

TEST REPORT

Applicant Name: Address:

Report Number: FCC ID: HONG KONG YO YOUNG INTELLIGENT CO., LIMITED 19H MAXGRAND PLAZA NO.3 TAI YAU STREET SAN PO KONG,KOWLOON,HONGKONG 2401V31893E-RF-00A 2A8X4-AIR3

Test Standard (s)

FCC PART 15.247

Sample Description

Product Type:	Smart phone
Model No.:	Air3
Multiple Model(s) No.:	N/A
Trade Mark:	IIIF150
Date Received:	2024/07/22
Issue Date:	2024/09/05

Test Result:

Pass▲

▲ In the configuration tested, the EUT complied with the standards above.

Prepared and Checked By:

Gala Lin

Gala Liu **RF Engineer**

Approved By:

Nanal Wang

Nancy Wang RF Supervisor

Note: The information marked [#] is provided by the applicant, the laboratory is not responsible for its authenticity and this information can affect the validity of the result in the test report. Customer model name, addresses, names, trademarks etc. are included.

This report cannot be reproduced except in full, without prior written approval of the Company. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested. This report is valid only with a valid digital signature. The digital signature may be available only under the Adobe software above version 7.0. This report must not be used by the customer to claim product certification, approval, or endorsement by NVLAP or any agency of the U.S. Government. This report may contain data that are not covered by the NVLAP accreditation and are marked with an asterisk "V".

Bay Area Compliance Laboratories Corp. (Shenzhen)

5F(B-West) , 6F, 7F, the 3rd Phase of Wan Li Industrial Building D, Shihua Rd, FuTian Free Trade Zone, Shenzhen, China Tel: +86-755-33320018 Fax: +86-755-33320008 www.baclcorp.com.cn

TR-EM-RF001

Page 1 of 83

Version 3.0

TABLE OF CONTENTS

DOCUMENT REVISION HISTORY	4
GENERAL INFORMATION	5
PRODUCT DESCRIPTION FOR EQUIPMENT UNDER TEST (EUT)	5
OBJECTIVE	
Test Methodology	
Measurement Uncertainty Test Facility	
SYSTEM TEST CONFIGURATION	
DESCRIPTION OF TEST CONFIGURATION	
EUT EXERCISE SOFTWARE	
SPECIAL ACCESSORIES	7
Equipment Modifications	
SUPPORT EQUIPMENT LIST AND DETAILS	
External I/O Cable Block Diagram of Test Setup	
SUMMARY OF TEST RESULTS	
TEST EQUIPMENT LIST	11
FCC§15.247 (I), §1.1307 (B) (1) & §2.1093 - RF EXPOSURE	
Applicable Standard	
MTEICABLE STANDARD MEASUREMENT RESULT	-
FCC §15.203 - ANTENNA REQUIREMENT	14
APPLICABLE STANDARD	
ANTENNA CONNECTOR CONSTRUCTION	14
FCC §15.207 (A) - AC LINE CONDUCTED EMISSIONS	15
APPLICABLE STANDARD	
EUT SETUP	
EMI Test Receiver Setup Test Procedure	
FACTOR & OVER LIMIT CALCULATION	
TEST DATA	
FCC §15.205, §15.209 & §15.247(D) - RADIATED EMISSIONS	19
APPLICABLE STANDARD	19
EUT SETUP	
EMI TEST RECEIVER & SPECTRUM ANALYZER SETUP	
Test Procedure Factor & Over Limit/Margin Calculation	
FACTOR & OVER LIMIT/MARGIN CALCULATION TEST DATA	
FCC §15.247(A) (1) - CHANNEL SEPARATION TEST	
APPLICABLE STANDARD	
TEST PROCEDURE	
TEST DATA	

FCC §15.247(A) (1) - 20 DB EMISSION BANDWIDTH	
APPLICABLE STANDARD	
Test Procedure	
TEST DATA	
FCC §15.247(A) (1) (III) - QUANTITY OF HOPPING CHANNEL TEST	
APPLICABLE STANDARD	
TEST PROCEDURE	
ТЕЅТ DATA	
FCC §15.247(A) (1) (III) - TIME OF OCCUPANCY (DWELL TIME)	40
APPLICABLE STANDARD	40
TEST PROCEDURE	
TEST DATA	41
FCC §15.247(B) (1) - PEAK OUTPUT POWER MEASUREMENT	42
APPLICABLE STANDARD	42
TEST PROCEDURE	42
ТЕЅТ DATA	42
FCC §15.247(D) § 5.5 - BAND EDGES TESTING	43
APPLICABLE STANDARD	43
TEST PROCEDURE	
TEST DATA	
EUT PHOTOGRAPHS	44
TEST SETUP PHOTOGRAPHS	45
APPENDIX	46
APPENDIX A: 20DB EMISSION BANDWIDTH	46
APPENDIX B: OCCUPIED CHANNEL BANDWIDTH	
APPENDIX C: MAXIMUM CONDUCTED PEAK OUTPUT POWER	
APPENDIX D: CARRIER FREQUENCY SEPARATION	
APPENDIX E: TIME OF OCCUPANCY	
APPENDIX F: NUMBER OF HOPPING CHANNELS	
APPENDIX G: BAND EDGE MEASUREMENTS	

DOCUMENT REVISION HISTORY

Revision Number	Report Number	Description of Revision	Date of Revision
0	2401V31893E-RF-00A	Original Report	2024/09/05

GENERAL INFORMATION

Product	Smart phone
Tested Model	Air3
Multiple Model(s)	N/A
Frequency Range	Bluetooth: 2402~2480MHz
Transmit Peak Power	3.48dBm
Modulation Technique	Bluetooth: GFSK, π/4-DQPSK, 8DPSK
Antenna Specification [#]	-1.69dBi (provided by the applicant)
Voltage Range	DC3.87V from Li-ion battery or DC 5/9/12/15/3.3-11V from adapter
Sample serial number	2ONZ-2 for Conducted and Radiated Emissions Test 2ONZ-1 for RF Conducted Test (Assigned by BACL, Shenzhen)
Sample/EUT Status	Good condition
Adapter Information	Model: FC69U Input: AC 100-240V, 50/60Hz, 0.8A Max Output: QC: DC 5V, 3A or 9V, 3A or 12V, 2.5A PD: DC 5V, 3A or 9V, 3A or 12V, 2.5A or 15V, 2A PPS: DC 3.3-11V, 2.72A

Product Description for Equipment under Test (EUT)

Objective

This test report is in accordance with Part 2-Subpart J, Part 15-Subparts A and C of the Federal Communication Commission rules.

The tests were performed in order to determine compliance with FCC Part 15, Subpart C, section 15.203, 15.207, 15.205, 15.209 and 15.247 rules.

Test Methodology

All measurements contained in this report were conducted with ANSI C63.10-2013, American National Standard of Procedures for Compliance Testing of Unlicensed Wireless Devices.

All emissions measurement was performed at Bay Area Compliance Laboratories Corp. (Shenzhen). The radiated testing was performed at an antenna-to-EUT distance of 3 meters.

Each test item follows test standards and with no deviation.

Measurement Uncertainty

Parameter			Uncertainty
Occupied Channel Bandwidth		Bandwidth	±5%
RF outpu	t power, c	conducted	0.72 dB(k=2, 95% level of confidence)
AC Power Lines Cond	ucted	9kHz-150kHz	3.94dB(k=2, 95% level of confidence)
Emissions		150kHz-30MHz	3.84dB(k=2, 95% level of confidence)
		9kHz - 30MHz	3.30dB(k=2, 95% level of confidence)
	30MH	z~200MHz (Horizontal)	4.48dB(k=2, 95% level of confidence)
	30M	Hz~200MHz (Vertical)	4.55dB(k=2, 95% level of confidence)
Radiated Emissions	200MHz~1000MHz (Horizontal)		4.85dB(k=2, 95% level of confidence)
Radiated Emissions	200MHz~1000MHz (Vertical)		5.05dB(k=2, 95% level of confidence)
	1GHz - 6GHz		5.35dB(k=2, 95% level of confidence)
	6GHz - 18GHz		5.44dB(k=2, 95% level of confidence)
	18GHz - 40GHz		5.16dB(k=2, 95% level of confidence)
Temperature		re	±1°C
Humidity			±1%
Supply voltages		ges	±0.4%

Note: The extended uncertainty given in this report is obtained by combining the standard uncertainty times the coverage factor K with the 95% confidence interval. Otherwise required by the applicant or Product Regulations, Decision Rule in this report did not consider the uncertainty.

Test Facility

The Test site used by Bay Area Compliance Laboratories Corp. (Shenzhen) to collect test data is located on the 5F(B-West), 6F, 7F, the 3rd Phase of Wan Li Industrial Building D, Shihua Rd, FuTian Free Trade Zone, Shenzhen, China.

The lab has been recognized as the FCC accredited lab under the KDB 974614 D01 and is listed in the FCC Public Access Link (PAL) database, FCC Registration No. : 715558, the FCC Designation No. : CN5045.

SYSTEM TEST CONFIGURATION

Description of Test Configuration

The system was configured for testing in an engineering mode.

Channel	Frequency (MHz)	Channel	Frequency (MHz)
0	2402	40	2442
1	2403	41	2443
2	2404	42	2444
36	2438	75	2477
37	2439	76	2478
38	2440	77	2479
39	2441	78	2480

EUT was tested with Channel 0, 39 and 78.

EUT Exercise Software

EUT was testing in engineering mode and the power level is $6^{\#}$. The power level was provided by the applicant.

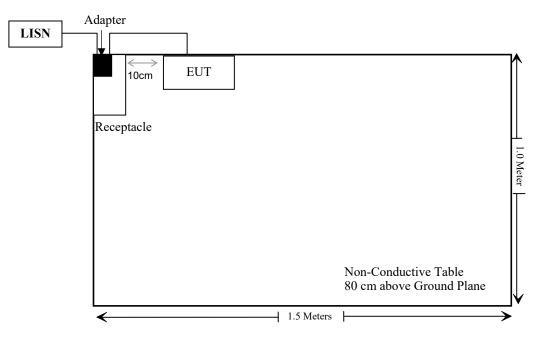
Special Accessories

No special accessory.

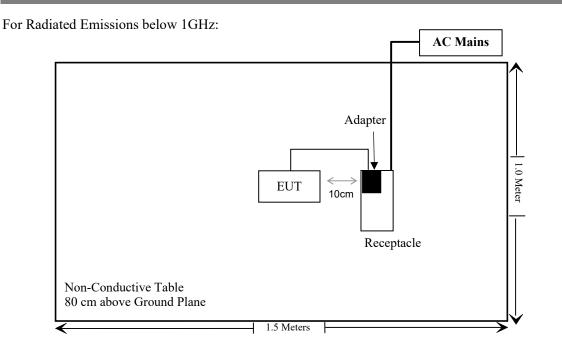
Equipment Modifications

No modification was made to the EUT tested.

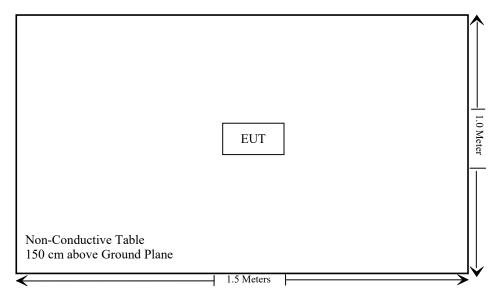
Support Equipment List and Details


Manufacturer	Description	Model	Serial Number
Unknown	Receptacle	Unknown	Unknown

External I/O Cable


Cable Description	Length (m)	From Port	То
Un-shielding Detachable USB Cable	1.0	EUT	Adapter
Un-shielded Un-detachable AC Cable	1.5	Receptacle	LISN/AC Mains

Block Diagram of Test Setup


For Conducted Emissions:

Report No.: 2401V31893E-RF-00A

For Radiated Emissions above 1GHz:

SUMMARY OF TEST RESULTS

Rules	Description of Test	Result
FCC 15.247 (i), §1.1307 (b) (1) & §2.1093	RF Exposure	Compliant
FCC §15.203	Antenna Requirement	Compliant
FCC §15.207(a)	AC Line Conducted Emissions	Compliant
FCC §15.205, §15.209, §15.247(d)	Radiated Emissions	Compliant
FCC §15.247(a)(1)	20 dB Emission Bandwidth	Compliant
FCC §15.247(a)(1)	Channel Separation Test	Compliant
FCC §15.247(a)(1)(iii)	Time of Occupancy (Dwell Time)	Compliant
FCC §15.247(a)(1)(iii)	Quantity of hopping channel Test	Compliant
FCC §15.247(b)(1)	Peak Output Power Measurement	Compliant
FCC §15.247(d)	Band edges	Compliant

TEST EQUIPMENT LIST

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date		
Conducted Emission Test							
Rohde & Schwarz	EMI Test Receiver	ESCI	101120	2024/01/16	2025/01/15		
Rohde & Schwarz	LISN	ENV216	101613	2024/01/16	2025/01/15		
Rohde & Schwarz	Transient Limiter	ESH3Z2	DE25985	2024/05/21	2025/05/20		
Unknown	CE Cable	Unknown	UF A210B-1- 0720-504504	2024/05/21	2025/05/20		
Audix	EMI Test software	E3	191218(V9)	NCR	NCR		
	R	adiated Emission Test	t				
Rohde & Schwarz	EMI Test Receiver	ESR3	102455	2024/01/16	2025/01/15		
Sonoma instrument	Pre-amplifier	310 N	186238	2024/05/21	2025/05/20		
Sunol Sciences	Broadband Antenna	JB1	A040904-1	2023/07/20	2026/07/19		
Unknown	Cable	Chamber A Cable 1	N/A	2024/06/18	2025/06/17		
Unknown	Cable	XH500C	J-10M-A	2024/06/18	2025/06/17		
BACL	Active Loop Antenna	1313-1A	4031911	2024/05/14	2027/05/13		
Audix	EMI Test software	E3	19821b(V9)	NCR	NCR		
Rohde & Schwarz	Spectrum Analyzer	FSV40	101605	2024/03/27	2025/03/26		
COM-POWER	Pre-amplifier	PA-122	181919	2024/06/18	2025/06/17		
Schwarzbeck	Horn Antenna	BBHA9120D(1201)	1143	2023/07/26	2026/07/25		
Unknown	RF Cable	KMSE	735	2024/06/18	2025/06/17		
Unknown	RF Cable	UFA147	219661	2024/06/18	2025/06/17		
Unknown	RF Cable	XH750A-N	J-10M	2024/06/18	2025/06/17		
JD	Multiplex Switch Test Control Set	DT7220FSU	DQ77926	2024/06/18	2025/06/17		
A.H.System	Pre-amplifier	PAM-1840VH	190	2024/06/18	2025/06/17		
Electro-Mechanics Co	Horn Antenna	3116	9510-2270	2023/09/18	2026/09/17		
UTIFLEX	RF Cable	NO. 13	232308-001	2024/06/18	2025/06/17		
Audix	EMI Test software	E3	191218(V9)	NCR	NCR		

Report No.: 2401V31893E-RF-00A

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
		RF Conducted Test			
Tonscend	RF control Unit	JS0806-2	19D8060154	2023/09/06	2024/09/05
Rohde & Schwarz	Spectrum Analyzer	FSV40	101473	2024/01/16	2025/01/15
Unknown	10dB Attenuator	Unknown	F-03-EM122	2024/06/27	2025/06/26
Unknown	RF Cable	65475	01670515	2024/06/27	2025/06/26

* **Statement of Traceability:** Bay Area Compliance Laboratories Corp. (Shenzhen) attests that all calibrations have been performed in accordance to requirements that traceable to National Primary Standards and International System of Units (SI).

