

🧲 Shenzhen Zhongjian Nanfang Testing Co., Ltd.

Report No: CCISE181214704

FCC REPORT (BLE)

Applicant: GNJ Manufacturing Inc

Address of Applicant: 5811 West Hallandale Beach Blve. West Park, FL 33023

Equipment Under Test (EUT)

Product Name: Cool Extreme 2

Model No.: Cool Extreme 2

Trade mark: CellAllure

FCC ID: 2AAE9CAPHG55

Applicable standards: FCC CFR Title 47 Part 15 Subpart C Section 15.247

Date of sample receipt: 28 Dec., 2018

Date of Test: 28 Dec., 2018 to 15 Mar., 2019

Date of report issued: 18 Mar., 2019

Test Result: PASS *

* In the configuration tested, the EUT complied with the standards specified above.

Authorized Signature:

Bruce Zhang Laboratory Manager

This report details the results of the testing carried out on one sample. The results contained in this test report do not relate to other samples of the same product and does not permit the use of the CCIS product certification mark. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report.

This report may only be reproduced and distributed in full. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards.

This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only.

2 Version

Version No.	Date	Description
00	18 Mar., 2019	Original

Test Engineer

Reviewed by: Date: 18 Mar., 2019

Project Engineer

3 Contents

			Page
1	COV	/ER PAGE	1
2	VER	2	
3	CON	ITENTS	3
4		T SUMMARY	
5	GEN	IERAL INFORMATION	5
	5.1	CLIENT INFORMATION	5
	5.2	GENERAL DESCRIPTION OF E.U.T.	5
	5.3	TEST ENVIRONMENT AND TEST MODE	6
	5.4	DESCRIPTION OF SUPPORT UNITS	6
	5.5	MEASUREMENT UNCERTAINTY	
	5.6	LABORATORY FACILITY	6
	5.7	LABORATORY LOCATION	6
	5.8	TEST INSTRUMENTS LIST	7
6	TES	T RESULTS AND MEASUREMENT DATA	8
	6.1	ANTENNA REQUIREMENT:	8
	6.2	CONDUCTED EMISSION	9
	6.3	CONDUCTED OUTPUT POWER	12
	6.4	OCCUPY BANDWIDTH	
	6.5	POWER SPECTRAL DENSITY	16
	6.6	BAND EDGE	18
	6.6.	Conducted Emission Method	18
	6.6.2	2 Radiated Emission Method	20
	6.7	SPURIOUS EMISSION	25
	6.7.		
	6.7.2	Radiated Emission Method	27
7	TES	T SETUP PHOTO	32
R	FUT	CONSTRUCTIONAL DETAILS	34

4 Test Summary

Section in CFR 47	Result
15.203 & 15.247 (c)	Pass
15.207	Pass
15.247 (b)(3)	Pass
15.247 (a)(2)	Pass
15.247 (e)	Pass
15.247 (d)	Pass
15.205 & 15.209	Pass
	15.203 & 15.247 (c) 15.207 15.247 (b)(3) 15.247 (a)(2) 15.247 (e) 15.247 (d)

Pass: The EUT complies with the essential requirements in the standard.

N/A: Not Applicable.

5 General Information

5.1 Client Information

Applicant:	GNJ Manufacturing Inc
Address:	5811 West Hallandale Beach Blve. West Park, FL 33023
Manufacturer:	TZOOM INTERNATIONAL HK CO., LIMITED
Address:	Room610, 6/F, Innovation Park Building, Wisdom Valley, No.1010 Bulong RD, Longhua District, Shenzhen City, China
Factory:	Shenzhen Hunfun JaYe Technology Corp., Ltd
Address:	Building A1,Side A, Jiahua industrial factory zone Dafu industrial zone Zhangge community Guanlan street, Baoan district Shenzhen City, Guangdong province, China

5.2 General Description of E.U.T.

Product Name:	Cool Extreme 2
Model No.:	Cool Extreme 2
Operation Frequency:	2402-2480 MHz
Channel numbers:	40
Channel separation:	2 MHz
Modulation technology:	GFSK
Data speed :	1Mbps
Antenna Type:	Internal Antenna
Antenna gain:	0.8 dBi
Power supply:	Rechargeable Li-ion Battery DC3.8V-2200mAh
AC adapter:	Model: DCS10-0501000F Input: AC100-240V, 50/60Hz, 0.2A Output: DC 5.0V, 1A
Test Sample Condition:	The test samples were provided in good working order with no visible defects.

Operation Frequency each of channel							
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
0	2402MHz	10	2422MHz	20	2442MHz	30	2462MHz
1	2404MHz	11	2424MHz	21	2444MHz	31	2464MHz
2	2406MHz	12	2426MHz	22	2446MHz	32	2466MHz
3	2408MHz	13	2428MHz	23	2448MHz	33	2468MHz
4	2410MHz	14	2430MHz	24	2450MHz	34	2470MHz
5	2412MHz	15	2432MHz	25	2452MHz	35	2472MHz
6	2414MHz	16	2434MHz	26	2454MHz	36	2474MHz
7	2416MHz	17	2436MHz	27	2456MHz	37	2476MHz
8	2418MHz	18	2438MHz	28	2458MHz	38	2478MHz
9	2420MHz	19	2440MHz	29	2460MHz	39	2480MHz

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test. Channel No. 0, 20 & 39 were selected as Lowest, Middle and Highest channel.

