

JianYan Testing Group Shenzhen Co., Ltd.

Co., Ltd. certificate:4346.01

Report No: JYTSZB-R12-2102130

FCC REPORT

Applicant: Autel Robotics Co., Ltd.

Address of Applicant: 9th Floor, Bldg. B1, Zhiyuan, 1001 Xueyuan Rd., Xili, Nanshan,

Shenzhen 518055, China

Equipment Under Test (EUT)

Product Name: Data transmission Module

Model No.: MA58R

Trade mark:

ROBOTICS

FCC ID: 2AGNTM58A

Applicable standards: FCC CFR Title 47 Part 15 Subpart E Section 15.407

Date of sample receipt: 13 Oct., 2021

Date of Test: 14 Oct., to 28 Oct., 2021

Date of report issued: 28 Oct., 2021

Test Result: PASS*

Authorized Signature:

Bruce Zhang Laboratory Manager

This report details the results of the testing carried out on one sample. The results contained in this test report do not relate to other samples of the same product and does not permit the use of the JYT product certification mark. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report.

This report may only be reproduced and distributed in full. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards.

This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only.

^{*} In the configuration tested, the EUT complied with the standards specified above.

Version

Version No.	Date	Description
00	28 Oct., 2021	Original

Tested by: Mike. DU

Test Engineer **Date:** 28 Oct., 2021

Reviewed by:

Project Engineer **Date:** 28 Oct., 2021

Contents

		Page
1	COVER PAGE	1
2	VERSION	2
3	CONTENTS	
	TEST SUMMARY	_
4		
5	GENERAL INFORMATION	5
	5.1 CLIENT INFORMATION	5
	5.2 GENERAL DESCRIPTION OF E.U.T	5
	5.3 TEST ENVIRONMENT AND MODE	
	5.4 DESCRIPTION OF SUPPORT UNITS	
	5.5 MEASUREMENT UNCERTAINTY	
	5.6 ADDITIONS TO, DEVIATIONS, OR EXCLUSIONS FROM THE METHOD	
	5.7 RELATED SUBMITTAL(S) / GRANT (S)	
	5.9 LABORATORY FACILITY	
	5.10 Test Instruments list	
_	TEST RESULTS AND MEASUREMENT DATA	
6		
	6.1 ANTENNA REQUIREMENT	
	6.2 CONDUCTED EMISSION	
	6.3 CONDUCTED OUTPUT POWER	
	6.4 OCCUPY BANDWIDTH	
	6.6 BAND EDGE	
	6.7 Spurious Emission	
	6.7.1 Restricted Band	
	6.7.2 Unwanted Emissions out of the Restricted Bands	
	6.8 FREQUENCY STABILITY	31
7	TEST SETUP PHOTO	32
Q	FUT CONSTRUCTIONAL DETAILS	3/

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366 Page 3 of 37

Test Summary

Test Item	Section in CFR 47	Test Data	Test Result
Antenna requirement	15.203 & 15.407 (a)	See Section 6.1	Pass
AC Power Line Conducted Emission	15.207	See Section 6.2	Pass
Conducted Output Power	(a) (3)	See Section 6.3	Pass
26dB Occupied Bandwidth	15.407 (a) (12)	See Section 6.4	Pass
6dB Emission Bandwidth	15.407(e)	See Section 6.4	Pass
Power Spectral Density	(a) (3)	See Section 6.5	Pass
Band Edge	15.407(b)	See Section 6.6	Pass
Spurious Emission	15.407 (b) & 15.205 & 15.209	See Section 6.7	Pass
Frequency Stability	15.407(g)	See Section 6.8	Pass

Remark:

- Pass: The EUT complies with the essential requirements in the standard. 1.
- The cable insertion loss used by "RF Output Power" and other conduction measurement items is 0.5dB (provided by the customer).

ANSI C63.10-2013 Test Method: KDB 789033 D02 General UNII Test Procedures New Rules v02r01

Page 4 of 37

5 General Information

5.1 Client Information

Applicant:	Autel Robotics Co., Ltd.
Address:	9th Floor, Bldg. B1, Zhiyuan, 1001 Xueyuan Rd., Xili, Nanshan, Shenzhen 518055, China
Manufacturer/ Factory:	Autel Robotics Co., Ltd.
Address:	9th Floor, Bldg. B1, Zhiyuan, 1001 Xueyuan Rd., Xili, Nanshan, Shenzhen 518055, China

5.2 General Description of E.U.T.

Product Name:	Data transmission Module
Model No.:	MA58R
Operation Frequency:	5729.68-5770.68 MHz
Channel numbers:	42
Channel separation:	1 MHz
Modulation technology:	GFSK
Antenna Type:	External Antenna
Antenna gain:	ANT 1: 0.2 dBi (declare by Applicant)
	ANT 2: -0.1 dBi (declare by Applicant)
	ANT 3: -0.1 dBi (declare by Applicant)
Power supply:	DC 5V
Test Sample Condition:	The test samples were provided in good working order with no visible defects.