FCC§15.247 (i), §1.1307 (b) (1) & §2.1093 - RF EXPOSURE

Applicable Standard

According to FCC §2.1093 and §1.1307(b) (1), systems operating under the provisions of this section shall be operated in a manner that ensure that the public is not exposed to radio frequency energy level in excess of the Commission's guideline.

According to KDB 447498 D01 General RF Exposure Guidance

The 1-g and 10-g SAR test exclusion thresholds for 100 MHz to 6 GHz at test separation distances \leq 50 mm are determined by:

[(max. power of channel, including tune-up tolerance, mW)/(min. test separation distance, mm)] ·

 $[\sqrt{f}(GHz)] \le 3.0$ for 1-g SAR and ≤ 7.5 for 10-g extremity SAR, where

1. f(GHz) is the RF channel transmit frequency in GHz.

2. Power and distance are rounded to the nearest mW and mm before calculation.

3. The result is rounded to one decimal place for comparison.

4. When the minimum test separation distance is < 5 mm, a distance of 5 mm is applied to determine SAR test Exclusion.

Measurement Result

For worst case:

Mode	Frequency (MHz)	Max tune-up conducted power [#] (dBm)	Max tune-up conducted power [#] (mW)	Distance (mm)	Calculated value	Threshold (1-g SAR)	SAR Test Exclusion
BT	2402-2480	4.0	2.51	5	0.8	3.0	Yes

Result: Compliant

FCC §15.203 - ANTENNA REQUIREMENT

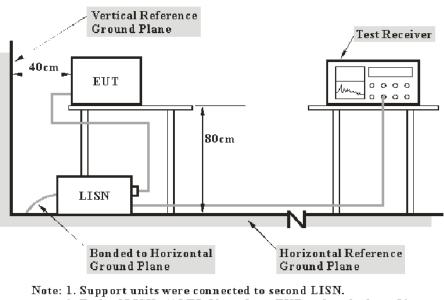
Applicable Standard

According to FCC § 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this Section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

Further, this requirement does not apply to intentional radiators that must be professionally installed, such as perimeter protection systems and some field disturbance sensors, or to other intentional radiators which, in accordance with § 15.31(d), must be measured at the installation site. However, the installer shall be responsible for ensuring that the proper antenna is employed so that the limits in this part are not exceeded.

Antenna Connector Construction

The EUT has one internal antenna arrangement, which was permanently attached, the antenna gain[#] is -1.69dBi, fulfill the requirement of this section. Please refer to the EUT photos.


Result: Compliant

FCC §15.207 (a) - AC LINE CONDUCTED EMISSIONS

Applicable Standard

FCC §15.207(a)

EUT Setup

Both of LISNs (AMN) 80 cm from EUT and at the least 80 cm from other units and other metal planes support units.

The measurement procedure of EUT setup is according with ANSI C63.10-2013. The related limit was specified in FCC Part 15.207.

The spacing between the peripherals was 10 cm.

EMI Test Receiver Setup

The EMI test receiver was set to investigate the spectrum from 150 kHz to 30 MHz.

During the conducted emission test, the EMI test receiver was set with the following configurations:

Frequency Range	IF B/W
150 kHz – 30 MHz	9 kHz

Test Procedure

During the conducted emission test, the adapter was connected to the outlet of the LISN.

Maximizing procedure was performed on the six (6) highest emissions of the EUT.

All final data was recorded in the Quasi-peak and average detection mode.

Factor & Over Limit Calculation

The factor is calculated by adding LISN VDF (Voltage Division Factor) and Cable Loss. The basic equation is as follows:

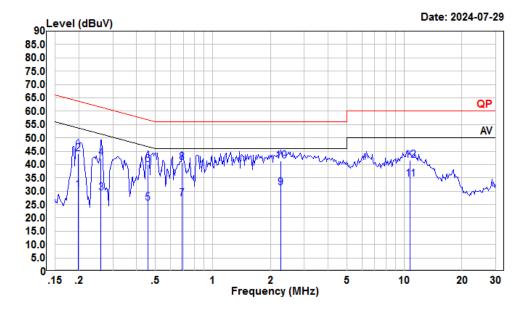
Factor = LISN VDF + Cable Loss

The "**Over limit**" column of the following data tables indicates the degree of compliance with the applicable limit. For example, an Over limit of -7 dB means the emission is 7 dB below the limit. The equation for calculation is as follows:

Over Limit = Level – Limit Level = Read Level + Factor

Note: The term "cable loss" refers to the combination of a cable and a 10dB transient limiter (attenuator).

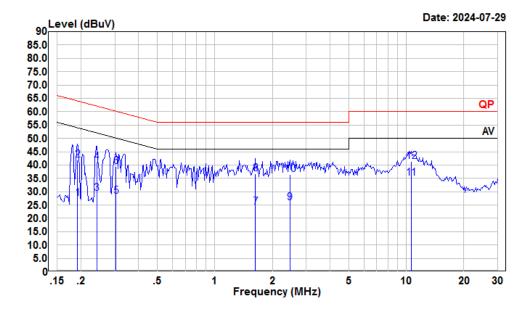
Test Data


Environmental Conditions

Temperature:	26 °C
Relative Humidity:	68 %
ATM Pressure:	101 kPa

The testing was performed by Macy Shi on 2024-07-29.

EUT operation mode: Transmitting (Maximum output power mode, BDR Mode Middle channel)


AC 120V/60 Hz, Line

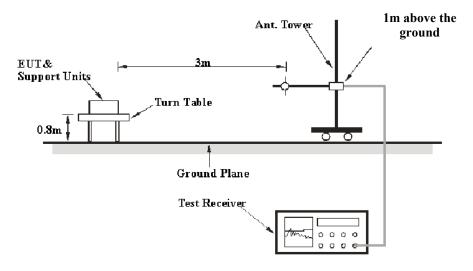
Condition:	Line
Project :	2401V31893E-RF
tester :	Macy.shi
Note :	ВТ

		Read		LISN	Cable	Limit	0ver	
	Freq	Level	Level	Factor	Loss	Line	Limit	Remark
	MHz	dBuV	dBuV	dB	dB	dBuV	dB	
1	0.20	9.68	30.57	10.80	10.09	53.71	-23.14	Average
2	0.20	23.18	44.07	10.80	10.09	63.71	-19.64	QP
3	0.26	8.52	29.32	10.71	10.09	51.42	-22.10	Average
4	0.26	21.66	42.46	10.71	10.09	61.42	-18.96	QP
5	0.46	4.89	25.54	10.53	10.12	46.76	-21.22	Average
6	0.46	19.37	40.02	10.53	10.12	56.76	-16.74	QP
7	0.69	6.57	27.22	10.50	10.15	46.00	-18.78	Average
8	0.69	20.20	40.85	10.50	10.15	56.00	-15.15	QP
9	2.26	10.51	31.24	10.55	10.18	46.00	-14.76	Average
10	2.26	20.61	41.34	10.55	10.18	56.00	-14.66	QP
11	10.73	13.77	34.58	10.60	10.21	50.00	-15.42	Average
12	10.73	20.78	41.59	10.60	10.21	60.00	-18.41	QP

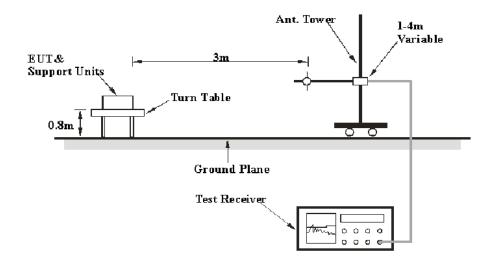
AC 120V/60 Hz, Neutral

Condition:	Neutral
Project :	2401V31893E-RF
tester :	Macy.shi
Note :	BT

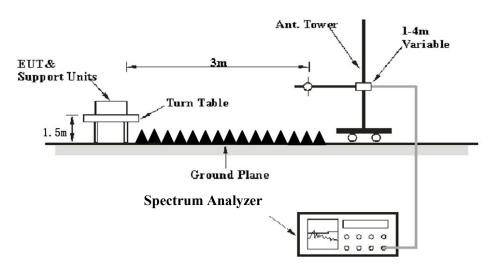
		Read		LISN	Cable	Limit	0ver	
	Freq	Level	Level	Factor	Loss	Line	Limit	Remark
	MHz	dBuV	dBuV	dB	dB	dBuV	dB	
1	0.19	6.94	27.46	10.43	10.09	53.98	-26.52	Average
2	0.19	21.33	41.85	10.43	10.09	63.98	-22.13	QP
3	0.24	8.96	29.50	10.46	10.08	52.04	-22.54	Average
4	0.24	20.53	41.07	10.46	10.08	62.04	-20.97	QP
5	0.31	7.60	28.25	10.54	10.11	50.10	-21.85	Average
6	0.31	18.91	39.56	10.54	10.11	60.10	-20.54	QP
7	1.63	3.40	24.12	10.55	10.17	46.00	-21.88	Average
8	1.63	16.13	36.85	10.55	10.17	56.00	-19.15	QP
9	2.46	5.15	25.72	10.40	10.17	46.00	-20.28	Average
10	2.46	15.91	36.48	10.40	10.17	56.00	-19.52	QP
11	10.62	14.01	35.02	10.80	10.21	50.00	-14.98	Average
12	10.62	20.46	41.47	10.80	10.21	60.00	-18.53	QP


FCC §15.205, §15.209 & §15.247(d) - RADIATED EMISSIONS

Applicable Standard


FCC §15.205; §15.209; §15.247(d)

EUT Setup


9 kHz-30MHz:

30MHz-1GHz:

Above 1GHz:

The radiated emission tests were performed in the 3 meters, using the setup accordance with the ANSI C63.10-2013. The specification used was the FCC 15.209 and FCC 15.247 limits.

EMI Test Receiver & Spectrum Analyzer Setup

The EMI test receiver & Spectrum Analyzer Setup were set with the following configurations:

Frequency Range	RBW	Video B/W	IF B/W	Measurement			
9 kHz – 150 kHz	/	/	200 Hz	QP			
9 KHZ – 130 KHZ	300 Hz	1 kHz	/	PK			
150 kHz – 30 MHz	/	/	9 kHz	QP			
130 KHZ – 30 MHZ	10 kHz	30 kHz	/	PK			
30 MHz – 1000 MHz	/	/	120 kHz	QP			
30 MHZ – 1000 MHZ	100 kHz	300 kHz	/	PK			
	Harmonics & Band Edge						
	1MHz	3 MHz	/	РК			
Above 1 GHz	Average Emission Level=Peak Emission Level+20*log(Duty cycle)						
Above I GHZ	Other Emissions						
	1MHz	3 MHz	/	РК			
	1MHz	10 Hz	/	Average			

For Duty cycle measurement:

Use the duty cycle factor correction factor method per 15.35(c). Duty cycle=On time/100milliseconds, On time=N1*L1+N2*L2+...Nn-1*Ln-1+Nn*Ln, Where N1 is number of type 1 pulses, L1 is length of type 1 pulse, etc.

Test Procedure

Maximizing procedure was performed on the highest emissions to ensure that the EUT complied with all installation combinations.

All final data was recorded in Quasi-peak detection mode except for the frequency bands 9–90 kHz, 110–490 kHz and above 1000 MHz, average detection modes for frequency bands 9–90 kHz and 110–490 kHz, peak and average detection modes for frequencies above 1 GHz.

For 9 kHz-30MHz, the report shall list the six emissions with the smallest margin relative to the limit, for each of the three antenna orientations (parallel, perpendicular, and ground-parallel) unless the margin is greater than 20 dB.

If the maximized peak measured value complies with under the QP/Average limit more than 6dB, then it is unnecessary to perform an QP/Average measurement.

All emissions under the average limit and under the noise floor have not recorded in the report.

