

MPE Calculations

R33LCAVMHTC101

1.0	SCOPE	3
2.0	REVISION LEVEL	3
3.0	REFERENCE DOCUMENTS	3
4.0	CALCULATIONS	3
5.0	CONCLUSION	4

1.0 SCOPE:

This Report Demonstrates Evaluation and Compliance for Human Exposure to Electromagnetic Fields as Outlined by the Federal Communications Commission Office of Engineering and Technology Bulletin 65.

2.0 **REVISION LEVEL:**

DATE	COMMENTS	REVISION
8/07/2005	Created.	1.0

3.0 REFERANCE DOCUMENTS:

- (A) Limits for Maximum Permissible Exposure (MPE). Code of Federal Regulations Title 47, Volume 1, Sections 1.1310
- (B) Limits for Maximum Permissible Exposure (MPE). Code of Federal Regulations Title 47, Volume 1, Sections 2.1093
- (C) Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields. OET Bulletin 67 Edition 97-01.

4.0 CALCULATIONS

The following worst case emissions are based on a PPt (Peak Power Total) measurement of 10.70 dBm into the antenna. And the worst case antenna gain on axis is found to be 3.2 dBi.

Total power into antenna: A) Pt = 10.70 dBm = 10^(9.70 dBm/10) = 11.75 mW

Total effective isotropic radiated power at the Transmitter:

B) EIRP = 10.70 dBm + 3.2dBi = 13.90 dBm

13.90 dBm = 24.55 mW

Power density at a distance of 20 centimeters is:

C)
$$S = \frac{EIRP}{4\pi R^2} = 4.9 \ \mu W/cm^2$$

Where $S = Power density (mW/cm^2)$, EIRP = Equivalent isotropic radiated power (mW), R = Distance to the center of radiation of the antenna (cm)

5.0 CONCLUSION:

Based on the FCC Limits for Maximum Permissible Exposure (MPE) given in Table 1 of reference document (A) as 1 mW/cm² this device falls under the required limits.