
#### Included in your Package



If any of these items are missing from the box, contact your Uniden Dealer or the Uniden Parts Department at (800)-554-3988.

# Schmid & Partner Engineering AG

Zeughausstrasse 43, 8004 Zurich, Switzerland, Phone +41 1 245 97 00, Fax +41 1 245 97 79

## **Additional Conversion Factors**

for Dosimetric E-Field Probe

| Type:                   | ET3DV6                    |
|-------------------------|---------------------------|
| Serial Number:          | 1677                      |
| Place of Assessment:    | Zurich                    |
| Date of Assessment:     | <b>September 27, 2002</b> |
| Probe Calibration Date: | April 10, 2002            |

Schmid & Partner Engineering AG hereby certifies that conversion factor(s) of this probe have been evaluated on the date indicated above. The assessment was performed using the FDTD numerical code SEMCAD of Schmid & Partner Engineering AG. Since the evaluation is coupled with measured conversion factors, it has to be recalculated yearly, i.e., following the recalibration schedule of the probe. The uncertainty of the numerical assessment is based on the extrapolation from measured value at 900 MHz or at 1800 MHz.

# Dosimetric E-Field Probe ET3DV6 SN:1677

Conversion factor (± standard deviation)

300 MHz

ConvF

 $7.4 \pm 8\%$ 

 $\varepsilon_{\rm r} = 45.3 + / - 5\%$ 

 $\sigma = 0.87 + /-5\% \text{ mho/m}$ 

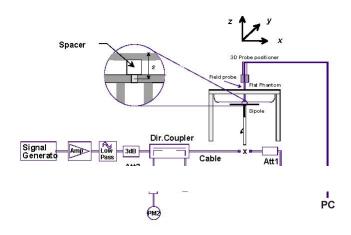
(head tissue)



### 12. SYSTEM VERIFICATION

#### **Tissue Verification**

Table 12.1 Simulated Tissue Verification [5]


| MEASURED TISSUE PARAMETERS |                                                        |        |          |        |          |        |          |               |          |
|----------------------------|--------------------------------------------------------|--------|----------|--------|----------|--------|----------|---------------|----------|
| Date(s)                    | s) 09/30/02 150MHz Brain 150MHz Muscle 300MHz Brain 30 |        |          |        |          |        | 300MF    | 300MHz Muscle |          |
| Liquid<br>Temperature (°C) | 22.9                                                   | Target | Measured | Target | Measured | Target | Measured | Target        | Measured |
| Dielectric Constant: ε     |                                                        | 52.30  | 51.9     | 61.90  | 61.30    | 45.3   | 45.4     | 58.20         | N/A      |
| Conductivity: σ            |                                                        | 0.760  | 0.780    | 0.800  | 0.830    | 0.870  | 0.890    | 0.920         | N/A      |

### **Test System Validation**

Prior to assessment, the system is verified to the  $\pm 10\%$  of the specifications at 300MHz by using the system validation kit(s). (Graphic Plots Attached)

Table 12.2 System Validation [5]

|                        | SYSTEM | DIPOLE VALIDATION TA              | ARGET & MEASURED                  |               |
|------------------------|--------|-----------------------------------|-----------------------------------|---------------|
| System Validation Kit: | 300MHz | Targeted SAR <sub>1g</sub> (mW/g) | Measured SAR <sub>1g</sub> (mW/g) | Deviation (%) |
| D-300V2, S/N: 301      | Brain  | 0.750                             | 0.805                             | + <b>7.3</b>  |