Factor & Over Limit/Margin Calculation

The Factor is calculated by adding the Antenna Factor and Cable Loss, and subtracting the Amplifier Gain. The basic equation is as follows:

Factor = Antenna Factor + Cable Loss - Amplifier Gain

The "**Over Limit/Margin**" column of the following data tables indicates the degree of compliance with the applicable limit. For example, an Over Limit/margin of -7dB means the emission is 7dB below the limit. The equation for calculation is as follows:

Over Limit/Margin = Level/Corrected Amplitude – Limit Level / Corrected Amplitude = Read Level + Factor

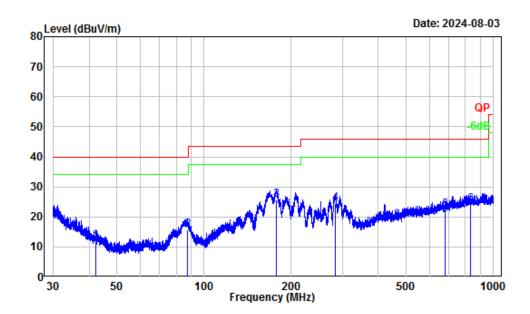
Test Data

Environmental Conditions

Temperature:	22~25.5 °C
Relative Humidity:	50~54 %
ATM Pressure:	101 kPa

The testing was performed by Anson Su on 2024-08-03 for below 1GHz and Zenos Qiao on 2024-07-31 for above 1GHz.

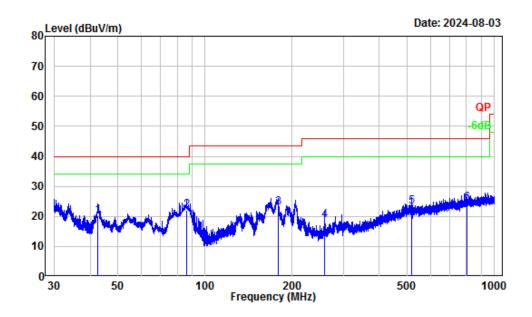
Test mode: Transmitting


Note: After pre-scan in the X, Y and Z axes of orientation, the worst case Y-axis of orientation were recorded.

9 kHz-30MHz: (*Maximum output power mode, BDR Mode Middle channel*)

The amplitude of spurious emissions attenuated more than 20 dB below the limit was not recorded.

30MHz-1GHz: (*Maximum output power mode, BDR Mode Middle channel*)


Horizontal

Site :	Chamber A
Condition :	3m Horizontal
Project Number:	2401V31893E-RF
Test Mode :	BT
Tester :	Anson Su

	Freq	Factor			Limit Line		Remark
	MHz	dB/m	dBuV	dBuV/m	dBuV/m	dB	
1	42.12	-13.56	25.28	11.72	40.00	-28.28	QP
2	87.34	-17.95	33.63	15.68	40.00	-24.32	QP
3	177.74	-13.52	39.25	25.73	43.50	-17.77	QP
4		-11.81	36.26	24.45	46.00	-21.55	QP
5	678.47	-3.78	26.21	22.43	46.00	-23.57	QP
6	831.13	-1.88	26.09	24.21	46.00	-21.79	QP

Site	:	Chamber A
Condition	:	3m Vertical
Project Number	• :	2401V31893E-RF
Test Mode	:	BT
Tester	:	Anson Su

					Limit			
	Freq	Factor	Level	Level	Line	Limit	Remark	
-	MHz	dB/m	dBuV	dBuV/m	dBuV/m	dB		
1	42.66	-13.87	33.99	20.12	40.00	-19.88	QP	
2	86.50	-17.95	39.91	21.96	40.00	-18.04	QP	
3	178.99	-13.59	36.53	22.94	43.50	-20.56	QP	
4	259.01	-12.76	31.44	18.68	46.00	-27.32	QP	
5	516.34	-5.65	28.97	23.32	46.00	-22.68	QP	
6	806.01	-2.08	26.61	24.53	46.00	-21.47	QP	

Report No.: 2401V31893E-RF-00A

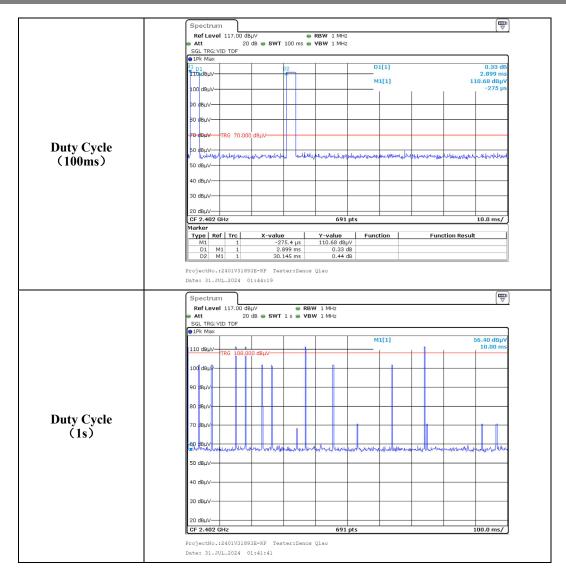
Above 1GHz:

	Receiver				Corrected			
Frequency (MHz)	Reading (dBµV)	PK/AV	Polar (H/V)	Factor (dB/m)	Amplitude (dBµV/m)	Limit (dBµV/m)	Margin (dB)	
Maximum output power mode, BDR Mode								
Low Channel 2402MHz								
2389.48	57.94	PK	Н	-2.93	55.01	74	-18.99	
2388.75	56.87	PK	V	-2.93	53.94	74	-20.06	
4804.00	51.62	PK	Н	2.42	54.04	74	-19.96	
4804.00	50.43	PK	V	2.42	52.85	74	-21.15	
Middle Channel 2441MHz								
4882.00	52.48	PK	Н	2.58	55.06	74	-18.94	
4882.00	51.85	PK	V	2.58	54.43	74	-19.57	
High Channel 2480MHz								
2483.92	73.74	РК	Н	-3.17	70.57	74	-3.43	
2483.53	71.69	РК	V	-3.17	68.52	74	-5.48	
4960.00	52.46	PK	Н	2.68	55.14	74	-18.86	
4960.00	51.67	РК	V	2.68	54.35	74	-19.65	

Note:

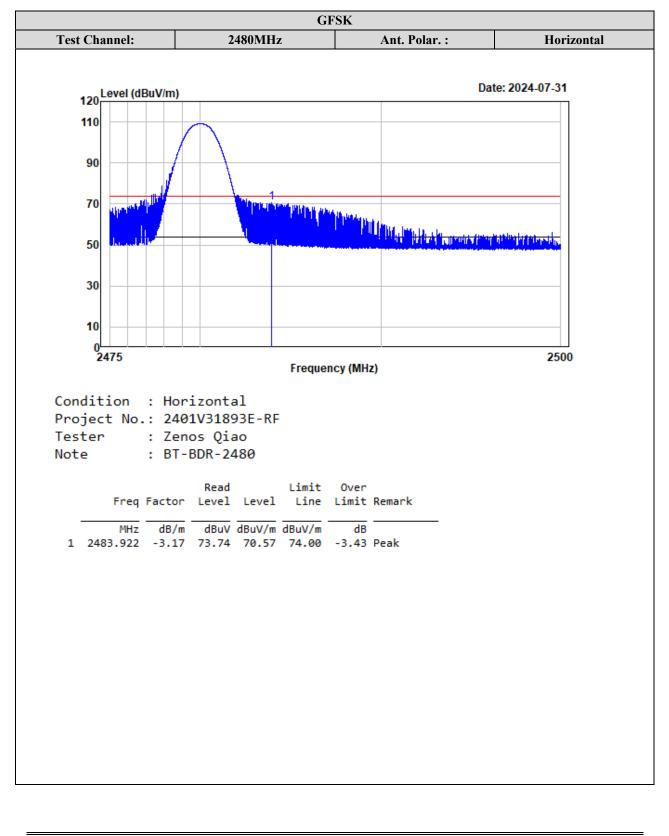
Factor = Antenna factor (RX) + Cable Loss – Amplifier Factor Corrected Amplitude = Factor + Reading Margin = Corrected. Amplitude - Limit

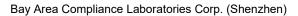
The other spurious emission which is in the noise floor level was not recorded.

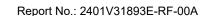

Report No.: 2401V31893E-RF-00A

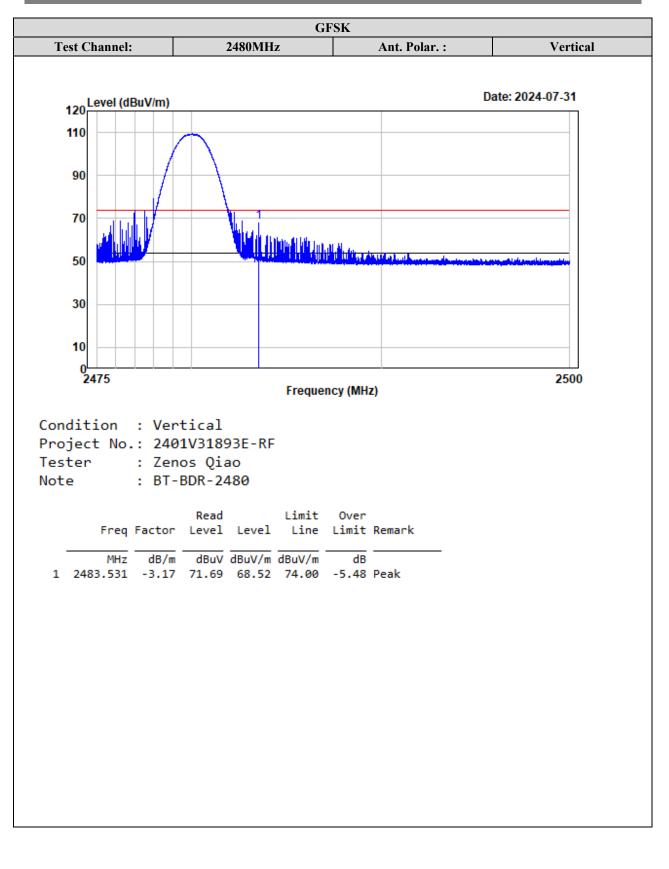

Field Strength of Average									
Frequency (MHz)	Peak Measurement @3m (dBµV/m)	Polar (H/V)	Duty Cycle Corrected Factor (dB)	Average Level (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Comment		
Low Channel 2402MHz									
2389.48	55.01	Н	-24.73	30.28	54	-23.72	Bandedge		
2388.75	53.94	V	-24.73	29.21	54	-24.79	Bandedge		
4804.00	54.04	Н	-24.73	29.31	54	-24.69	Harmonic		
4804.00	52.85	V	-24.73	28.12	54	-25.88	Harmonic		
Middle Channel 2441MHz									
4882.00	55.06	Н	-24.73	30.33	54	-23.67	Harmonic		
4882.00	54.43	V	-24.73	29.70	54	-24.30	Harmonic		
High Channel 2480MHz									
2483.92	70.57	Н	-24.73	45.84	54	-8.16	Bandedge		
2483.53	68.52	V	-24.73	43.79	54	-10.21	Bandedge		
4960.00	55.14	Н	-24.73	30.41	54	-23.59	Harmonic		
4960.00	54.35	V	-24.73	29.62	54	-24.38	Harmonic		

Note: Average level= Peak level+ Duty Cycle Corrected Factor

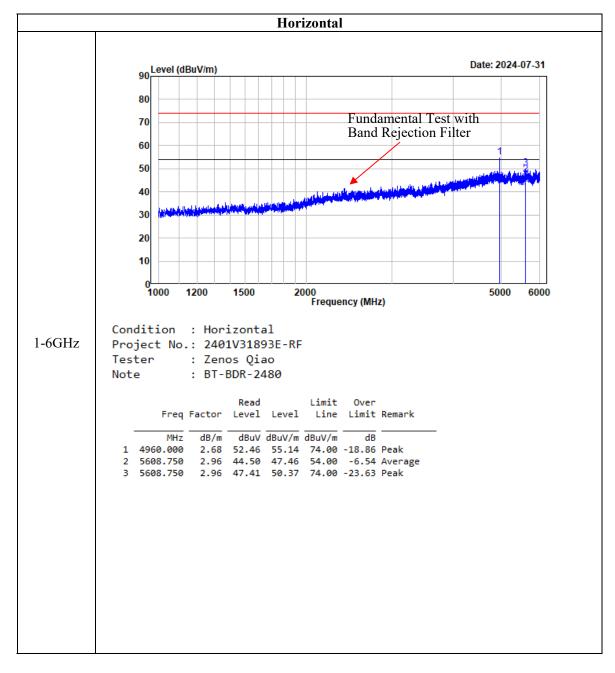

Worst case duty cycle: Duty Cycle = Ton/100ms = 2.899*2/100=0.05798 Duty Cycle Corrected Factor = 20lg (Duty Cycle) = 20lg0.05798 = -24.73

