Marstech Cimited

11 Kelfield Street, Etobicoke, Ontario, Canada, M9W 5A1 Telephone (416) 246-1116, Fax (416) 246-1020

actions based on this report.

TEST 18 HEARING AID COMPATIBILITY TEST

REFERENCE: CS-03, Issue 9, Part V Clause 4 FCC, Part 68, Clause 68.316

CONDITION: SPEAKER Lin Jia SD034B-8A

CRITERIA: 1. AXIAL > -19 dB 2. RADIAL > -27 dB

3. FREQUENCY RESPONSE WITHIN LIMITS ON GRAPH

INPUT: 1KHz AT -10 dBV READING: dB RELATIVE TO 1A/m

1. AXIAL: -0.5 dB

2. RADIAL: 0 DEG.: -12.5 dB 90 DEG.: -16 dB

180 DEG.: -10 dB 270 DEG.: -7.5 dB

3. FREQUENCY RESPONSE:

HIGH VOLUME

Figure 4.2

Magnetic Field Intensity Frequency Response for Receivers with an Axial Field that Exceeds -19dB Relative to 1 A/m Without Using an Integrator (See Section 4.4 and Figure 2).

RESULTS: Accepted within ±2 dB measuring tolerance.

TECHNICIAN: Gary Nova DATE: 20 October 2006

MARSTECH LIMITED

TEST 45 HEARING AID COMPATIBILITY - VOLUME CONTROL

REFERENCE: CS-03, Issue 9, Part V, Clause 6.

FCC Part 68, Clause 68.317

CONDITION:

SPEAKER:

Lin Jia

SD034B-8A

SEALING RING:

Yes

FREQ.	0 KM											2.7 KM										4.6 KM									
	MIN. VOLUME (ROLR 41-51dB)					MAXIMUM VOLUME					MIN. VOLUME (ROLR 43-53dB)					MAXIMUM VOLUME					MIN. VOLUME (ROLR 45-55dB)					MAXIMUM VOLUME					
	dBS PL	dBPa	Cal	Calculations		18SPL 187.5 300	dBPa 14.5	Cal	culat	ions	91.5	ubi a c		alculations		dBS PL	dBPa	Cal	culations		dBS PL	dBPa	Calculati		tions	dBS PL	dBPa	Calculation			
	300	2.0								-1.5					300 300	11.5				89.5 390	-3.5			103.0	10.0		П				
400 Hz	94.5	3.5	3.1349	1.1557	0.1443	111.5 400	16.5	0.1249	2.2536	0.2815	95.0 490	0.0	0.1249	0.9623	0.1202	995.0 490	13.0	0.1249	15000	0.2373	92.5	-2.5	0.0349	0.8550	0.1868	106.0	11.0	1.1249	1.7329	0.2364	
500 Hz	500	5.0	1.0969	1.2500	0.3211	113.0 990	18.0	0.0969	2.4582	0.2392	96.0 500	1.0	0,0969	1.8369	0.0995	990	14.5	0.0549	2.0851	0.1991	93.5	-1.5	0.0969	0.9009	0.0475	107.5	12.5	1.0965	1.8509	0.1794	
600 Hz	101.5 600	7.0	1.0792	1.3707	0.1086	115.0 600	20.5	0.0792	2.7443	0.2173	97.5	3.0	0.0792	1.1119	0.0881	111.5	17.0	0.0792	2.2850	0.1830	95.0	0.5	0.0792	0.9795	0.0775	109.0	14.5	0.0792	2,0296	0.1607	
700 Hz	102-0 700	7.5	1.0669	1.4615	0.0978	115.5	21.0	0.0609	2.9623	0.1982	97.5	3.0	0.0669	1.1700	0.0783	1115	17.0	0.0669	2.4342	0.1628	95.0	0.5	0.0669	1.0265	0.968T	109.0	14.5	0.0669	2.1297	0.1429	
1000 Hz	96.0 1K	2.0	0.1549	1.2955	0.2007	100-5 1K	15.5	0.1549	2.6158	0.4067	91.4 1K	-3.0	0.1549	1.9129	0.1568	105.0 1K	11.0	0.1549	2.1003	0.3363	18.0 1K	-6.0	0.1549	0,8785	0.1361	102.0	8.0	0.1549	1.8278	4.2831	
1500 Hz	86.0 1.5K	-8.0	0.1761	0.8841	0.1557	104.8 1.5K	6.0	0.1761	1.8897	0.3187	81.0 1.8K	-13.0	9,1761	0.6806	0.1199	94.5 1.5K	0.5	0.1761	1.4024	0.2470	77.0 1.5K	-17.0	0.1761	0.5707	0.1008	91.0 1.5K	-3.0	0.1761	1.3873	0.2091	
2000 Hz	81.0 2K	-15.0	0.1249	0.5570	0.0695	95.0 2K	-1.0	0.1249	1.1589	0.1447	75.0 2K	-21.0	0.1249	0.4198	0.0524	89.0 2K	-7.0	1.1249	0.8559	9.3974	70.5 3K	-25.5	0.1249	0.3371	0.0421	54.0 2K	-12.0	0.1249	0.6942	0.0867	
2300 Hz	84.5 2.3K	-13.0	0.0607	0.4813	0.0292	98.5 23K	1.0	0.0607	1.9014	0.0688	77.5 2.9K	-20.0	0.0607	0.3422	0.0204	92.0 2.3K	-5.5	3,0907	0.7216	8.9438	73.0 2.3K	-24.5	0.0607	9.2704	0.0164	26.5 2.9K	-11.0	0.0607	0.5480	0.0333	
2700 Hz	85.0 2.7K	-14.0	1.00%	0.4935	1.0343	98.5 2.7K	-0.5	0.0896	L0139	0.0706	17.5 2.7K	-21.5	0.0696	0.3379	0.0225	91.0 2.7K	-8.0	0.00%	0.7033	0.0450	72.5 2.7K	-26.5	0.06%	0.2637	0.0184	2.7K	-13.5	0.0496	0.5279	0.0367	
3000 Hz	84.0 3K	-15.5	0.0458	0.4625	0.0212	98.0 3K	-1.5	0.0458	0.9489	0.0435	76.0 3K	-23.5	0.0451	1,3085	0.0141	90.0 3K	-9.5	0.0451	0.6331	0.0290	71.0 3K	-28.5	1.0458	0.2575	0.0009	14.0	-15.5	1.1458	0.4689	0.0215	
3300 Hz	84.0 3.3K	-15.5	0.0414	0.4444	0.0184	94.0 3.3E	-1.5	0.0414	0.9245	0.0363	36.0 3.3K	-23.5	0.0414	0.2924	0.0021	91.0 3.3%	-9.5	0.0434	0.6063	0.0252	76.5 3.3K	-29.0	0.0414	0.2221	0.0092	3K 84.0 3.3K	-15.5	3.9414	0.4444	0.0184	
SE	0.9164					4.2932					0.5380				-	2.6003				0.3836					3.3%	1.8821					
ROLR:	44.73				31.32				49.36				35.67					52.30						38.48							
GAIN: 12-18dB)							13.41										13.69					02.00					13.82				

RESULTS:

MEETS THE REFERENCED TECHNICAL REQUIREMENT

TECHNICIAN:

Gary Nova

DATE:

20 October 2006