation for maximum emissions shall be restricted to a range of heights of from 1 m to 4 m above the ground or reference ground plane.

While maintaining all of the other instrument settings. This peak level, once corrected, must comply with the limit specified in Section 15.209. If the dwell time per channel of the hopping signal is less than 100 ms, then the average field strength reading obtained with the 10 Hz VBW may be further adjusted by a "duty cycle correction factor", derived from 20log(dwell time/100 ms), in an effort to demonstrate compliance with the 15.209 limit.

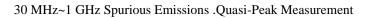


7.4.1 Test Result

7.4.1.1 Radiated Emissions Test Data below 30MHz

EUT:	Wi-Fi 6 Dual Band 8x8:8 Indoor	Model Name. :	ion12xi_h				
	Access Point with Integrated Antenna						
	(6 dBi) [DC powered]						
Temperature:	25.4 °C	Relative Humidity:	53%				
Pressure:	1010hPa	Test Date :	2023-11-22				
Test Mode :	ТХ	Test Voltage :	110V AC, 50Hz				
Measurement Distance	3 m	Frequency Range	9KHz to 30MHz				
RBW/VBW	9KHz~150KHz/RB 200Hz for QP, 150	KHz~150KHz/RB 200Hz for QP, 150KHz~30MHz/RB 9KHz for QP					

No emission found between lowest internal used/generated frequencies to 30MHz.


7.4.1.2 Radiated Emissions Test Data 30MHz-1000MHz

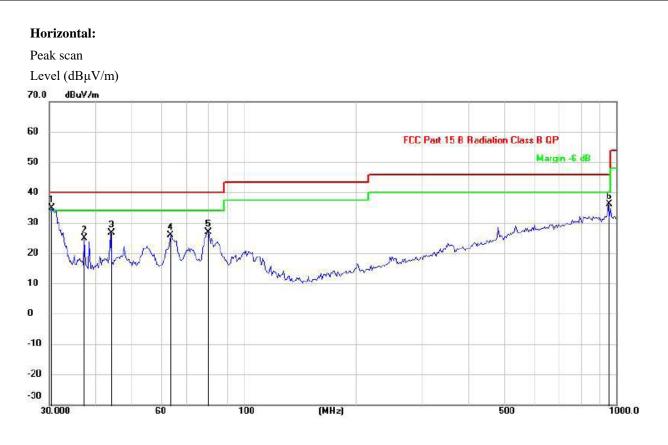
EUT:	Wi-Fi 6 Dual Band 8x8:8 Indoor	Model Name. :	ion12xi_h			
	Access Point with Integrated Antenna					
	(6 dBi) [DC powered]					
Temperature:	25.4 °C	Relative Humidity:	53%			
Pressure:	1010hPa	Test Date :	2023-11-22			
Test Mode :	TX:802.11b 2.412 GHz (worst-case)	Test Voltage :	110V AC, 50Hz			
Measurement Distance	3 m	Frequency Range	30MHz to 1GHz			
RBW/VBW	100KHz / 300KHz for spectrum, RBW=120KHz for receiver.					

Test at Channel 1 (2.412 GHz) in transmitting status (Worst Case)

Vertical:

Peak scan

Level (dBµV/m)


No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector
1	*	30.4246	46.43	-11.21	35.22	40.00	-4.78	QP
2		35.2626	38.70	-11.02	27.68	40.00	-12.32	QP
3		47.3688	32.42	-9.73	22.69	40.00	-17.31	QP
4		71.7054	42.78	-14.19	28.59	40.00	-11.41	QP
5		87.9136	40.14	-11.45	28.69	40.00	-11.31	QP
6	9	945.3336	26.86	5.78	32.64	46.00	-13.36	QP

Quasi-peak measurement

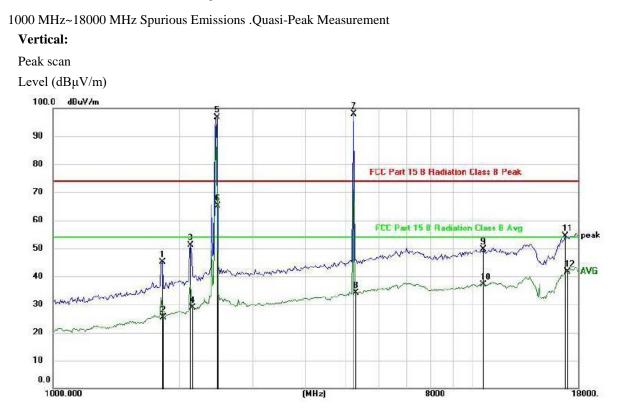
*Maximum Data

Quasi-peak measurement

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector
1	*	30.2116	48.18	-13.21	34.97	40.00	-5.03	QP
2		37.3017	37.38	-12.47	24.91	40.00	-15.09	QP
3		43.8452	38.26	-11.74	26.52	40.00	-13.48	QP
4		63.6312	39.48	-13.72	25.76	40.00	-14.24	QP
5		80.2383	42.93	-16.08	26.85	40.00	-13.15	QP
6	(952.0001	32.21	3.84	36.05	46.00	-9.95	QP

*Maximum Data

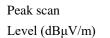
7.4.1.3 Radiated Emissions Test Data above 1GHz

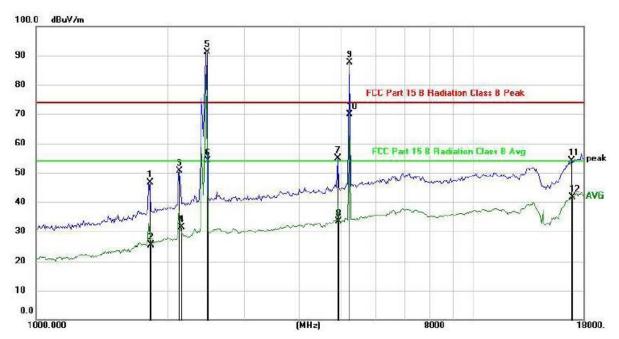

802.11b mode with 11Mbps data rate

EUT:	Wi-Fi 6 Dual Band 8x8:8 Indoor	Model Name. :	ion12xi_h				
	Access Point with Integrated Antenna						
	(6 dBi) [DC powered]						
Temperature:	25.4 °C	Relative Humidity:	53%				
Pressure:	1010hPa	Test Date :	2023-11-22				
Test Mode :	TX:802.11b 2.412 GHz(worst-case)	Test Voltage :	110V AC, 50Hz				
Measurement Distance	3 m	Frequency Range	1GHz to 18GHz				
RBW/VBW	100KHz / 300KHz for spectrum, RBW=120KHz for receiver.						

Test at Channel 1 (2.412 GHz) in transmitting status (Worst Case)

No.	Mk	. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector
1		1826.501	42.55	2.50	45.05	74.00	-28.95	peak
2		1837.111	22.75	2.57	25.32	54.00	-28.68	AVG
3		2135.701	47.04	4.19	51.23	74.00	-22.77	peak
4		2160.586	24.59	4.31	28.90	54.00	-25.10	AVG
5	Х	2454.225	90.83	5.81	96.64	74.00	22.64	peak
6	х	2468.482	59.26	5.88	65.14	54.00	11.14	AVG
7	*	5241.490	88.41	9.51	97.92	74.00	23.92	peak
8		5271.939	24.54	9.56	34.10	54.00	-19.90	AVG
9		10687.36	34.80	14.71	49.51	74.00	-24.49	peak
10		10687.36	22.41	14.71	37.12	54.00	-16.88	AVG
11		16791.34	34.45	19.90	54.35	74.00	-19.65	peak
12		16987.00	21.29	20.32	41.61	54.00	-12.39	AVG


*Maximum Data


Note: Marker 5 & 7 is the intentional frequency from EUT, Hence considered as pass.

Horizontal:

No.	Mk	. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector
1		1815.952	44.30	2.45	46.75	74.00	-27.25	peak
2		1837.111	22.75	2.57	25.32	54.00	-28.68	AVG
3		2135.701	46.34	4.19	50.53	74.00	-23.47	peak
4		2148.108	27.15	4.25	31.40	54.00	-22.60	AVG
5	*	2454.225	85.34	5.81	91.15	74.00	17.15	peak
6	Х	2468.482	48.35	5.88	54.23	54.00	0.23	AVG
7		4917.942	45.84	8.97	54.81	74.00	-19.19	peak
8		4946.511	24.28	9.03	33.31	54.00	-20.69	AVG
9	Х	5241.490	78.02	9.51	87.53	74.00	13.53	peak
10	Х	5241.490	60.35	9.51	69.86	54.00	15.86	AVG
11		16888.89	33.90	20.11	54.01	74.00	-19.99	peak
12		16987.00	21.29	20.32	41.61	54.00	-12.39	AVG

*Maximum Data

Note: Marker 5, 6, 9 &10 is the intentional frequency from EUT, Hence considered as pass.

The field strength is calculated by adding the Antenna Factor. Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level =Receiver Reading + Antenna Factor + Cable Loss –Preamplifier Factor.

As shown in Section, for frequencies above 1000 MHz. the above field strength limits are based on average limits. However, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation.

No any other emissions level which are attenuated less than 20dB below the limit.

According to 15.31(o), The amplitude of spurious emissions from intentional radiators and emissions from unintentional radiators which are attenuated more than 20 dB below the permissible value need not be reported unless specifically required elsewhere in this Part.

Hence there no other emissions have been reported.

Remark:

1) .For this intentional radiator operates below 25 GHz. The spectrum shall be investigated to the tenth

Harmonics of the highest fundamental frequency. And above the third harmonic of this intentional radiator, the disturbance is very low. So the test result only displays to 3rd harmonic.

- 2). As shown in Section, for frequencies above 1000 MHz. the above field strength limits are based on average limits. However, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation.
- 3). The test only perform the EUT in transmitting status since the test frequencies were over 1GHz only required transmitting status.

Test result: The unit does meet the FCC requirements.

7.4.2 Radiated Emissions which fall in the restricted bands

Test Requirement:	FCC Part 15 C section 15.247
	(d) In addition, radiated emissions which fall in the restricted bands, as defined in Section 15.205(a), must also comply with the radiated emission limits specified in Section 15.209(a) (see Section 15.205(c)).
Test Method:	ANSI C63.10: Clause 6.4, 6.5 and 6.6
Test Status:	Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates and antenna ports (if EUT with antenna diversity architecture). Following channel(s) was (were) selected for the final test as listed below.
	Pre-Test the EUT using external Standard DC power source for powering on the
Test site:	board. Measurement Distance: 3m (Semi-Anechoic Chamber)
Limit:	$40.0 \text{ dB}\mu\text{V/m}$ between 30MHz & 88MHz ;
	43.5 dB μ V/m between 88MHz & 216MHz;
	46.0 dBµV/m between 216MHz & 960MHz;
	54.0 dB μ V/m above 960MHz.
Detector:	For PK value:
	RBW = 1 MHz for $f \ge 1$ GHz, 100 kHz for $f < 1$ GHz
	$VBW \ge RBW$
	Sweep = auto
	Detector function = peak
	Trace = max hold
	For AV value:
	RBW = 1 MHz for $f \ge 1$ GHz, 100 kHz for $f < 1$ GHz
	VBW =10Hz
	Sweep = auto
	Detector function = peak
	Trace = max hold

Section 15.205 Restricted bands of operation.

(a) Except as shown in paragraph (d) of this section. only spurious emissions are permitted in any of the frequency bands listed below:

MHz	MHz	MHz	GHz
0.090 - 0.110	16.42 - 16.423	399.9 - 410	4.5 - 5.15
¹ 0.495 - 0.505	16.69475 - 16.69525	608 - 614	5.35 - 5.46
2.1735 - 2.1905	16.80425 - 16.80475	960 - 1240	7.25 - 7.75
4.125 - 4.128	25.5 - 25.67	1300 - 1427	8.025 - 8.5
4.17725 - 4.17775	37.5 - 38.25	1435 - 1626.5	9.0 - 9.2
4.20725 - 4.20775	73 - 74.6	1645.5 - 1646.5	9.3 - 9.5
6.215 - 6.218	74.8 - 75.2	1660 - 1710	10.6 - 12.7
6.26775 - 6.26825	108 - 121.94	1718.8 - 1722.2	13.25 - 13.4
6.31175 - 6.31225	123 - 138	2200 - 2300	14.47 - 14.5
8.291 - 8.294	149.9 - 150.05	2310 - 2390	15.35 - 16.2
8.362 - 8.366	156.52475 - 156.52525	2483.5 - 2500	17.7 - 21.4
8.37625 - 8.38675	156.7 - 156.9	2655 - 2900	22.01 - 23.12
8.41425 - 8.41475	162.0125 - 167.17	3260 - 3267	23.6 - 24.0
12.29 - 12.293	167.72 - 173.2	3332 - 3339	31.2 - 31.8
12.51975 - 12.52025	240 - 285	3345.8 - 3358	36.43 - 36.5
12.57675 - 12.57725	322 - 335.4	3600 - 4400	
13.36 - 13.41			

Test Result:

7.4.2.1 802.11b mode with 11Mbps data rate

Test at Channel 1 (2.412 GHz) in transmitting status

Peak Measurement:

Frequency (MHz)	Reading Level (dBµV)	Antenna factors (dB/m)	Cable loss (dB)	Preamp factor (dB)	Emission Level (dBµV/m)	Limit (dBµV/m)	Antenna polarization
2310.000	55.71	27.93	4.74	35.09	53.29	74.00	Vertical
2390.000	54.62	27.63	4.96	35.05	52.16	74.00	V
2483.500	53.47	27.55	4.90	34.99	50.93	74.00	V
2500.000	53.49	27.55	5.00	34.98	51.06	74.00	V
2310.000	53.68	27.93	4.74	35.09	51.26	74.00	Horizontal
2390.000	52.51	27.63	4.96	35.05	50.05	74.00	Н
2483.500	54.32	27.55	4.90	34.99	51.78	74.00	Н
2500.000	51.81	27.55	5.00	34.98	49.38	74.00	Н

Frequency (MHz)	Reading Level (dBµV)	Antenna factors (dB/m)	Cable loss (dB)	Preamp factor (dB)	Emission Level (dBµV/m)	Limit (dBµV/m)	Antenna polarization
2310.000	43.54	27.93	4.74	35.09	41.12	54.00	Vertical
2390.000	42.26	27.63	4.96	35.05	39.80	54.00	V
2483.500	43.13	27.55	4.90	34.99	40.59	54.00	V
2500.000	43.54	27.55	5.00	34.98	41.11	54.00	V
2310.000	43.88	27.93	4.74	35.09	41.46	54.00	Horizontal
2390.000	43.33	27.63	4.96	35.05	40.87	54.00	Н
2483.500	42.58	27.55	4.90	34.99	40.04	54.00	Н
2500.000	44.62	27.55	5.00	34.98	42.19	54.00	Н

Test at Channel 6 (2.437 GHz) in transmitting status

Peak Measurement:

Frequency (MHz)	Reading Level (dBµV)	Antenna actors (dB/m)	Cable loss (dB)	Preamp factor (dB)	Emission Level (dBµV/m)	Limit (dBµV/m)	Antenna polarization
2310.000	55.16	27.93	4.74	35.09	52.74	74.00	Vertical
2390.000	54.06	27.63	4.96	35.05	51.60	74.00	V
2483.500	53.66	27.55	4.90	34.99	51.12	74.00	V
2500.000	52.10	27.55	5.00	34.98	49.67	74.00	V
2310.000	55.58	27.93	4.74	35.09	53.16	74.00	Horizontal
2390.000	54.45	27.63	4.96	35.05	51.99	74.00	Н
2483.500	52.64	27.55	4.90	34.99	50.10	74.00	Н
2500.000	53.81	27.55	5.00	34.98	51.38	74.00	Н

Frequency (MHz)	Reading Level (dBµV)	Antenna factors (dB/m)	Cable loss (dB)	Preamp factor (dB)	Emission Level (dBµV/m)	Limit (dBµV/m)	Antenna polarization
2310.000	42.50	27.93	4.74	35.09	40.08	54.00	Vertical
2390.000	44.45	27.63	4.96	35.05	41.99	54.00	V
2483.500	44.50	27.55	4.90	34.99	41.96	54.00	V
2500.000	42.40	27.55	5.00	34.98	39.97	54.00	V
2310.000	43.55	27.93	4.74	35.09	41.13	54.00	Horizontal
2390.000	43.78	27.63	4.96	35.05	41.32	54.00	Н
2483.500	43.59	27.55	4.90	34.99	41.05	54.00	Н
2500.000	43.11	27.55	5.00	34.98	40.68	54.00	Н

Test at Channel 11 (2.462 GHz) in transmitting status

Peak Measurement:

Frequency (MHz)	Reading Level (dBµV)	Antenna factors (dB/m)	Cable loss (dB)	Preamp factor (dB)	Emission Level (dBµV/m)	Limit (dBµV/m)	Antenna polarization
2310.000	55.69	27.93	4.74	35.09	53.27	74.00	Vertical
2390.000	54.24	27.63	4.96	35.05	51.78	74.00	V
2483.500	55.14	27.55	4.90	34.99	52.60	74.00	V
2500.000	53.25	27.55	5.00	34.98	50.82	74.00	V
2310.000	53.66	27.93	4.74	35.09	51.24	74.00	Horizontal
2390.000	53.14	27.63	4.96	35.05	50.68	74.00	Н
2483.500	53.10	27.55	4.90	34.99	50.56	74.00	Н
2500.000	53.37	27.55	5.00	34.98	50.94	74.00	Н

Frequency (MHz)	Reading Level (dBµV)	Antenna factors (dB/m)	Cable loss (dB)	Preamp factor (dB)	Emission Level (dBµV/m)	Limit (dBµV/m)	Antenna polarization
2310.000	43.88	27.93	4.74	35.09	41.46	54.00	Vertical
2390.000	41.14	27.63	4.96	35.05	38.68	54.00	V
2483.500	45.77	27.55	4.90	34.99	43.23	54.00	V
2500.000	43.15	27.55	5.00	34.98	40.72	54.00	V
2310.000	44.93	27.93	4.74	35.09	42.51	54.00	Horizontal
2390.000	44.02	27.63	4.96	35.05	41.56	54.00	Н
2483.500	43.70	27.55	4.90	34.99	41.16	54.00	Н
2500.000	44.45	27.55	5.00	34.98	42.02	54.00	Н

7.4.2.2 802.11g mode with 54Mbps data rate

Test at Channel 1 (2.412 GHz) in transmitting status

Peak Measurement:

Frequency (MHz)	Reading Level (dBµV)	Antenna factors (dB/m)	Cable loss (dB)	Preamp factor (dB)	Emission Level (dBµV/m)	Limit (dBµV/m)	Antenna polarization
2310.000	55.27	27.93	4.74	35.09	52.85	74.00	Vertical
2390.000	54.63	27.63	4.96	35.05	52.17	74.00	V
2483.500	54.32	27.55	4.90	34.99	51.78	74.00	V
2500.000	55.01	27.55	5.00	34.98	52.58	74.00	V
2310.000	54.67	27.93	4.74	35.09	52.25	74.00	Horizontal
2390.000	52.65	27.63	4.96	35.05	50.19	74.00	Н
2483.500	54.46	27.55	4.90	34.99	51.92	74.00	Н
2500.000	53.71	27.55	5.00	34.98	51.28	74.00	Н

Frequency (MHz)	Reading Level (dBµV)	Antenna factors (dB/m)	Cable loss (dB)	Preamp factor (dB)	Emission Level (dBµV/m)	Limit (dBµV/m)	Antenna polarization
2310.000	44.89	27.93	4.74	35.09	42.47	54.00	Vertical
2390.000	43.24	27.63	4.96	35.05	40.78	54.00	V
2483.500	43.23	27.55	4.90	34.99	40.69	54.00	V
2500.000	45.75	27.55	5.00	34.98	43.32	54.00	V
2310.000	44.40	27.93	4.74	35.09	41.98	54.00	Horizontal
2390.000	42.27	27.63	4.96	35.05	39.81	54.00	Н
2483.500	43.92	27.55	4.90	34.99	41.38	54.00	Н
2500.000	41.85	27.55	5.00	34.98	39.42	54.00	Н

Test at Channel 6 (2.437 GHz) in transmitting status

Peak Measurement:

Frequency (MHz)	Reading Level (dBµV)	Antenna factors (dB/m)	Cable loss (dB)	Preamp factor (dB)	Emission Level (dBµV/m)	Limit (dBµV/m)	Antenna polarization
2310.000	52.76	27.93	4.74	35.09	50.34	74.00	Vertical
2390.000	53.97	27.63	4.96	35.05	51.51	74.00	V
2483.500	55.23	27.55	4.90	34.99	52.69	74.00	V
2500.000	55.89	27.55	5.00	34.98	53.46	74.00	V
2310.000	54.41	27.93	4.74	35.09	51.99	74.00	Horizontal
2390.000	54.36	27.63	4.96	35.05	51.90	74.00	Н
2483.500	54.20	27.55	4.90	34.99	51.66	74.00	Н
2500.000	54.44	27.55	5.00	34.98	52.01	74.00	Н

Frequency (MHz)	Reading Level (dBµV)	Antenna factors (dB/m)	Cable loss (dB)	Preamp factor (dB)	Emission Level (dBµV/m)	Limit (dBµV/m)	Antenna polarization
2310.000	44.56	27.93	4.74	35.09	42.14	54.00	Vertical
2390.000	42.88	27.63	4.96	35.05	40.42	54.00	V
2483.500	44.37	27.55	4.90	34.99	41.83	54.00	V
2500.000	42.26	27.55	5.00	34.98	39.83	54.00	V
2310.000	43.74	27.93	4.74	35.09	41.32	54.00	Horizontal
2390.000	43.54	27.63	4.96	35.05	41.08	54.00	Н
2483.500	42.48	27.55	4.90	34.99	39.94	54.00	Н
2500.000	43.07	27.55	5.00	34.98	40.64	54.00	Н

Test at Channel 11 (2.462 GHz) in transmitting status

Peak Measurement:

Frequency (MHz)	Reading Level (dBµV)	Antenna factors (dB/m)	Cable loss (dB)	Preamp factor (dB)	Emission Level (dBµV/m)	Limit (dBµV/m)	Antenna polarization
2310.000	52.98	27.93	4.74	35.09	50.56	74.00	Vertical
2390.000	55.08	27.63	4.96	35.05	52.62	74.00	V
2483.500	56.08	27.55	4.90	34.99	53.54	74.00	V
2500.000	55.23	27.55	5.00	34.98	52.80	74.00	V
2310.000	52.70	27.93	4.74	35.09	50.28	74.00	Horizontal
2390.000	55.09	27.63	4.96	35.05	52.63	74.00	Н
2483.500	54.56	27.55	4.90	34.99	52.02	74.00	Н
2500.000	52.73	27.55	5.00	34.98	50.30	74.00	Н

Frequency (MHz)	Reading Level (dBµV)	Antenna factors (dB/m)	Cable loss (dB)	Preamp factor (dB)	Emission Level (dBµV/m)	Limit (dBµV/m)	Antenna polarization
2310.000	44.22	27.93	4.74	35.09	41.80	54.00	Vertical
2390.000	41.73	27.63	4.96	35.05	39.27	54.00	V
2483.500	44.71	27.55	4.90	34.99	42.17	54.00	V
2500.000	45.67	27.55	5.00	34.98	43.24	54.00	V
2310.000	45.24	27.93	4.74	35.09	42.82	54.00	Horizontal
2390.000	46.46	27.63	4.96	35.05	44.00	54.00	Н
2483.500	44.59	27.55	4.90	34.99	42.05	54.00	Н
2500.000	43.67	27.55	5.00	34.98	41.24	54.00	Н

7.4.2.3 802.11n (HT20) mode with 72.2Mbps data rate

Test at Channel 1 (2.412 GHz) in transmitting status

Peak Measurement:

Frequency (MHz)	Reading Level (dBµV)	Antenna factors (dB/m)	Cable loss (dB)	Preamp factor (dB)	Emission Level (dBµV/m)	Limit (dBµV/m)	Antenna polarization
2310.000	53.00	27.93	4.74	35.09	50.58	74.00	Vertical
2390.000	56.08	27.63	4.96	35.05	53.62	74.00	V
2483.500	53.91	27.55	4.90	34.99	51.37	74.00	V
2500.000	54.48	27.55	5.00	34.98	52.05	74.00	V
2310.000	54.43	27.93	4.74	35.09	52.01	74.00	Horizontal
2390.000	54.94	27.63	4.96	35.05	52.48	74.00	Н
2483.500	54.34	27.55	4.90	34.99	51.80	74.00	Н
2500.000	54.85	27.55	5.00	34.98	52.42	74.00	Н

Frequency (MHz)	Reading Level (dBµV)	Antenna factors (dB/m)	Cable loss (dB)	Preamp factor (dB)	Emission Level (dBµV/m)	Limit (dBµV/m)	Antenna polarization
2310.000	41.68	27.93	4.74	35.09	39.26	54.00	Vertical
2390.000	44.19	27.63	4.96	35.05	41.73	54.00	V
2483.500	41.69	27.55	4.90	34.99	39.15	54.00	V
2500.000	42.95	27.55	5.00	34.98	40.52	54.00	V
2310.000	44.48	27.93	4.74	35.09	42.06	54.00	Horizontal
2390.000	42.46	27.63	4.96	35.05	40.00	54.00	Н
2483.500	42.36	27.55	4.90	34.99	39.82	54.00	Н
2500.000	45.56	27.55	5.00	34.98	43.13	54.00	Н

Test at Channel 6 (2.437 GHz) in transmitting status

Peak Measurement:

Frequency (MHz)	Reading Level (dBµV)	Antenna factors (dB/m)	Cable loss (dB)	Preamp factor (dB)	Emission Level (dBµV/m)	Limit (dBµV/m)	Antenna polarization
2310.000	54.97	27.93	4.74	35.09	52.55	74.00	Vertical
2390.000	52.99	27.63	4.96	35.05	50.53	74.00	V
2483.500	56.32	27.55	4.90	34.99	53.78	74.00	V
2500.000	55.62	27.55	5.00	34.98	53.19	74.00	V
2310.000	56.57	27.93	4.74	35.09	54.15	74.00	Horizontal
2390.000	52.32	27.63	4.96	35.05	49.86	74.00	Н
2483.500	56.45	27.55	4.90	34.99	53.91	74.00	Н
2500.000	52.69	27.55	5.00	34.98	50.26	74.00	Н