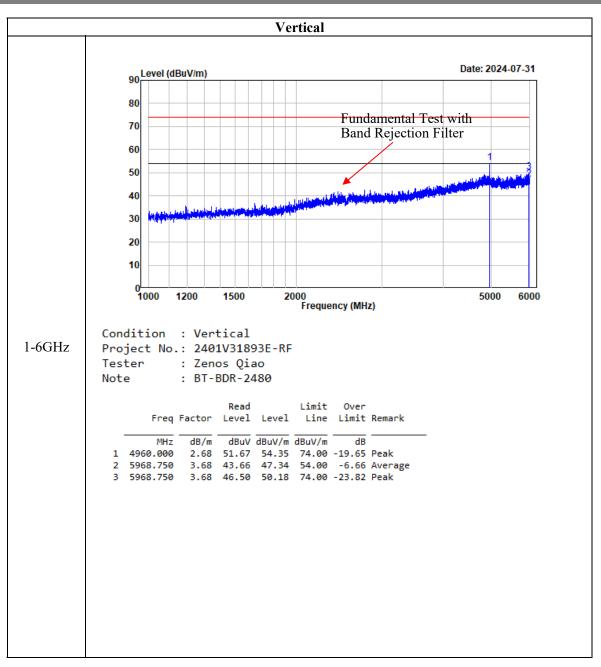

Report No.: 2401V31893E-RF-00A

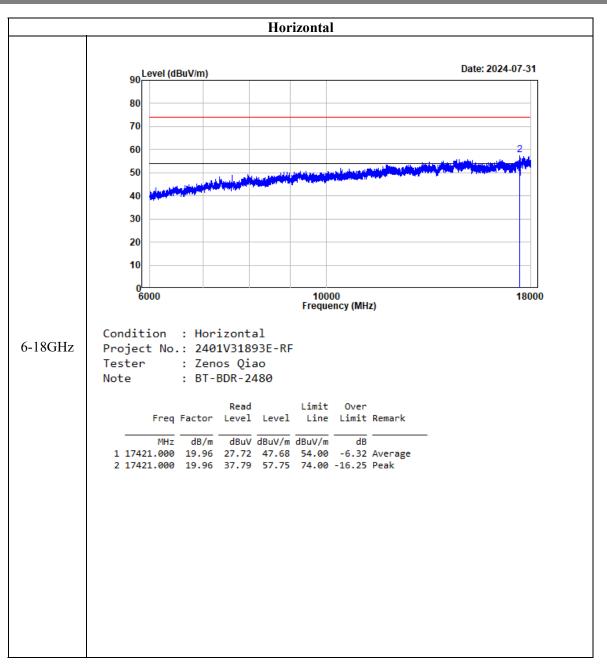


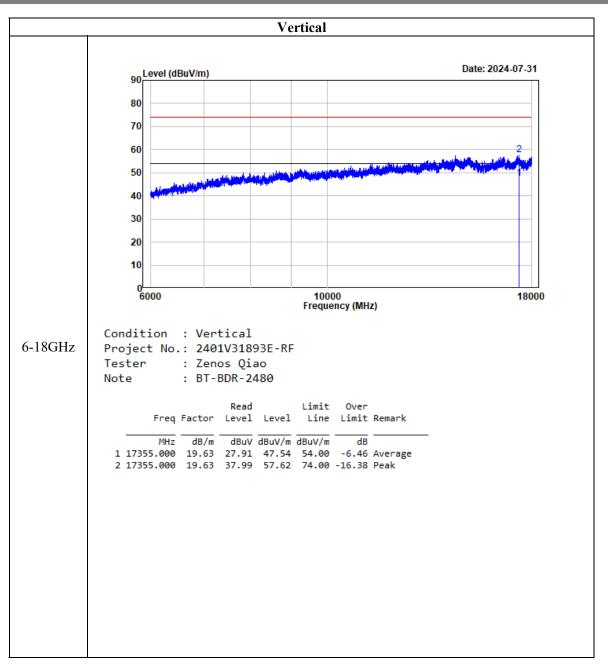


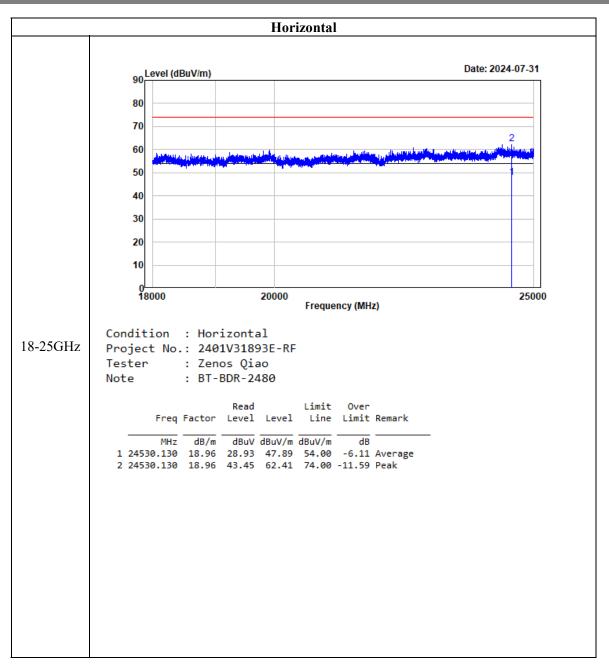
Test plots for worst Band Edge Measurements (Radiated):

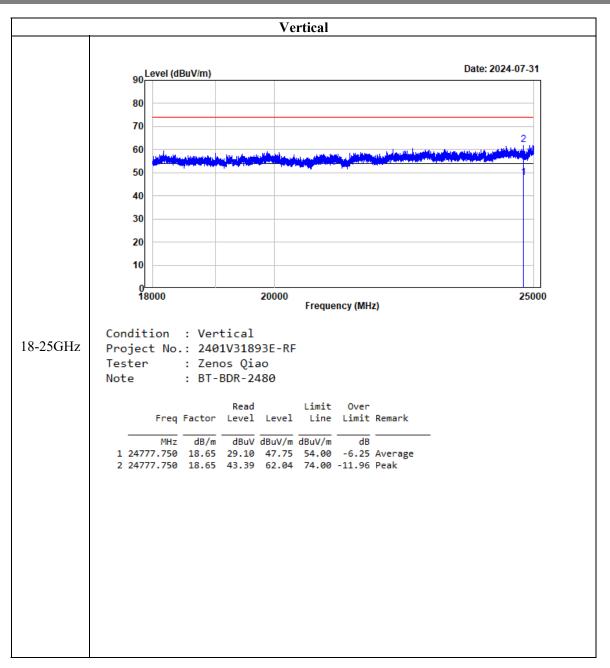








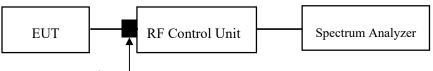

Listed with the worst harmonic margin test plot:



FCC §15.247(a) (1) - CHANNEL SEPARATION TEST

Applicable Standard

Frequency hopping systems shall have hoping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater. Alternatively, frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater provided the systems operate with an output power no greater than 125 mW. The system shall hop to channel frequencies that are selected at the system hopping rate from a pseudo randomly ordered list of hopping frequencies. Each frequency must be used equally on the average by each transmitter. The system receivers shall have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shall shift frequencies in synchronization with the transmitted signals.


Test Procedure

Test Method: ANSI C63.10-2013 Clause 7.8.2

The EUT shall have its hopping function enabled. Use the following spectrum analyzer settings:

- a) Span: Wide enough to capture the peaks of two adjacent channels.
- b) RBW: Start with the RBW set to approximately 30% of the channel spacing; adjust as necessary
- to best identify the center of each individual channel.
- c) Video (or average) bandwidth (VBW) \geq RBW.
- d) Sweep: Auto.
- e) Detector function: Peak.
- f) Trace: Max hold.
- g) Allow the trace to stabilize.

Use the marker-delta function to determine the separation between the peaks of the adjacent channels. Compliance of an EUT with the appropriate regulatory limit shall be determined.

Attenuator

Test Data

Environmental Conditions

Temperature:	25 °C		
Relative Humidity:	55 %		
ATM Pressure:	101 kPa		

The testing was performed by Lee Li on 2024-07-26.

EUT operation mode: Transmitting

Test Result: Compliant. Please refer to the Appendix.

FCC §15.247(a) (1) - 20 dB EMISSION BANDWIDTH

Applicable Standard

Alternatively, frequency hopping systems operating in the 2400–2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW.

Test Procedure

Test Method: ANSI C63.10-2013 Clause 7.8.7 & Clause 6.9.2

a) The spectrum analyzer center frequency is set to the nominal EUT channel center frequency. The span range for the EMI receiver or spectrum analyzer shall be between two times and five times the OBW.

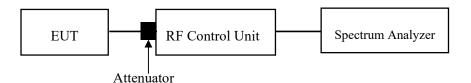
b) The nominal IF filter bandwidth (3 dB RBW) shall be in the range of 1% to 5% of the OBW and video bandwidth (VBW) shall be approximately three times RBW, unless otherwise specified by the applicable requirement.

c) Set the reference level of the instrument as required, keeping the signal from exceeding the maximum input mixer level for linear operation. In general, the peak of the spectral envelope shall be more than [10 log (OBW/RBW)] below the reference level.

d) Steps a) through c) might require iteration to adjust within the specified tolerances.

e) The dynamic range of the instrument at the selected RBW shall be more than 10 dB below the target "-xx dB down" requirement; that is, if the requirement calls for measuring the -20 dB OBW, the instrument noise floor at the selected RBW shall be at least 30 dB below the reference value.

f) Set detection mode to peak and trace mode to max hold.


g) Determine the reference value: Set the EUT to transmit an un-modulated carrier or modulated signal, as applicable. Allow the trace to stabilize. Set the spectrum analyzer marker to the highest level of the displayed trace (this is the reference value).

h) Determine the "-xx dB down amplitude" using [(reference value) -xx]. Alternatively, this calculation may be made by using the marker-delta function of the instrument.

i) If the reference value is determined by an un-modulated carrier, then turn the EUT modulation on, and either clear the existing trace or start a new trace on the spectrum analyzer and allow the new trace to stabilize. Otherwise, the trace from step g) shall be used for step j).

j) Place two markers, one at the lowest frequency and the other at the highest frequency of the envelope of the spectral display, such that each marker is at or slightly below the "- xx dB down amplitude" determined in step h). If a marker is below this "-xx dB down amplitude" value, then it shall be as close as possible to this value. The occupied bandwidth is the frequency difference between the two markers. Alternatively, set a marker at the lowest frequency of the envelope of the spectral display, such that the marker is at or slightly below the "- xx dB down amplitude" determined in step h). Reset the marker-delta function and move the marker to the other side of the emission until the delta marker amplitude is at the same level as the reference marker amplitude. The marker-delta frequency reading at this point is the specified emission bandwidth.

k) The occupied bandwidth shall be reported by providing plot(s) of the measuring instrument display; the plot axes and the scale units per division shall be clearly labeled. Tabular data may be reported in addition to the plot(s).

Test Data

Environmental Conditions

Temperature:	25 °C
Relative Humidity:	55 %
ATM Pressure:	101 kPa

The testing was performed by Lee Li on 2024-07-26.

EUT operation mode: Transmitting

Test Result: Compliant. Please refer to the Appendix.

FCC §15.247(a) (1) (iii) - QUANTITY OF HOPPING CHANNEL TEST

Applicable Standard

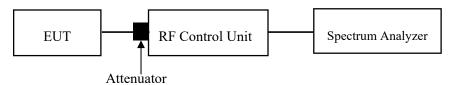
Frequency hopping systems in the 2400–2483.5 MHz band shall use at least 15 channels. The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed. Frequency hopping systems may avoid or suppress transmissions on a particular hopping frequency provided that a minimum of 15 channels are used.

Test Procedure

Test Method: ANSI C63.10-2013 Clause 7.8.3

a) Span: The frequency band of operation. Depending on the number of channels the device supports, it may be necessary to divide the frequency range of operation across multiple spans, to allow the individual channels to be clearly seen.

b) RBW: To identify clearly the individual channels, set the RBW to less than 30% of the channel spacing or the 20 dB bandwidth, whichever is smaller.


c) VBW \geq RBW.

d) Sweep: Auto.

e) Detector function: Peak.

f) Trace: Max hold.

It might prove necessary to break the span up into sub ranges to show clearly all of the hopping frequencies. Compliance of an EUT with the appropriate regulatory limit shall be determined for the number of hopping channels.

Test Data

Environmental Conditions

Temperature:	25 °C
Relative Humidity:	55 %
ATM Pressure:	101 kPa

The testing was performed by Lee Li on 2024-07-26.

EUT operation mode: Transmitting

Test Result: Compliant. Please refer to the Appendix.

FCC §15.247(a) (1) (iii) - TIME OF OCCUPANCY (DWELL TIME)

Applicable Standard

Frequency hopping systems in the 2400-2483.5 MHz shall use at least 15 channels. The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed. Frequency hopping systems may avoid or suppress transmissions on a particular hopping frequency provided that a minimum of 15 channels are used.

Test Procedure

Test Method: ANSI C63.10-2013 Clause 7.8.4

The EUT shall have its hopping function enabled. Use the following spectrum analyzer settings:

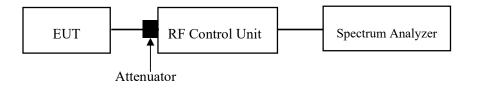
a) Span: Zero span, centered on a hopping channel.

b) RBW shall be \leq channel spacing and where possible RBW should be set >> 1 / T, where T is the expected dwell time per channel.

c) Sweep: As necessary to capture the entire dwell time per hopping channel; where possible use a video trigger and trigger delay so that the transmitted signal starts a little to the right of the start of the plot. The trigger level might need slight adjustment to prevent triggering when the system hops on an adjacent channel; a second plot might be needed with a longer sweep time to show two successive hops on a channel.

d) Detector function: Peak.

e) Trace: Max hold.


Use the marker-delta function to determine the transmit time per hop. If this value varies with different modes of operation (data rate, modulation format, number of hopping channels, etc.), then repeat this test for each variation in transmit time.

Repeat the measurement using a longer sweep time to determine the number of hops over the period specified in the requirements. The sweep time shall be equal to, or less than, the period specified in the requirements. Determine the number of hops over the sweep time and calculate the total number of hops in the period specified in the requirements, using the following equation:

(Number of hops in the period specified in the requirements) =(number of hops on spectrum analyzer) \times (period specified in the requirements / analyzer sweep time)

The average time of occupancy is calculated from the transmit time per hop multiplied by the number of hops in the period specified in the requirements. If the number of hops in a specific time varies with different modes of operation (data rate, modulation format, number of hopping channels, etc.), then repeat this test for each variation.

The measured transmit time and time between hops shall be consistent with the values described in the operational description for the EUT.

