RF TEST REPORT

Report No.: 17070376-FCC-R6

Supersede Report No.: N/A				
Applicant	INFINIX MOBILITY LIMITED			
Product Name	Mobile phone			
Model No.	X572	X572		
Serial No.	N/A			
Test Standard	FCC Part 1	5.407: 2016, KDB905462 D0	2 v02 ; ANSI C63.10: 2013	
Test Date	May 19 to J	lune 12, 2017		
Issue Date	June 13, 2017			
Test Result	Test Result Pass Fail			
Equipment compl	ied with the s			
Equipment did no	t comply with	n the specification		
Vera . Zhang		David Huang		
Vera Zhang Test Engineer		David Huang Checked By		
This test report may be reproduced in full only				
Test result presented in this test report is applicable to the tested sample only				
Issued by: SIEMIC (SHENZHEN-CHINA) LABORATORIES				

Zone A, Floor 1, Building 2 Wan Ye Long Technology Park South Side of Zhoushi Road, Bao' an District, Shenzhen, Guangdong China 518108 Phone: +86 0755 2601 4629801 Email: China@siemic.com.cn

 Test Report No.
 17070376-FCC-R6

 Page
 2 of 82

Laboratories Introduction

SIEMIC, headquartered in the heart of Silicon Valley, with superior facilities in US and Asia, is one of the leading independent testing and certification facilities providing customers with one-stop shop services for Compliance Testing and Global Certifications.

In addition to testing and certification, SIEMIC provides initial design reviews and compliance management throughout a project. Our extensive experience with China, Asia Pacific, North America, European, and International compliance requirements, assures the fastest, most cost effective way to attain regulatory compliance for the global markets.

Country/Region	Scope
USA	EMC, RF/Wireless, SAR, Telecom
Canada	EMC, RF/Wireless, SAR, Telecom
Taiwan	EMC, RF, Telecom, SAR, Safety
Hong Kong	RF/Wireless, SAR, Telecom
Australia	EMC, RF, Telecom, SAR, Safety
Korea	EMI, EMS, RF, SAR, Telecom, Safety
Japan	EMI, RF/Wireless, SAR, Telecom
Singapore	EMC, RF, SAR, Telecom
Europe	EMC, RF, SAR, Telecom, Safety

Accreditations for Conformity Assessment

Test Report No.	17070376-FCC-R6
Page	3 of 82

This page has been left blank intentionally.

 Test Report No.
 17070376-FCC-R6

 Page
 4 of 82

CONTENTS

1.	REPORT REVISION HISTORY
2.	CUSTOMER INFORMATION
3.	TEST SITE INFORMATION
4.	EQUIPMENT UNDER TEST (EUT) INFORMATION
5.	TEST SUMMARY9
6.	MEASUREMENTS, EXAMINATION AND DERIVED RESULTS
6.2	§15.407(A)-DTS (99% &26 DB) CHANNEL BANDWIDTH11
6.3	§15.407(A)-DTS (99% &6 DB) CHANNEL BANDWIDTH19
6.4	§15.407(A)-CONDUCTED MAXIMUM OUTPUT POWER25
6.5	§15.407(A) - POWER SPECTRAL DENSITY29
6.6	\$15.407(1) AND B(4) BAND-EDGE
6.7	§15.207 (A) - AC POWER LINE CONDUCTED EMISSIONS45
	§15.209, §15.205 & §15.407(B) - RADIATED SPURIOUS EMISSIONS & UNWANTED EMISSIONS O RESTRICTED FREQUENCY BANDS
	IN-SERVICE MONITORING FOR CHANNEL MOVE TIME AND CHANNEL CLOSING TRANSMISSION E
	NEX A. TEST INSTRUMENT
	NEX B. EUT AND TEST SETUP PHOTOGRAPHS65
ANN	NEX C. TEST SETUP AND SUPPORTING EQUIPMENT77
ANN	NEX D. USER MANUAL / BLOCK DIAGRAM / SCHEMATICS / PARTLIST
	IEX E. DECLARATION OF SIMILARITY82

Test Report No.	17070376-FCC-R6
Page	5 of 82

1. Report Revision History

Report No.	Report Version	Description	Issue Date
17070376-FCC-R6	NONE	Original	June 13, 2017

2. Customer information

Applicant Name	INFINIX MOBILITY LIMITED	
Applicant Add	RMS 05-15, 13A/F SOUTH TOWER WORLD FINANCE CTR HARBOUR CITY 17	
	CANTON RD TST KLN HONG KONG	
Manufacturer	SHENZHEN TECNO TECHNOLOGY CO.,LTD.	
Manufacturer Add	1-4th Floor,3rd Building,Pacific Industrial Park,No.2088,Shenyan Road,Yantian	
	District,Shenzhen,Guangdong,China	

3. Test site information

Lab performing tests	SIEMIC (Shenzhen-China) LABORATORIES	
	Zone A, Floor 1, Building 2 Wan Ye Long Technology Park	
Lab Address	South Side of Zhoushi Road, Bao' an District, Shenzhen, Guangdong China	
	518108	
FCC Test Site No.	718246	
IC Test Site No.	4842E-1	
Test Software of	Radiated Emission Program-To Shenzhen v2.0	
Radiated Emission		
Test Software of		
Conducted Emission	EZ-EMC(ver.lcp-03A1)	

Test Report No.	17070376-FCC-R6
Page	6 of 82

4. Equipment under Test (EUT) Information

Description of EUT:	Mobile phone
Main Model:	X572
Serial Model:	N/A
Date EUT received:	May 18, 2017
Test Date(s):	May 19 to June 12, 2017
Equipment Category :	NII
Antenna Gain:	GSM850:-3.2dBi PCS1900:-0.29dBi UMTS-FDD Band V: -3.2dBi UMTS-FDD Band IV: -2.98dBi UMTS-FDD Band II: -0.29dBi LTE Band II: 1.7dBi LTE Band IV: -2.98dBi LTE Band VII: 2.5dBi WIFI(2.4G): 1.35dBi WIFI(5150-5250MHz): -2.2 dBi WIFI(5725-5850MHz): -2.2 dBi Bluetooth/BLE: 1.35dBi GPS: -0.29dBi
Antenna type :	PIFA antenna

 Test Report No.
 17070376-FCC-R6

 Page
 7 of 82

GSM / GPRS: GMSK EGPRS: GMSK,8PSK UMTS-FDD: QPSK LTE Band: QPSK, 16QAM Type of Modulation: 802.11b: DSSS 802.11a/g/n20/n40: OFDM Bluetooth: GFSK, π /4DQPSK, 8DPSK **BLE: GFSK** GPS: BPSK Adapter: Model: CQ-18KX Input: AC100-240V~50/60Hz,600mA Output: DC 5.0V-9V,2A DC 9V-12V,1.5A Input Power: Battery : Model: BL-42AX Spec: 3.85V,4200mAh/4300mAh (min/typ) 16.17Wh/16.55Wh (min/typ) Limited Charge Voltage: 4.4V GSM 850: 124CH PCS1900: 299CH UMTS-FDD Band V: 102CH UMTS-FDD Band IV: 202CH UMTS-FDD Band II: 277CH WIFI :802.11b/g: 11CH Number of Channels: WIFI :802.11a: 24CH WIFI :802.11n20: 11CH(2.4GHz); 24CH(5GHz) WIFI :802.11n40: 9CH(2.4GHz); 12CH(5GHz) Bluetooth: 79CH BLE: 40CH GPS:1CH

 Test Report No.
 17070376-FCC-R6

 Page
 8 of 82

GSM850 TX: 824.2 ~ 848.8 MHz; RX: 869.2 ~ 893.8 MHz PCS1900 TX: 1850.2 ~ 1909.8 MHz; RX: 1930.2 ~ 1989.8 MHz UMTS-FDD Band V TX: 826.4 ~ 846.6 MHz; RX: 871.4 ~ 891.6 MHz UMTS-FDD Band IV TX:1712.4 ~ 1752.6 MHz: RX : 2112.4 ~ 2152.6 MHz UMTS-FDD Band II TX:1852.4 ~ 1907.6 MHz; RX: 1932.4 ~ 1987.6 MHz LTE Band II TX: 1850.7~ 1909.3 MHz: RX : 1930.7 ~ 1989.3 MHz LTE Band IV TX: 1710.7 ~ 1754.3 MHz; RX : 2110.7 ~ 2154.3 MHz RF Operating Frequency (ies): LTE Band VII TX: 2502.5 ~ 2567.5 MHz; RX : 2622.5 ~ 2687.5 MHz 802.11b/g: 2412-2462 MHz (TX/RX) 802.11n20: 2412-2462MHz ;5180-5320 MHz; 5745-5825 MHz; (TX/RX) 802.11n40: 2422-2452 MHz (TX/RX); 5190-5310 MHz; 5755-5795 MHz; (TX/RX) 802.11 a: 5180-5320 MHz; 5745-5825 MHz (TX/RX) Bluetooth& BLE: 2402-2480 MHz GPS: 1575.42 MHz 5150-5250MHz: 802.11a: 10.87dBm 802.11 n(20M): 10.63dBm 802.11 n(40M): 10.21dBm 5250-5350MHz: 802.11a: 10.71dBm 802.11 n(20M): 10.61dBm Max. Output Power: 802.11 n(40M): 10.91dBm 5725-5850MHz: 802.11a: 2.82dBm 802.11 n(20M):3.80dBm 802.11 n(40M): 3.57dBm

Port:

USB Port, Earphone Port

Trade Name :

Infinix

FCC ID:

2AIZN-X572

Test Report No.	17070376-FCC-R6
Page	9 of 82

5. Test Summary

The product was tested in accordance with the following specifications. All testing has been performed according to below product classification:

FCC Rules	Description of Test	Result	
§15.407 (i), §2.1093	RF Exposure	Compliance	
§15.203	Antenna Requirement	Compliance	
§15.407 (a)(1)	DTS (99%&26 dB) CHANNEL BANDWIDTH	Compliance	
§15.407 (e)	DTS (99%&6 dB) CHANNEL BANDWIDTH	Compliance	
§15.407(a/1/2)	Conducted Maximum Output Power	Compliance	
§15.407(a/1/2)	Peak Power Spectral Density	Compliance	
§15.407(a)(6)	Peak Power Excursion	Compliance	
§15.207 (a),	AC Power Line Conducted Emissions	Compliance	
§15.205, §15.209,	Radiated Spurious Emissions &	Compliance	
§15.247(b/1/2/3/6)	Unwanted Emissions into Restricted Frequency Bands	Compliance	
47CFR15.407 (h)	In-Service Monitoring -	Openalise	
	Channel Move Time	Compliance	
47CFR15.407 (h)	In-Service Monitoring -		
	Channel Closing Transmission Time	Compliance	

Measurement Uncertainty

Emissions					
Test Item	Description	Uncertainty			
Radiated Spuriou Emissions & Unwante Emissions into Restricted Frequency Bands	Confidence level of approximately 95% (in the case	+5.6dB/-4.5dB			
-	-	-			

 Test Report No.
 17070376-FCC-R6

 Page
 10 of 82

6. Measurements, Examination And Derived Results

6.1 §15.203 - ANTENNA REQUIREMENT

Applicable Standard

According to § 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the user of a standard antenna jack or electrical connector is prohibited. The structure and application of the EUT were analyzed to determine compliance with section §15.203 of the rules. §15.203 state that the subject device must meet the following criteria:

a. Antenna must be permanently attached to the unit.

b. Antenna must use a unique type of connector to attach to the EUT.