5.3 Test environment and test mode

Operating Environment:	
Temperature:	24.0 °C
Humidity:	54 % RH
Atmospheric Pressure:	1010 mbar
Test mode:	
Transmitting mode	Keep the EUT in continuous transmitting with modulation

Report No: CCISE181214704

The sample was placed 0.8m (below 1GHz)/1.5m (above 1GHz) above the ground plane of 3m chamber. Measurements in both horizontal and vertical polarities were performed. During the test, each emission was maximized by: having the EUT continuously working, investigated all operating modes, rotated about all 3 axis (X, Y & Z) and considered typical configuration to obtain worst position, manipulating interconnecting cables, rotating the turntable, varying antenna height from 1m to 4m in both horizontal and vertical polarizations. The emissions worst-case are shown in Test Results of the following pages. Duty cycle setting during the transmission is 100% with maximum power setting for all modulations.

5.4 Description of Support Units

The EUT has been tested as an independent unit.

5.5 Measurement Uncertainty

Parameters	Expanded Uncertainty
Conducted Emission (9kHz ~ 30MHz)	±2.22 dB (k=2)
Radiated Emission (9kHz ~ 30MHz)	±2.76 dB (k=2)
Radiated Emission (30MHz ~ 1000MHz)	±4.28 dB (k=2)
Radiated Emission (1GHz ~ 18GHz)	±5.72 dB (k=2)
Radiated Emission (18GHz ~ 40GHz)	±2.88 dB (k=2)

5.6 Laboratory Facility

The test facility is recognized, certified, or accredited by the following organizations:

FCC - Registration No.: 727551

Shenzhen Zhongjian Nanfang Testing Co., Ltd. has been accredited as a testing laboratory by FCC (Federal Communications Commission). The Registration No. is 727551.

IC - Registration No.: 10106A-1

The 3m Semi-anechoic chamber of Shenzhen Zhongjian Nanfang Testing Co., Ltd. has been Registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 10106A-1.

• CNAS - Registration No.: CNAS L6048

Shenzhen Zhongjian Nanfang Testing Co., Ltd. is accredited to ISO/IEC 17025:2005 General Requirements for the Competence of Testing and Calibration laboratories for the competence of testing. The Registration No. is CNAS L6048.

A2LA - Registration No.: 4346.01

This laboratory is accredited in accordance with the recognized International Standard ISO/IEC 17025:2005 General requirements for the competence of testing and calibration laboratories. The test scope can be found as below link: https://portal.a2la.org/scopepdf/4346-01.pdf

5.7 Laboratory Location

Shenzhen Zhongjian Nanfang Testing Co., Ltd.

Address: No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road,

Bao'an District, Shenzhen, Guangdong, China Tel: +86-755-23118282, Fax: +86-755-23116366

Email: info@ccis-cb.com, Website: http://www.ccis-cb.com

Shenzhen Zhongjian Nanfang Testing Co., Ltd.
No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road,
Bao'an District, Shenzhen, Guangdong, China
Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

5.8 Test Instruments list

Radiated Emission:					
Test Equipment	Manufacturer	Model No.	Serial No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)
3m SAC	SAEMC	9m*6m*6m	966	07-22-2017	07-21-2020
Loon Antonno	COLIMA DZDECK	EMZD4540D	00044	03-16-2018	03-15-2019
Loop Antenna	SCHWARZBECK	FMZB1519B	00044	03-16-2019	03-15-2020
DiCanil og Antonna	SCHWARZBECK	VULB9163	497	03-16-2018	03-15-2019
BiConiLog Antenna	SCHWARZBECK	VULD9103	497	03-16-2019	03-15-2020
Horn Antenna	SCHWARZBECK	BBHA9120D	916	03-16-2018	03-15-2019
Hom Antenna	SCHWARZBECK	DDHA9120D	910	03-16-2019	03-15-2020
Horn Antenna	SCHWARZBECK	BBHA9120D	1805	06-22-2017	06-21-2020
Horn Antenna	SCHWARZBECK	BBHA 9170	BBHA9170582	11-21-2018	11-20-2019
EMI Test Software	AUDIX	E3	\	Version: 6.110919	b
D 110	LID	0.4.47D	0044400050	03-07-2018	03-06-2019
Pre-amplifier	HP	8447D	2944A09358	03-07-2019	03-06-2020
Dro omplifier	CD.	DAD 4040	11804	03-07-2018	03-06-2019
Pre-amplifier	CD	PAP-1G18	11004	03-07-2019	03-06-2020
Spootrum analyzar	Rohde & Schwarz	FSP30	101454	03-07-2018	03-06-2019
Spectrum analyzer	Ronde & Schwarz	F3F30	101454	03-07-2019	03-06-2020
Spectrum analyzer	Rohde & Schwarz	FSP40	100363	11-21-2018	11-20-2019
EMIT (D)	D 1 1 0 0 1	50007	404070	03-07-2018	03-06-2019
EMI Test Receiver	Rohde & Schwarz	ESRP7	101070	03-07-2019	03-06-2020
0.11	7050	7400 NU NU 04	1000450	03-07-2018	03-06-2019
Cable	ZDECL	Z108-NJ-NJ-81	1608458	03-07-2019	03-06-2020
O-lil-	MIODO COAV	MED 0 4000	1/40740 5	03-07-2018	03-06-2019
Cable	MICRO-COAX	MFR64639	K10742-5	03-07-2019	03-06-2020
Cable	CHUNED	CLICOFI EVACO	E0102/4DF	03-07-2018	03-06-2019
Cable	SUHNER	SUCOFLEX100	58193/4PE	03-07-2019	03-06-2020
RF Switch Unit	MWRFTEST	MW200	N/A	N/A	N/A
Test Software	MWRFTEST	MTS8200		Version: 2.0.0.0	