Note 1: A period time=0.4*79=31.6(S), Result=BurstWidth*Totalhops Note 2: Totalhops=Hopping Number in 3.16s*10 Note 3: Hopping Number in 3.16s=Total of highest signals in 3.16s(Second high signals were other channel)

Test Data

Environmental Conditions

Temperature:	25 °C
Relative Humidity:	55 %
ATM Pressure:	101 kPa

The testing was performed by Lee Li on 2024-07-26.

EUT operation mode: Transmitting

Test Result: Compliant. Please refer to the Appendix.

FCC §15.247(b) (1) - PEAK OUTPUT POWER MEASUREMENT

Applicable Standard

According to §15.247(b) (1), for frequency hopping systems operating in the 2400–2483.5 MHz band employing at least 75 non-overlapping hopping channels, and all frequency hopping systems in the 5725-5850 MHz band: 1 watt. And for all other frequency hopping systems in the 2400–2483.5 MHz band: 0.125 watts.

Test Procedure

Test Method: ANSI C63.10-2013 Clause 7.8.5

This is an RF-conducted test to evaluate maximum peak output power. Use a direct connection between the antenna port of the unlicensed wireless device and the spectrum analyzer, through suitable attenuation. The hopping shall be disabled for this test:

a) Use the following spectrum analyzer settings:

- 1) Span: Approximately five times the 20 dB bandwidth, centered on a hopping channel.
- 2) RBW > 20 dB bandwidth of the emission being measured.
- 3) VBW \geq RBW.
- 4) Sweep: Auto.
- 5) Detector function: Peak.
- 6) Trace: Max hold.

b) Allow trace to stabilize.

c) Use the marker-to-peak function to set the marker to the peak of the emission.

d) The indicated level is the peak output power, after any corrections for external attenuators and cables.

Test Data

Environmental Conditions

Temperature:	25 °C
Relative Humidity:	55 %
ATM Pressure:	101 kPa

The testing was performed by Lee Li on 2024-07-26.

EUT operation mode: Transmitting

Test Result: Compliant. Please refer to the Appendix.

FCC §15.247(d) § 5.5 - BAND EDGES TESTING

Applicable Standard

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in \$15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in \$15.205(a), must also comply with the radiated emission limits specified in \$15.209(a) (see \$15.205(c)).

Test Procedure

Test Method: ANSI C63.10-2013 Clause 7.8.6 & Clause 6.10

- 1. Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator.
- 2. Remove the antenna from the EUT and then connect to a low loss RF cable from the antenna port to a EMI test receiver, then turn on the EUT and make it operate in transmitting mode. Then set it to Low Channel and High Channel within its operating range, and make sure the instrument is operated in its linear range.
- 3. Set RBW of spectrum analyzer to 100 kHz with a convenient frequency span including 100 kHz bandwidth from band edge.
- 4. Measure the highest amplitude appearing on spectral display and set it as a reference level. Plot the graph with marking the highest point and edge frequency.
- 5. Repeat above procedures until all measured frequencies were complete.

Attenuator

Test Data

Environmental Conditions

Temperature:	25 °C
Relative Humidity:	55 %
ATM Pressure:	101 kPa

The testing was performed by Lee Li on 2024-07-26.

EUT operation mode: Transmitting

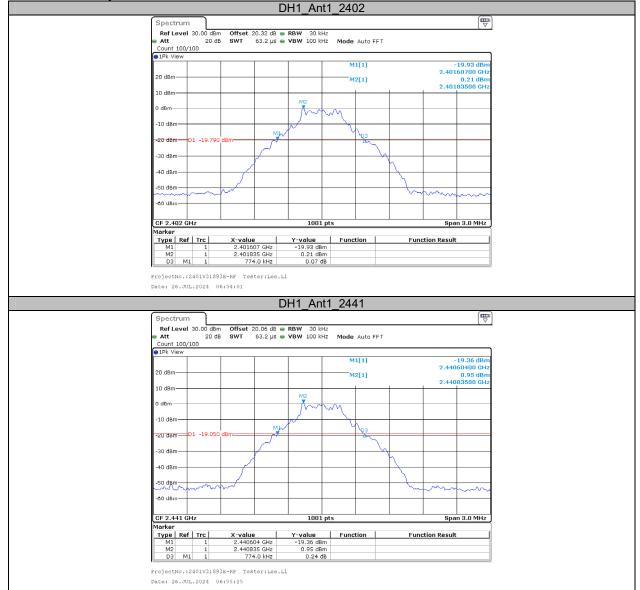
Test Result: Compliant. Please refer to the Appendix.

EUT PHOTOGRAPHS

Please refer to the attachment 2401V31893E-RF External photo and 2401V31893E-RF Internal photo.

TEST SETUP PHOTOGRAPHS

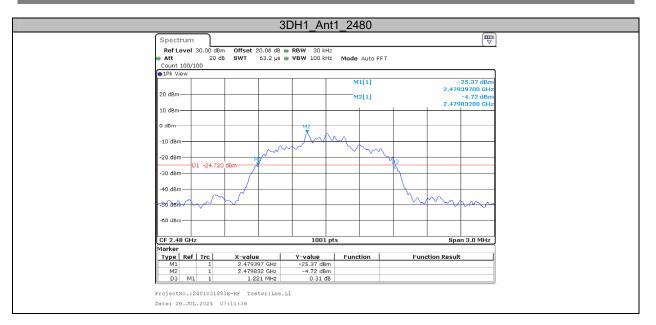
Please refer to the attachment 2401V31893E-RFA Test Setup photo.

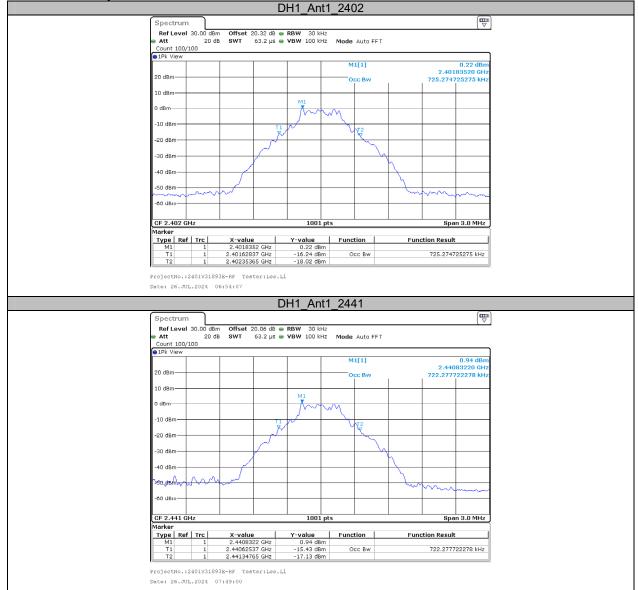

APPENDIX

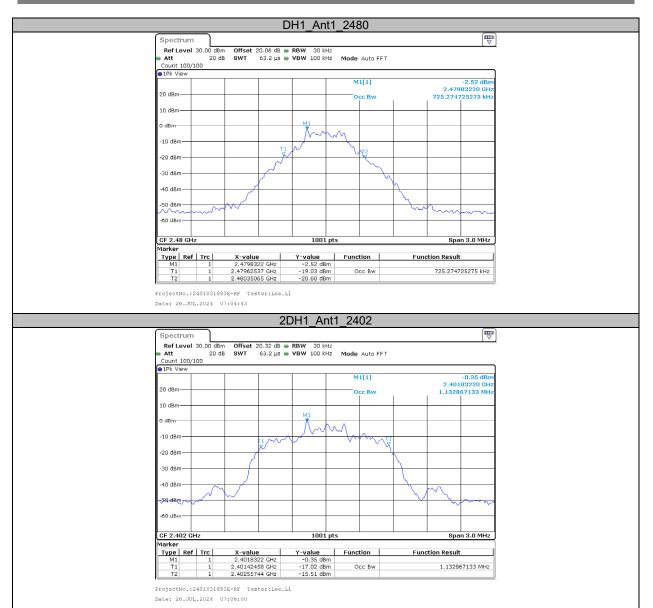
Appendix A: 20dB Emission Bandwidth

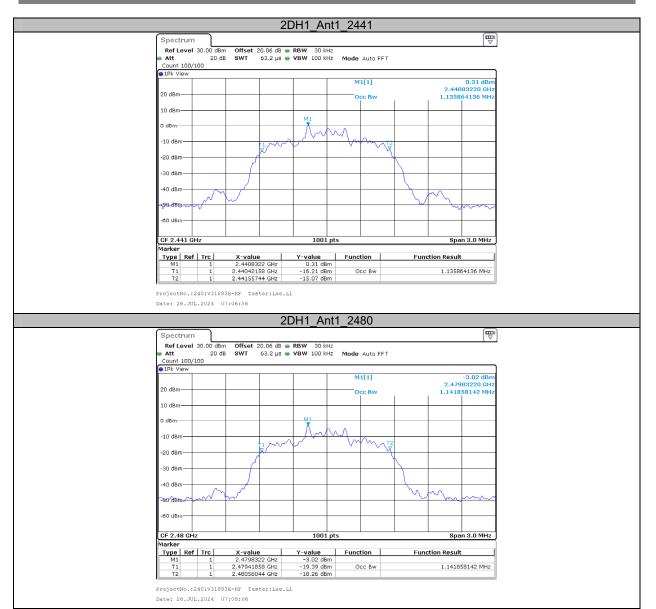

Test Result

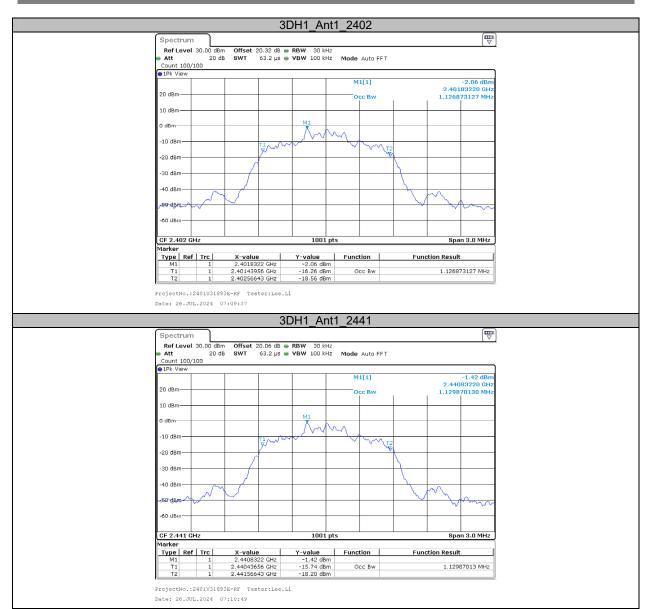

Test Mode	Antenna	Channel	20db EBW[MHz]	Limit[MHz]	Verdict
		2402	0.77		
DH1	Ant1	2441	0.77		
		2480	0.77		
		2402	1.22		
2DH1	Ant1	2441	1.22		
		2480	1.22		
		2402	1.22		
3DH1	Ant1	2441	1.22		
		2480	1.22		

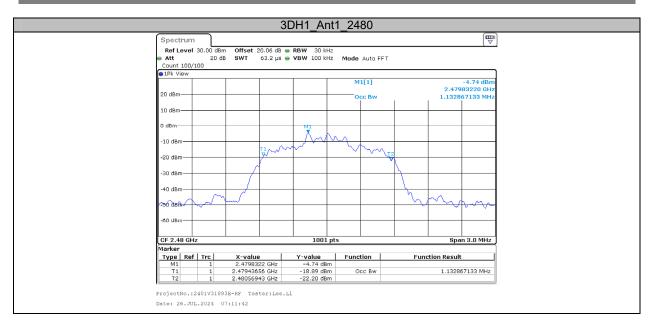

Test Graphs


Report No.: 2401V31893E-RF-00A

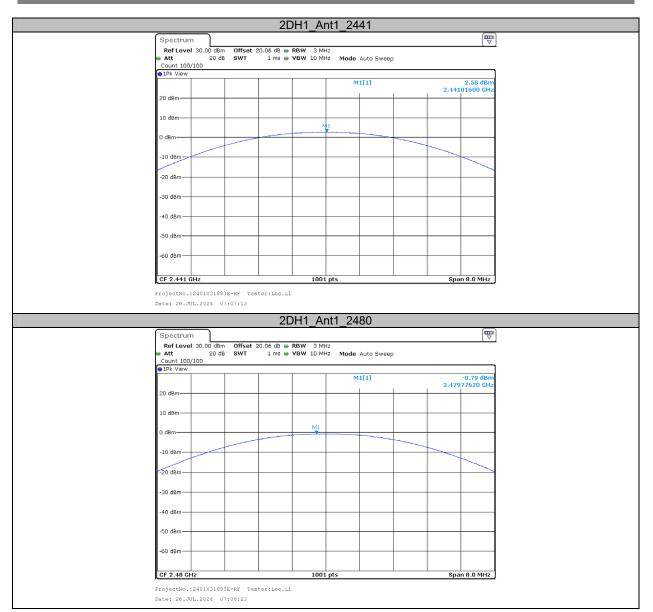

Appendix B: Occupied Channel Bandwidth


Test Result


Test Mode	Antenna	Channel	OCB [MHz]	Limit[MHz]	Verdict
		2402	0.725		
DH1	Ant1	2441	0.722		
		2480	0.725		
		2402	1.133		
2DH1	Ant1	2441	1.136		
		2480	1.142		
		2402	1.127		
3DH1	Ant1	2441	1.130		
		2480	1.133		