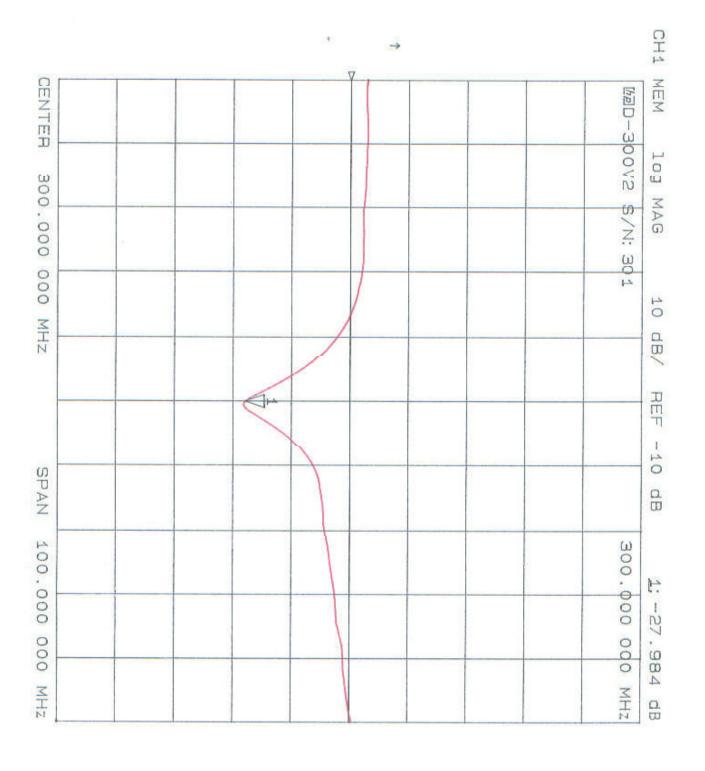


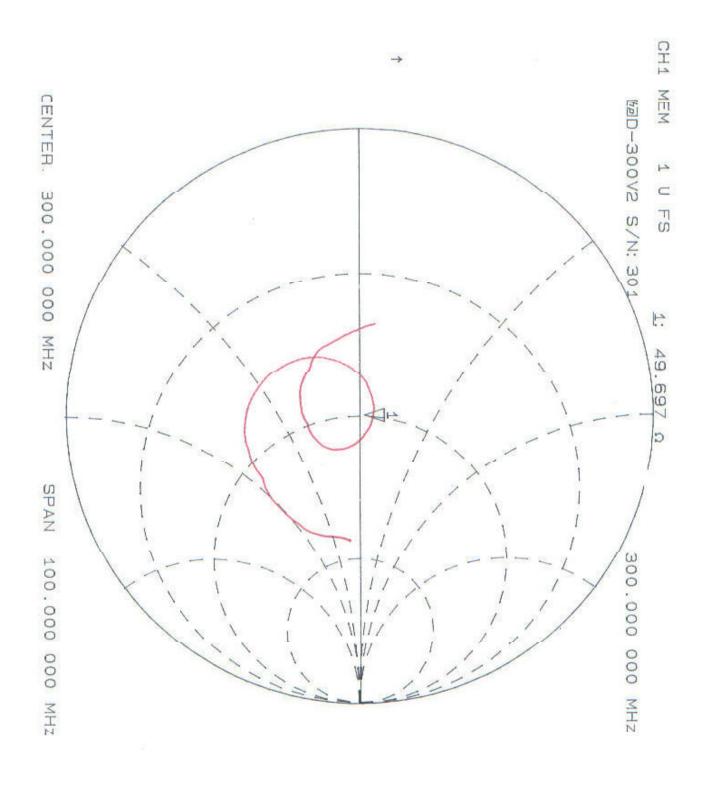
| PCTEST™ SAR REPORT | PCTEST             | FCC CERTIFICATION      | Uniden   | <b>Reviewed by:</b><br>Quality Manager |
|--------------------|--------------------|------------------------|----------|----------------------------------------|
| SAR Filename:      | <b>Test Dates:</b> | EUT Type:              | FCC ID:  | Page 16 of 22                          |
| SAR-220911484.AMW  | Oct. 1-2, 2002     | 2-Way VHF Marine Radio | AMWUT889 |                                        |