Conducted Emission:					
Test Equipment	Manufacturer	Model No.	Serial No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)
EMI Test Receiver	Rohde & Schwarz	ESCI	CI 101189	03-07-2018	03-06-2019
EIVII Test Receiver	Ronde & Schwarz	ESCI		03-07-2019	03-06-2020
Pulse Limiter	SCHWARZBECK	OSRAM 2306	0704	03-07-2018	03-06-2019
Puise Limiter	SCHWARZBECK	USKAWI 2300	9731	03-07-2019	03-06-2020
LISN	CHASE	MN2050D	1447	03-19-2018	03-18-2019
LISN	Rohde & Schwarz	ESH3-Z5	8438621/010	07-21-2018	07-20-2019
Cabla	<u> </u>	405004	NI/A	03-07-2018	03-06-2019
Cable	HP	10503A	N/A	03-07-2019	03-06-2020
EMI Test Software	AUDIX	E3	\	/ersion: 6.110919	b

6 Test results and Measurement Data

6.1 Antenna requirement:

Standard requirement: FCC Part 15 C Section 15.203 /247(b)

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(b) (4) requirement:

(4) The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

E.U.T Antenna:

The BLE antenna is an Internal antenna which cannot replace by end-user, the best-case gain of the antenna is 0.8 dBi.

6.2 Conducted Emission

Test Requirement:	FCC Part 15 C Section 15	.207	
Test Method:	ANSI C63.10: 2013		
Test Frequency Range:	150 kHz to 30 MHz		
Class / Severity:	Class B		
Receiver setup:	RBW=9kHz, VBW=30kHz		
Limit:	·	l .	(dBuV)
Limit	Frequency range (MHz)	Quasi-peak	Average
	0.15-0.5	66 to 56*	56 to 46*
	0.5-5	56	46
	5-30	60	50
Test procedure	* Decreases with the logar 1. The E.U.T and simula		
	 The E.U.T and simulators are connected to the main power through line impedance stabilization network (L.I.S.N.), which provides a 50ohm/50uH coupling impedance for the measuring equipment. The peripheral devices are also connected to the main power through a LISN that provides a 50ohm/50uH coupling impedance with 50oh termination. (Please refer to the block diagram of the test setup and photographs). Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.4: 2014 on conducted 		
Test setup:	AUX Equipment Test table/Insulation pla Remark E.U.T: Equipment Under Test LISN: Line Impedence Stabilization Test table height=0.8m	nn Network	— AC power
Test Instruments:	Refer to section 5.8 for de		
Test mode:	Refer to section 5.3 for de	tails	
Test results:	Passed		

Measurement Data:

Product name:	Cool Extreme 2	Cool Extreme 2		Cool Extreme 2 BLE Tx mode	
Test by:	Yaro				
Test frequency:	150 kHz ~ 30 N	ИНz	Phase:	Line	
Test voltage:	AC 120 V/60 H	Z	Environment:	Temp: 22.5℃	Huni: 55%
1145					
100 Level (dB	suv)				
90					
3399					
80					
70					
60 1				FCC PAR	T15 B QP
JA7 3	5	6		FCC PART	T15 B AV
50	Mr. comb.	8	11		
40	I NATANAMINA MANAGE IN	THINK HANDING NAME OF A	physical phy	der Manura began faller was anno be de come	a Layer
30	L. LILL MANNET	Adams of	EU EU		12
30 1	AN MANIMAN	Milled as applicately as better in money	they and many many		TIM
20	1				T Y
10					
0.15 .2	.5		2 5	10	20 30
Trace: 15		Freque	ncy (MHz)		
Remark	:				
	Rea			Over	
	Freq Leve	el Factor Loss	Level Line	Limit Remark	

	Freq	Read Level	LISN Factor	Cable Loss	Level	Limit Line	Over Limit	Remark
	MHz	dBu∜	₫B	₫B	dBu∀	dBu∜	<u>d</u> B	
1	0.166	47.26	0.17	10.77	58.20	65.16	-6.96	QP
2	0.166	29.65	0.17	10.77	40.59	55.16	-14.57	Average
3	0.222	39.90	0.14	10.76	50.80	62.74	-11.94	QP
2 3 4 5 6 7	0.595	28.35	0.13	10.77	39.25	46.00	-6.75	Average
5	0.617	39.74	0.13	10.77	50.64	56.00	-5.36	QP
6	0.686	38.10	0.13	10.77	49.00	56.00	-7.00	QP
7	0.690	26.42	0.13	10.77	37.32	46.00	-8.68	Average
8	1.197	35.60	0.13	10.89	46.62	56.00	-9.38	
9	1.628	23.83	0.14	10.93	34.90	46.00	-11.10	Average
10	2.527	22.54	0.15	10.94	33.63	46.00	-12.37	Average
11	3.123	33.30	0.17	10.92	44.39		-11.61	
12	21.373	16.35	0.29	10.91	27.55			Average

Notes

- 1. An initial pre-scan was performed on the line and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level =Receiver Read level + LISN Factor + Cable Loss.