Test Graphs

Appendix C: Maximum Conducted Peak Output Power


Test Result


Test Mode	Antenna	Channel	Result[dBm]	Limit[dBm]	Verdict
		2402	2.80	≤20.97	PASS
DH1	Ant1	2441	3.48	≤20.97	PASS
		2480	-0.08	≤20.97	PASS
		2402	2.02	≤20.97	PASS
2DH1	Ant1	2441	2.58	≤20.97	PASS
		2480	-0.79	≤20.97	PASS
		2402	1.87	≤20.97	PASS
3DH1	Ant1	2441	2.43	≤20.97	PASS
		2480	-0.89	≤20.97	PASS


Test Graphs

			D	H1_Ar	nt1_24	02			
Spectrum									(The second seco
Ref Level	30.00 dBm 20 dB	Offset a		RBW 3 M					
Att Count 100/	20 de /100	SWT	1 ms 🥌	VBW 10 M	Hz Mode	Auto Sweep	1		
●1Pk View				1		11[1]			2.80 dBm
					· ·	41[1]		2.402	2.80 dBm 00000 GHz
20 dBm-									
10 dBm									
10 000				N	1				
0 dBm									
-10 dBm		T .							
-10 uBill									
-20 dBm]
-30 dBm						1			
-40 dBm									
-50 dBm									
-60 dBm									
CF 2.402 G	Hz			100:	L pts			Spar	n 8.0 MHz
ProjectNo.:	2401V3189	3E-RF Tes	ster:Lee.Li	i					
Date: 26.JU									
			D	H1 Ar	nt1 24	41			
Coostrum			D	H1_Ar	nt1_24	41			
Spectrum Ref Level) Offset (41			
Ref Level Att	30.00 dBm 20 dB	Offset (SWT	20.06 dB 👄	RBW 3 M	Hz	41 Auto Sweep	,		
Ref Level	30.00 dBm 20 dB		20.06 dB 👄	RBW 3 M	Hz H z Mode	Auto Sweep)		
Ref Level Att Count 100/	30.00 dBm 20 dB		20.06 dB 👄	RBW 3 M	Hz H z Mode		,	2.441	3.48 dBm
Ref Level Att Count 100/	30.00 dBm 20 dB		20.06 dB 👄	RBW 3 M	Hz H z Mode	Auto Sweep	, , 	2.441	
Ref Level Att Count 100/ 1Pk View 20 dBm	30.00 dBm 20 dB		20.06 dB 👄	RBW 3 M	Hz H z Mode	Auto Sweep	, ,	2.441	3.48 dBm
Ref Level Att Count 100/ 1Pk View	30.00 dBm 20 dB		20.06 dB 👄	RBW 3 M	Hz H z Mode	Auto Sweep	, , , ,	2.441	3.48 dBm
Ref Level Att Count 100/ 1Pk View 20 dBm	30.00 dBm 20 dB		20.06 dB 👄	RBW 3 M	Hz Hz Mode	Auto Sweep		2.441	3.48 dBm
Ref Level Att Count 100/ 1Pk View 20 dBm 10 dBm 0 dBm	30.00 dBm 20 dB		20.06 dB 👄	RBW 3 M	Hz Hz Mode	Auto Sweep	,	2.441	3.48 dBm
Ref Level Att Count 100/ 1Pk View 20 dBm- 10 dBm-	30.00 dBm 20 dB		20.06 dB 👄	RBW 3 M	Hz Hz Mode	Auto Sweep		2.441	3.48 dBm
Ref Level Att Count 100/ 1Pk View 20 dBm 10 dBm 0 dBm	30.00 dBm 20 dB		20.06 dB 👄	RBW 3 M	Hz Hz Mode	Auto Sweep		2.441	3.48 dBm
Ref Level Att Count 100/ 1Pk View 20 dBm 10 dBm 0 dBm -10 dBm -20 dBm	30.00 dBm 20 dB		20.06 dB 👄	RBW 3 M	Hz Hz Mode	Auto Sweep		2,441	3.48 dBm
Ref Level Att Count 100/ PIPk View 20 dBm 10 dBm -10 dBm	30.00 dBm 20 dB		20.06 dB 👄	RBW 3 M	Hz Hz Mode	Auto Sweep		2.441	3.48 dBm
Ref Level Att Count 100/ 1Pk View 20 dBm 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm	30.00 dBm 20 dB		20.06 dB 👄	RBW 3 M	Hz Hz Mode	Auto Sweep	,	2.441	3.48 dBm
Ref Level Att Count 100/ 1Pk View 20 dBm 10 dBm 0 dBm -10 dBm -20 dBm	30.00 dBm 20 dB		20.06 dB 👄	RBW 3 M	Hz Hz Mode	Auto Sweep		2.441	3.48 dBm
Ref Level Att Count 100/ 1Pk View 20 dBm 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm	30.00 dBm 20 dB		20.06 dB 👄	RBW 3 M	Hz Hz Mode	Auto Sweep		2.441	3.48 dBm
Ref Level Att Count 100/ 1Pk View 20 dBm 10 dBm -10 dBm -20 dBm -30 dBm -30 dBm -30 dBm	30.00 dBm 20 dB		20.06 dB 👄	RBW 3 M	Hz Hz Mode	Auto Sweep		2.441	3.48 dBm
Ref Level Att Count 100/ 1Pk View 20 dBm 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm	30.00 dBm 20 dB		20.06 dB 👄	RBW 3 M	Hz Hz Mode	Auto Sweep		2.441	3.48 dBm
Ref Level Att Count 100/ 1Pk View 20 dBm 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm -60 dBm	1 30.00 dBm 20 dB /100		20.06 dB 👄	RBW 3 MM VBW 10 MI	HZ Mode	Auto Sweep			3.48 dBm 07990 GHz
Ref Level Att Count 100/ 1Pk View 20 dBm 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -50 dBm -60 dBm GF 2.441 G	1 30.00 dBm 20 dB (100	> SWT	20.06 dB • 1 ms •	RBW 3 MM VBW 10 MM	HZ Mode	Auto Sweep			3.48 dBm
Ref Level Att Count 100/ 1Pk View 20 dBm 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm -60 dBm	1 30.00 dBm 20 dB 100 Hz 2401v3189	3 SWT	20.06 dB • 1 ms •	RBW 3 MM VBW 10 MM	HZ Mode	Auto Sweep			3.48 dBm 07990 GHz

										(
	ectrum									
= A		30.00 dB 20 d			RBW 3 VBW 10	MHz MHz Mode	Auto Swee	'n		
Co	unt 100/	100					, nato e noc	4		
● 1 F	k View					-				
							м1[1]		2,48	-0.08 dBr 308790 GH
20	d8m —					_		+		
10	dBm									
						<u>M1</u>				
0 d	3m-						+			
1.0	dDen								~	
-10	dBm									
-20	dBm-									
-20										
-30	dBm-									
-40	dBm-			_						
-50	dBm-					_				
-60	dBm-									
Proj		2401V318	93E-RF T¢ 07:05:00		Li	o1 pts	402		Spa	in 8.0 MHz
Proj Date	ectNo.:	2401V318 L.2024			Li	o1 pts	402		Spa	
Proj Date Sp Ro	ectNo.: : 26.JU ectrum af Level	2401V318 L.2024	07:05:00 m Offset	2 20.32 dB	Li 2DH1_4	مnt1_24 الله			Spa	an 8.0 MHz
Proj Date Sp R	ectNo.: : 26.JU ectrum ef Level	2401V318 L.2024 30.00 dB 20 d	07:05:00 m Offset	2 20.32 dB	Li 2DH1_4	Ant1_24		р	Spa	
Proj Date	ectNo.: : 26.JU ectrum af Level	2401V318 L.2024 30.00 dB 20 d	07:05:00 m Offset	2 20.32 dB	Li 2DH1_4	مnt1_24 الله		р	Spa	
Proj Date	ectNo.: : 26.JU ectrum ef Level tt unt 100/	2401V318 L.2024 30.00 dB 20 d	07:05:00 m Offset	2 20.32 dB	Li 2DH1_4	Ant1_24		р		2.02 dBr
Proj Date R A Co IF	ectNo.: 26.JU ectrum af Level tt unt 100/ k View	2401V318 L.2024 30.00 dB 20 d	07:05:00 m Offset	2 20.32 dB	Li 2DH1_4	Ant1_24	e Auto Swee	p		(T
Proj Date R A Co IF	ectNo.: : 26.JU ectrum ef Level tt unt 100/	2401V318 L.2024 30.00 dB 20 d	07:05:00 m Offset	2 20.32 dB	Li 2DH1_4	Ant1_24	e Auto Swee	р 		2.02 dBr
Proj Date Sp R R 20	ectNo.: 26.JU ectrum af Level tt unt 100/ k View	2401V318 L.2024 30.00 dB 20 d	07:05:00 m Offset	2 20.32 dB	Li 2DH1_4	Ant1_24	e Auto Swee	р р		2.02 dBr
Proj Date Sp R R 20	ectNo.: 26.JU ectrum ef Level tt unt 100/ k View	2401V318 L.2024 30.00 dB 20 d	07:05:00 m Offset	2 20.32 dB	Li 2DH1_4	Ant1_24 MHz Mode	e Auto Swee	ip		2.02 dBr
Proj Date Sp R R 20	ectNo.: 26.JU ectrum ef Level tt unt 100/ k View dBm	2401V318 L.2024 30.00 dB 20 d	07:05:00 m Offset	2 20.32 dB	Li 2DH1_4	Ant1_24	e Auto Swee	ip		2.02 dBr
Proj Date Sp R Co 0 10 10 0 d	ectNo.: 26.JU ectrum ef Level tt unt 100/ k View JBm JBm	2401V318 L.2024 30.00 dB 20 d	07:05:00 m Offset	2 20.32 dB	LI 2DH1_4	Ant1_24 MHz Mode	e Auto Swee	p		2.02 dBr
Proj Date Sp R Co 0 10 10 0 d	ectNo.: 26.JU ectrum ef Level tt unt 100/ k View dBm	2401V318 L.2024 30.00 dB 20 d	07:05:00 m Offset	2 20.32 dB	LI 2DH1_4	Ant1_24 MHz Mode	e Auto Swee	ip		2.02 dBr
Proj Date R R 0 A 0 0 10 10 0 d 0 -10	ectNo.: 26.JU ectrum af Level tt unt 100/ k View dBm dBm dBm	2401V318 L.2024 30.00 dB 20 d	07:05:00 m Offset	2 20.32 dB	LI 2DH1_4	Ant1_24 MHz Mode	e Auto Swee	ip		2.02 dBr
Proj Date R R 0 A 0 0 10 10 0 d 0 -10	ectNo.: 26.JU ectrum ef Level tt unt 100/ k View JBm JBm	2401V318 L.2024 30.00 dB 20 d	07:05:00 m Offset	2 20.32 dB	LI 2DH1_4	Ant1_24 MHz Mode	e Auto Swee	ip		2.02 dBr
Proj Date Sp R A Co 0 d 10 0 d 0 d -10 -20	ectNo.: 26.JU ectrum ectrum ef Level tt unt 100/ k View JBm JBm JBm dBm dBm dBm	2401V318 L.2024 30.00 dB 20 d	07:05:00 m Offset	2 20.32 dB	LI 2DH1_4	Ant1_24 MHz Mode	e Auto Swee	p		2.02 dBr
Proj Date Sp R A Co 0 d 10 0 d 0 d -10 -20	ectNo.: 26.JU ectrum af Level tt unt 100/ k View dBm dBm dBm	2401V318 L.2024 30.00 dB 20 d	07:05:00 m Offset	2 20.32 dB	LI 2DH1_4	Ant1_24 MHz Mode	e Auto Swee	ір		2.02 dBr
Proj Date R R 20. 10. 0 dl -10. -20. -30.	ectNo.:: 26.JU ectrum too/ f Level tt JBm dBm dBm dBm dBm	2401V318 L.2024 30.00 dB 20 d	07:05:00 m Offset	2 20.32 dB	LI 2DH1_4	Ant1_24 MHz Mode	e Auto Swee			2.02 dBr
Proj Date R R 20. 10. 0 dl -10. -20. -30.	ectNo.: 26.JU ectrum ef Level tt unt 100/ k View JBm JBm JBm dBm dBm	2401V318 L.2024 30.00 dB 20 d	07:05:00 m Offset	2 20.32 dB	LI 2DH1_4	Ant1_24 MHz Mode	e Auto Swee			2.02 dBr
Proj Date Sp R 0 A CO 0 d 10 -10 -20 -30 -30 -40	ectNo.:: 26.JU ectrum ectrum tt JBm JBm JBm JBm JBm JBm JBm JBm JBm JBm	2401V318 L.2024 30.00 dB 20 d	07:05:00 m Offset	2 20.32 dB	LI 2DH1_4	Ant1_24 MHz Mode	e Auto Swee			2.02 dBr
Proj Date Sp R 0 A CO 0 d 10 -10 -20 -30 -30 -40	ectNo.:: 26.JU ectrum too/ f Level tt JBm dBm dBm dBm dBm	2401V318 L.2024 30.00 dB 20 d	07:05:00 m Offset	2 20.32 dB	LI 2DH1_4	Ant1_24 MHz Mode	e Auto Swee	p		2.02 dBr
Proj Date Sp R A C O I I 20 10 10 0 d -10 -20 -30 -30 -50	ectNo.:: 26.JU ectrum af Level tt JBm dBm dBm dBm dBm dBm dBm	2401V318 L.2024 30.00 dB 20 d	07:05:00 m Offset	2 20.32 dB	LI 2DH1_4	Ant1_24 MHz Mode	e Auto Swee			2.02 dBr
Proj Date Sp R A C O I I 20 10 10 0 d -10 -20 -30 -30 -50	ectNo.:: 26.JU ectrum ectrum tt JBm JBm JBm JBm JBm JBm JBm JBm JBm JBm	2401V318 L.2024 30.00 dB 20 d	07:05:00 m Offset	2 20.32 dB	LI 2DH1_4	Ant1_24 MHz Mode	e Auto Swee			2.02 dBr
Proj Date Sp R A C C I I I I I I I I I I I I I I I I I	ectNo.:: 26.JU ectrum af Level tt JBm dBm dBm dBm dBm dBm dBm	2401V318 L. 2024 30.00 dB 20 r	07:05:00 m Offset	2 20.32 dB	L1 RDH1_/ RBW 3 VBW 10 	Ant1_24 MHz Mode	e Auto Swee		2.40:	2.02 dBr