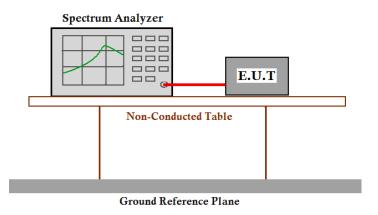
Frequency (MHz)	Reading Level (dBµV)	Antenna factors (dB/m)	Cable loss (dB)	Preamp factor (dB)	Emission Level (dBµV/m)	Limit (dBµV/m)	Antenna polarization
2310.000	44.59	27.93	4.74	35.09	42.17	54.00	Vertical
2390.000	41.19	27.63	4.96	35.05	38.73	54.00	V
2483.500	43.55	27.55	4.90	34.99	41.01	54.00	V
2500.000	41.30	27.55	5.00	34.98	38.87	54.00	V
2310.000	43.33	27.93	4.74	35.09	40.91	54.00	Horizontal
2390.000	43.50	27.63	4.96	35.05	41.04	54.00	Н
2483.500	43.05	27.55	4.90	34.99	40.51	54.00	Н
2500.000	44.47	27.55	5.00	34.98	42.04	54.00	Н

Test at Channel 11 (2.462 GHz) in transmitting status

Peak Measurement:

Frequency (MHz)	Reading Level (dBµV)	Antenna factors (dB/m)	Cable loss (dB)	Preamp factor (dB)	Emission Level (dBµV/m)	Limit (dBµV/m)	Antenna polarization
2310.000	54.15	27.93	4.74	35.09	51.73	74.00	Vertical
2390.000	53.43	27.63	4.96	35.05	50.97	74.00	V
2483.500	53.55	27.55	4.90	34.99	51.01	74.00	V
2500.000	54.52	27.55	5.00	34.98	52.09	74.00	V
2310.000	54.12	27.93	4.74	35.09	51.70	74.00	Horizontal
2390.000	53.21	27.63	4.96	35.05	50.75	74.00	Н
2483.500	54.75	27.55	4.90	34.99	52.21	74.00	Н
2500.000	54.98	27.55	5.00	34.98	52.55	74.00	Н

Frequency (MHz)	Reading Level (dBµV)	Antenna factors (dB/m)	Cable loss (dB)	Preamp factor (dB)	Emission Level (dBµV/m)	Limit (dBµV/m)	Antenna polarization
2310.000	43.80	27.93	4.74	35.09	41.38	54.00	Vertical
2390.000	44.19	27.63	4.96	35.05	41.73	54.00	V
2483.500	41.89	27.55	4.90	34.99	39.35	54.00	V
2500.000	43.09	27.55	5.00	34.98	40.66	54.00	V
2310.000	41.94	27.93	4.74	35.09	39.52	54.00	Horizontal
2390.000	44.95	27.63	4.96	35.05	42.49	54.00	Н
2483.500	46.16	27.55	4.90	34.99	43.62	54.00	Н
2500.000	44.64	27.55	5.00	34.98	42.21	54.00	Н



7.5 6 dB Bandwidth

Test Requirement:	FCC Part 15 C section 15.247
	(a)(2)Systems using digital modulation techniques may operate in the 902-928 MHz, 2400-2483.5MHz, and 5725-5850 MHz bands. The minimum 6 dB bandwidth shall be at least 500 kHz.
Test Method:	ANSI C63.10: Clause 6.9.1
Test Status:	Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates and antenna ports (if EUT with antenna diversity architecture). Following channel(s) was (were) selected for the final test as listed below. Pre-Test the EUT using external Standard DC power source for powering on the board.

Test Configuration:

Test Procedure:

- 1. Remove the antenna from the EUT and then connect a low attention attenuation RF cable (cable loss =1.5dB) from the antenna port to the spectrum.
- 2. Set the spectrum analyzer:

Sweep = auto; Detector Function = Peak; ace = Max Hold

RBW: 1%~5% OBW; VBW: ≥3*RBW

Span: two times and five times the OBW.

- 3. Mark the peak power frequency and -6dB (upper and lower) power frequency.
- 4. Repeat until all the test status is investigated.
- 5. Report the worse case.

Test Data <u>Antenna 0:</u>

Channel No.	Frequency (MHz)	Mode	Data Rate	Measured 6dB bandwidth (MHz)	Limit	Result
1	2412		11 Mbps	8.130		Pass
6	2437	802.11b	11 Mbps	7.650	≥500KHz	Pass
11	2462		11 Mbps	8.130		Pass
1	2412		54 Mbps	16.590		Pass
6	2437	802.11g	54 Mbps	16.560	≥500KHz	Pass
11	2462		54 Mbps	16.560		Pass
1	2412		72.2 Mbps	17.790	≥500KHz	Pass
6	2437	802.11n (HT20)	72.2 Mbps	17.790		Pass
11	2462	(11120)	72.2 Mbps	17.820		Pass
3	2422		MCS0	36.600		Pass
6	2437	802.11n (HT40)	MCS0	36.600	≥500KHz	Pass
9	2452	(11110)	MCS0	36.600		Pass
1	2412		MCS0	19.200		Pass
6	2437	802.11ax (HE20)	MCS0	19.200	≥500KHz	Pass
11	2462	(11220)	MCS0	19.200		Pass
3	2422		MCS0	38.400		Pass
6	2437	802.11ax (HE40)	MCS0	38.340	≥500KHz	Pass
9	2452	(112.10)	MCS0	38.340	<u> </u>	Pass

Antenna 1:

Channel No.	Frequency (MHz)	Mode	Data Rate	Measured 6dB bandwidth (MHz)	Limit	Result
1	2412		11 Mbps	7.650		Pass
6	2437	802.11b	11 Mbps	8.130	≥500KHz	Pass
11	2462		11 Mbps	8.130		Pass
1	2412		54 Mbps	16.560		Pass
6	2437	802.11g	54 Mbps	16.560	≥500KHz	Pass
11	2462		54 Mbps	16.560		Pass
1	2412		72.2 Mbps	17.790		Pass
6	2437	802.11n (HT20)	72.2 Mbps	17.820	≥500KHz	Pass
11	2462	(11120)	72.2 Mbps	17.790		Pass
3	2422		MCS0	36.600		Pass
6	2437	802.11n (HT40)	MCS0	36.660	≥500KHz	Pass
9	2452	(11110)	MCS0	36.600		Pass
1	2412		MCS0	19.170		Pass
6	2437	802.11ax (HE20)	MCS0	19.230	≥500KHz	Pass
11	2462		MCS0	19.230		Pass
3	2422		MCS0	38.280		Pass
6	2437	802.11ax (HE40)	MCS0	38.340	≥500KHz	Pass
9	2452		MCS0	38.340		Pass

Antenna 2:

Channel No.	Frequency (MHz)	Mode	Data Rate	Measured 6dB bandwidth (MHz)	Limit	Result
1	2412		11 Mbps	8.130		Pass
6	2437	802.11b	11 Mbps	7.140	≥500KHz	Pass
11	2462		11 Mbps	7.650		Pass
1	2412		54 Mbps	16.560		Pass
6	2437	802.11g	54 Mbps	16.560	≥500KHz	Pass
11	2462		54 Mbps	16.560		Pass
1	2412	802.11n (HT20)	72.2 Mbps	17.820	≥500KHz	Pass
6	2437		72.2 Mbps	17.790		Pass
11	2462		72.2 Mbps	17.790		Pass
3	2422	802.11n (HT40)	MCS0	36.600	≥500KHz	Pass
6	2437		MCS0	36.600		Pass
9	2452		MCS0	36.600		Pass
1	2412	802.11ax (HE20)	MCS0	19.200	≥500KHz	Pass
6	2437		MCS0	19.200		Pass
11	2462		MCS0	19.200		Pass
3	2422		MCS0	38.340		Pass
6	2437	802.11ax (HE40)	MCS0	38.340	≥500KHz	Pass
9	2452		MCS0	38.340		Pass

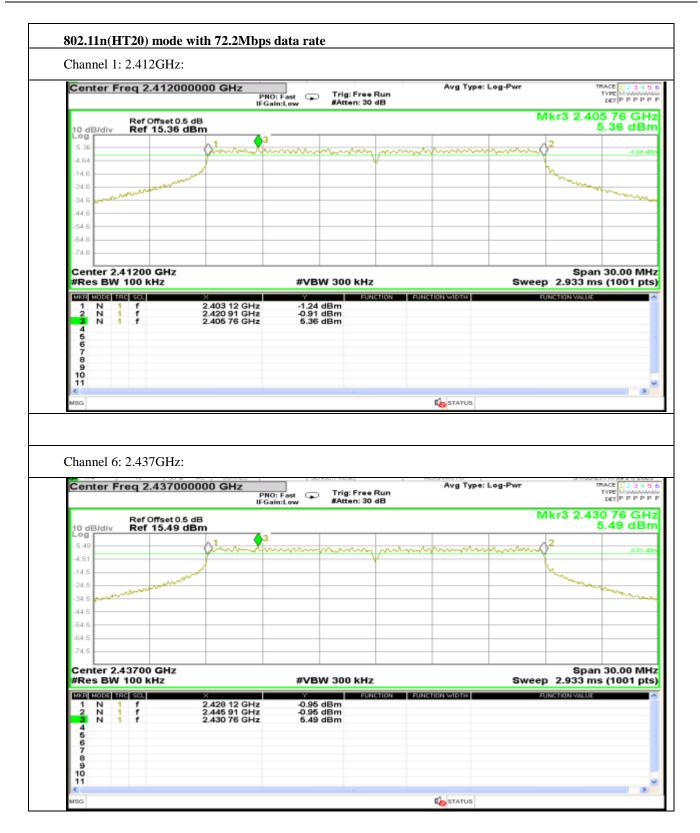
Antenna 3:

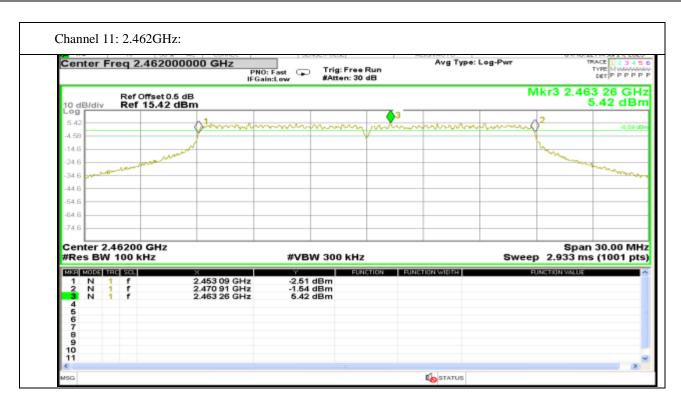
Channel No.	Frequency (MHz)	Mode	Data Rate	Measured 6dB bandwidth (MHz)	Limit	Result
1	2412		11 Mbps	7.620		Pass
6	2437	802.11b	11 Mbps	8.070	≥500KHz	Pass
11	2462		11 Mbps	8.100		Pass
1	2412		54 Mbps	16.560		Pass
6	2437	802.11g	54 Mbps	16.560	≥500KHz	Pass
11	2462		54 Mbps	16.560		Pass
1	2412		72.2 Mbps	17.850	≥500KHz	Pass
6	2437	802.11n (HT20)	72.2 Mbps	17.820		Pass
11	2462		72.2 Mbps	17.820		Pass
3	2422		MCS0	36.600	≥500KHz	Pass
6	2437	802.11n (HT40)	MCS0	36.600		Pass
9	2452	(111 10)	MCS0	36.600		Pass
1	2412	802.11ax (HE20)	MCS0	19.170	≥500KHz	Pass
6	2437		MCS0	19.200		Pass
11	2462		MCS0	19.200		Pass
3	2422		MCS0	38.400		Pass
6	2437	802.11ax (HE40)	MCS0	38.280	≥500KHz	Pass
9	2452	(11210)	MCS0	38.340		Pass

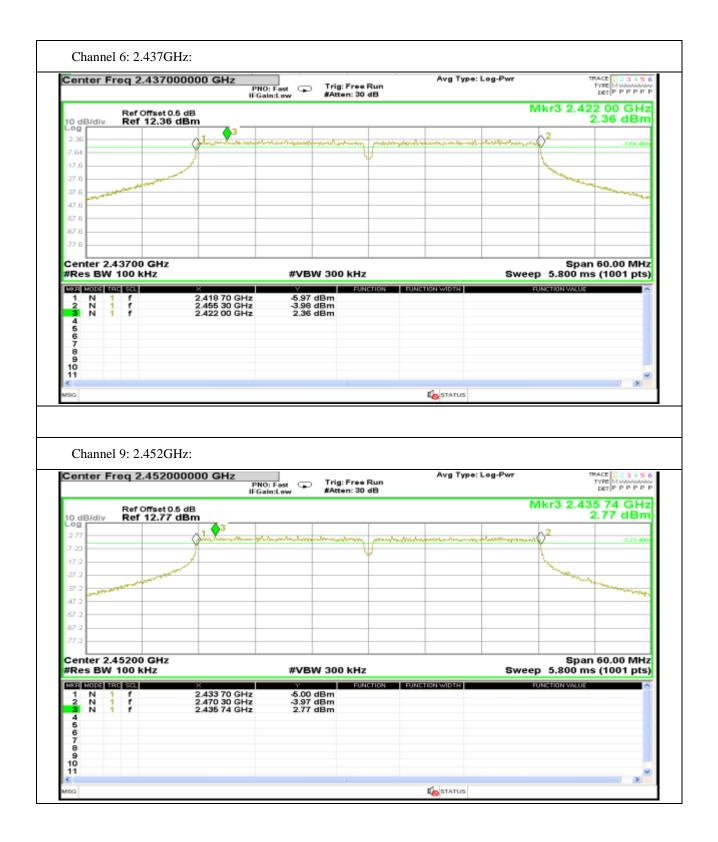
Test result: The unit does meet the FCC requirements.