Product name: Cool Extreme 2		Product model:	Cool Extreme 2	
Test by:			BLE Tx mode	
Test frequency:			Neutral	
Test voltage:	AC 120 V/60 Hz	Environment:	Temp: 22.5℃ Huni: 55%	
90 80 70 60			FCC PART15 B QP	

10

5

10

20

30

2			
Remark	*		
I/CIII alik			

.5

cemark	Freq	Read Level	LISN Factor	Cable Loss	Level	Limit Line	Over Limit	Remark
	MHz	dBu₹	<u>dB</u>	dB	dBu₹	dBu₹	<u>d</u> B	
1	0.174	46.78	0.95	10.77	58.50	64.77	-6.27	QP
2	0.174	32.21	0.95	10.77	43.93	54.77	-10.84	Average
2 3 4 5 6 7 8 9	0.471	26.95	0.97	10.75	38.67	46.49	-7.82	Average
4	0.589	40.44	0.97	10.76	52.17	56.00	-3.83	QP
5	0.627	28.38	0.97	10.77	40.12	46.00	-5.88	Average
6	0.686	29.91	0.97	10.77	41.65	46.00	-4.35	Average
7	0.690	40.78	0.97	10.77	52.52	56.00	-3.48	QP
8	1.602	29.56	0.98	10.93	41.47	46.00	-4.53	Average
9	1.610	37.97	0.98	10.93	49.88	56.00	-6.12	QP
10	2.779	36.56	0.99	10.93	48.48	56.00	-7.52	QP
11	2.779	27.73	0.99	10.93	39.65	46.00	-6.35	Average
12	21.946	34.79	0.68	10.91	46.38	60.00	-13.62	QP

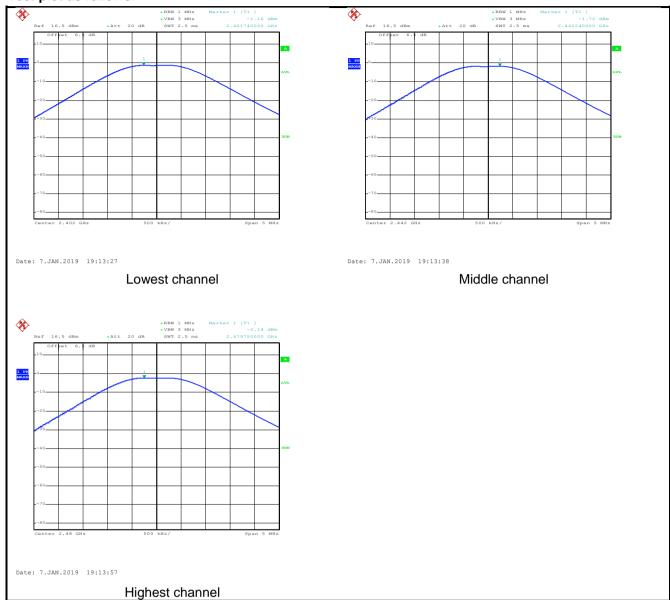
2

Frequency (MHz)

Notes:

- 1. An initial pre-scan was performed on the line and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level =Receiver Read level + LISN Factor + Cable Loss.

6.3 Conducted Output Power

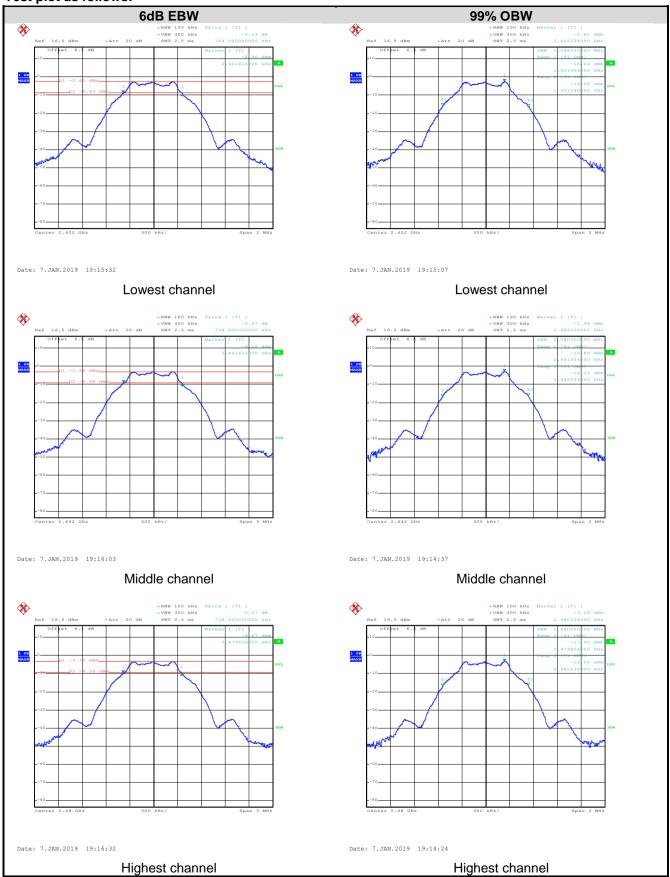

Test Requirement:	FCC Part 15 C Section 15.247 (b)(3)				
Test Method:	ANSI C63.10:2013 and KDB 558074				
Limit:	30dBm				
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane				
Test Instruments:	Refer to section 5.8 for details				
Test mode:	Refer to section 5.3 for details				
Test results:	Passed				

Measurement Data:

Test CH	Maximum Conducted Output Power (dBm)	Limit(dBm)	Result
Lowest	-1.16		
Middle	-1.72	30.00	Pass
Highest	-2.14		