Operation Frequency each of channel for 19 for 1.4MHz Bandwidth							
Channel Frequency Channel Frequency							
1	5729.68MHz						
2	5730.68MHz	22	5750.68MHz	41	5769.68MHz		
3	5731.68MHz			42	5770.68MHz		
Note:							
1. Channel 1, 22 & 42 selected as Lowest, Middle and Highest channel.							

Report No: JYTSZB-R12-2102130

5.3 Test environment and mode

Operating Environment:				
Temperature:	24.0 °C			
Humidity:	54 % RH			
Atmospheric Pressure:	1010 mbar			
Test mode:				
Transmitting mode	Keep the EUT in continuous transmitting with modulation			

Radiated Emission: The sample was placed 0.8m (below 1GHz)/1.5m (above 1GHz) above the ground plane of 3m chamber. Measurements in both horizontal and vertical polarities were performed. During the test, each emission was maximized by: having the EUT continuously working, investigated all operating modes, rotated about all 3 axis (X, Y & Z) and considered typical configuration to obtain worst position, manipulating interconnecting cables, rotating the turntable, varying antenna height from 1m to 4m in both horizontal and vertical polarizations. The emissions worst-case are shown in Test Results of the following pages. Duty cycle setting during the transmission is 100% with maximum power setting for all modulations.

5.4 Description of Support Units

Manufacturer	Description	on Model Serial Number		FCC ID/DoC		
The EUT has been tested as an independent unit.						

5.5 Measurement Uncertainty

Parameter	Expanded Uncertainty (Confidence of 95%)
Conducted Emission (9kHz ~ 150KHz) for V-AMN	3.11 dB
Conducted Emission (150kHz ~ 30MHz) for V-AMN	2.62 dB
Conducted Emission (150kHz ~ 30MHz) for AAN	3.54 dB
Radiated Emission (9kHz ~ 30MHz electric field) for 3m SAC	3.13 dB
Radiated Emission (9kHz ~ 30MHz magnetic field) for 3m SAC	3.13 dB
Radiated Emission (30MHz ~ 1GHz) for 3m SAC	4.45 dB
Radiated Emission (1GHz ~ 18GHz) for 3m SAC	5.34 dB
Radiated Emission (18GHz ~ 40GHz) for 3m SAC	5.34 dB

5.6 Additions to, deviations, or exclusions from the method

No

5.7 Related Submittal(s) / Grant (s)

This is an original grant, no related submittals and grants.

5.8 Laboratory Facility

The test facility is recognized, certified, or accredited by the following organizations:

• FCC - Designation No.: CN1211

JianYan Testing Group Shenzhen Co., Ltd. has been accredited as a testing laboratory by FCC(Federal Communications Commission). The test firm Registration No. is 727551.

• ISED - CAB identifier.: CN0021

The 3m Semi-anechoic chamber and 10m Semi-anechoic chamber of JianYan Testing Group Shenzhen Co., Ltd. has been Registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 10106A-1.

A2LA - Registration No.: 4346.01

This laboratory is accredited in accordance with the recognized International Standard ISO/IEC 17025:2017 General requirements for the competence of testing and calibration laboratories. The test scope can be found as below link: https://portal.a2la.org/scopepdf/4346-01.pdf

5.9 Laboratory Location

JianYan Testing Group Shenzhen Co., Ltd.

Address: No.101, Building 8, Innovation Wisdom Port, No.155 Hongtian Road, Huangpu Community,

Xinqiao Street, Bao'an District, Shenzhen, Guangdong, People's Republic of China.