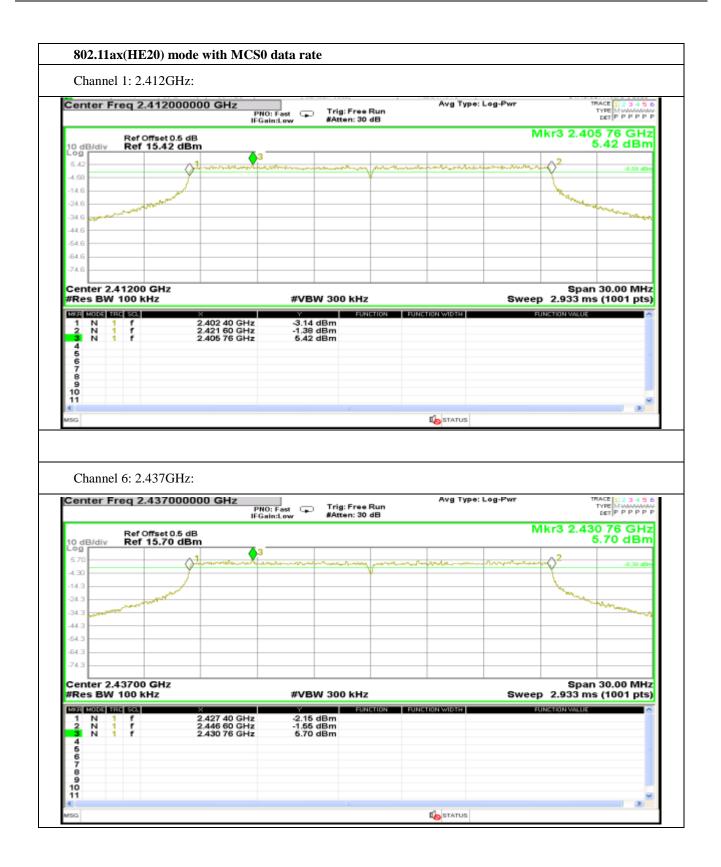
Result plot as follows:

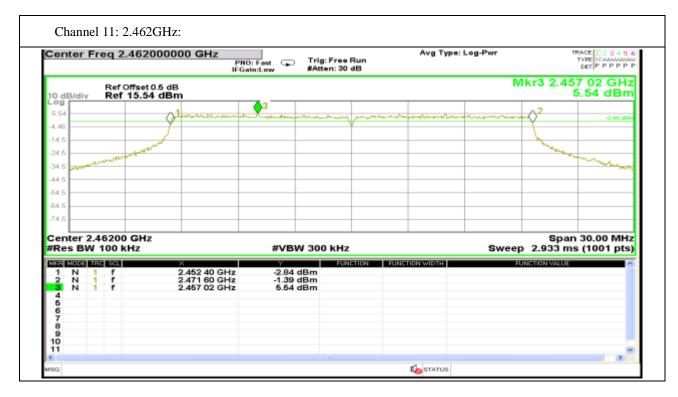
<u>Antenna 0:</u>

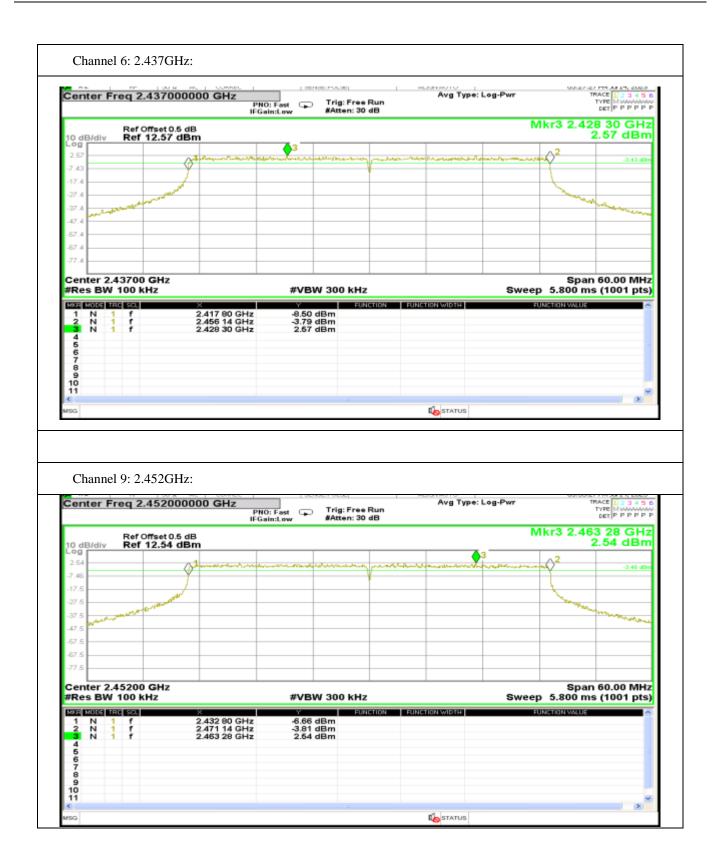


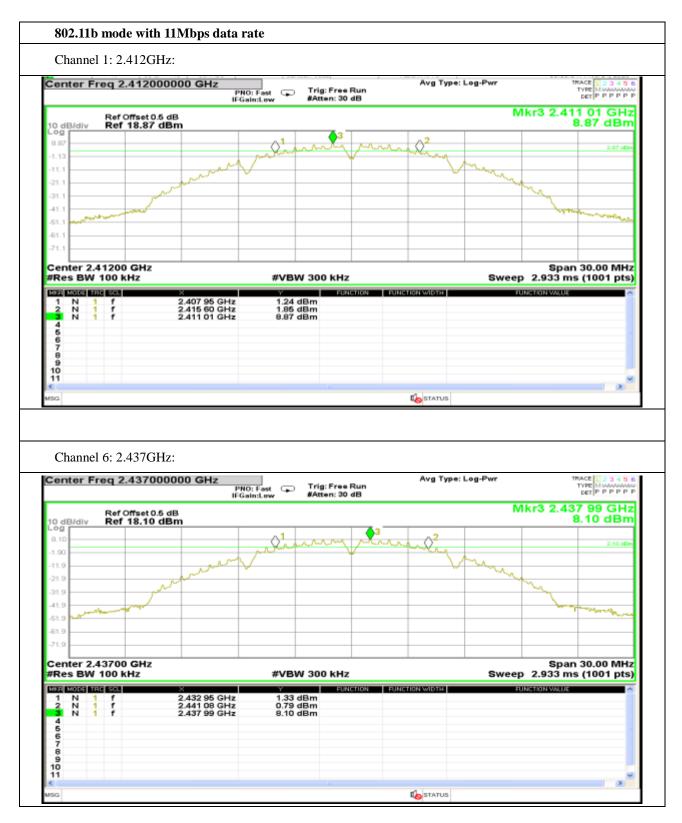


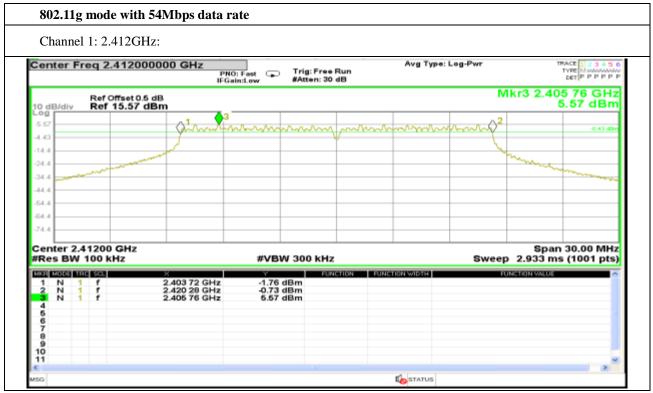


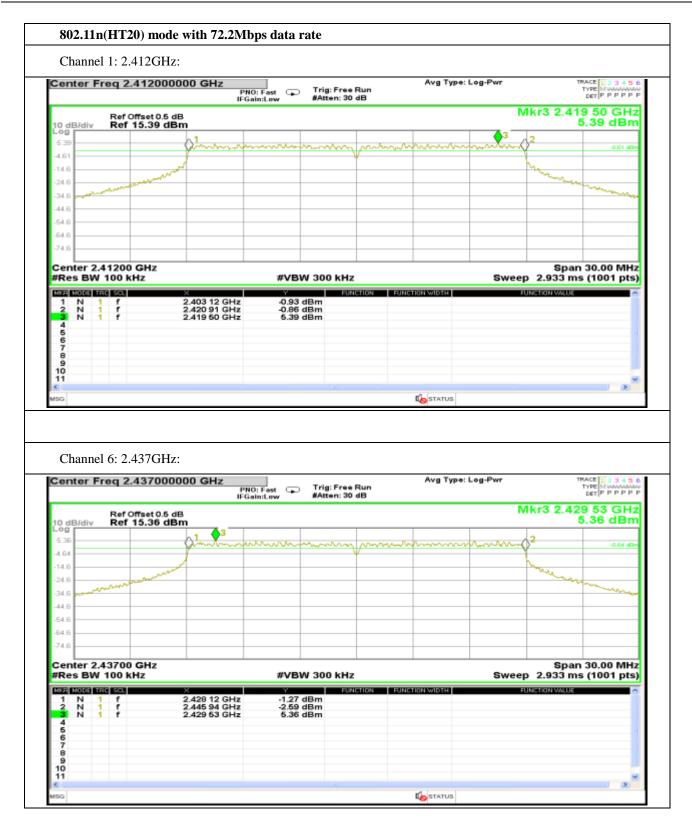


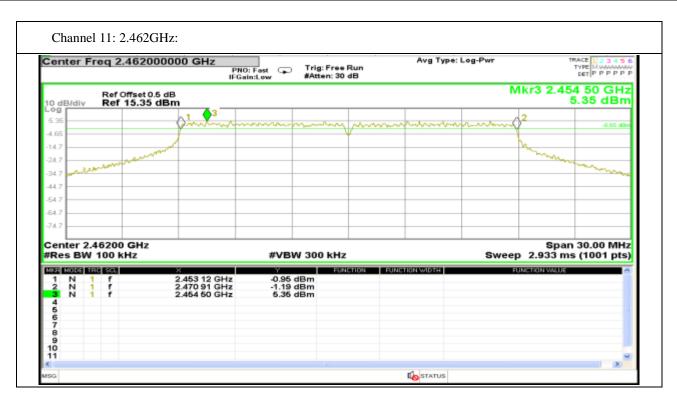


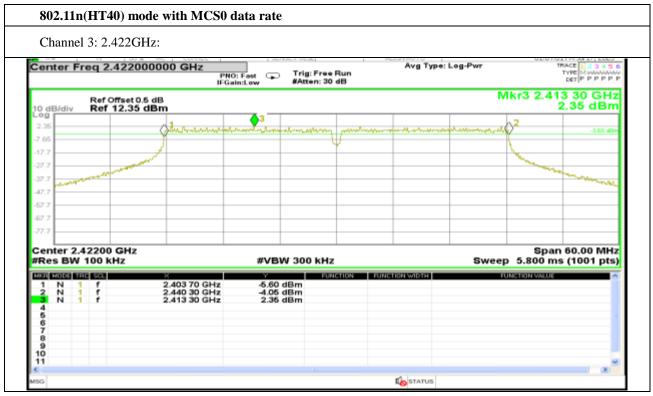


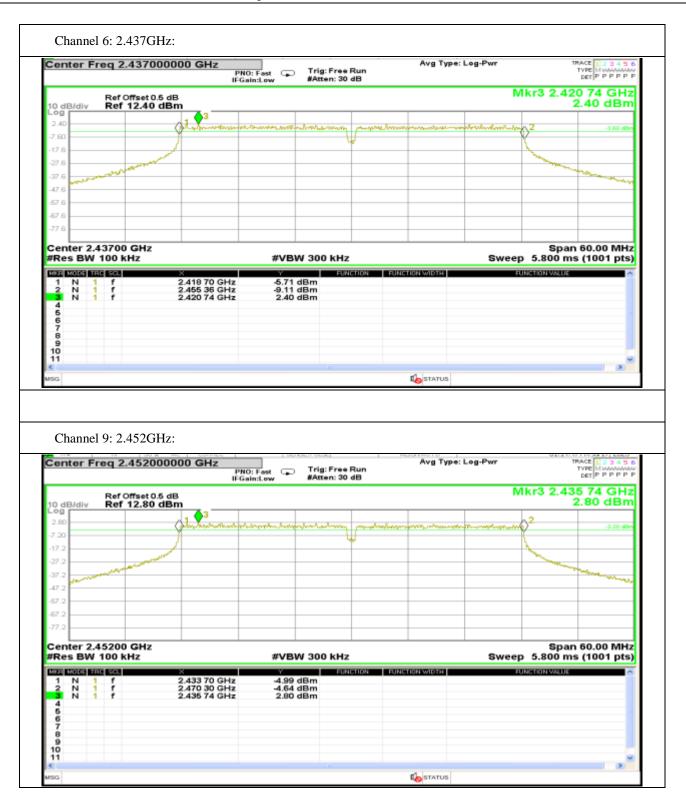



Antenna 1:

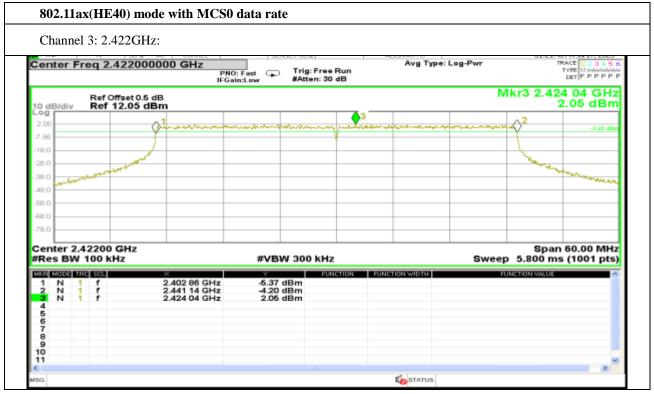


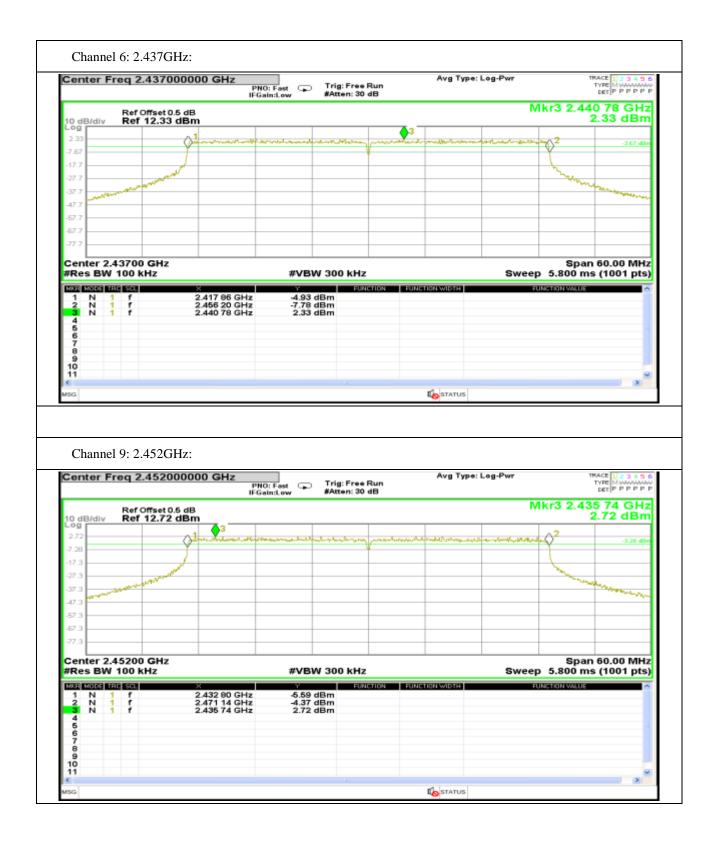




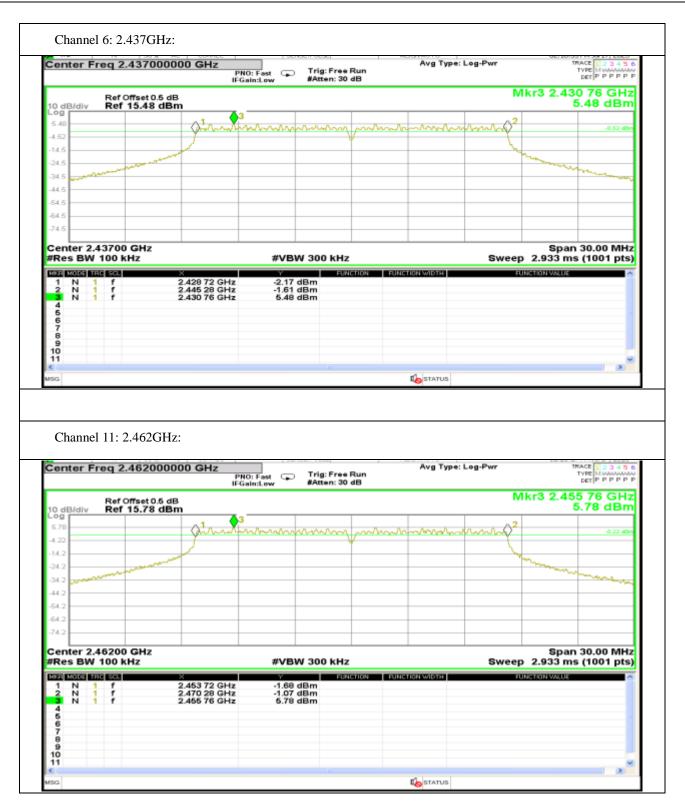




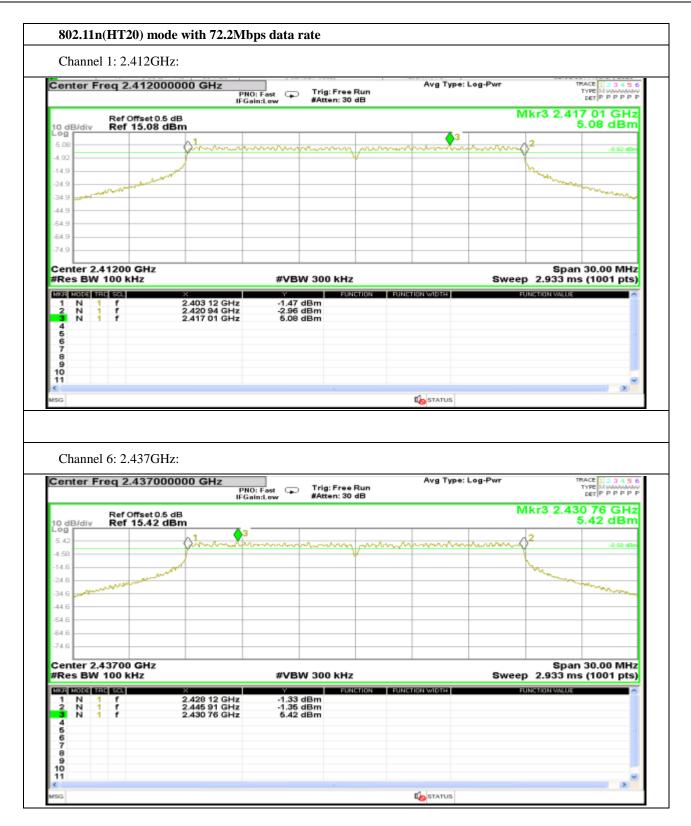


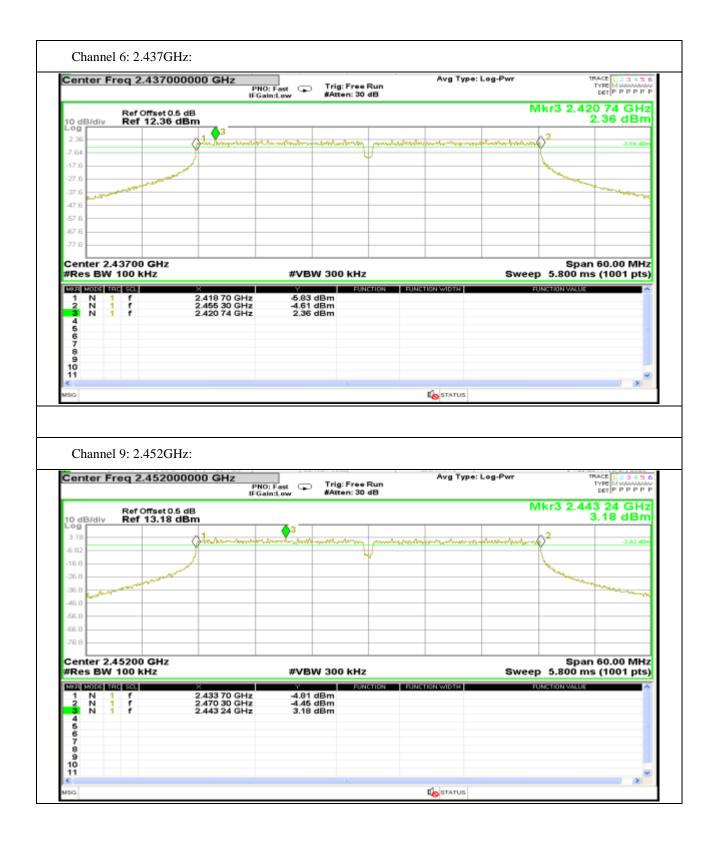


Antenna 2:

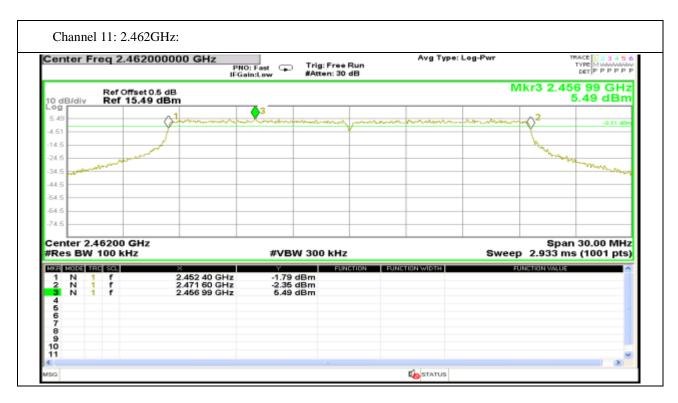


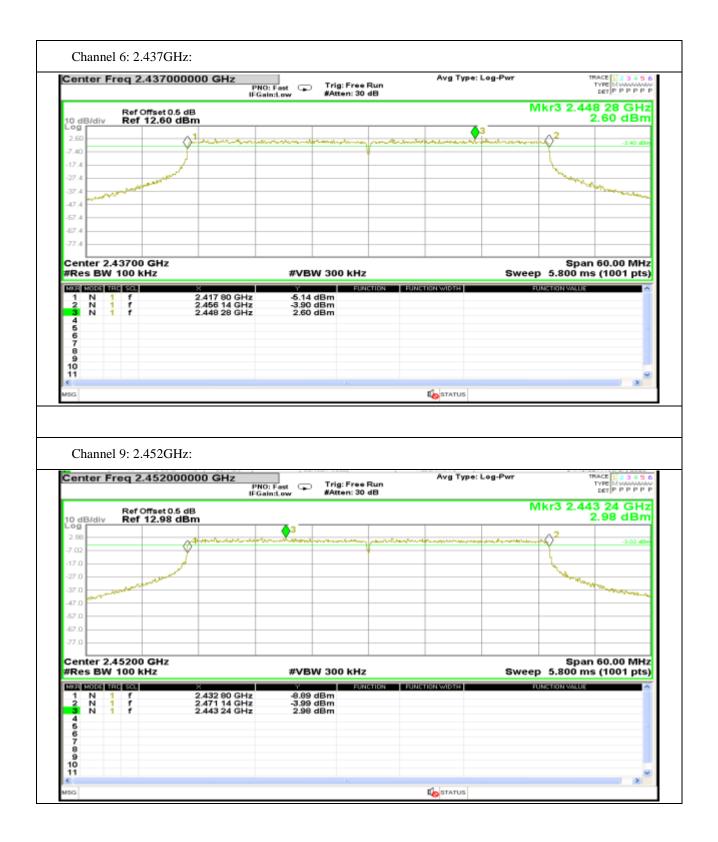
Center Fre	q 2.412000000 GHz	PNO; Fast 😱 Trig: Free Run	Avg Type: Log-Pwr	TRACE 1 2 3 4 5 1
		IFGain:Low #Atten: 30 dB		DETPPPPI
	Ref Offset 0.5 dB Ref 15,34 dBm		MI	r3 2.405 76 GHz 5.34 dBm
5.34	alm.	3	mmmmmm 2	-0.66 dDr
-4.66		Ϋ́		
-24.7	a show and and the statement		T	Mudanna
-34.7 where	- And			and a second and a second as a
-44.7				
-54.7				
-74.7				
Center 2.41	200 GHz			Span 30.00 MHz
#Res BW 1	00 kHz	#VBW 300 kHz	Sweep	2.933 ms (1001 pts)
NKR MODE TRO	f 2.403 72 GH	Z -2.75 dBm	FUNCTION WIDTH FUN	CTION WALUE
2 N 1 3 N 1	f 2.420 28 GH f 2.405 76 GH	z -1.05 dBm		
4				
6				
8				