Test plot as follows:

6.4 Occupy Bandwidth

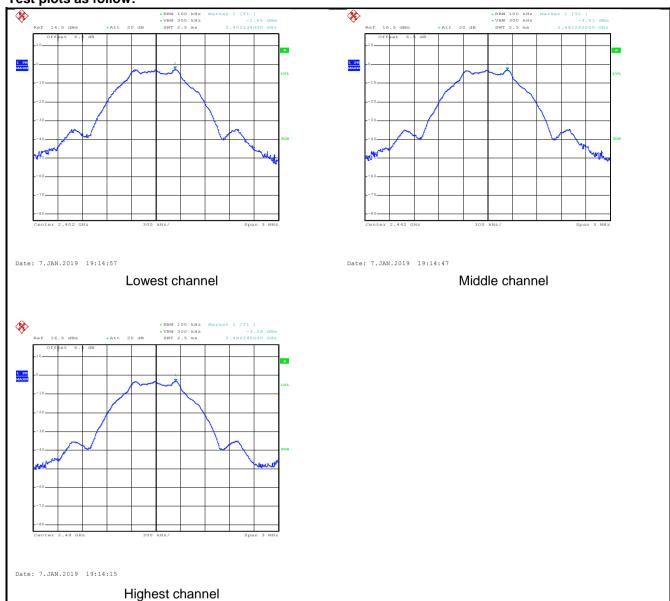

Test Requirement:	FCC Part 15 C Section 15.247 (a)(2)				
Test Method:	ANSI C63.10:2013 and KDB 558074				
Limit:	>500kHz				
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane				
Test Instruments:	Refer to section 5.8 for details				
Test mode:	Refer to section 5.3 for details				
Test results:	Passed				

Measurement Data:

Test CH	Test CH 6dB Emission Bandwidth (MHz)		Result	
Lowest	0.744			
Middle	0.738	>500	Pass	
Highest	0.738	0.738		
Test CH	99% Occupy Bandwidth (MHz)	Limit(kHz)	Result	
Lowest	1.086			
Middle	1.080	N/A	N/A	
Highest	1.080			

Test plot as follows:

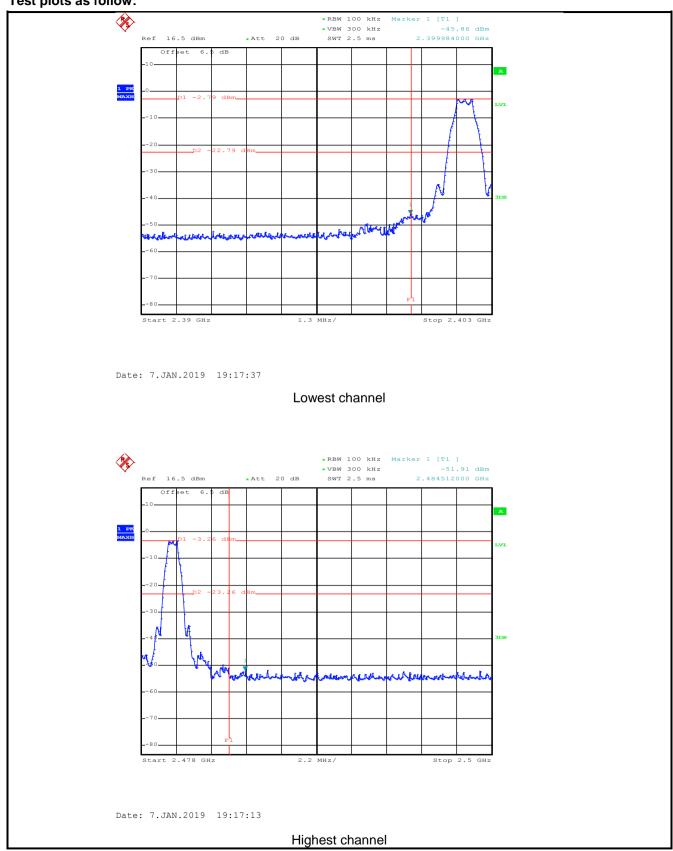
6.5 Power Spectral Density


Test Requirement:	FCC Part 15 C Section 15.247 (e)				
Test Method:	ANSI C63.10:2013 and KDB 558074				
Limit:	8 dBm				
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane				
Test Instruments:	Refer to section 5.8 for details				
Test mode:	Refer to section 5.3 for details				
Test results:	Passed				

Measurement Data:

Test CH	Power Spectral Density (dBm)	Limit(dBm)	Result
Lowest	-2.65		
Middle	-3.01	8.00	Pass
Highest	-3.28		

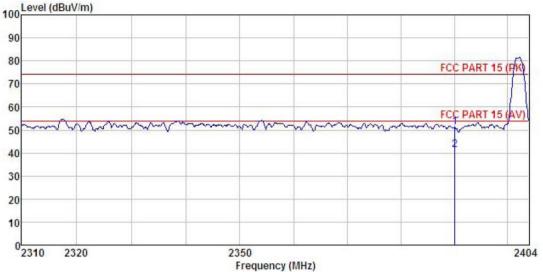
Test plots as follow:

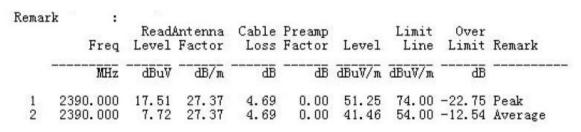

6.6 Band Edge

6.6.1 Conducted Emission Method

Test Requirement:	FCC Part 15 C Section 15.247 (d)					
Test Method:	ANSI C63.10:2013 and KDB 558074					
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.					
Test setup:						
	Spectrum Analyzer					
	E.U.T					
	Non-Conducted Table					
	Crownd Performed Plane					
	Ground Reference Plane					
Test Instruments:	Refer to section 5.8 for details					
Test mode:	Refer to section 5.3 for details					
Test results:	Passed					

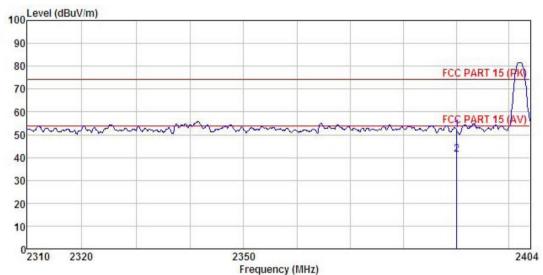
Test plots as follow:

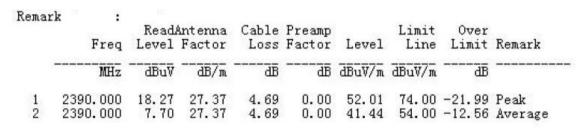



6.6.2 Radiated Emission Method

.6.2 Radiated Emission Method								
Test Requirement:	FCC Part 15 C	FCC Part 15 C Section 15.205 and 15.209						
Test Method:	ANSI C63.10:	ANSI C63.10: 2013 and KDB 558074						
Test Frequency Range:	2.3GHz to 2.5	2.3GHz to 2.5GHz						
Test Distance:	3m							
Receiver setup:	Frequency	Detector		VBW	Remark			
	Above 1GHz	Peak	1MHz	3MHz	Peak Value			
I imit.	Frequer	RMS	1MHz Limit (dBuV/m @3	3MHz	Average Value Remark			
Limit:	·		54.00		verage Value			
	Above 10	∂HZ –	74.00		Peak Value			
Test Procedure:	the groun to determ 2. The EUT antenna, tower. 3. The anter the groun Both horizemake the 4. For each case and meters are to find the 5. The test-I Specified 6. If the emit the limit is of the EU have 10 ce	 The EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter camber. The table was rotated 360 degrees to determine the position of the highest radiation. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rota table was turned from 0 degrees to 360 degrees to find the maximum reading. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode. 						
Test setup:	AE (T	Test Recei	3m 3m round Reference Plane	Antenna Tower				
Test Instruments:	Refer to section	on 5.8 for de	tails					
Test mode:	Refer to section	on 5.3 for de	tails					
Test results:	Passed							

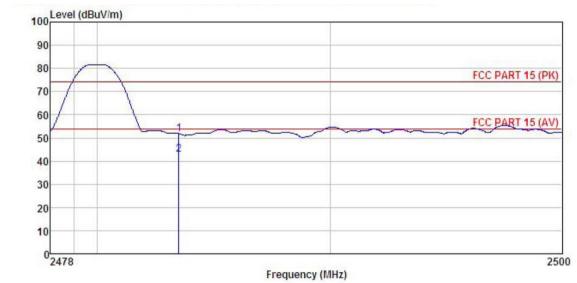
Product Name:	Cool Extreme 2	Product Model:	Cool Extreme 2		
Test By:	Yaro	Test mode:	BLE Tx mode		
Test Channel:	Lowest channel	Polarization:	Vertical		
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24℃ Huni: 57%		
100 Level (dBu\	//m)				





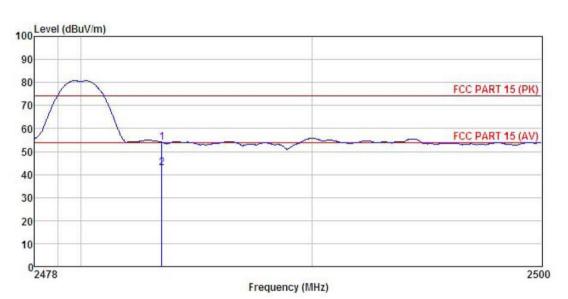
- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product Name:	Cool Extreme 2	Product Model:	Cool Extreme 2		
Test By:	Yaro	Test mode:	BLE Tx mode		
Test Channel:	Lowest channel	Polarization:	Horizontal		
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24℃ Huni: 57%		



- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product Name:	Cool Extreme 2	Product Model:	Cool Extreme 2						
Test By:	Yaro	Test mode:	BLE Tx mode						
Test Channel:	Highest channel	Polarization:	Vertical						
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24°C Huni: 57%						
Level (dBuV/m)									