### 15. SAR TEST EQUIPMENT

# **Equipment Calibration**


**Table 15.1 Test Equipment Calibration** 


| EQUIPMENT SPECIFICATIONS                 |                    |                  |                     |  |  |  |
|------------------------------------------|--------------------|------------------|---------------------|--|--|--|
| Туре                                     |                    | Calibration Date | Serial Number       |  |  |  |
| Stäubli Robot RX60L                      |                    | February 2002    | 599131-01           |  |  |  |
| Stäubli Robot Controller                 |                    | February 2002    | PCT592              |  |  |  |
| Stäubli Teach Pendant (Joystick)         |                    | February 2002    | 3323-00161          |  |  |  |
| Micron Computer, 450 MHz Pentium I       | II, Windows NT     | February 2002    | PCT577              |  |  |  |
| SPEAG EDC3                               |                    | February 2002    | 321                 |  |  |  |
| SPEAG DAE3                               |                    | February 2002    | 330                 |  |  |  |
| SPEAG E-Field Probe ET3DV6               |                    | April 2002       | 1677                |  |  |  |
| SPEAG Dummy Probe                        |                    | February 2002    | PCT583              |  |  |  |
| SPEAG SAM Twin Phantom V4.0              |                    | February 2002    | PCT666              |  |  |  |
| SPEAG Light Alignment Sensor             |                    | February 2002    | 205                 |  |  |  |
| PCTEST Validation Dipole D300V2          |                    | September 2002   | PCT301              |  |  |  |
| SPEAG Validation Dipole D835V2           |                    | February 2002    | PCT512              |  |  |  |
| SPEAG Validation Dipole D1900V2          |                    | February 2002    | PCT613              |  |  |  |
| Brain Equivalent Matter (150MHz)         |                    | October 2002     | PCTBEM501           |  |  |  |
| Brain Equivalent Matter (300MHz)         |                    | October 2002     | PCTBEM601           |  |  |  |
| Muscle Equivalent Matter (150MHz)        |                    | October 2002     | PCTMEM501           |  |  |  |
| Microwave Amp. Model: 5S1G4, (800)       | MHz - 4.2GHz)      | January 2002     | 22332               |  |  |  |
| Gigatronics 8651A Power Meter            |                    | January 2002     | 1835299             |  |  |  |
| HP-8648D (9kHz ~ 4GHz) Signal Generator  |                    | January 2002     | PCT530              |  |  |  |
| Amplifier Research 5S1G4 Power Amp       |                    | January 2002     | PCT540              |  |  |  |
| HP-8753E (30kHz ~ 3GHz) Network Analyzer |                    | January 2002     | PCT552              |  |  |  |
| HP85070B Dielectric Probe Kit            |                    | January 2002     | PCT501              |  |  |  |
| Ambient Noise/Reflection, etc.           | <12mW/kg/<3%of SAR | January 2002     | Anechoic Room PCT01 |  |  |  |

#### NOTE:

The E-field probe was calibrated by SPEAG, by temperature measurement procedure. Dipole Validation measurement is performed by PCTEST Lab. before each test. The brain simulating material is calibrated by PCTEST using the dielectric probe system and network analyzer to determine the conductivity and permittivity (dielectric constant) of the brain-equivalent material.

| PCTEST™ SAR REPORT | PCTEST Framewood addressive, inc. | FCC CERTIFICATION      | Uniden   | <b>Reviewed by:</b><br>Quality Manager |
|--------------------|-----------------------------------|------------------------|----------|----------------------------------------|
| SAR Filename:      | <b>Test Dates:</b>                | EUT Type:              | FCC ID:  | Page 20 of 22                          |
| SAR-220911484.AMW  | Oct. 1-2, 2002                    | 2-Way VHF Marine Radio | AMWUT889 |                                        |