Unit must be professionally installed, and installer shall be responsible for verifying that the correct antenna is employed with the unit.

And according to FCC 47 CFR section 15.247 (b), if the transmitting antennas of directional gain greater than 6dBi are used, the power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

Antenna Connector Construction

The EUT has 3 antennas:

A permanently attached PIFA antenna for Bluetooth/BLE/2.4G WIFI/5G WIFI/GPS, the gain is 1.35dBi for Bluetooth/BLE/2.4G WIFI, the gain is -2.2dBi for 5G WIFI(5150-5250MHz)/ (5250-5350MHz)/ (5725-5850MHz), the gain is -0.29dBi for GPS.

A permanently attached PIFA antenna for GSM/PCS/UMTS, the gain is -3.2dBi for GSM850, -0.29dBi for PCS1900, -3.2dBi for UMTS-FDD Band V, -0.29dBi for UMTS-FDD Band II.

A permanently attached PIFA antenna for LTE Band II/IV/VII, the gain is 1.7dBi for LTE Band II, the gain is -2.98dBi for LTE Band IV, the gain is 2.5dBi for LTE Band VII.

Result: Pass

 Test Report No.
 17070376-FCC-R6

 Page
 11 of 82

6.2 §15.407(a)-DTS (99% &26 dB) Channel Bandwidth

1. <u>Conducted Measurement</u>

EUT was set for low, mid, high channel with modulated mode and highest RF output power.

The spectrum analyzer was connected to the antenna terminal.

- 2. Environmental Conditions Temperature 23°C Relative Humidity 51% Atmospheric Pressure 1002mbar
- Conducted Emissions Measurement Uncertainty
 All test measurements carried out are traceable to national standards. The uncertainty of
 the measurement at a confidence level of approximately 95% (in the case where
 distributions are normal), with a coverage factor of 2, in the range 30MHz 40GHz is
 ±1.5dB.
- 4. Test date : June 01, 2017 Tested By : Vera Zhang

Standard Requirement:

None; for reporting purposes only.

Procedures:

99% Bandwidth:

- 1. Set center frequency to the nominal EUT channel center frequency
- 2. Set span = 1.5 times to 5.0 times the OBW.
- 3. Set RBW = 1% to 5% of the OBW
- 4. he video bandwidth (VBW) \geq 3 x RBW.
- 5. Video averaging is not permitted. Where practical, a sample detection and single sweep mode shall be used. Otherwise, peak detection and max hold mode (until the trace stabilizes) shall be used
- 6. Use the 99 % power bandwidth function of the instrument (if available)
- 7. If the instrument does not have a 99 % power bandwidth function, the trace data points are recovered and directly summed in power units. The recovered amplitude data points, beginning at the lowest frequency, are placed in a running sum until 0.5 % of the total is reached; that

 Test Report No.
 17070376-FCC-R6

 Page
 12 of 82

frequency is recorded as the lower frequency. The process is repeated until 99.5 % of the total is reached; that frequency is recorded as the upper frequency. The 99% occupied bandwidth is the

difference between these two frequencies.

Emission Bandwidth (EBW)

1) Set RBW = approximately 1% of the emission bandwidth.

2) Set the VBW > RBW.

3) Detector = Peak.

4) Trace mode = max hold.

5) Measure the maximum width of the emission that is 26 dB down from the maximum of the emission. Compare this with the RBW setting of the analyzer. Readjust

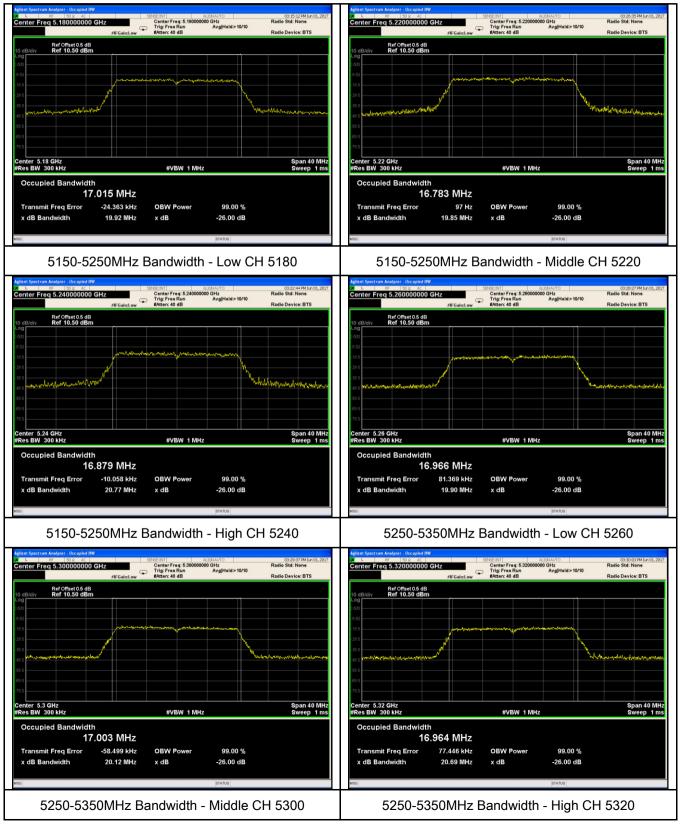
Test Result: Pass.

Please refer to the following tables and plots.

Test Report No.	17070376-FCC-R6
Page	13 of 82

Measurement result

Test mode	Freq Band (MHz)	СН	Freq (MHz)	99% Bandwidth (MHz)	26dB Bandwidth (MHz)
		Low	5180	17.015	19.92
	5150-5250	Middle	5220	16.793	19.85
		High	5240	16.879	20.77
		Low	5260	16.966	19.90
802.11a	5250-5350	Middle	5300	17.003	20.12
		High	5320	16.964	20.69
		Low	5745	16.923	20.29
	5725-5850	Mid	5785	16.807	19.72
		High	5825	16.989	19.83
		Low	5180	17.911	20.50
	5150-5250	Mid	5220	17.803	20.08
		High	5240	17.902	20.85
		Low	5260	17.942	20.18
802.1n(20M)	5250-5350	Mid	5300	17.911	20.32
		High	5320	17.948	20.42
		Low	5745	17.872	20.49
	5725-5850	Mid	5785	17.759	20.01
		High	5825	17.904	20.23
		Low	5190	36.912	40.96
	5150-5250	High	5230	36.646	40.62
802.11		Low	5270	36.504	40.50
n(40M)	5250-5350	High	5310	36.813	40.76
	5725 5950	Low	5755	36.611	40.57
	5725-5850	High	5795	36.390	40.59



Test Report No.	17070376-FCC-R6
Page	14 of 82

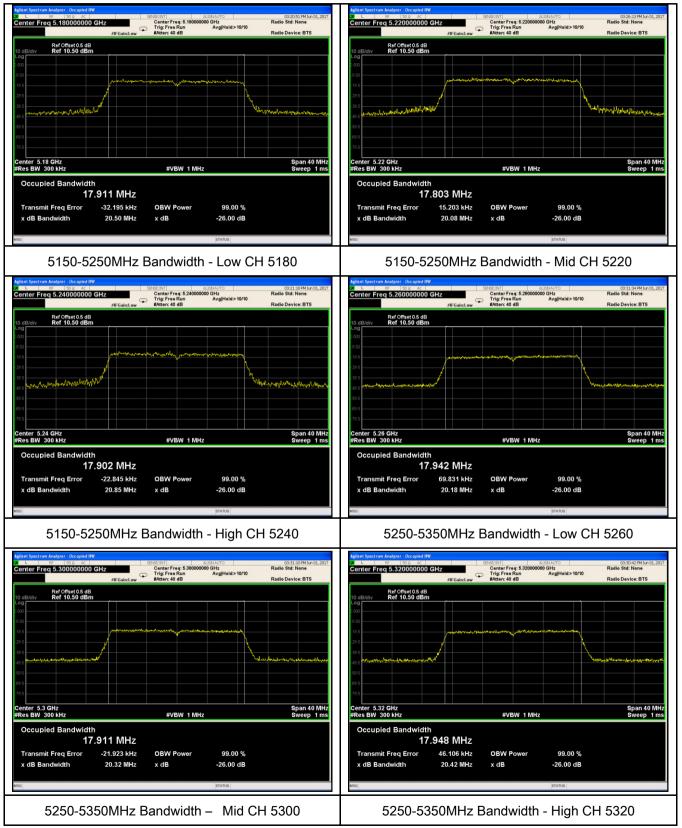
Test Plots

Bandwidth measurement result

802.11a

Oc Tra x c

Tr X (


SIEMIC	Test Report No.	17070376-FCC-R6		
A Bureau Veritas Group Company	Page	15 of 82		
A Bureau veritas Group Company	1 ugo	10 01 02		
Trig: Free Run Avg Hold>10/10	04:36:51 PM Jun 01, 2017	RF SOQ AC FFeq 5.785000000 GHz ///FGain.Low	SENSE:BIT ALIGNAUTO Center Freq: 5.75000000 GHz Trig: Free Runs Avg Hold>10/10 #Atten: 0 dB	04:34:19 PM Jun 01, 2017 Radio Std: None Radio Device: BTS
Ref Offset 0.5 dB	10 dB/d Log	Ref Offset 0.5 dB Iv Ref 10.50 dBm		
	-9.50			
	-19.5			
per/and/outerserviteducter		Just water and the second state	\	When he Mon never have in
				and the second
ter 5.745 GHz s BW 300 kHz #VBW 1 MHz	Span 40 MHz Center Sweep 1 ms #Res B	r 5.785 GHz 3W 300 kHz	#VBW 1 MHz	Span 40 MHz Sweep 1 ms
ccupied Bandwidth		cupied Bandwidth	#VDW 11112	Gweep This
17.872 MHz ansmit Freq Error 3.775 kHz OBW Power 99.00 %	Tra	17.759 MHz nsmit Freq Error 1.696 kHz	OBW Power 99.00 %	
dB Bandwidth 20.49 MHz x dB -26.00 dB	v di			
		3 Bandwidth 20.01 MHz	x dB -26.00 dB	
รางาบร	Mag	3 Bandwidth 20.01 MHz	x dB -26.00 dB	
	MSG			1 5785
ST25-5850MHz Bandwidth - Low CH 5	MSG		STATUS	1 5785
ST25-5850MHz Bandwidth - Low CH 5 Synchus Analyzy Occupied 119 States Freq: 6.820000000 GHz States Freq: 6.820000000 GHz	5745		STATUS	1 5785
5725-5850MHz Bandwidth - Low CH 5	0745		STATUS	1 5785
ST25-5850MHz Bandwidth - Low CH 5 Synchus Analyzy Occupied 119 States Freq: 6.820000000 GHz States Freq: 6.820000000 GHz	0745		STATUS	1 5785
STATUS 5725-5850MHz Bandwidth - Low CH S Spectrum Andrew Occupied IIV PFrod 5.825000000 GHz PFrod 5.8250000000 GHz PFrod 5.825000000 GHz PFrod 5.8250000000 GHz PFrod 5.8250000000 GHz PFrod 5.82500000000000000000000000000000000000	0.5745		STATUS	1 5785
ST25-5850MHz Bandwidth - Low CH 5	0745		STATUS	1 5785
ST25-5850MHz Bandwidth - Low CH 5	5745		STATUS	1 5785
ST25-5850MHz Bandwidth - Low CH 5	5745		STATUS	1 5785
ST25-5850MHz Bandwidth - Low CH S ST25-5850MHz Bandwidth - Low CH S Ster Freq 5825000000 GHz Ster Freq 5825000000 GHz Ster Freq 5825000000 GHz Ster Freq 582500000 GHz Ster Freq 5825 CHz Ster Freq 582	0-20-13 PM Jun OL, 2012 adio Set: None adio Device: BTS Span 40 MHz		STATUS	1 5785
STATUS STATUS	0-20-13 PM Jun OL, 2012 adio Set: None adio Device: BTS Span 40 MHz		STATUS	1 5785
ESS2S CH2 BARDED THE SECONDATION OF SERVICES OF SERV	0-20-13 PM Jun OL, 2012 adio Set: None adio Device: BTS Span 40 MHz		STATUS	1 5785