Appendix D: Carrier Frequency Separation

Test Result

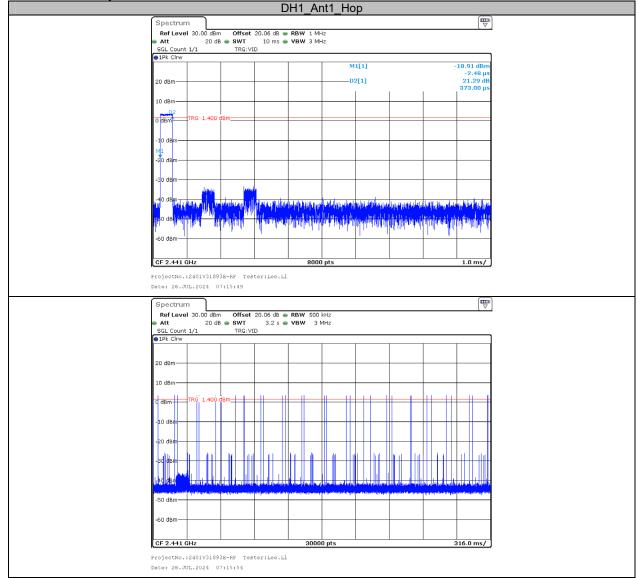
Test Mode	Antenna	Channel	Result[MHz]	Limit[MHz]	Verdict
DH1	Ant1	Нор	1.003	≥0.513	PASS
2DH1	Ant1	Нор	1.003	≥0.813	PASS
3DH1	Ant1	Нор	1.003	≥0.813	PASS

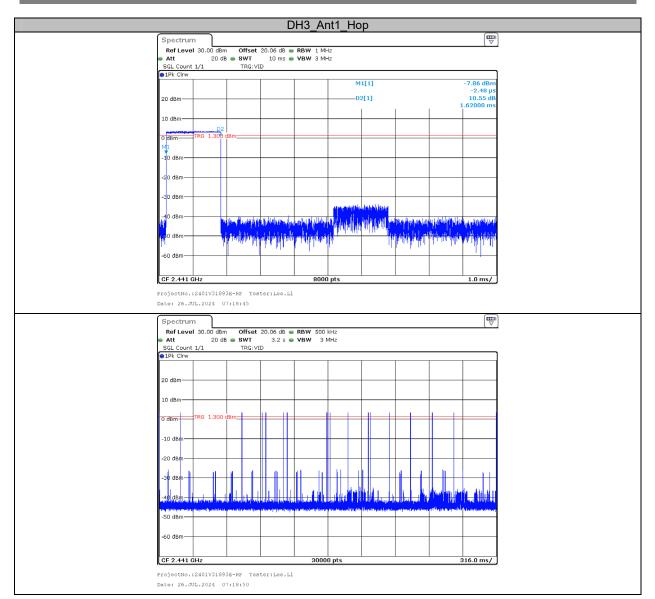
Test Graphs

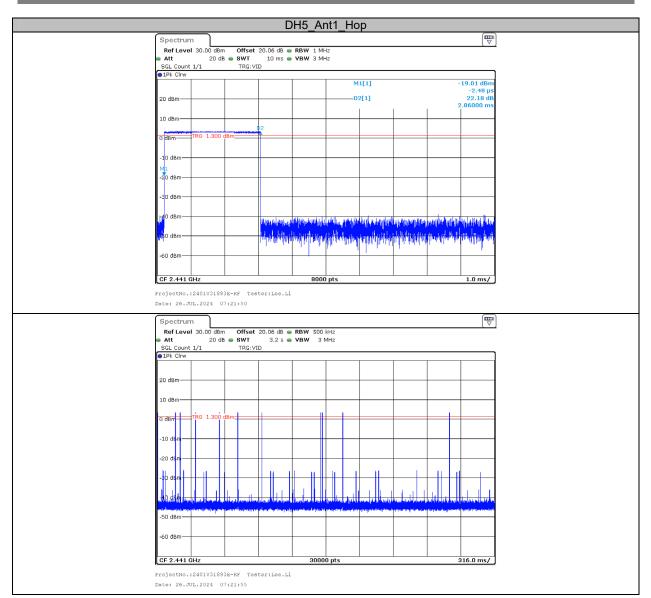
DH1_Ant1_Hop	
Spectrum 🕎	
RefLevel 30.00 dBm Offset 20.06 dB RBW 100 kHz Att 20 dB SWT 18.9 µs VBW 300 kHz Mode Auto FFT	
Count 100/100	
1Pk View M1[1] 2.86 dBm	
20 d8m D2[1] -0.06 dB	
1.00290 MHz	
10 dBm	
-10 dBm	
-20 dBm	
-30 dBm	
-40 dBm	
-50 dBm	
-60 dBm	
Start 2.4405 GHz 691 pts Stop 2.4425 GHz	
ProjectNo.:2401V31893E-RF Tester:Lee.Li	
Date: 26.JUL.2024 07:15:04	
2DH1_Ant1_Hop	
Spectrum 🕎	
RefLevel 30.00 dBm Offset 20.06 dB ● RBW 100 kHz ● Att 20 dB SWT 18.9 µs ● VBW 300 kHz Mode Auto FFT	
Count 100/100	
(17k View (11) (2.11 dBm)	
1Pk View M1[1] 2.11 dBm 2.44083333 GHz	
(17k View (11) (2.11 dBm)	
P1Pk View M1[1] 2.11 dBm 20 dBm D2[1] 0.07 dB 1.00220 MHz	
● 1Pk View	
• IPk View M1[1] 2.11 dBm 20 dBm 2.14083333 GHz 20 dBm D2[1] 10 dBm M1 0 dBm 02	
• IPk View M1[1] 2.11 dBm 2.11 dBm 2.14083233 GHz 0.07 dB 0.0220 MHz 0.0220 MHz 0.01 dB 0.2 0.01 dB 0.2 0.02 0.01 dB 0.2 0.01 dB 0.02 0.01 dB 0.2 0.01 dB 0.	
• IPk View M1[1] 2.11 dBm 20 dBm 2.14083333 GHz 20 dBm D2[1] 10 dBm M1 0 dBm 02	
• IPk View M1[1] 2.11 dBm 2.11 dBm 2.14083233 GHz 0.07 dB 0.0220 MHz 0.0220 MHz 0.01 dB 0.2 0.01 dB 0.2 0.02 0.01 dB 0.2 0.01 dB 0.02 0.01 dB 0.2 0.01 dB 0.	
• IPk View M1[1] 2.11 dBm 2.11 dBm 0.07 dB 0.0290 MHz 1.00290 MHz 1.00290 MHz 1.002 dB 0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	
• IPk View M1[1] 2.11 dBm 2.44083333 GHz 0.07 dB 0.07 dB 20 dBm 02[1] 1.00290 MHz 10 dBm 02 -10 dBm -20 dBm -30 dBm -40 dBm	
• IPk View M1[1] 2.11 dBm 2.14083233 GHz 0.07 dB 20 dBm D2[1] 0.07 dB 10 dBm 02 0.07 dB 0.07 dB 0 dBm 02 0 dBm 02 0 dBm 02 -10 dBm -20 dBm -30 dBm -30 dBm	
• IPk View M1[1] 2.11 dBm 2.14083233 GHz 0.07 dB 0.07 dB 0.07 dB 1.00290 MHz 1.00290 MH	
• IPk View M1[1] 2.11 dBm 2.44083333 GHz 0.07 dB 0.07 dB 20 dBm 02[1] 1.00290 MHz 10 dBm 02 -10 dBm -20 dBm -30 dBm -40 dBm	
• IPk View M1[1] 2.11 dBm 2.44083333 GHz 0.07 dB 0.07 dB 0.07 dB 1.00290 MHz 1.00290 MH	
• IPk View M1[1] 2.11 dBm 20 dBm 0.07 dB 0.07 dB 10 dBm 0.02 90 MHz 1.00290 MHz -10 dBm 0.2 0.07 dB -20 dBm 0.00 dB 0.00 dB -30 dBm 0.00 dB 0.00 dB -60 dBm 0.00 dB 0.00 dB	
• IPk View • M1[1] 2.11 diam 2.11 diam 2.4408333 GHz 0.07 dia 0 diam 10 diam 02[1] 1.00290 MHz 10 diam 02 -10 diam 02 -20 diam -20 diam -30 diam -20 diam -40 diam -20 diam -50 diam <td></td>	

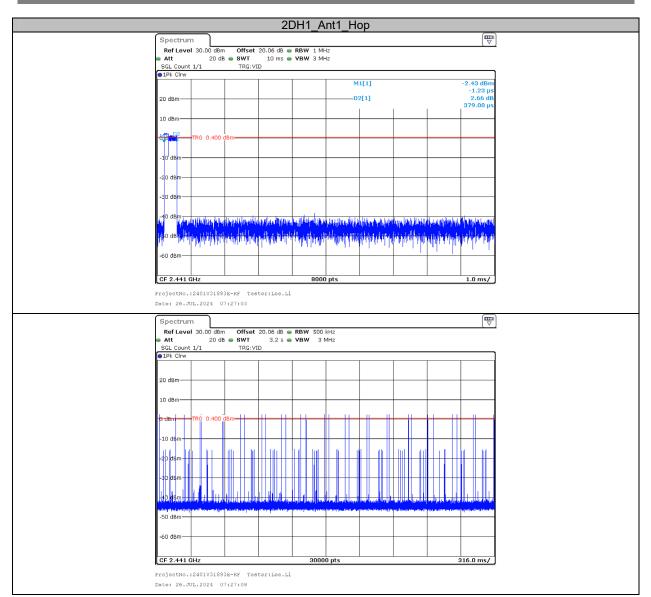
Appendix E: Time of Occupancy

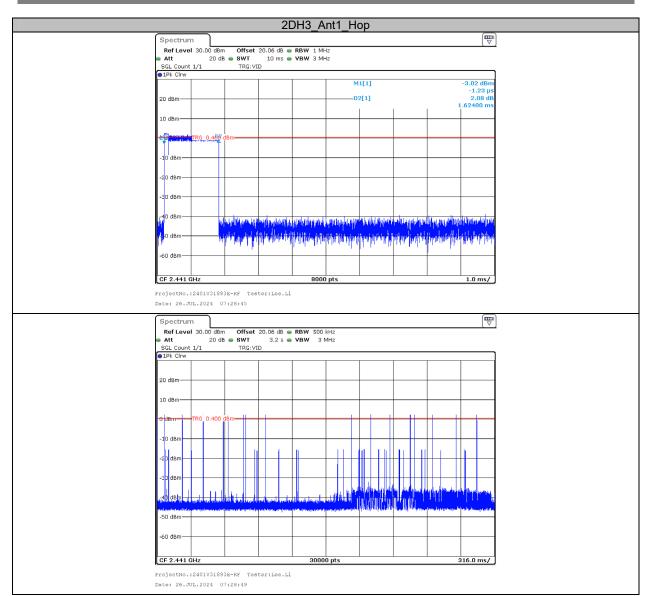
Test Result

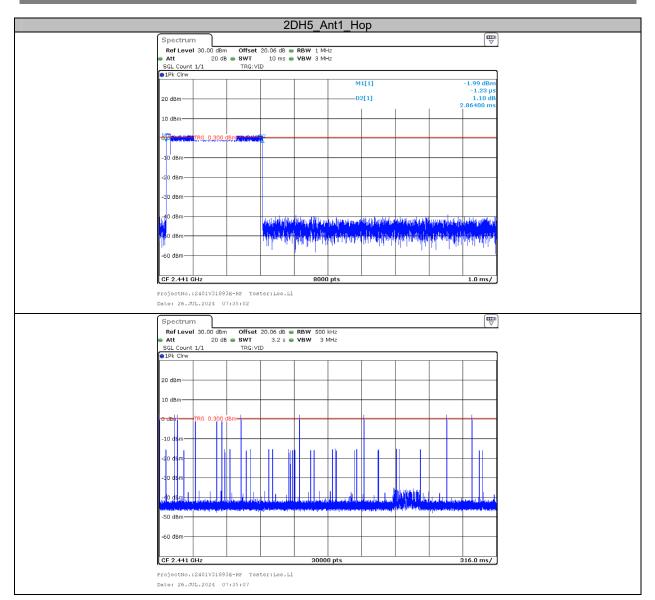

Test Mode	Antenna	Channel	Burst Width [ms]	Total Hops [Num]	Result[s]	Limit[s]	Verdict
DH1	Ant1	Нор	0.373	330	0.123	≤0.4	PASS
DH3	Ant1	Нор	1.620	170	0.275	≤0.4	PASS
DH5	Ant1	Нор	2.860	110	0.315	≤0.4	PASS
2DH1	Ant1	Нор	0.379	330	0.125	≤0.4	PASS
2DH3	Ant1	Нор	1.624	170	0.276	≤0.4	PASS
2DH5	Ant1	Нор	2.864	110	0.315	≤0.4	PASS
3DH1	Ant1	Нор	0.379	320	0.121	≤0.4	PASS
3DH3	Ant1	Нор	1.624	150	0.244	≤0.4	PASS
3DH5	Ant1	Нор	2.865	130	0.372	≤0.4	PASS