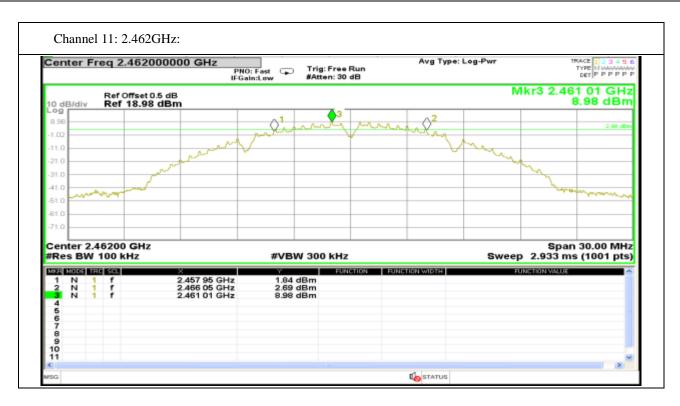


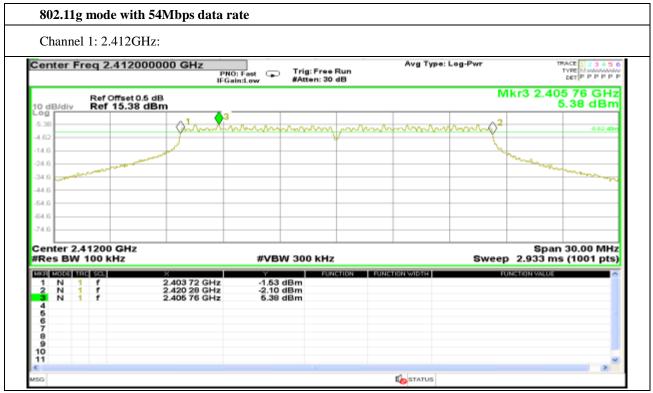


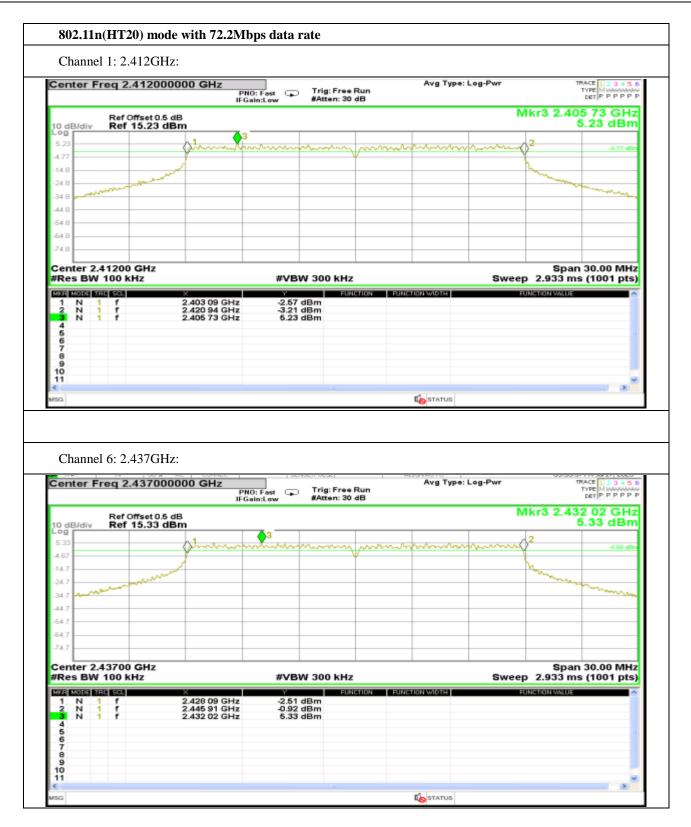


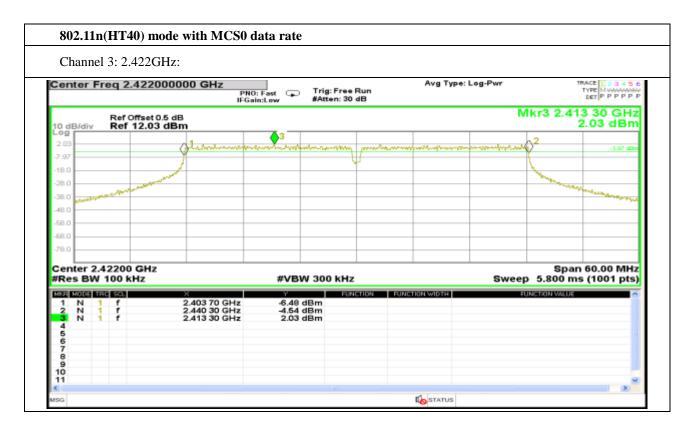


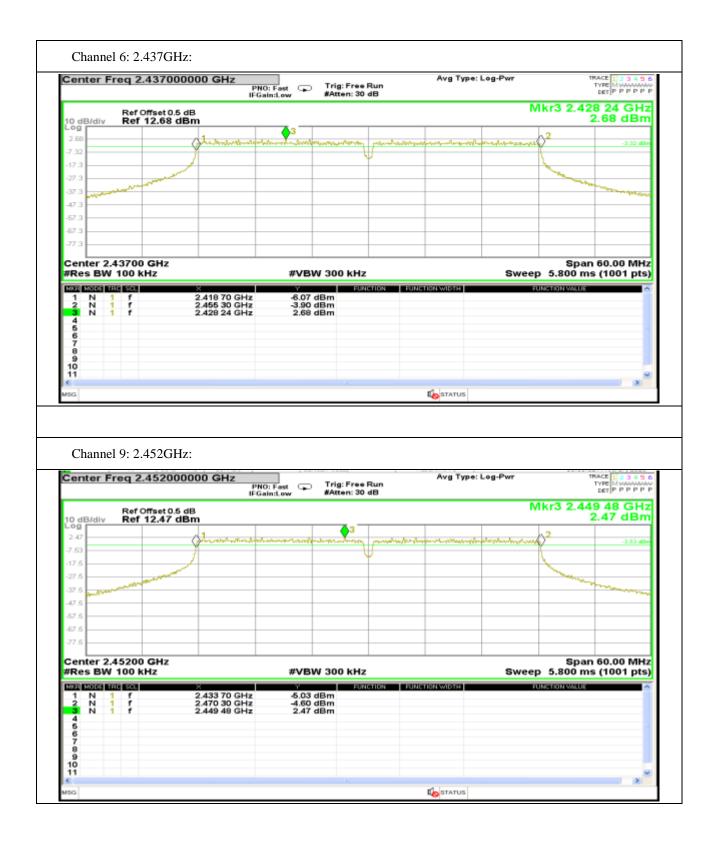


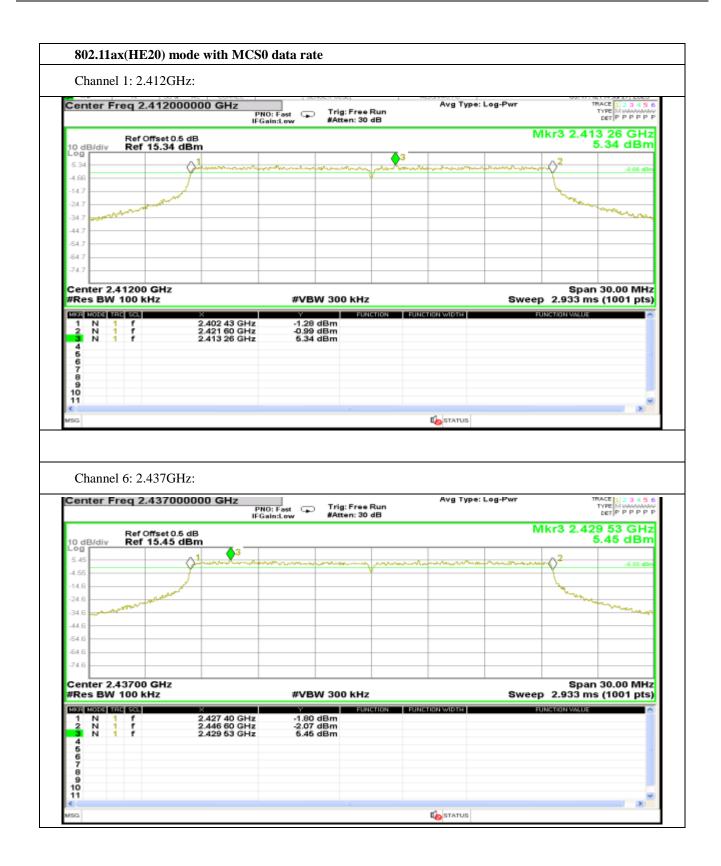


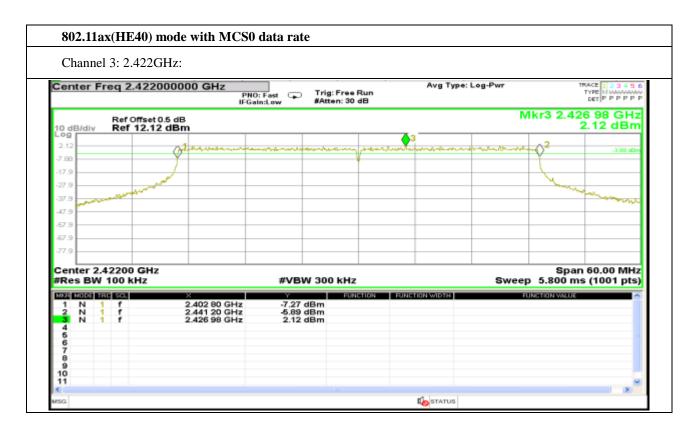

Antenna 3:

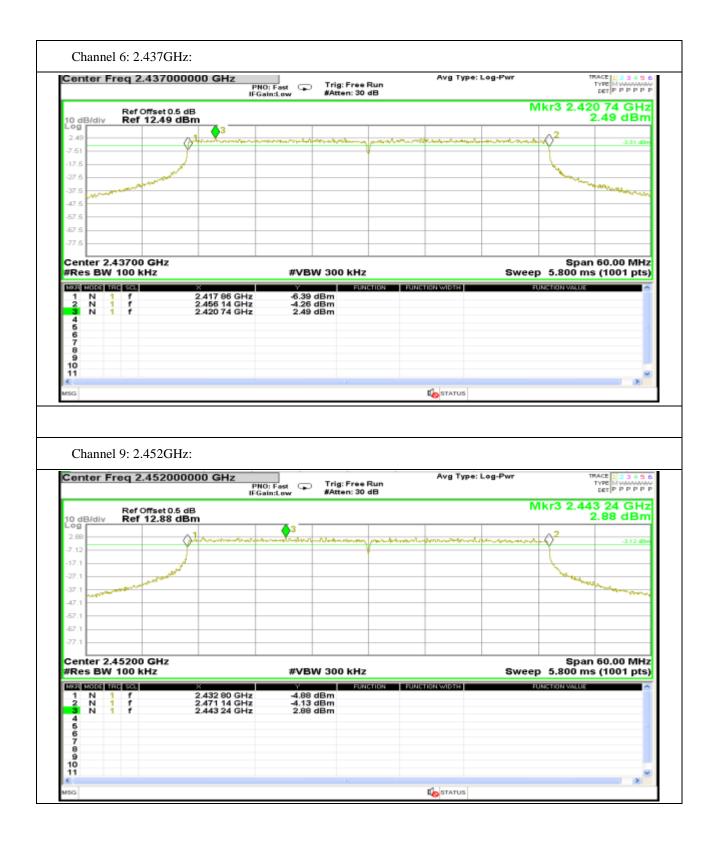


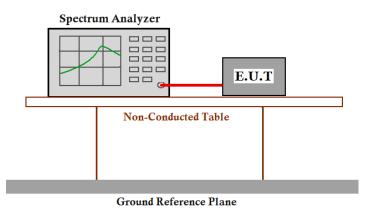












7.6 Maximum Conducted Output Power

Test Requirement:	FCC Part 15 C section 15.247
	(b)(3) For systems using digital modulation in the 902-928 MHz, 2400-2483.5
	MHz, and 5725-5850 MHz bands: 1 Watt.
	Except as shown in paragraph (c) of this section, if transmitting antennas of
	directional gain greater than 6 dBi are used, the conducted output power from
	the intentional radiator shall be reduced below the stated values in paragraphs
	(b) (1), (b) (2), and (b) (3) of this section, as appropriate, by the amount in dB
	that the directional gain of the antenna exceeds 6 dBi.
Test Method:	558074 D01 15.247 Meas Guidance v0502 RBW≥DTS bandwidth
Test Status:	Pre
	-Scan has been conducted to determine the worst-case mode from all possible
	combinations between available modulations, data rates and antenna ports (if
	EUT with antenna diversity architecture). Following channel(s) was (were)
	selected for the final test as listed below.
	Pre-Test the EUT using external Standard DC power source for powering on
	the board.
	the bound.

Test Configuration:

Test Procedure:

- 1. Remove the antenna from the EUT and then connect a low attention attenuation RF cable
- (Cable loss =1.0dB) from the antenna port to the spectrum.
- 2. Set the RBW≥DTS bandwidth
- 3. Set the VBW \geq 3 x RBW
- 4. Set the span \ge 3 x RBW.
- 5. Detector = peak.
- 6. Sweep time = auto couple.
- 7. Trace mode = max hold.
- 8. Use peak marker function to determine the peak amplitude level.
- 9. Report the worse case.