5725-5850MHz Bandwidth - High CH 5825

Test Report No.	17070376-FCC-R6
Page	16 of 82

802.11 n (20M)

Tr

Tr

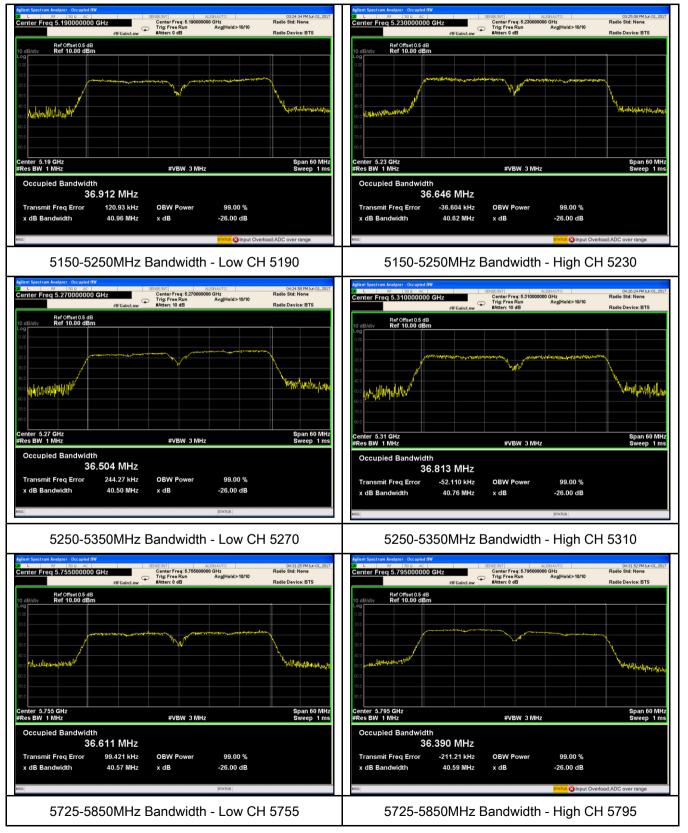
x dB Bandy

dth

SIEMIC	Test Report No.	17070376-FCC-R6
A Bureau Veritas Group Company	Page	17 of 82
Terg 5.745000000 GHz Terg 5.745000000 GHz Terg 5.745000000 GHz Terg 5.745000000 GHz Terg 5.745000000 GHz Terg 5.74500000 GHz Terg 5.745000000 GHz Terg 5.74500000 GHz Terg 5.745000000 GHz Terg 5.745000000 GHz Terg 5.745000000 GHz Terg 5.745000000 GHz Terg 5.745000000 GHz Terg 5.74500000 GHz Terg 5.745000000 GHz Terg 5.7450000000 GHz Terg 5.745000000 GHz Terg 5.745000000 GHz Terg 5.7450000000 GHz Terg 5.7450000000 GHz Terg 5.74500000000000000000000000000000000000	0.0-3051 PM An 01, 2017 Radio Stet: None Radio Device: BTS 10 dBM 10 dBM	ter Frag 5.785000000 GHz BIFGaint.ew Ref Offset 0.5 dB Ref Offset 0.5 dB Ref Offset 0.5 dB Ref 10.50 dBm William Ref Offset 0.5 dB Ref 10.50 dBm William Ref 0ffset 0.5 dB Ref 10.50 dBm Ref
5725-5850MHz Bandwidth- Low CH	5745	5725-5850MHz Bandwidth- Mid CH 5785
ren Andree Oscipital IIV ADVANTO Free 5.8250000000 GHz rif GainLev Gaine Free 5 Source OHz Trais Free Run Avgiteled > 10/10 Advanto OHZ Advanto OHZ Trais Free Run Avgiteled > 10/10 Advanto OHZ Advanto OHZ Ad	04:001599/Jnr012027 Radio Stef Knee Radio Device: BTS	

5725-5850MHz Bandwidth- High CH 5825

-26.00 dB


x dB

20.23 MHz

Test Report No.	17070376-FCC-R6
Page	18 of 82

802.11 n(40M)

Test Report No. 17070376-FCC-R6 Page

19 of 82

6.3 §15.407(a)-DTS (99% &6 dB) Channel Bandwidth

1.	Conducted Measurement					
	EUT was set for low, mid, high channel with modulated mode and highest RF output					
	power.					
	The spectrum analyzer was	connected to the antenna te	erminal.			
2.	Environmental Conditions	Temperature	23°C			
		Relative Humidity	51%			
		Atmospheric Pressure	1002mbar			
3.	Conducted Emissions Meas	surement Uncertainty				
	All test measurements carrie	ed out are traceable to natior	nal standards. The uncertainty of			
	the measurement at a confi	dence level of approximately	95% (in the case where			
	distributions are normal), wi	th a coverage factor of 2, in t	he range 30MHz – 40GHz is			
	±1.5dB.					
4.	Test date : June 01, 2017					

Tested By : Vera Zhang

Standard Requirement:

Within the 5.725-5.85 GHz band, the minimum 6 dB bandwidth of U-NII devices shall be at least 500 kHz.

Procedures:

99% &6 dB Bandwidth:

Section 15.407(e) specifies the minimum 6 dB emission bandwidth of at least 500 KHz for the band 5.715-5.85 GHz. The following procedure shall be used for measuring this bandwidth:

- Set RBW = 100 kHz.
- b) Set the video bandwidth (VBW) ≥ 3 × RBW.
- c) Detector = Peak.
- d) Trace mode = max hold.
- e) Sweep = auto couple.
- f) Allow the trace to stabilize.
- g) Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission.

Note: The automatic bandwidth measurement capability of a spectrum analyzer or EMI receiver may be employed if it implements the functionality described above.

Test Report No.	17070376-FCC-R6
Page	20 of 82

Emission Bandwidth (EBW)

1) Set RBW = approximately 1% of the emission bandwidth.

- 2) Set the VBW > RBW.
- 3) Detector = Peak.
- 4) Trace mode = max hold.

5) Measure the maximum width of the emission that is 26 dB down from the maximum of the emission. Compare this with the RBW setting of the analyzer. Readjust

Test Result: Pass.

Please refer to the following tables and plots.

Test Report No.	17070376-FCC-R6
Page	21 of 82

Measurement result

Test mode	Freq Band (MHz)	СН	Freq (MHz)	6dB Bandwidth (MHz)	99% Occupied Bandwidth (MHz)
		Low	5745	16.29	16.663
802.1a	5725-5850	Mid	5785	14.97	16.419
		High	5825	15.71	18.128
000.4	5725-5850	Low	5745	16.34	17.816
802.1 n (20M)		Mid	5785	15.12	17.579
(20101)		High	5825	16.33	17.709
802.1 n (40M)	5725-5850	Low	5755	35.70	39.286
	5725-5850	High	5795	33.85	36.289

Test Report No.	17070376-FCC-R6
Page	22 of 82

Test Plots (Bandwidth measurement result)

5725-5850MHz


802.1a

Test Report No.	17070376-FCC-R6
Page	23 of 82

802.1n (20M)

Test Report No.	17070376-FCC-R6
Page	24 of 82

802.1n (40M)

 Test Report No.
 17070376-FCC-R6

 Page
 25 of 82

6.4 §15.407(a)-Conducted Maximum Output Power

Conducted Measurement
 EUT was set for low, mid, high channel with modulated mode and highest RF output
 power.
 The spectrum analyzer was connected to the antenna terminal.
 Conducted Emissions Measurement Uncertainty
 All test measurements carried out are traceable to national standards. The uncertainty of
 the measurement at a confidence level of approximately 95% (in the case where
 distributions are normal), with a coverage factor of 2, in the range 30MHz – 40GHz is
 ±1.5dB.
 Environmental Conditions Temperature 24°C

3.	Environmental Conditions	Temperature	24°C
		Relative Humidity	52%
		Atmospheric Pressure	1004mbar

4. Test date : June 02, 2017

Tested By : Vera Zhang

Standard Requirement:

For an outdoor access point operating in the band 5.15-5.25 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W provided the maximum antenna gain does not exceed 6 dBi. f transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi. The maximum e.i.r.p. at any elevation angle above 30 degrees as measured from the horizon must not exceed 125 mW (21 dBm).

For the 5.25-5.35 GHz and 5.47-5.725 GHz bands, the maximum conducted output power over the frequency bands of operation shall not exceed the lesser of 250 mW or 11 dBm + 10 log B, where B is the 26 dB emission bandwidth in megahertz. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

For the band 5.725-5.85 GHz, the maximum conducted output power over the frequency band of

Test Report No.	17070376-FCC-R6
Page	26 of 82

operation shall not exceed 1 W.

If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi. However, fixed point-to-point U-NII devices operating in this band may employ transmitting antennas with directional gain greater than 6 dBi without any corresponding reduction in transmitter conducted power. Fixed, point-to-point operations exclude the use of point-to-multipoint systems, omnidirectional applications, and multiple collocated transmitters transmitting the same information. The operator of the U-NII device, or if the equipment is professionally installed, the installer, is responsible for ensuring that systems employing high gain directional antennas are used exclusively for fixed, point-to-point operations.