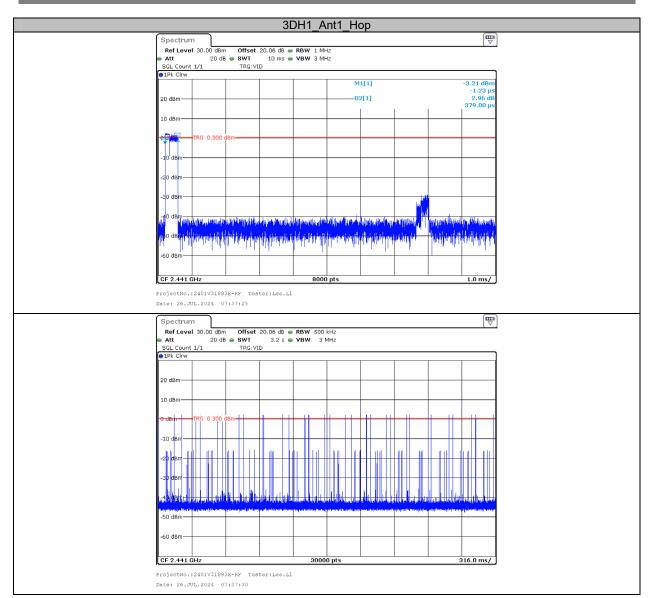

Note 1: A period time=0.4*79=31.6(S), Result=Burst Width*Total hops

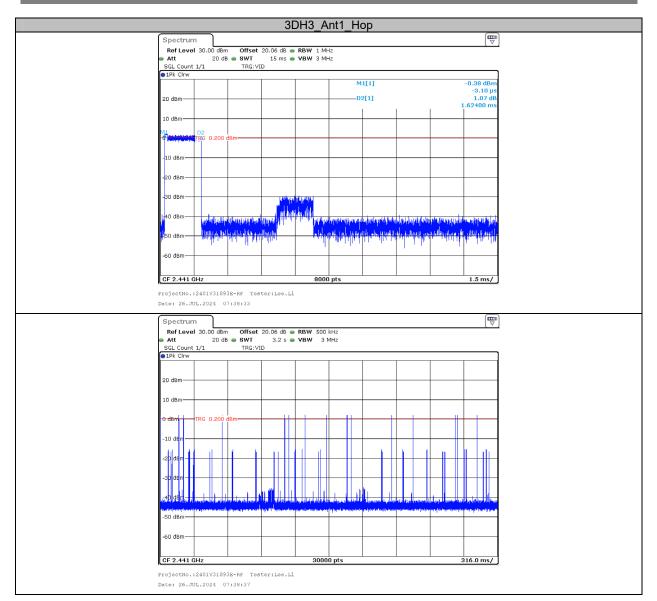

Note 2: Total hops=Hopping Number in 3.16s*10

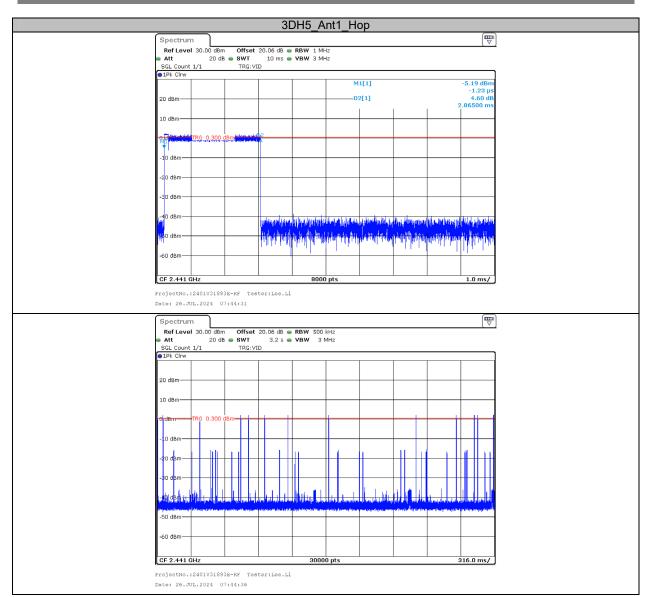

Note 3: Hopping Number in 3.16s=Total of highest signals in 3.16s(Second high signals were other channel)


Test Graphs





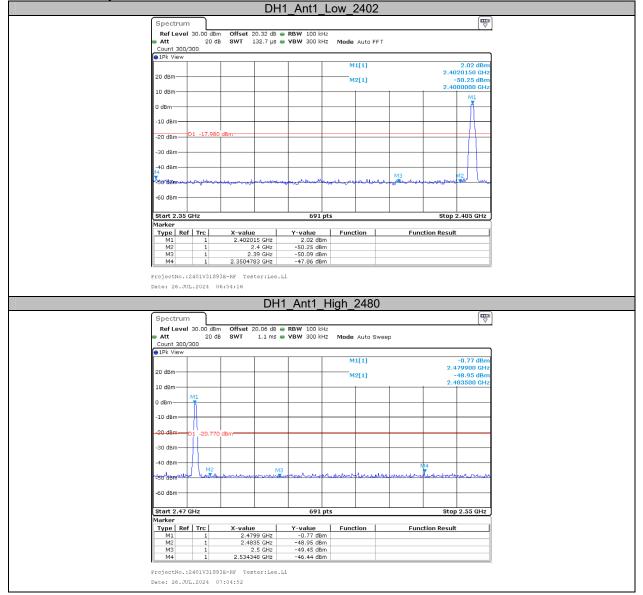




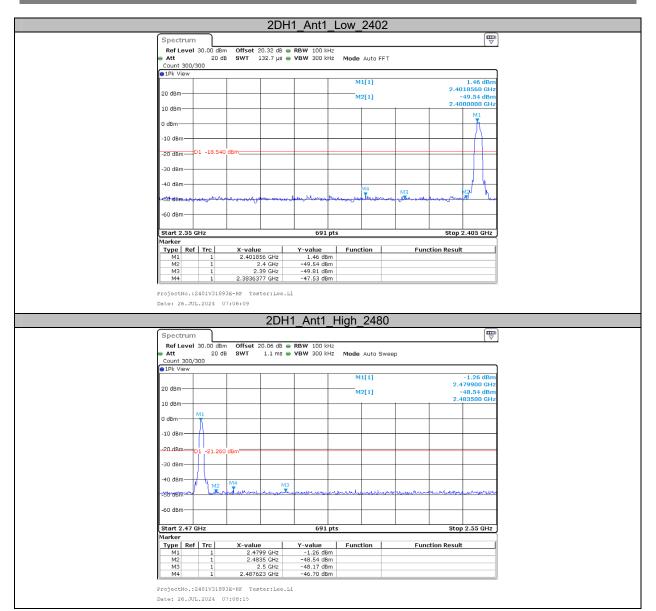
Appendix F: Number of Hopping Channels

Test Result

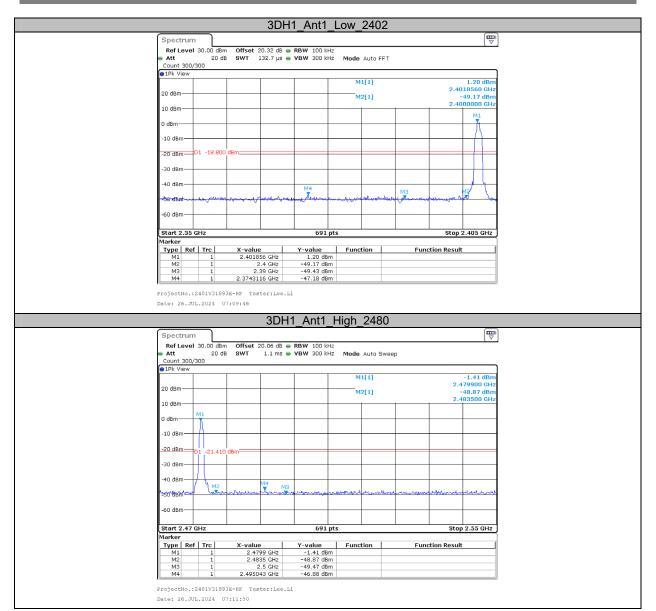
Test Mode	Antenna	Channel	Result[Num]	Limit[Num]	Verdict
DH1	Ant1	Нор	79	≥15	PASS
2DH1	Ant1	Нор	79	≥15	PASS
3DH1	Ant1	Нор	79	≥15	PASS


Test Graphs

DH1_Ant1_Hop	
Spectrum T	
RefLevel 30.00 dBm Offset 20.25 dB ● RBW 100 kHz ● Att 20 dB SWT 1 ms ● VBW 300 kHz Mode Auto Sweep	
Count 1000/1000	
20 dBm	
10 dBm	
0.8880100000000000000000000000000000000	
-20 dBm	
-80 dBm	
-40 dBm-	
-50 dBm	
-60 dBm	
Start 2.4 GHz 691 pts Stop 2.4835 GHz	
ProjectNo.:2401V31893E-RF Tester:Lee.Li Date: 26.JUL.2024 07:15:35	
2DH1_Ant1_Hop	
Spectrum (min) Ref Level 30.00 dBm Offset 20.25 dB ● RBW 100 kHz	
Spectrum (100) Ref Level 30.00 dBm Offset 20.25 dB RBW 100 kHz (100) Att 20 dB SWT 1 ms VBW 300 kHz Mode Auto Sweep Count 1000/1000 Count 1000/1000 Count 1000/1000 Count 1000/1000 Count 1000/1000	
Spectrum Image: Constraint of the section of the sectio	
Spectrum (TES) Ref Level 30.00 dBm Offset 20.25 dB RBW 100 kHz Att 20 dB SWT 1 ms VBW 300 kHz Count 1000/1000 0 0 0 0	
Spectrum (TED) Ref Level 30.00 dBm Offset 20.25 dB # RBW 100 kHz Att 20 dB SWT 1 ms ¥ VBW 300 kHz Mode Auto Sweep Count 1000/1000 # IPk View	
Spectrum (TES) Ref Level 30.00 dBm Offset 20.25 dB RBW 100 kHz Att 20 dB SWT 1 ms VBW 300 kHz Count 1000/1000 0 0 0 0	
Spectrum (TEP) Ref Level 30.00 dBm Offset 20.25 dB RBW 100 kHz Att 20 dB SWT 1 ms VBW 300 kHz Mode Auto Sweep Count 1000/1000 I hs w VBW 300 kHz Mode Auto Sweep Image: Sweet Auto	
Spectrum TEP Ref Level 30.00 dBm Offset 20.25 dB RBW 100 kHz Att 20 dB SWT 1 ms VBW 300 kHz Mode Auto Sweep Count 1000/1000 I hs view I ms VBW 300 kHz Mode Auto Sweep 20 dBm I ms VBW 300 kHz Mode Auto Sweep I ms 20 dBm I ms VBW 300 kHz Mode Auto Sweep I ms 20 dBm I ms I ms I ms I ms I ms 20 dBm I ms I ms I ms I ms I ms 20 dBm I ms I ms I ms I ms I ms 20 dBm I ms I ms I ms I ms I ms 20 dBm I ms I ms I ms I ms I ms I ms	
Spectrum The sector of the secto	
Spectrum TEP Ref Level 30.00 dBm Offset 20.25 dB RBW 100 kHz Att 20 dB SWT 1 ms VBW 300 kHz Mode Auto Sweep Count 1000/1000 I hs view I ms VBW 300 kHz Mode Auto Sweep 20 dBm I ms VBW 300 kHz Mode Auto Sweep I ms 20 dBm I ms VBW 300 kHz Mode Auto Sweep I ms 20 dBm I ms I ms I ms I ms I ms 20 dBm I ms I ms I ms I ms I ms 20 dBm I ms I ms I ms I ms I ms 20 dBm I ms I ms I ms I ms I ms 20 dBm I ms I ms I ms I ms I ms I ms	
Spectrum The sector of the secto	
Spectrum The Ref Level 30.00 dBm Offset 20.25 dB RBW 100 kHz Att 20 dB SWT 1 ms VBW 300 kHz Mode Auto Sweep Count 1000/1000 I hs view I ms VBW 300 kHz Mode Auto Sweep 20 dBm I ms VBW 300 kHz Mode Auto Sweep I ms 20 dBm I ms VBW 300 kHz Mode Auto Sweep I ms 20 dBm I ms VBW 300 kHz I ms I ms 20 dBm I ms I ms I ms I ms 20 dBm I ms I ms I ms I ms I ms 20 dBm I ms I ms I ms I ms I ms I ms 20 dBm I ms	
Spectrum The second secon	
Spectrum TW Ref Level 30.00 dBm Offset 20.25 dB # RBW 100 kHz Att 20 dB SWT 1 ms # VBW 300 kHz Mode Auto Sweep Count 1000/1000 # IPk View	
Spectrum The second secon	
Spectrum The second secon	
Spectrum The Ref Level 30.00 dBm Offset 20.25 dB # RBW 100 kHz Att 20 dB SWT 1 ms • VBW 300 kHz Mode Auto Sweep Count 1000/1000 • IPk View • • • • • 20 dBm • <td></td>	
Spectrum The second secon	


Spectrum)		DH1_A	_	- F			[Ţ
Ref Level 30.0	0 dBm Offset 2	20.25 dB 👄	RBW 100 ki	Hz				(~
👄 Att	20 dB SWT		VBW 300 k		Auto Swee	c		
Count 1000/1000	5							
20 dBm								
10 dBm								
				HAL				
	MAMMA	lakosská (AAAAAAA	MAAAAA	AAAAAAAAA	NAPDVAR	WWW	haan
-10 dBm	nanahaalaalaahaa	AAAAAAAA.	1400.000		NO AADAAA	WAAAnoo	01000000	WWWW
-20 dBm								
-30 dBm								
-40 dBm								
-50 dBm								L
-60 dBm								
Start 2.4 GHz			691	pts			Stop 2.	4835 GHz

Appendix G: Band Edge Measurements


Test Graphs

Report No.: 2401V31893E-RF-00A

***** END OF REPORT *****