Test result: Antenna 0:

Channel No.	Frequency (MHz)	Mode	Data Rate	Maximum Conducted Output Power (dBm)	Limit	Result
1	2412		11 Mbps	19.63		Pass
6	2437	802.11b	11 Mbps	18.63		Pass
11	2462		11 Mbps	19.77		Pass
1	2412		54 Mbps	25.45		Pass
6	2437	802.11g	54 Mbps	25.51		Pass
11	2462		54 Mbps	25.63		Pass
1	2412	0.0.2.11	72.2 Mbps	25.71		Pass
6	2437	802.11n	72.2 Mbps	25.78		Pass
11	2462	(HT20)	72.2 Mbps	25.83	1111 (20 10)	Pass
3	2422		MCS0	25.43	1W (30dBm)	Pass
6	2437	802.11n (HT40)	MCS0	25.78		Pass
9	2452	(11110)	MCS0	25.98		Pass
1	2412		MCS0	26.72		Pass
6	2437	802.11ax (HE20)	MCS0	26.82		Pass
11	2462	(MCS0	26.82		Pass
3	2422		MCS0	26.51		Pass
6	2437	802.11ax (HE40)	MCS0	26.85		Pass
9	2452	(11210)	MCS0	27.02		Pass

Antenna 1:

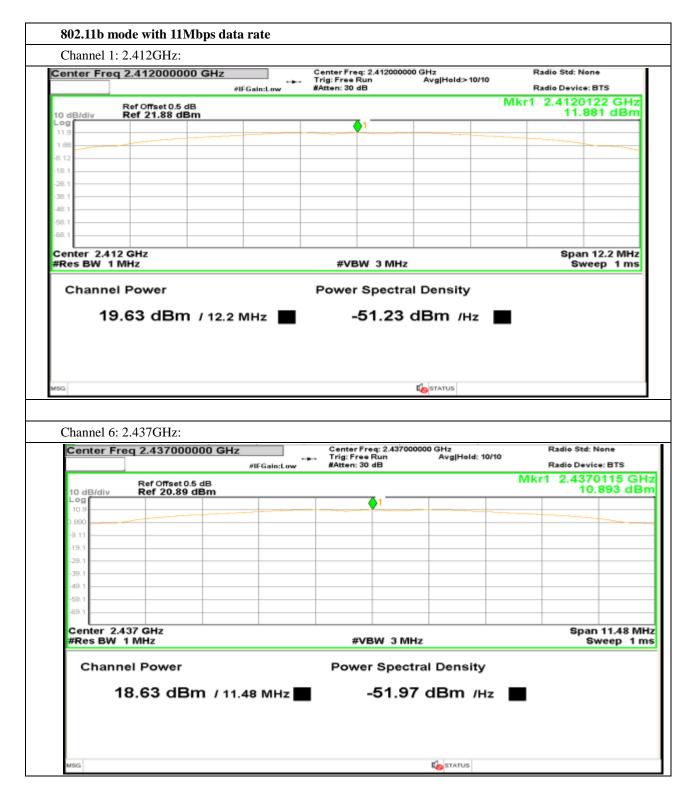
Channel	Frequency			Maximum Conducted Output		
No.	(MHz)	Mode	Data Rate	Power	Limit	Result
INO.	(MITZ)			(dBm)		
1	2412		11 Mbps	19.55		Pass
6	2437	802.11b	11 Mbps	19.58		Pass
11	2462		11 Mbps	19.61		Pass
1	2412		54 Mbps	25.44		Pass
6	2437	802.11g	54 Mbps	25.47		Pass
11	2462		54 Mbps	25.44		Pass
1	2412	002.11	72.2 Mbps	25.78		Pass
6	2437	802.11n	72.2 Mbps	25.71		Pass
11	2462	(HT20)	72.2 Mbps	25.57		Pass
3	2422		MCS0	25.43	1W(30dBm)	Pass
6	2437	802.11n (HT40)	MCS0	25.69		Pass
9	2452	(11110)	MCS0	25.97		Pass
1	2412		MCS0	26.76		Pass
6	2437	802.11ax (HE20)	MCS0	26.67		Pass
11	2462	(122-0)	MCS0	26.65		Pass
3	2422		MCS0	26.47		Pass
6	2437	802.11ax (HE40)	MCS0	26.72		Pass
9	2452	(11210)	MCS0	26.89		Pass

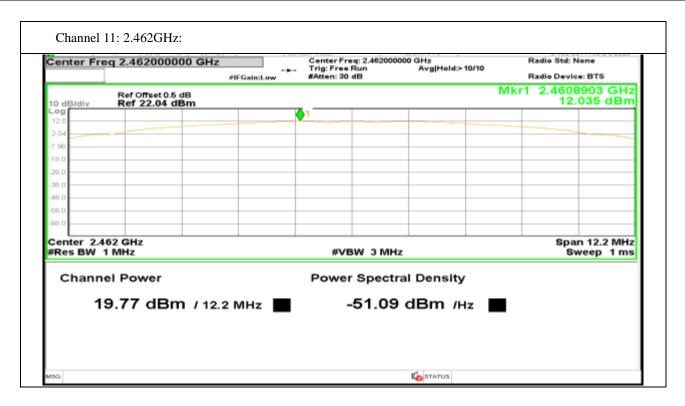
Antenna 2:

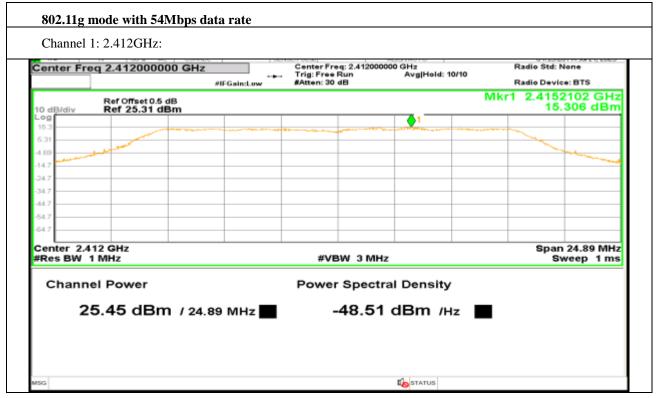
Channel No.	Frequency (MHz)	Mode	Data Rate	Maximum Conducted Output Power (dBm)	Limit	Result
1	2412		11 Mbps	19.42		Pass
6	2437	802.11b	11 Mbps	19.57		Pass
11	2462		11 Mbps	19.75		Pass
1	2412		54 Mbps	25.25		Pass
6	2437	802.11g	54 Mbps	25.28		Pass
11	2462		54 Mbps	25.40		Pass
1	2412	002.11	72.2 Mbps	25.53		Pass
6	2437	802.11n	72.2 Mbps	25.65		Pass
11	2462	(HT20)	72.2 Mbps	25.71	1997/20 ID	Pass
3	2422		MCS0	25.51	1W(30dBm)	Pass
6	2437	802.11n (HT40)	MCS0	25.81		Pass
9	2452	(11110)	MCS0	26.12		Pass
1	2412		MCS0	26.58		Pass
6	2437	802.11ax (HE20)	MCS0	26.72		Pass
11	2462	(11220)	MCS0	26.81		Pass
3	2422		MCS0	26.66		Pass
6	2437	802.11ax (HE40)	MCS0	26.83		Pass
9	2452	(11240)	MCS0	27.02		Pass

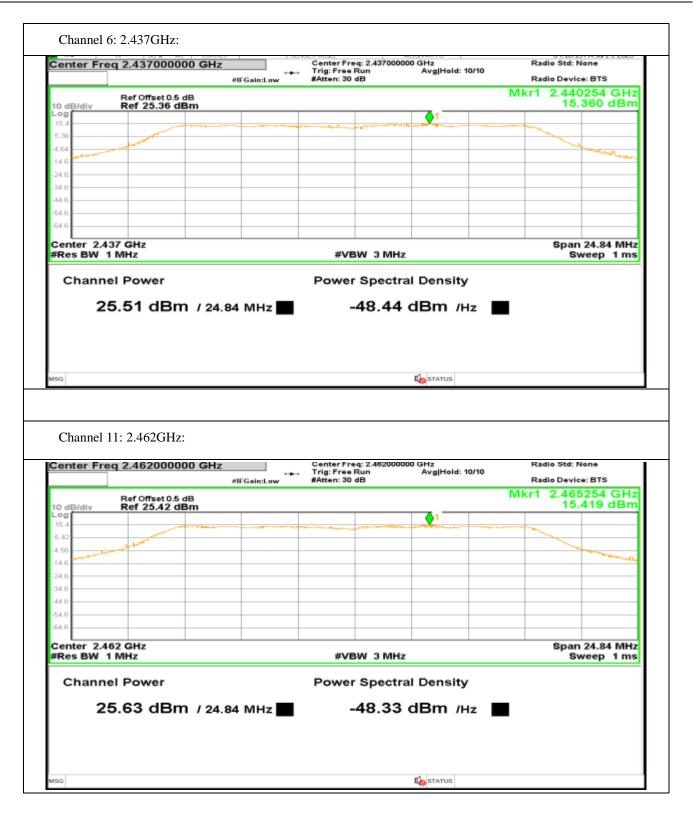
Antenna 3:

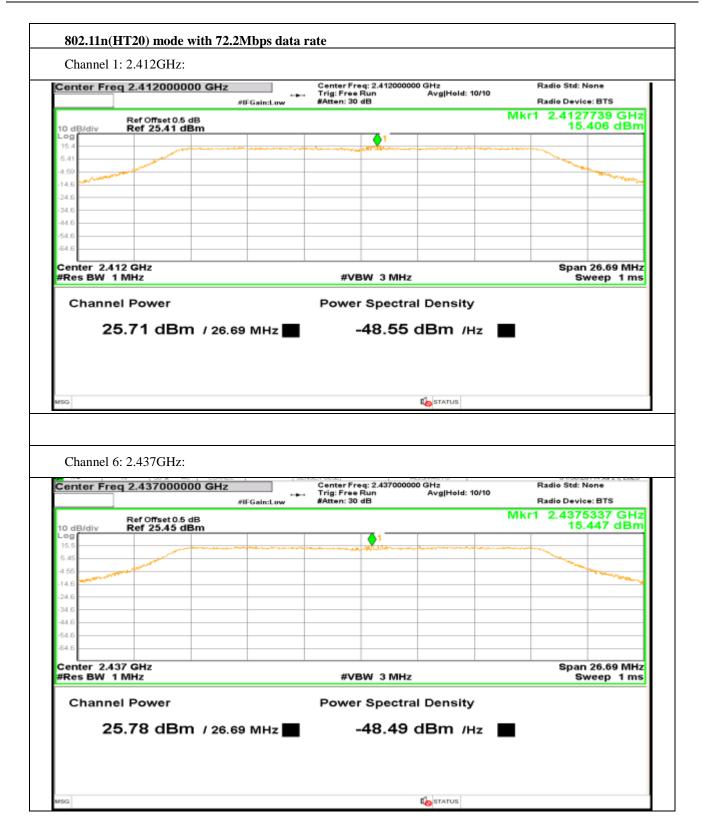
Channel No.	Frequency (MHz)	Mode	Data Rate	Maximum Conducted Output Power (dBm)	Limit	Result
1	2412		11 Mbps	19.53		Pass
6	2437	802.11b	11 Mbps	19.87		Pass
11	2462		11 Mbps	19.65		Pass
1	2412		54 Mbps	25.27		Pass
6	2437	802.11g	54 Mbps	25.45		Pass
11	2462		54 Mbps	25.41		Pass
1	2412	002.11	72.2 Mbps	25.49		Pass
6	2437	802.11n	72.2 Mbps	25.70		Pass
11	2462	(HT20)	72.2 Mbps	25.57		Pass
3	2422		MCS0	25.39	1W(30dBm)	Pass
6	2437	802.11n (HT40)	MCS0	25.73		Pass
9	2452	(11110)	MCS0	26.04		Pass
1	2412		MCS0	26.59		Pass
6	2437	802.11ax (HE20)	MCS0	26.82		Pass
11	2462	(1220)	MCS0	26.65		Pass
3	2422		MCS0	26.43		Pass
6	2437	802.11ax (HE40)	MCS0	26.78		Pass
9	2452	()	MCS0	26.94		Pass

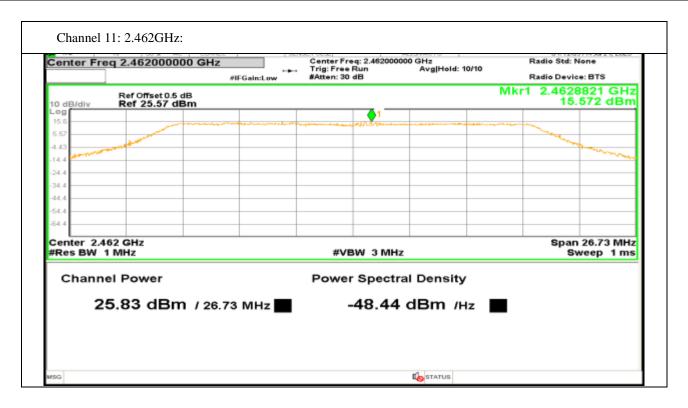

Remark: Level = Read Level + Cable Loss. The unit does meet the FCC requirements.