Procedures:

Measurement Procedure Maximum conducted output power:

Maximum conducted output power may be measured using a spectrum analyzer/EMI receiver or an RF power meter.

1. Device Configuration

If possible, configure or modify the operation of the EUT so that it transmits continuously at its maximum power control level (see section II.B.).

a) The intent is to test at 100 percent duty cycle; however a small reduction in duty cycle (to no lower than 98 percent) is permitted if required by the EUT for amplitude control purposes. Manufacturers are expected to provide software to the test lab to permit such continuous operation.

b) If continuous transmission (or at least 98 percent duty cycle) cannot be achieved due to hardware limitations (e.g., overheating), the EUT shall be operated at its maximum power control level with the transmit duration as long as possible and the duty cycle as high as possible.

2. Measurement using a Power Meter (PM)

a) Method PM (Measurement using an RF average power meter):

(i) Measurements may be performed using a wideband RF power meter with a thermocouple detector or equivalent if all of the conditions listed below are satisfied.

• The EUT is configured to transmit continuously or to transmit with a constant duty cycle.

• At all times when the EUT is transmitting, it must be transmitting at its maximum power control level.

Test Report No.	17070376-FCC-R6
Page	27 of 82

• The integration period of the power meter exceeds the repetition period of the transmitted signal by at least a factor of five.

(ii) If the transmitter does not transmit continuously, measure the duty cycle, x, of the transmitter output signal as described in section II.B.

(iii) Measure the average power of the transmitter. This measurement is an average over both the on and off periods of the transmitter.

(iv) Adjust the measurement in dBm by adding 10 log(1/x) where x is the duty cycle (e.g., 10

log(1/0.25) if the duty cycle is 25 percent).

Test Result: Pass.

Please refer to the following tables and plots:

 Test Report No.
 17070376-FCC-R6

 Page
 28 of 82

Output Power measurement result

Test mode	Freq Band (MHz)	СН	Frequency (MHz)	Conducted Power (dBm)	Limit (dBm)	Result
	5450	Low	5180	10.68	30	Pass
	5150-	Middle	5220	10.15	30	Pass
	5250	High	5240	10.87	30	Pass
000.44-	5050	Low	5260	10.71	23.98	Pass
802.11a	5250-	Middle	5300	10.47	23.98	Pass
	5350	High	5320	10.14	23.98	Pass
	5705	Low	5745	2.82	30	Pass
	5725-	Mid	5785	2.75	30	Pass
	5850	High	5825	2.35	30	Pass
	5150-	Low	5180	10.61	30	Pass
		Mid	5220	10.14	30	Pass
	5250	High	5240	10.63	30	Pass
002.1 m	5050	Low	5260	10.61	23.98	Pass
802.1 n	5250-	Mid	5300	10.36	23.98	Pass
(20M)	5350	High	5320	10.11	23.98	Pass
	5705	Low	5745	2.44	30	Pass
	5725-	Mid	5785	3.80	30	Pass
	5850	High	5825	2.18	30	Pass
	5150-	Low	5210	9.74	30	Pass
	5250	High	5230	10.21	30	Pass
802.11n	5250-	Low	5270	10.91	23.98	Pass
(40M)	5350	High	5310	9.33	23.98	Pass
	5725-	Low	5755	2.35	30	Pass
	5850	High	5795	3.57	30	Pass

 Test Report No.
 17070376-FCC-R6

 Page
 29 of 82

6.5 §15.407(a) - Power Spectral Density

1.	Conducted Measurement				
	EUT was set for low, mid, hi	igh channel with modulated n	node and highest RF output		
	power.				
	The spectrum analyzer was	connected to the antenna te	rminal.		
2.	Environmental Conditions	Temperature	24°C		
		Relative Humidity	52%		
		Atmospheric Pressure	1004mbar		
3.	Conducted Emissions Meas	surement Uncertainty			
	All test measurements carrie	ed out are traceable to nation	al standards. The uncertainty of		
	the measurement at a confid	dence level of approximately	95% (in the case where		
	distributions are normal), wi	th a coverage factor of 2, in t	he range 30MHz – 40GHz is		
	±1.5dB.				
	Test data duna 00.0017				

4. Test date :June 02, 2017

Tested By : Vera Zhang

Standard Requirement:

The maximum power spectral density shall not exceed 17 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi. The maximum e.i.r.p. at any elevation angle above 30 degrees as measured from the horizon must not exceed 125 mW (21 dBm).

The maximum power spectral density shall not exceed 11 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

The maximum power spectral density shall not exceed 30 dBm in any 500-kHz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional

 Test Report No.
 17070376-FCC-R6

 Page
 30 of 82

gain of the antenna exceeds 6 dBi. However, fixed point-to-point U-NII devices operating in this band may employ transmitting antennas with directional gain greater than 6 dBi without any corresponding reduction in transmitter conducted power. Fixed, point-to-point operations exclude the use of point-to-multipoint systems, omnidirectional applications, and multiple collocated transmitters transmitting the same information. The operator of the U-NII

device, or if the equipment is professionally installed, the installer, is responsible for ensuring that systems employing high gain directional antennas are used exclusively for fixed, point-to-point operations.

Procedures:

The rules requires "maximum power spectral density" measurements where the intent is to measure the maximum value of the time average of the power spectral density measured during a period of continuous transmission.

1. Create an average power spectrum for the EUT operating mode being tested by following the instructions in section II.E.2. for measuring maximum conducted output power using a spectrum analyzer or EMI receiver: select the appropriate test method (SA-1, SA-2, SA-3, or alternatives to each) and apply it up to, but not including, the step labeled, " Compute power…" . (This procedure is required even if the maximum conducted output power measurement was performed using a power meter, method PM.)

2. Use the peak search function on the instrument to find the peak of the spectrum and record its value.

3. Make the following adjustments to the peak value of the spectrum, if applicable:

a) If Method SA-2 or SA-2 Alternative was used, add 10 log(1/x), where x is the duty cycle, to the peak of the spectrum.

b) If Method SA-3 Alternative was used and the linear mode was used in step II.E.2.g)(viii), add 1 dB to the final result to compensate for the difference between linear averaging and power averaging.
4. The result is the Maximum PSD over 1 MHz reference bandwidth.

5. For devices operating in the bands 5.15-5.25 GHz, 5.25-5.35 GHz, and 5.47-5.725 GHz, the above procedures make use of 1 MHz RBW to satisfy directly the 1 MHz reference bandwidth specified in § 15.407(a)(5). For devices operating in the band 5.725-5.85 GHz, the rules specify a measurement bandwidth of 500 kHz. Many spectrum analyzers do not have 500 kHz RBW, thus a narrower RBW may need to be used. The rules permit the use of a RBWs less than 1 MHz, or 500 kHz, " provided that the measured power is integrated over the full reference bandwidth" to show the total power over the specified measurement bandwidth (i.e., 1 MHz, or 500 kHz). If measurements are performed using a reduced resolution bandwidth (< 1 MHz, or < 500 kHz) and

 Test Report No.
 17070376-FCC-R6

 Page
 31 of 82

integrated over 1 MHz, or 500 KHz bandwidth, the following adjustments to the procedures apply:

a) Set RBW \geq 1/T, where T is defined in section II.B.I.a).

b) Set VBW ≥ 3 RBW.

c) If measurement bandwidth of Maximum PSD is specified in 500 kHz, add 10log(500kHz/RBW) to the measured result, whereas RBW (< 500 KHz) is the reduced resolution bandwidth of the spectrum analyzer set during measurement.

d) If measurement bandwidth of Maximum PSD is specified in 1 MHz, add 10log(1MHz/RBW) to the measured result, whereas RBW (< 1 MHz) is the reduced resolution bandwidth of spectrum analyzer set during measurement.

e) Care must be taken to ensure that the measurements are performed during a period of continuous transmission or are corrected upward for duty cycle.

Note: As a practical matter, it is recommended to use reduced RBW of 100 KHz for the sections 5.c) and 5.d) above, since RBW=100 KHZ is available on nearly all spectrum analyzers.

Test Result: Pass.

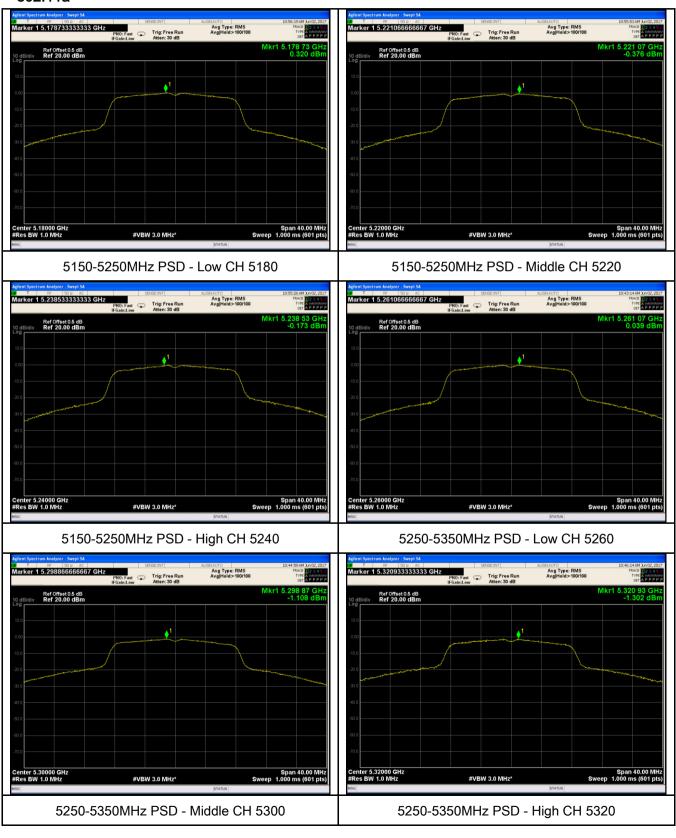
Please refer to the following tables and plots.