# 11. MEASUREMENT UNCERTAINTIES

| a                                          | b      | С     | d     | e=         | f              | g              | h =            | i =            | k              |
|--------------------------------------------|--------|-------|-------|------------|----------------|----------------|----------------|----------------|----------------|
|                                            |        |       |       | f(d,k)     |                |                | cxf/e          | cxg/e          |                |
| Uncertainty                                |        | Tol.  | Prob. |            | C <sub>i</sub> | C <sub>i</sub> | 1 - g          | 10 - g         |                |
| Component                                  | Sec.   | (± %) | Dist. | Div.       | (1 - g)        | (10 - g)       | u <sub>i</sub> | u <sub>i</sub> | V <sub>i</sub> |
|                                            |        | (=,   |       |            | ( 3,           | (12 9)         | (± %)          | (± %)          | '              |
| Measurement System                         |        |       |       |            |                |                |                |                |                |
| Probe Calibration                          | E1.1   | 4.0   | N     | 1          | 1              | 1              | 4.0            | 4.0            | $\infty$       |
| Axial Isotropy                             | E1.2   | 4.88  | R     | √3         | 0.5            | 0.5            | 1.4            | 1.4            | $\infty$       |
| Hemishperical Isotropy                     | E1.2   | 9.6   | R     | √3         | 0.5            | 0.5            | 2.8            | 2.8            | $\infty$       |
| Boundary Effect                            | E1.3   | 11.0  | R     | √3         | 1              | 1              | 6.4            | 6.4            | $\infty$       |
| Linearity                                  | E1.4   | 4.7   | R     | √3         | 1              | 1              | 2.7            | 2.7            | $\infty$       |
| System Detection Limits                    | E1.5   | 1.0   | R     | √3         | 1              | 1              | 0.6            | 0.6            | $\infty$       |
| Readout Electronics                        | E1.6   | 1.0   | R     | 1          | 1              | 1              | 1.0            | 1.0            | $\infty$       |
| Response Time                              | E1.7   | 0.8   | R     | $\sqrt{3}$ | 1              | 1              | 0.5            | 0.5            | ∞              |
| Integration Time                           | E1.8   | 1.7   | R     | $\sqrt{3}$ | 1              | 1              | 1.0            | 1.0            | ∞              |
| RF Ambient Conditions                      | E5.1   | 1.2   | R     | √3         | 1              | 1              | 0.7            | 0.7            | ∞              |
| Probe Positioner Mechanical Tolerance      | E5.2   | 0.4   | R     | √3         | 1              | 1              | 0.2            | 0.2            | ∞              |
| Probe Positioning w/ respect to Phantom    | E5.3   | 2.9   | R     | √3         | 1              | 1              | 1.7            | 1.7            | ∞              |
| Extrapolation, Interpolation & Integration | E4.2   | 3.9   | R     | √3         | 1              | 1              | 2.3            | 2.3            | ∞              |
| Algorithms for Max. SAR Evaluation         |        |       |       |            |                |                |                |                |                |
| Test Sample Related                        |        |       |       |            |                |                |                |                |                |
| Test Sample Positioning                    | E3.2.1 | 10.6  | R     | $\sqrt{3}$ | 1              | 1              | 6.1            | 6.1            | 11             |
| Device Holder Uncertainty                  | E3.1.1 | 8.7   | R     | $\sqrt{3}$ | 1              | 1              | 5.0            | 5.0            | 8              |
| Output Power Variation - SAR drift         | 5.6.2  | 5.0   | R     | $\sqrt{3}$ | 1              | 1              | 2.9            | 2.9            | $\infty$       |
| measurement                                |        |       |       |            |                |                |                |                |                |
| Phantom & Tissue Parameters                |        |       |       |            |                |                |                |                |                |
| Phantom Uncertainty (Shape & Thickness     | E2.1   | 4.0   | R     | $\sqrt{3}$ | 1              | 1              | 2.3            | 2.1            | $\infty$       |
| tolerances)                                |        |       |       |            |                |                |                |                |                |
| Liquid Conductivity - deviation from       | E2.2   | 5.0   | R     | $\sqrt{3}$ | 0.7            | 0.5            | 2.0            | 1.4            | ∞              |
| target values                              |        |       |       |            |                |                |                |                |                |
| Liquid Conductivity - measurement          | E2.2   | 10.0  | R     | $\sqrt{3}$ | 0.7            | 0.5            | 4.0            | 2.9            | $\infty$       |
| uncertainty                                |        |       |       |            |                |                |                |                |                |
| Liquid Permittivity - deviation from       | E2.2   | 5.0   | R     | $\sqrt{3}$ | 0.6            | 0.5            | 1.7            | 1.4            | ∞              |
| target values                              |        |       |       |            |                |                |                |                |                |
| Liquid Permittivity - measurement          | E2.2   | 5.0   | R     | $\sqrt{3}$ | 0.6            | 0.5            | 1.7            | 1.4            | $\infty$       |
| uncertainty                                |        |       |       |            |                |                |                |                |                |
| Combined Standard Uncertainty (k=1)        | ļ      |       | RSS   |            |                |                | 13.7           | 13.2           |                |
| Expanded Uncertainty (k=2)                 |        |       |       |            |                |                | 27.4           | 26.4           |                |
| (95% CONFIDENCE LEVEL)                     |        |       |       |            |                |                |                |                |                |

The above measurement uncertainties are according to IEEE Std. 1528-200x (July, 2001)

| PCTEST™ SAR REPORT | PCTEST Framewood addressive, inc. | FCC CERTIFICATION      | Uniden   | <b>Reviewed by:</b><br>Quality Manager |
|--------------------|-----------------------------------|------------------------|----------|----------------------------------------|
| SAR Filename:      | <b>Test Dates:</b>                | EUT Type:              | FCC ID:  | Page 15 of 22                          |
| SAR-220911484.AMW  | Oct. 1-2, 2002                    | 2-Way VHF Marine Radio | AMWUT889 |                                        |