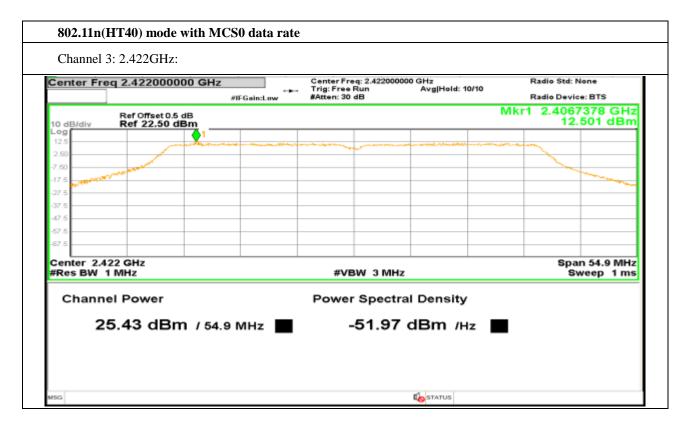

Result plot as follows:

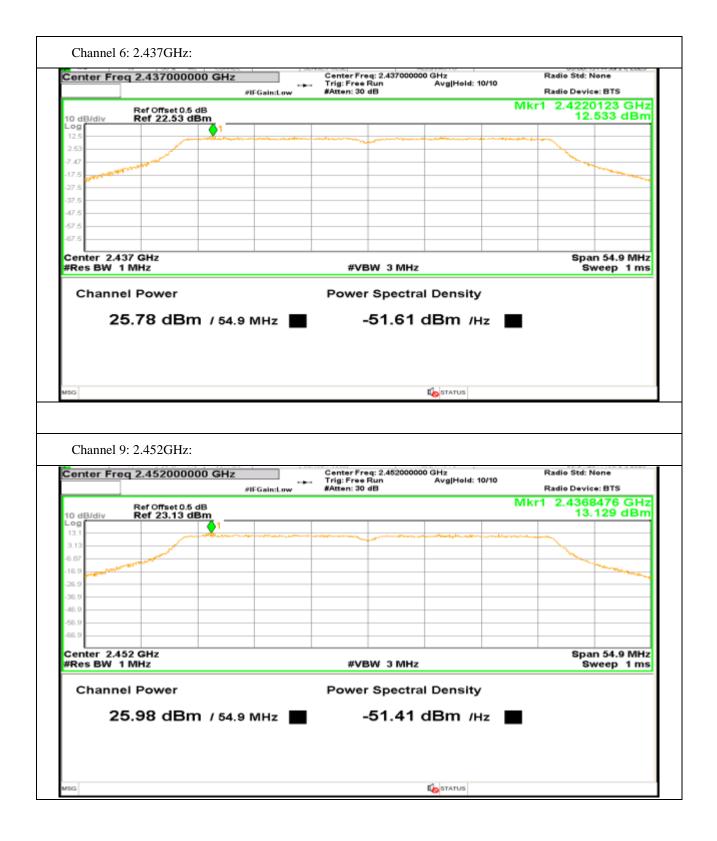

Antenna 0:

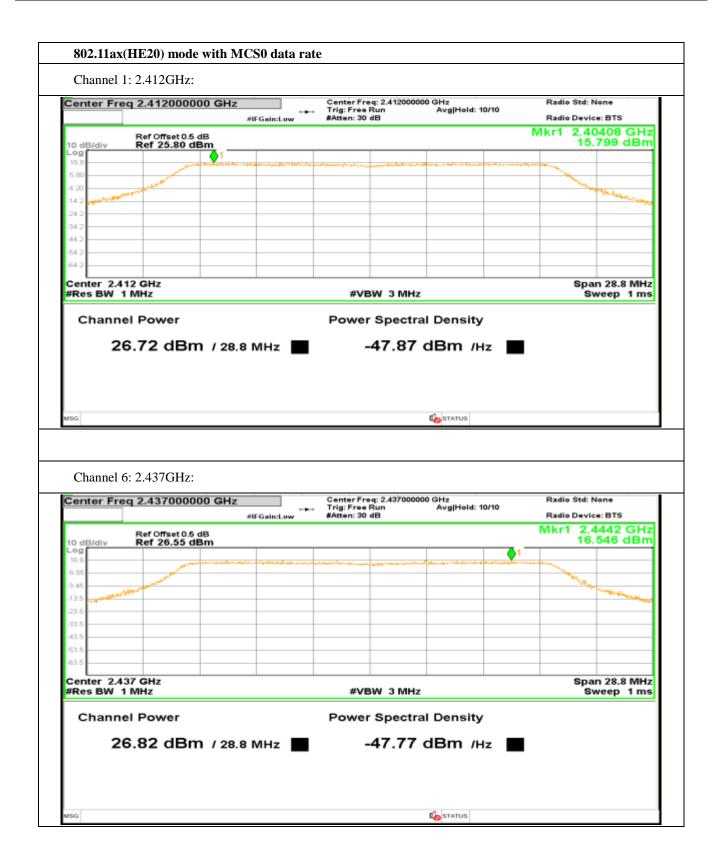


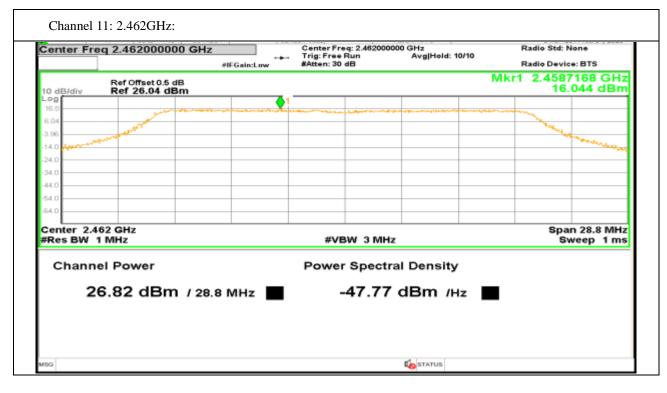


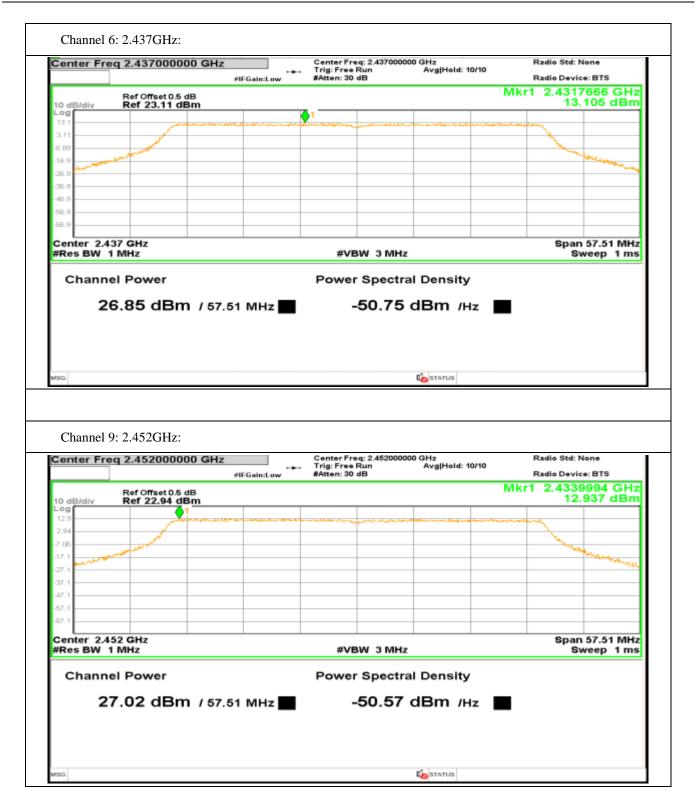


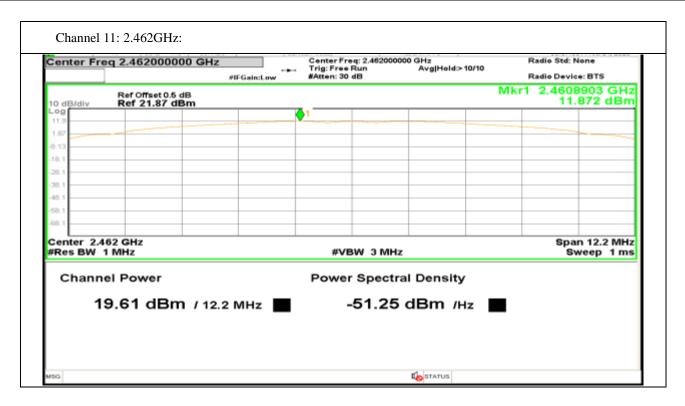


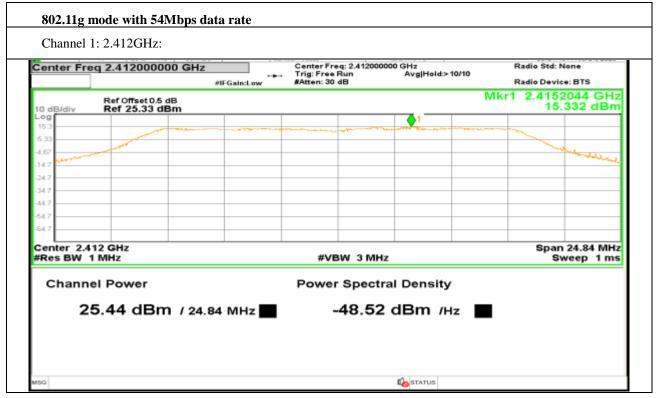











Antenna 1:

center Fre	q 2.4120000	00 GHz #IFGair	Trig: Free Ru		0/10	Radio Std: None Radio Device: BTS
	Ref Offset 0.5				Mkr	1 2.4120115 GF 11.825 dB
10 dB/div Log	Ref 21.82 d	BM	 1			11.020 02
11.82						
-8.18						
-18.2						
-28.2						
-38.2						
-68.2						
-68.2						
Center 2.41 #Res BW 1			#VBW	3 MHz		Span 11.48 M Sweep 1 n
Channe	Power		Power S	pectral Density		
19	9.55 dBn	n / 11.48 MI	lz ■ -5	1.04 dBm /н	z 📕	
MSG						
MSG				I ostatus		
	: 2.437GHz:			I STATUS		
Channel 6	: 2.437GHz: q 2.4370000		Trig: Free Ru	2.437000000 GHz n Avg Held: 10	//10	Radio Std: None Bodio Device: PTC
	q 2.4370000	#IFGair	Trig: Free Ru	2.437000000 GHz n Avg Held: 10	1/10	Radio Device: BTS
Channel 6 Center Fre		#IFGair	Trig: Free Ru	2.437000000 GHz n Avg Held: 10	1/10	
Channel 6	q 2.4370000	#IFGair	Trig: Free Ru	2.437000000 GHz n Avg Held: 10	1/10	Radio Device: BTS Mkr1 2.437 GH
Channel 6 Center Fre	q 2.4370000	#IFGair	Trig: Free Ru	2.437000000 GHz n Avg Held: 10	1/10	Radio Device: BTS Mkr1 2.437 GH
Channel 6	q 2.4370000	#IFGair	Trig: Free Ru	2.437000000 GHz n Avg Held: 10	1/10	Radio Device: BTS Mkr1 2.437 GH
Channel 6 Center Fre	q 2.4370000	#IFGair	Trig: Free Ru	2.437000000 GHz n Avg Held: 10	1/10	Radio Device: BTS Mkr1 2.437 GH
Channel 6 Center Free 10 dB/div 10 dB/div	q 2.4370000	#IFGair	Trig: Free Ru	2.437000000 GHz n Avg Held: 10	//10	Radio Device: BTS Mkr1 2.437 GH
Channel 6 Center Fre 10 dB/div 11.8 1.82 -8.18 -18.2 -38.2 -48.2	q 2.4370000	#IFGair	Trig: Free Ru	2.437000000 GHz n Avg Held: 10	1/10	Radio Device: BTS Mkr1 2.437 GH
Channel 6 Center Free 10 dB/div 10 dB/div	q 2.4370000	#IFGair	Trig: Free Ru	2.437000000 GHz n Avg Held: 10	1/10	Radio Device: BTS Mkr1 2.437 GH
Channel 6 Center Fre 10 dB/dlv 1.82 4.18 1.82 -28.2 -38.2 -48.2 -58.2 -58.2	q 2.4370000 Ref Offset 0.5 Ref 21.82 d	#IFGair	Trig: Free Ru	2.437000000 GHz n Avg Held: 10	//10	Radio Device: BTS Mkr1 2.437 GH 11.825 dB
Channel 6 Center Fre 10 dB/div 11.8 1.82 -8.16 -16.2 -26.2 -36.2 -46.2 -56.2	q 2.4370000 Ref Offset 0.5 Ref 21.82 d	#IFGair	Trig: Free Ru #Atten: 30 dB	2.437000000 GHz n Avg Held: 10	1/10	Radio Device: BTS Mkr1 2.437 GH
Channel 6 Center Fre 10 dB/div Log 11.8 1.82 4.16 1.82 -28.2 -38.2 -48.2 -38.2 -48.2 -59.2 -59.5	q 2.4370000 Ref Offset 0.5 Ref 21.82 d	#IFGair	Trig: Free Ru #Atten: 30 dB	2.437000000 GHz n Avg Hold: 10	1/10	Radio Device: BTS Mkr1 2.437 GF 11.825 dB