Power Spectral Density measurement result

 Test Report No.
 17070376-FCC-R6

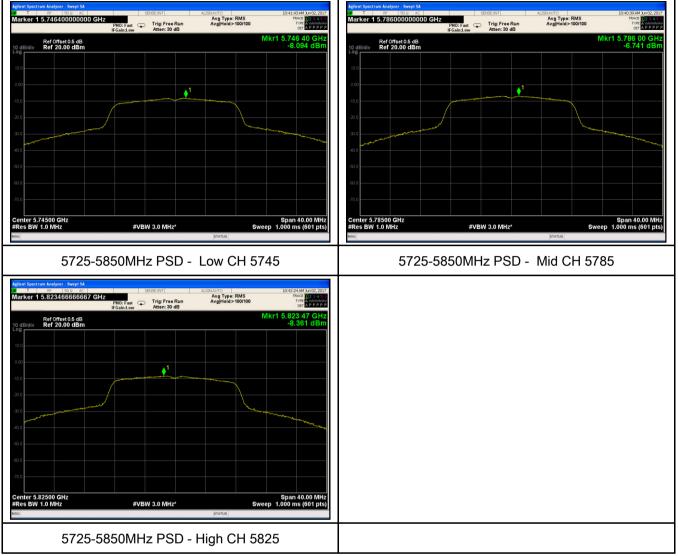
 Page
 32 of 82

Test mode	Freq Band (MHz)	СН	Frequency (MHz)	Measured PSD (dBm)	Limit (dBm)	Result
		Low	5180	0.320	17	Pass
	5150-5250	Middle	5220	-0.376	17	Pass
		High	5240	-0.173	17	Pass
802.11a		Low	5260	0.039	11	Pass
802.11a	5250-5350	Middle	5300	-1.108	11	Pass
		High	5320	-1.302	11	Pass
		Low	5745	-8.094	30	Pass
	5725-5850	Mid	5785	-6.741	30	Pass
		High	5825	-8.361	30	Pass
		Low	5180	0.081	17	Pass
	5150-5250	Mid	5220	-0.570	17	Pass
		High	5240	-0.204	17	Pass
000.1 -		Low	5260	-1.237	11	Pass
802.1 n	5250-5350	Mid	5300	-3.102	11	Pass
(20M)		High	5320	-2.621	11	Pass
		Low	5745	-8.789	30	Pass
	5725-5850	Mid	5785	-7.330	30	Pass
		High	5825	-8.542	30	Pass
		Low	5190	-4.050	17	Pass
	5150-5250	High	5230	-3.329	17	Pass
802.11 n		Low	5270	-3.824	17	Pass
(40M)	5250-5350	High	5310	-5.371	17	Pass
		Low	5755	-10.770	30	Pass
	5725-5850	High	5795	-9.194	30	Pass

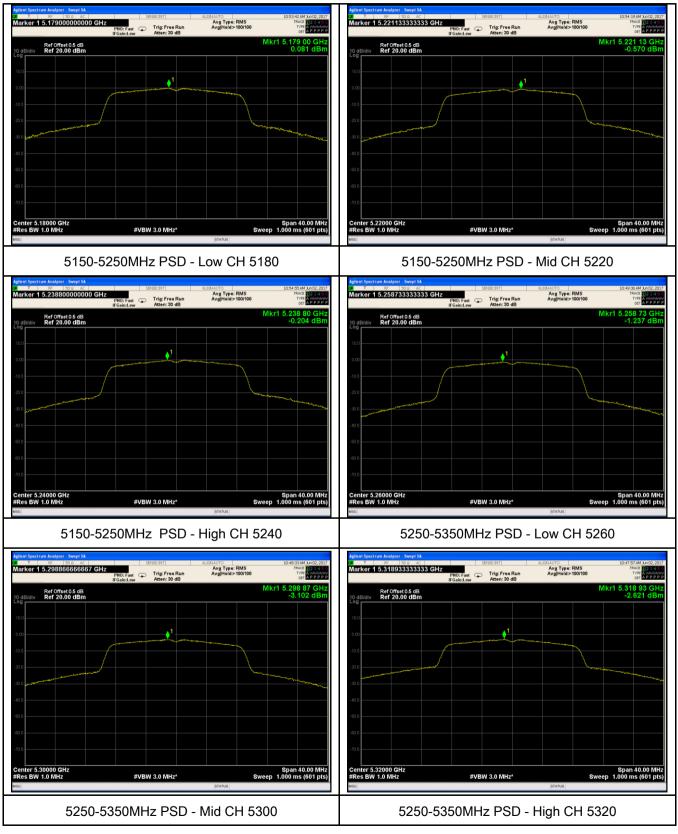


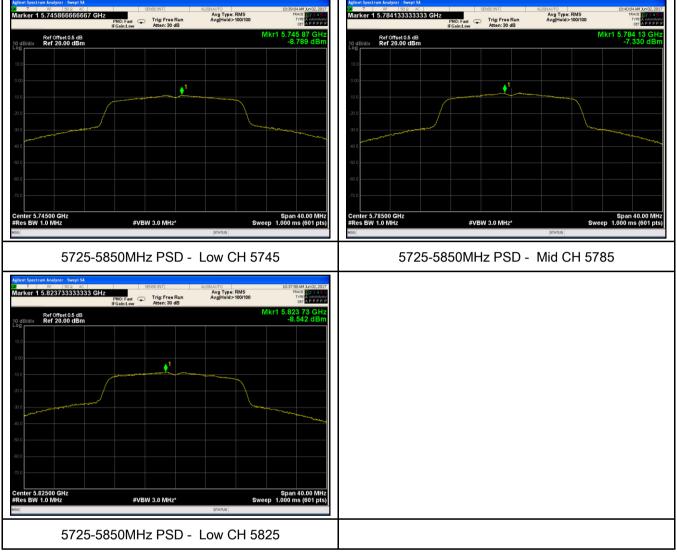
Test Report No.	17070376-FCC-R6
Page	33 of 82

Test Plots

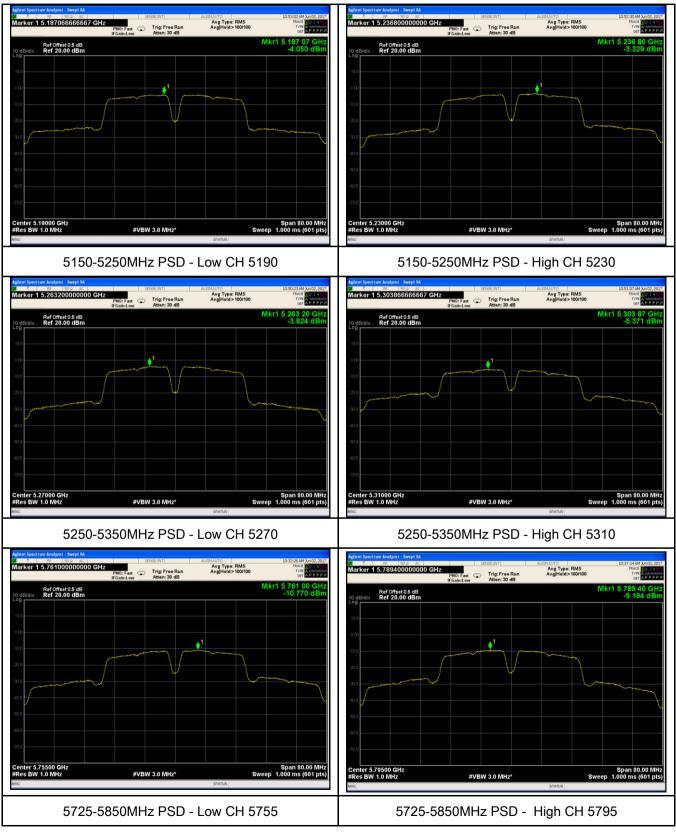

Power Spectral Density measurement result Test Plots

802.11a


Test Report No.	17070376-FCC-R6
Page	34 of 82


Test Report No.	17070376-FCC-R6
Page	35 of 82

802.11 n(20M)


Page 36 of 82	
Test Report No. 17070376-FCC-R6	

Test Report No.	17070376-FCC-R6
Page	37 of 82

802.11 n(40M)

 Test Report No.
 17070376-FCC-R6

 Page
 38 of 82

6.6 §15.407(1) and b(4) Band-Edge

- 1. **Conducted Measurement** EUT was set for low, mid, high channel with modulated mode and highest RF output power. The spectrum analyzer was connected to the antenna terminal. 2. **Environmental Conditions** Temperature 24°C Relative Humidity 52% Atmospheric Pressure 1004mbar 3. Conducted Emissions Measurement Uncertainty All test measurements carried out are traceable to national standards. The uncertainty of the measurement at a confidence level of approximately 95% (in the case where distributions are normal), with a coverage factor of 2, in the range 30MHz - 40GHz is ±1.5dB.
- 4. Test date : June 02, 2017

Tested By : Vera Zhang

Standard Requirement:

(b) Undesirable emission limits. Except as shown in paragraph (b)(7) of this section, the maximum emissions outside of the frequency bands of operation shall be attenuated in accordance with the following limits:

(1) For transmitters operating in the 5.15-5.25 GHz band: All emissions outside of the 5.15-5.35 GHz band shall not exceed an e.i.r.p. of – 27 dBm/MHz.

(2) For transmitters operating in the 5.25-5.35 GHz band: All emissions outside of the 5.15-5.35 GHz band shall not exceed an e.i.r.p. of – 27 dBm/MHz.

(3) For transmitters operating in the 5.47-5.725 GHz band: All emissions outside of the 5.47-5.725 GHz band shall not exceed an e.i.r.p. of - 27 dBm/MHz.

(4) For transmitters operating in the 5.725-5.85 GHz band:

 Test Report No.
 17070376-FCC-R6

 Page
 39 of 82

Procedures:

Measurement Procedure Band edge:

Bandedge are measured by setting the analyzer as follows:

- (i) RBW = 1 MHz.
- (ii) VBW \geq 3 MHz.
- (iii) Detector = Peak.
- (iv) Sweep time = auto.
- (v) Trace mode = max hold.

(vi) Allow sweeps to continue until the trace stabilizes. Note that if the transmission is not continuous, the time required for the trace to stabilize will increase by a factor of approximately 1/x, where x is the duty cycle. For example, at 50 percent duty cycle, the measurement time will increase by a factor of two relative to measurement time for continuous transmission.

Unwanted band-edge emissions may be measured using either of the special band-edge measurement techniques (the marker-delta or integration methods) described below. Note that the marker-delta method is primarily a radiated measurement technique that requires the 99% occupied bandwidth edge to be within 2 MHz of the authorized band edge, whereas the integration method can be used in either a radiated or conducted measurement without any special requirement with regards to the displacement of the unwanted emission(s) relative to the authorized bandwidth.

(i) Marker-Delta Method.

The marker-delta method, as described in ANSI C63.10, can be used to perform measurements of the radiated unwanted emissions level of emissions provided that the 99% occupied bandwidth of the fundamental is within 2 MHz of the authorized band-edge.

(ii) Integration Method •

For maximum emissions measurements, follow the procedures described in section II.G.5.,

" Procedures for Unwanted Maximum Emissions Measurements above 1000 MHz", except for the following changes:

Set RBW = 100 kHz

Test Report No.	17070376-FCC-R6
Page	40 of 82

Set VBW ≥ 3 • RBW

 Perform a band-power integration across the 1 MHz bandwidth in which the band-edge emission level is to be measured. CAUTION: You must ensure that the spectrum analyzer or EMI

receiver is set for peak-detection and max-hold for this measurement.

- For average emissions measurements, follow the procedures described in section II.G.6.,
- " Procedures for Average Unwanted Emissions Measurements above 1000 MHz", except for the following changes:
- Set RBW = 100 kHz
- Set VBW \geq 3 RBW
- Perform a band-power integration across the 1 MHz bandwidth in which the band-edge emission level is to be measured.