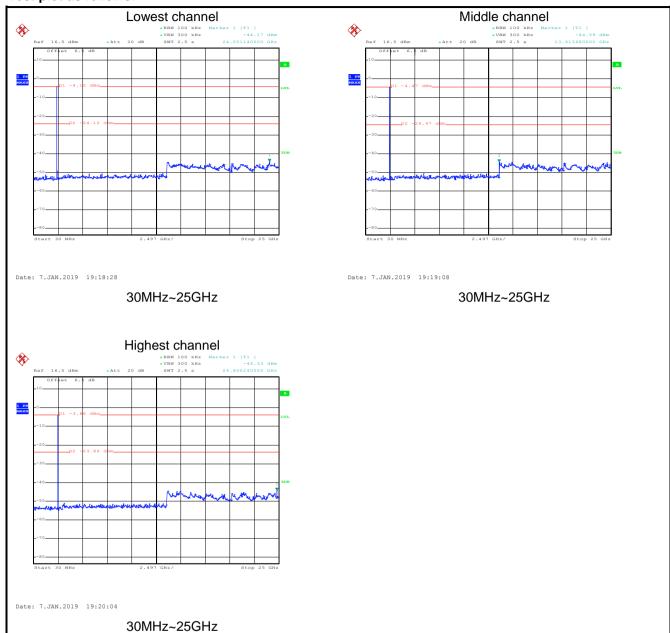
Remar	k :	Read	Antenna	Cable	Preamp		Limit	Over	
	Freq		Factor						Remark
9	MHz	dBu∀	$\overline{dB/m}$	<u>dB</u>	<u>dB</u>	$\overline{dBuV/m}$	dBuV/m	<u>dB</u>	
1 2	2483.500 2483.500		27.57 27.57	4.81 4.81		51.84 42.71			

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product Name:	Cool Extreme 2	Product Model:	Cool Extreme 2
Test By:	Yaro	Test mode:	BLE Tx mode
Test Channel:	Highest channel	Polarization:	Horizontal
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24℃ Huni: 57%

Remark	:	10		12.12			C 2	2	
	Freq		Antenna Factor				Limit Line	Over Limit	
-	MHz	dBu∜	dB/m	<u>d</u> B	<u>dB</u>	dBuV/m	dBuV/m	<u>dB</u>	
1 2	2483.500 2483.500		27.57 27.57				74.00 54.00		Peak Average

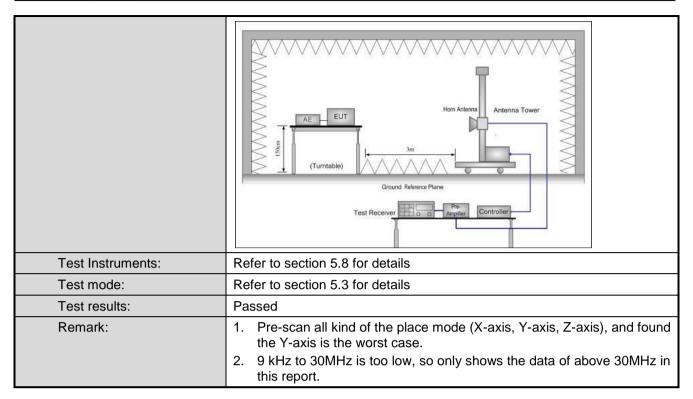
- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.


6.7 Spurious Emission

6.7.1 Conducted Emission Method

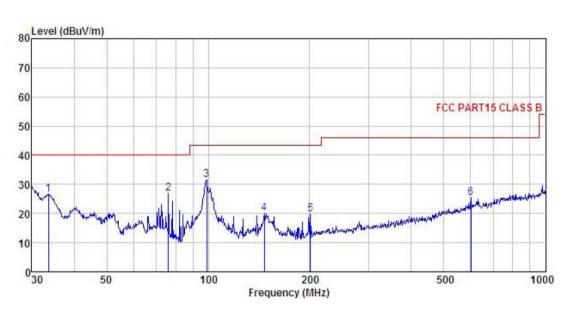
Test Requirement:	FCC Part 15 C Section 15.247 (d)					
Test Method:	ANSI C63.10:2013 and KDB 558074					
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.					
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane					
Test Instruments:	Refer to section 5.8 for details					
Test mode:	Refer to section 5.3 for details					
Test results:	Passed					

Test plot as follows:



6.7.2 Radiated Emission Method

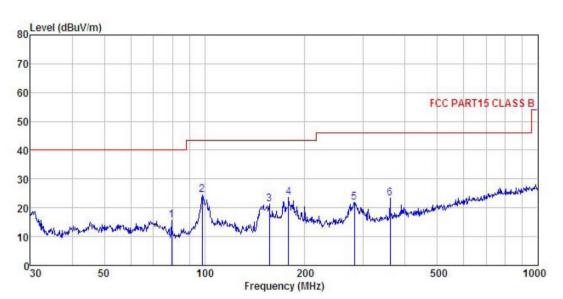
6.7.2 Radiated Emission Method									
Test Requirement:	FCC Part 15 C Section 15.205 and 15.209								
Test Method:	ANSI C63.10:2013								
Test Frequency Range:	9kHz to 25GHz	9kHz to 25GHz							
Test Distance:	3m								
Receiver setup:	Frequency	Detector	r	RBW	VB	W	Remark		
	30MHz-1GHz	Quasi-pea	ak	120KHz	3001		Quasi-peak Value		
	Above 1GHz	Peak		1MHz	3M		Peak Value		
Limite	Frequency	RMS ,	Lin	1MHz nit (dBuV/m @	3M)	HZ	Average Value Remark		
Limit:	30MHz-88M		LIII	40.0	3111)		Quasi-peak Value		
	88MHz-216M			43.5			Quasi-peak Value		
	216MHz-960N			46.0			Quasi-peak Value		
	960MHz-1G	Hz		54.0		C	Quasi-peak Value		
	Above 1GH	l ₇		54.0			Average Value		
				74.0	,		Peak Value		
Test Procedure:							table 0.8m(below a 3 meter camber.		
							the position of the		
	highest rad		u 0.	, aug. 000 t	0 40101		and position or and		
							erference-receiving		
	·	hich was r	mou	nted on the t	op of a	varial	ble-height antenna		
	tower. 3. The antenr	na height i	ie va	aried from o	ne met	er to f	four meters above		
							the field strength.		
							antenna are set to		
	make the n								
							anged to its worst		
							from 1 meter to 4 ees to 360 degrees		
	to find the r				110111 0	aogio	loo to ooo dogrood		
	5. The test-re	eceiver sy	/ster	n was set			tect Function and		
				Maximum H			40 10 1		
				•			s 10 dB lower than and the peak values		
							ssions that did not		
							using peak, quasi-		
		erage me	thoc	d as specifie	d and	then r	reported in a data		
	sheet.								
Test setup:	Below 1GHz								
				$\overline{}$		Antenna	Tower		
				4					
	ş	3m <				Search	ı		
	EUT _	÷		\mathcal{H}		Antenn	a		
	4m RF Test								
	Ref Test Receiver								
	Turn 0.8m 1m								
	Table A A DEL								
	7777777777		///	11///////	<i>'''</i>	7 <u> </u>			
	Ground Plane	/							
	Above 1GHz								
	ADOVE IGHZ								