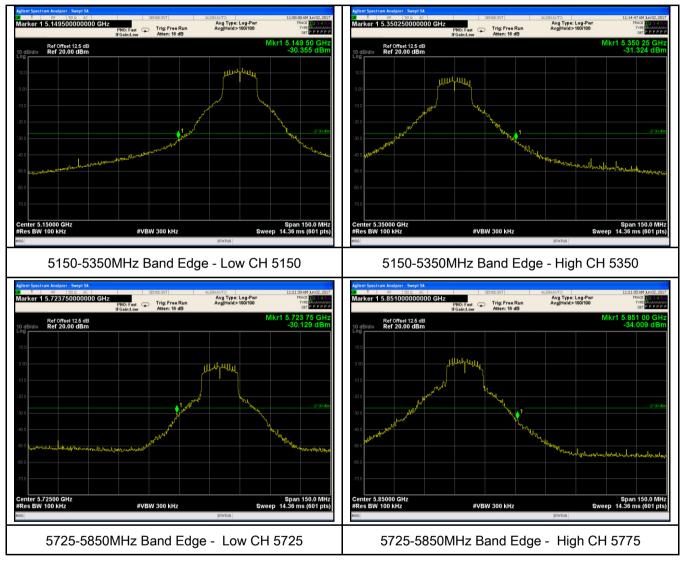
Test Result: Pass.

Please refer to the following tables and plots.

Test Report No.	17070376-FCC-R6
Page	41 of 82

Band edge measurement result

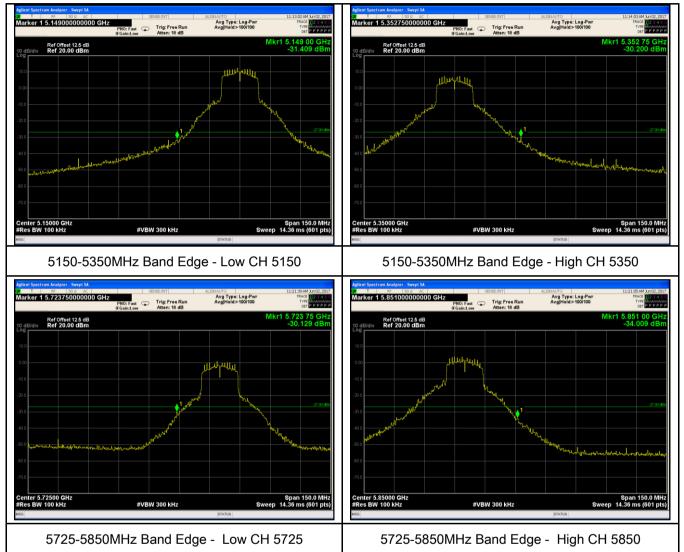
Test mode	Freq Band (MHz)	СН	Frequency (MHz)	Measured Bandedge (dBm)	Limit (dBm)	Result
	5150-	Low	5150	-30.355	-27	Pass
802.11a	5350	High	5350	-31.324	-27	Pass
	5725-	Low	5725	-30.228	-27	Pass
	5850	High	5850	-34.668	-27	Pass
	5150-	Low	5150	-31.409	-27	Pass
802.1 n	5350	High	5350	-30.200	-27	Pass
(20M)	5725-	Low	5725	-30.129	-27	Pass
	5850	High	5850	-34.009	-27	Pass
	5150-	Low	5150	-29.285	-27	Pass
802.1 n	5350	High	5350	-30.189	-27	Pass
(40M)	5725-	Low	5725	-31.384	-27	Pass
	5850	High	5850	-47.217	-27	Pass



Te	st Report No.	17070376-FCC-R6
Pa	ge	42 of 82

Test Plots

Band Edge measurement result


802.11a

Test Report No.	17070376-FCC-R6
Page	43 of 82

802.11 n (20M)

Test Report No.	17070376-FCC-R6
Page	44 of 82

802.11 n (40M)

6.7 §15.207 (a) - AC Power Line Conducted Emissions

Requirement:

	Conducted limit (dBµ V)		
Frequency of emission (MHz)	Quasi-peak	Average	
0.15- 0.5	66 to 56*	56 to 46*	
0.5- 5	56	46	
5- 30	60	50	

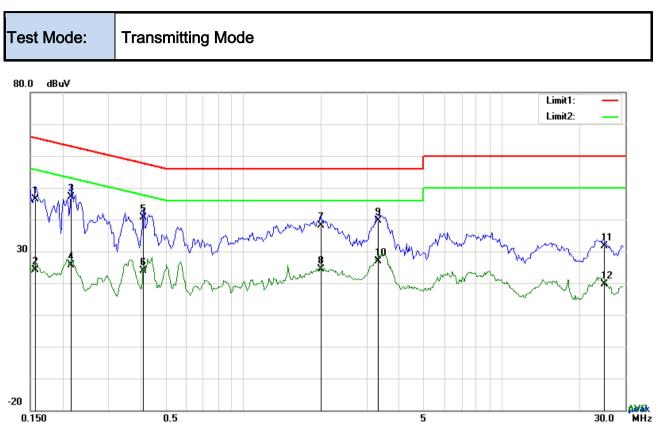
*Decreases with the logarithm of the frequency.

Procedures:

- All possible modes of operation were investigated. Only the 6 worst case emissions measured, using the correct CISPR and Average detectors, are reported. All other emissions were relatively insignificant.
- 2. A "-ve" margin indicates a PASS as it refers to the margin present below the limit line at the particular frequency.
- 3. Conducted Emissions Measurement Uncertainty

All test measurements carried out are traceable to national standards. The uncertainty of the measurement at a confidence level of approximately 95% (in the case where distributions are normal), with a coverage factor of 2, in the range 9kHz – 30MHz (Average & Quasi-peak) is ±3.5dB.

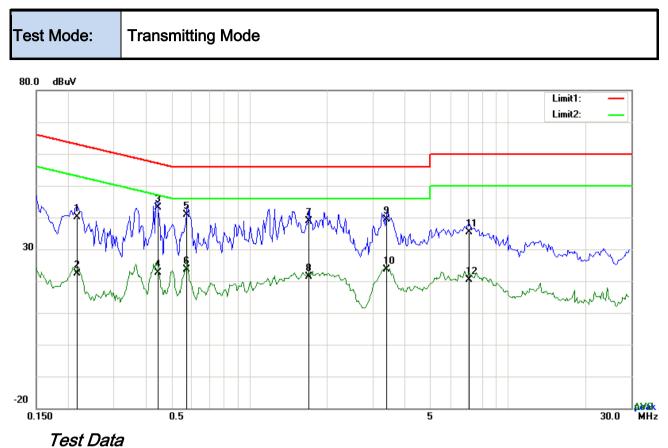
4.	Environmental Conditions	Temperature	24°C
		Relative Humidity	52%
		Atmospheric Pressure	1004mbar


5. Test date : June 02, 2017 Tested By : Vera Zhang

Result: Pass

 Test Report No.
 17070376-FCC-R6

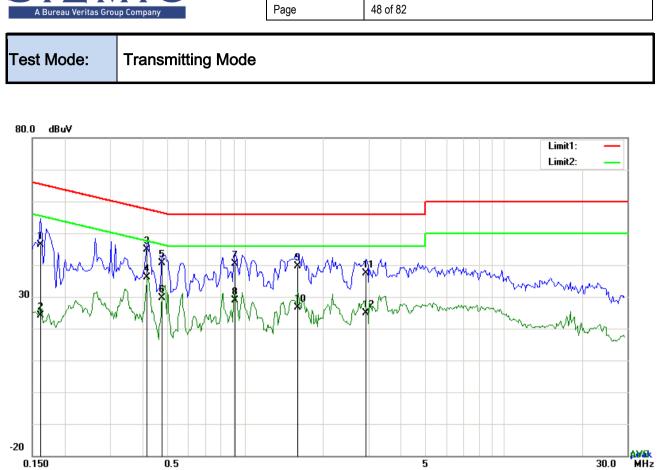
 Page
 46 of 82


Test Data

Phase Line Plot at 120Vac, 60Hz

No.	P/L	Frequency (MHz)	Reading (dBµV)	Detector	Corrected (dB)	Result (dBµV)	Limit (dBµV)	Margin (dB)
1	L1	0.1578	36.37	QP	10.03	46.40	65.58	-19.18
2	L1	0.1578	14.09	AVG	10.03	24.12	55.58	-31.46
3	L1	0.2163	37.07	QP	10.03	47.10	62.96	-15.86
4	L1	0.2163	15.50	AVG	10.03	25.53	52.96	-27.43
5	L1	0.4113	30.71	QP	10.03	40.74	57.62	-16.88
6	L1	0.4113	13.89	AVG	10.03	23.92	47.62	-23.70
7	L1	1.9986	28.15	QP	10.04	38.19	56.00	-17.81
8	L1	1.9986	14.46	AVG	10.04	24.50	46.00	-21.50
9	L1	3.3120	29.66	QP	10.06	39.72	56.00	-16.28
10	L1	3.3120	16.75	AVG	10.06	26.81	46.00	-19.19
11	L1	24.8673	21.26	QP	10.39	31.65	60.00	-28.35
12	L1	24.8673	9.26	AVG	10.39	19.65	50.00	-30.35

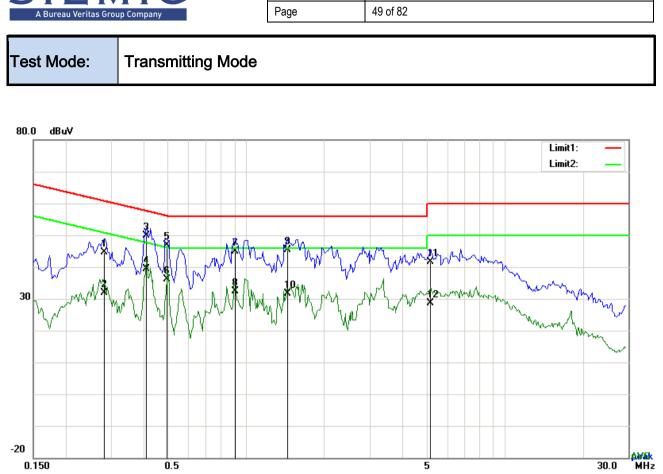
Test Report No.	17070376-FCC-R6
Page	47 of 82



Phase Neutral Plot at 120Vac, 60Hz

No.	P/L	Frequency (MHz)	Reading (dBµV)	Detector	Corrected (dB)	Result (dBµV)	Limit (dBµV)	Margin (dB)
1	Ν	0.2163	30.18	QP	10.02	40.20	62.96	-22.76
2	Ν	0.2163	12.44	AVG	10.02	22.46	52.96	-30.50
3	Ν	0.4425	33.01	QP	10.02	43.03	57.01	-13.98
4	Ν	0.4425	12.63	AVG	10.02	22.65	47.01	-24.36
5	Ν	0.5751	30.91	QP	10.02	40.93	56.00	-15.07
6	Ν	0.5751	13.63	AVG	10.02	23.65	46.00	-22.35
7	Ν	1.7061	28.92	QP	10.04	38.96	56.00	-17.04
8	Ν	1.7061	11.31	AVG	10.04	21.35	46.00	-24.65
9	Ν	3.3978	29.22	QP	10.05	39.27	56.00	-16.73
10	Ν	3.3978	13.49	AVG	10.05	23.54	46.00	-22.46
11	Ν	7.0794	25.18	QP	10.10	35.28	60.00	-24.72
12	Ν	7.0794	10.36	AVG	10.10	20.46	50.00	-29.54

Dava	40 - 600
Test Report No.	17070376-FCC-R6


Test Data

Phase Line Plot at 240Vac, 60Hz

No.	P/L	Frequency	Reading	Detector	Corrected	Result	Limit	Margin
NO.	F/L	(MHz)	(dBµV)	Delector	(dB)	(dBµV)	(dBµV)	(dB)
1	L1	0.1617	36.30	QP	10.03	46.33	65.38	-19.05
2	L1	0.1617	14.17	AVG	10.03	24.20	55.38	-31.18
3	L1	0.4191	34.96	QP	10.03	44.99	57.47	-12.48
4	L1	0.4191	26.14	AVG	10.03	36.17	47.47	-11.30
5	L1	0.4776	30.61	QP	10.03	40.64	56.38	-15.74
6	L1	0.4776	19.55	AVG	10.03	29.58	46.38	-16.80
7	L1	0.9144	30.35	QP	10.03	40.38	56.00	-15.62
8	L1	0.9144	18.94	AVG	10.03	28.97	46.00	-17.03
9	L1	1.6008	29.48	QP	10.04	39.52	56.00	-16.48
10	L1	1.6008	16.58	AVG	10.04	26.62	46.00	-19.38
11	L1	2.9424	27.33	QP	10.05	37.38	56.00	-18.62
12	L1	2.9424	14.80	AVG	10.05	24.85	46.00	-21.15

Test Report No.	17070376-FCC-R6
Dago	10 of 82

Test Data

Phase Neutral Plot at 240Vac, 60Hz

No.	P/L	Frequency	Reading	Detector	Corrected	Result	Limit	Margin
INO.	F/L	(MHz)	(dBµV)	Delector	(dB)	(dBµV)	(dBµV)	(dB)
1	Ν	0.2826	34.58	QP	10.02	44.60	60.74	-16.14
2	Ν	0.2826	21.86	AVG	10.02	31.88	50.74	-18.86
3	Ν	0.4113	39.89	QP	10.02	49.91	57.62	-7.71
4	Ν	0.4113	29.39	AVG	10.02	39.41	47.62	-8.21
5	Ν	0.4932	36.75	QP	10.02	46.77	56.11	-9.34
6	Ν	0.4932	26.00	AVG	10.02	36.02	46.11	-10.09
7	Ν	0.9066	34.75	QP	10.03	44.78	56.00	-11.22
8	Ν	0.9066	22.44	AVG	10.03	32.47	46.00	-13.53
9	Ν	1.4448	35.42	QP	10.03	45.45	56.00	-10.55
10	Ν	1.4448	21.49	AVG	10.03	31.52	46.00	-14.48
11	Ν	5.1567	31.67	QP	10.07	41.74	60.00	-18.26
12	Ν	5.1567	18.57	AVG	10.07	28.64	50.00	-21.36

17070376-FCC-R6 Test Report No. Page

50 of 82

6.8 §15.209, §15.205 & §15.407(b) - Radiated Spurious Emissions & Unwanted Emissions into Restricted Frequency Bands

- 1. All possible modes of operation were investigated. Only the 6 worst case emissions measured, using the correct CISPR detectors, are reported. All other emissions were relatively insignificant.
- 2. A "-ve" margin indicates a PASS as it refers to the margin present below the limit line at the particular frequency.
- 3. Radiated Emissions Measurement Uncertainty

All test measurements carried out are traceable to national standards. The uncertainty of the measurement at a confidence level of approximately 95% (in the case where distributions are normal), with a coverage factor of 2, in the range 30MHz - 1GHz & 1GHz above (3m & 10m) is +/-6dB.

4.	Environmental Conditions	Temperature	24°C
		Relative Humidity	52%
		Atmospheric Pressure	1004mbar

5. Test date : June 02, 2017 Tested By : Vera Zhang

Requirement: §15.407(b) specifies that emissions which fall in the restricted bands, as defined in §15.205(a), must comply with the radiated emission limits specified in §15.209(a).

Procedures:

Radiated Spurious Emissions Measurement

An additional consideration when performing conducted measurements of restricted band emissions is that unwanted emissions radiating from the EUT cabinet, control circuits, power leads, or intermediate circuit elements will likely go undetected in a conducted measurement configuration. To address this concern, a radiated test shall be performed to ensure that emissions emanating from the EUT cabinet (rather than the antenna port) also comply with the applicable limits.

For these radiated spurious emission measurements the EUT transmit antenna may be replaced with a termination matching the nominal impedance of the antenna. Established procedures for performing radiated measurements shall be used (see C63.10). All detected emissions must comply with the applicable limits.

Measurement Detectors

 Test Report No.
 17070376-FCC-R6

 Page
 51 of 82

§15.35(a) specifies that on frequencies less than and below 1000 MHz, the radiated emissions limits assume the use of a CISPR quasi-peak detector function and related measurement bandwidths. §15.35(b) specifies that on frequencies above 1000 MHz, the radiated emissions limits assume the use of an average detector and a minimum resolution bandwidth of 1 MHz. In addition, §15.35(b) that when average radiated emissions measurements are specified there is also a limit on the peak emissions level which is 20 dB above the applicable maximum permitted average emission limit. These specifications also apply to conducted emissions measurements.

1. CISPR Quasi-Peak Measurement

The specifications for the measuring instrument using the CISPR quasi-peak detector can be found in Publication 16 of the International Special Committee on Radio Frequency Interference (CISPR) of the International Electrotechnical Commission.

As an alternative to CISPR quasi-peak measurement, compliance can be demonstrated to the applicable emission limits using a peak detector.

2. Peak Power Measurement Procedure

Utilize the peak power measurement procedure specified in Section 8.1.1 with the following modifications:

Set analyzer center frequency to the frequency associated with the restricted band emission under examination.

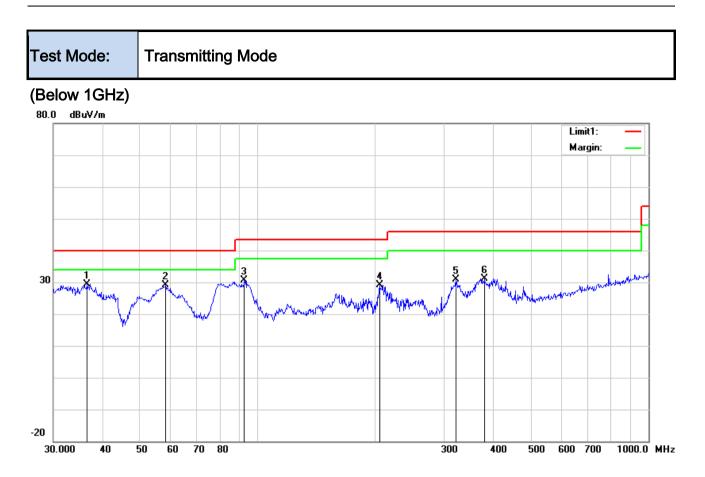
Set RBW = 1 MHz.

Note that if the peak measured value complies with the average limit, it is not necessary to perform a separate average measurement. If this option is exercised, it should be so noted in the test report.

3. Average Power Measurement Procedures

The average restricted band emission levels must be measured with the EUT transmitting continuously (≥ 98% duty cycle) at its maximum power control level. Optionally, video triggering/signal gating can be used to ensure that measurements are performed only when the EUT is transmitting at its maximum power control level.

The average power measurement procedures described in Section 8.2 shall be used with the following modifications:

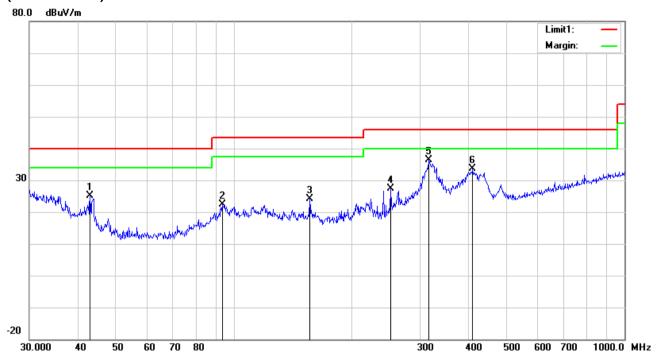

Set analyzer center frequency to the frequency associated with the restricted band emission. Set span to at least 1 MHz.

Use peak marker function to determine the highest amplitude within the RBW (1 MHz).

 Test Report No.
 17070376-FCC-R6

 Page
 52 of 82

Test Data


Vertical Polarity Plot @3m

No.	P/L	Frequency	Reading	Detect or	Ant_F	PA_G	Cab_L	Result	Limit	Margin	Height	Degr ee
		(MHz)	(dBuV/m)		(dB/m)	(dB)	(dB)	(dBuV/m)	(dBuV/m)	(dB)	(cm)	(°)
1	V	36.6375	34.51	peak	16.35	22.26	0.77	29.37	40.00	-10.63	100	173
2	V	58.2030	43.32	peak	7.50	22.40	0.76	29.18	40.00	-10.82	200	265
3	V	92.4624	43.45	peak	8.59	22.32	0.97	30.69	43.50	-12.81	100	313
4	V	204.9551	37.97	peak	12.03	22.37	1.56	29.19	43.50	-14.31	100	42
5	V	321.0608	37.06	peak	14.04	22.23	1.90	30.77	46.00	-15.23	100	215
6	V	379.9141	35.87	peak	15.28	22.07	2.02	31.10	46.00	-14.90	100	263

ſ	Test Report No.	17070376-FCC-R6
	Page	53 of 82

(Below 1GHz)

Test Data

Horizontal Polarity Plot @3m

No.	P/L	Frequency	Reading	Detect or	Ant_F	PA_G	Cab_L	Result	Limit	Margin	Height	Degr ee
		(MHz)	(dBuV/m)		(dB/m)	(dB)	(dB)	(dBuV/m)	(dBuV/m)	(dB)	(cm)	(°)
1	Н	42.8998	34.58	peak	11.99	22.29	0.77	25.05	40.00	-14.95	100	307
2	Н	93.4402	34.91	peak	8.83	22.32	0.98	22.40	43.50	-21.10	100	142
3	Н	156.4578	32.53	peak	12.60	22.29	1.37	24.21	43.50	-19.29	100	235
4	Н	252.0627	36.55	peak	11.49	22.29	1.70	27.45	46.00	-18.55	100	46
5	Н	315.4808	42.73	peak	13.93	22.25	1.87	36.28	46.00	-9.72	100	195
6	Н	408.9460	37.67	peak	15.88	21.99	2.03	33.59	46.00	-12.41	100	11