Measurement Data (worst case):

Below 1GHz:

Product Name:	Cool Extreme 2	Product Model:	Cool Extreme 2
Test By:	Yaro	Test mode:	BLE Tx mode
Test Frequency:	30 MHz ~ 1 GHz	Polarization:	Vertical
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24℃ Huni: 57%


Remark	:	- 2000					Process of the Control of the Contro	122A430 NovAccionación	
	Freq		Antenna Factor		Preamp Factor	Level	Limit Line	Over Limit	Remark
_	MHz	dBu∜	<u>dB</u> /m	<u>d</u> B	<u>dB</u>	dBuV/m	dBuV/m	dB	
1	33.562	44.14	11.40	0.98	29.96	26.56	40.00	-13.44	QP
2	76.244	46.38	8.46	1.63	29.67	26.80	40.00	-13.20	QP
3	98.833	47.56	11.51	1.97	29.53	31.51	43.50	-11.99	QP
4	146.888	38.44	8.45	2.47	29.24	20.12	43.50	-23.38	QP
5	200.688	34.22	11.53	2.87	28.83	19.79	43.50	-23.71	QP
1 2 3 4 5 6	601.427	31.09	19.22	3.94	28.93	25.32		-20.68	4400 0 44000

Remark:

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product Name:	Cool Extreme 2	Product Model:	Cool Extreme 2
Test By:	Yaro	Test mode:	BLE Tx mode
Test Frequency:	30 MHz ~ 1 GHz	Polarization:	Horizontal
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24℃ Huni: 57%

Remark	: Freq		Antenna Factor		Preamp Factor	Level	Limit Line	Over Limit	Remark
-	MHz	dBu∜	dB/m	<u>d</u> B	<u>dB</u>	dBuV/m	dBuV/m	dB	
1	79.521	35.42	8.14	1.65	29.64	15.57	40.00	-24.43	QP
2	98.487	40.67	11.45	1.97	29.54	24.55	43.50	-18.95	QP
3	156.458	38.96	8.93	2.56	29.16	21.29	43.50	-22.21	QP
4	178.758	40.26	9.75	2.72	28.98	23.75	43.50	-19.75	QP
2 3 4 5 6	281.995	34.00	13.50	2.89	28.48	21.91	46.00	-24.09	QP
6	360.448	34.03	14.80	3.10	28.61	23.32	46.00	-22.68	QP

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Above 1GHz

			Test ch	nannel: Lowe	est channel				
			De	tector: Peak	Value				
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
4804.00	45.68	35.99	6.80	41.81	46.66	74.00	-27.34	Vertical	
4804.00	46.20	35.99	6.80	41.81	47.18	74.00	-26.82	Horizontal	
			Dete	ector: Avera	ge Value				
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
4804.00	36.18	35.99	6.80	41.81	37.16	54.00	-16.84	Vertical	
4804.00	36.45	35.99	6.80	41.81	37.43	54.00	-16.57	Horizontal	
			Test ch	nannel: Midd	dle channel				
			De	tector: Peak	. Value				
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
4884.00	46.32	36.38	6.86	41.84	47.72	74.00	-26.28	Vertical	
4884.00	46.41	36.38	6.86	41.84	47.81	74.00	-26.19	Horizontal	
			Dete	ector: Avera	ge Value				
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
4884.00	36.31	36.38	6.86	41.84	37.71	54.00	-16.29	Vertical	
4884.00	36.18	36.38	6.86	41.84	37.58	54.00	-16.42	Horizontal	
Test channel: Highest channel									
			De	tector: Peak	Value				
Frequency	Read	Antenna	Cable	Preamp	Level	Limit Line	Over		

Test channel: Highest channel												
Detector: Peak Value												
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization				
4960.00	46.45	36.71	6.91	41.87	48.20	74.00	-25.80	Vertical				
4960.00	46.48	36.71	6.91	41.87	48.23	74.00	-25.77	Horizontal				
Detector: Average Value												
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization				
4960.00	36.35	36.71	6.91	41.87	38.10	54.00	-15.90	Vertical				
4960.00	36.21	36.71	6.91	41.87	37.96	54.00	-16.04	Horizontal				

Remark

^{1.} Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor.

^{2.} The emission levels of other frequencies are very lower than the limit and not show in test report.