 Test Report No.
 17070376-FCC-R6

 Page
 54 of 82

Above 1GHz

Test Mode:	Transmitting Mode
------------	-------------------

Frequency (MHz)	S.A. Reading (dBµV)	Detector (PK/AV)	Polarity (H/V)	Ant. Factor (dB/m)	Cable Loss (dB)	Pre-Amp. Gain (dB)	Cord Amp. (dBµV/m)	Limit (dBµV/m)	Margin (dB)
10360	32.88	AV	V	39.86	10.25	32.51	50.48	54	-3.52
10360	32.56	AV	Н	39.86	10.25	32.51	50.16	54	-3.84
10360	45.73	PK	V	39.86	10.25	32.51	63.33	74	-10.67
10360	46.69	PK	Н	39.86	10.25	32.51	64.29	74	-9.71
17853	27.55	AV	V	40.93	12.67	31.28	49.87	54	-4.13
17853	27.61	AV	Н	40.93	12.67	31.28	49.93	54	-4.07
17853	44.38	PK	V	40.93	12.67	31.28	66.7	74	-7.3
17853	44.75	PK	Н	40.93	12.67	31.28	67.07	74	-6.93

Low Channel (5270 MHz) (802.11a mode worst case)

Middle Channel (5300 MHz) (802.11a mode worst case)

Frequency (MHz)	S.A. Reading (dBµV)	Detector (PK/AV)	Polarity (H/V)	Ant. Factor (dB/m)	Cable Loss (dB)	Pre-Amp. Gain (dB)	Cord Amp. (dBµV/m)	Limit (dBµV/m)	Margin (dB)
10440	32.94	AV	V	39.86	10.25	32.51	50.54	54	-3.46
10440	32.65	AV	Н	39.86	10.25	32.51	50.25	54	-3.75
10440	45.83	PK	V	39.86	10.25	32.51	63.43	74	-10.57
10440	46.31	PK	Н	39.86	10.25	32.51	63.91	74	-10.09
17829	27.67	AV	V	40.73	12.55	31.38	49.57	54	-4.43
17829	27.58	AV	Н	40.73	12.55	31.38	49.48	54	-4.52
17829	44.62	PK	V	40.73	12.55	31.38	66.52	74	-7.48
17829	44.73	PK	Н	40.73	12.55	31.38	66.63	74	-7.37

Test Report No.	17070376-FCC-R6
Page	55 of 82

Frequency (MHz)	S.A. Reading (dBµV)	Detector (PK/AV)	Polarity (H/V)	Ant. Factor (dB/m)	Cable Loss (dB)	Pre-Amp. Gain (dB)	Cord Amp. (dBµV/m)	Limit (dBµV/m)	Margin (dB)
10480	32.81	AV	V	39.86	10.25	32.51	50.41	54	-3.59
10480	32.43	AV	Н	39.86	10.25	32.51	50.03	54	-3.97
10480	45.56	PK	V	39.86	10.25	32.51	63.16	74	-10.84
10480	45.95	PK	Н	39.86	10.25	32.51	63.55	74	-10.45
17835	27.84	AV	V	40.76	12.52	31.29	49.83	54	-4.17
17835	27.71	AV	Н	40.76	12.52	31.29	49.7	54	-4.3
17835	44.76	PK	V	40.76	12.52	31.29	66.75	74	-7.25
17835	44.39	PK	Н	40.76	12.52	31.29	66.38	74	-7.62

High Channel (5240 MHz) (802.11n40 mode worst case)

Note:

The testing has been conformed to 40GHz;
 All other emissions more than 30 dB below the limit
 X-Axis, Y-Axis and Z-Axis were investigated. The results above show only the worst case.

 Test Report No.
 17070376-FCC-R6

 Page
 56 of 82

6.9 In-Service Monitoring for Channel Move Time and Channel Closing Transmission Time

These tests define how the following DFS parameters are verified during In-Service Monitoring; Channel Closing Transmission Time, Channel Move Time, and Non-Occupancy Period.

The steps below define the procedure to determine the above mentioned parameters when a radar Burst with a level equal to the DFS Detection Threshold + 1dB is generated on the Operating Channel of the U-NII device.

A U-NII device operating as a Client Device will associate with the UUT (Master) at Mid Channel. Stream the MPEG test file from the Master Device to the Client Device on the selected Channel for the entire period of the test.

At time T0 the Radar Waveform generator sends a Burst of pulses for each of the radar types at -62dBm.

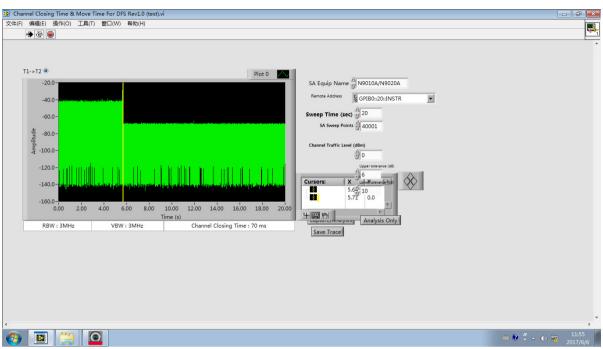
Observe the transmissions of the UUT at the end of the radar Burst on the Operating Channel for duration greater than 10 seconds. Measure and record the transmissions from the UUT during the observation time (Channel Move Time). Compare the Channel Move Time and Channel Closing Transmission Time results to the limits defined in the DFS Response requirement values table.

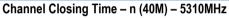
Channel Closing Transmission Time- Measurement

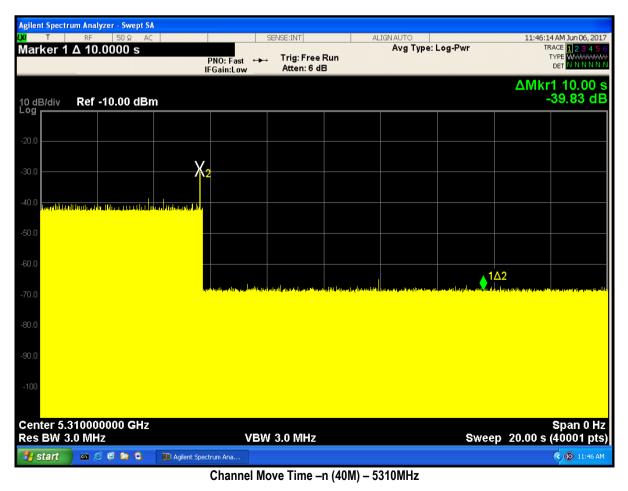
A type 1 waveform was introduced to the EUT and the Spectrum Analyzer sweep time was set to 1s for monitoring and capturing the plot. A LabView program was created to collect trace data and capturing the plot. The program will calculate the channel closing time base on the spectrum analyzer result. The result will be calculated based on FCC procedure.

C= N*Dwell

C is the closing time, N is the number of spectrum analyzer sampling bins showing a U-NII transmission and dwell is the dwell time per bin.


Dwell= S/B


Where Dwell is the dwell time per spectrum analyzer sampling bin, S is the sweep time and B is the number of spectrum analyzer sampling bins.



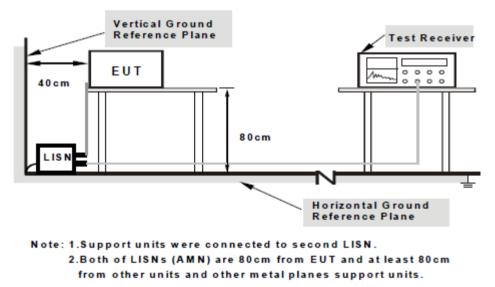
Test Report No.	17070376-FCC-R6		
Page	57 of 82		

Test Plots

Test Report No.	17070376-FCC-R6			
Page	58 of 82			

Annex A. TEST INSTRUMENT

Annex A.i. TEST INSTRUMENTATION & GENERAL PROCEDURES


Instrument	Model Serial #		Cal Date	Cal Due	In use
RF conducted test					
Agilent ESA-E SERIES	E4407B	MY45108319	09/16/2016	09/15/2017	
Power Splitter	1#	1#	08/31/2016	08/30/2017	
DC Power Supply	E3640A	MY40004013	09/16/2016	09/15/2017	
Radiated Emissions					
EMI test receiver	ESL6	100262	09/16/2016	09/15/2017	
Positioning Controller	UC3000	MF780208282	11/18/2016	11/17/2017	
OPT 010 AMPLIFIER (0.1-1300MHz)	8447E	2727A02430	08/31/2016	08/30/2017	V
Microwave Preamplifier (1 ~ 26.5GHz)	8449B	3008A02402	03/23/2017	03/22/2018	L
Bilog Antenna (30MHz~6GHz)	JB6	A110712	09/20/2016	09/19/2017	K
Double Ridge Horn Antenna (1 ~18GHz)	AH-118	71283	09/23/2016	09/22/2017	N
Universal Radio Communication Tester	CMU200	121393	09/24/2016	09/23/2017	

Annex A.ii. CONDUCTED EMISSIONS TEST DESCRIPTION

Test Set-up

- 1. The EUT and supporting equipment were set up in accordance with the requirements of the standard on top of a 1.5m x 1m x 0.8m high, non-metallic table, as shown in Annex B.
- 2. The power supply for the EUT was fed through a $50\Omega/50\mu$ H EUT LISN, connected to filtered mains.
- The RF OUT of the EUT LISN was connected to the EMI test receiver via a low-loss coaxial cable.
- 4. All other supporting equipments were powered separately from another main supply.

For the actual test configuration, please refer to the related item – Photographs of the Test Configuration1.

Test Method

- 1. The EUT was switched on and allowed to warm up to its normal operating condition.
- 2. A scan was made on the NEUTRAL line (for AC mains) or Earth line (for DC power) over the required frequency range using an EMI test receiver.
- 3. High peaks, relative to the limit line, were then selected.

 Test Report No.
 17070376-FCC-R6

 Page
 60 of 82

- 4. The EMI test receiver was then tuned to the selected frequencies and the necessary measurements made with a receiver bandwidth setting of 10 kHz. For FCC tests, only Quasipeak measurements were made; while for CISPR/EN tests, both Quasi-peak and Average measurements were made.
- 5. Steps 2 to 4 were then repeated for the LIVE line (for AC mains) or DC line (for DC power).

Description of Conducted Emission Program

This EMC Measurement software run LabView automation software and offers a common user interface for electromagnetic interference (EMI) measurements. This software is a modern and powerful tool for controlling and monitoring EMI test receivers and EMC test systems. It guarantees reliable collection, evaluation, and documentation of measurement results. Basically, this program will run a pre-scan measurement before it proceeds with the final measurement. The pre-scan routine will run the common scan range from 150 kHz to 30 MHz; the program will first start a peak and average scan on selectable measurement time and step size. After the program complete the pre-scan, this program will perform the Quasi Peak and Average measurement, based on the pre-scan peak data reduction result.