Tel: +86-755-23118282, Fax: +86-755-23116366

Email: info-JYTee@lets.com, Website: http://www.ccis-cb.com

5.10 Test Instruments list

Radiated Emission:					
Test Equipment	Manufacturer	Model No.	Serial No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)
3m SAC	ETS	RFD-100	Q1984	04-14-2021	04-13-2024
BiConiLog Antenna	SCHWARZBECK	VULB9163	9163-1246	03-07-2021	03-06-2022
Biconical Antenna	SCHWARZBECK	VUBA 9117	9117#359	06-17-2021	06-17-2022
Horn Antenna	SCHWARZBECK	BBHA9120D	912D-916	03-07-2021	03-06-2022
Broad-Band Horn Antenna	SCHWARZBECK	BBHA9170	1067	04-02-2021	04-01-2022
Broad-Band Horn Antenna	SCHWARZBECK	BBHA9170	1068	04-02-2021	04-01-2022
EMI Test Receiver	Rohde & Schwarz	ESRP7	101070	03-03-2021	03-02-2022
Spectrum analyzer	Rohde & Schwarz	FSP30	101454	03-03-2021	03-02-2022
Spectrum analyzer	Keysight	N9010B	MY60240202	11-27-2020	11-26-2021
Low Pre-amplifier	SCHWARZBECK	BBV9743B	00305	03-07-2021	03-06-2022
High Pre-amplifier	SKET	LNPA_0118G-50	MF280208233	03-07-2021	03-06-2022
Cable	Qualwave	JYT3M-1G-NN-8M	JYT3M-1	03-07-2021	03-06-2022
Cable	Qualwave	JYT3M-18G-NN-8M	JYT3M-2	03-07-2021	03-06-2022
Cable	Qualwave	JYT3M-1G-BB-5M	JYT3M-3	03-07-2021	03-06-2022
Cable	Bost	JYT3M-40G-SS-8M	JYT3M-4	04-02-2021	04-01-2022
EMI Test Software	Tonscend	TS+		Version:3.0.0.1	

Conducted Emission:							
Test Equipment	Manufacturer	Model No.	Serial No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)		
EMI Test Receiver	Rohde & Schwarz	ESCI 3	101189	03-03-2021	03-02-2022		
LISN	Rohde & Schwarz	ENV432	101602	04-06-2021	04-05-2022		
LISN	Rohde & Schwarz	ESH3-Z5	843862/010	06-18-2020	06-17-2022		
RF Switch	TOP PRECISION	RSU0301	N/A	03-03-2021	03-02-2022		
Cable	Bost	JYTCE-1G-NN-2M	JYTCE-1	03-03-2021	03-02-2022		
Cable	Bost	JYTCE-1G-BN-3M	JYTCE-2	03-03-2021	03-02-2022		
EMI Test Software	AUDIX	E3	Version: 6.110919b				

Conducted method:							
Test Equipment	Manufacturer	Model No.	Serial No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)		
Spectrum Analyzer	Keysight	N9010B	MY60240202	11-27-2020	11-26-2021		
Spectrum analyzer	Rohde & Schwarz	FSP30	101454	03-03-2021	03-02-2022		
EMI Test Receiver	Rohde & Schwarz	ESRP7	101070	03-03-2021	03-02-2022		

Report No: JYTSZB-R12-2102130

6 Test results and Measurement Data

6.1 Antenna requirement

Standard requirement: FCC Part15 E Section 15.203 /407(a)

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

This requirement does not apply to carrier current devices or to devices operated under the provisions of §15.211, § 15.213, § 15.217, § 15.219, or § 15.221. Further, this requirement does not apply to intentional radiators that must be professionally installed, such as perimeter protection systems and some field disturbance sensors, or to other intentional radiators which, in accordance with § 15.31(d), must be measured at the installation site. However, the installer shall be responsible for ensuring that the proper antenna is employed so that the limits in this part are not exceeded.

E.U.T Antenna:

The antenna cannot replace by end-user, the best case gain of the antenna is 0.6dBi

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366 Page 8 of 37

6.2 Conducted Emission

Test Requirement:	FCC Part15 C Section 15.2	07				
Test Frequency Range:	150kHz to 30MHz					
Class / Severity:	Class B					
Receiver setup:	RBW=9kHz, VBW=30kHz					
Limit:	Frequency range (MHz) Limit (dBuV) Quasi-peak					
	0.15-0.5	66 to 56*	0.15-0.5			
	0.5-5	56	0.5-5			
	5-30 60 5-30					
	* Decreases with the logarit	hm of the frequency.				
Test procedure	 The E.U.T and simulators are connected to the main power through a line impedance stabilization network (L.I.S.N.). It provides a 50ohm/50uH coupling impedance for the measuring equipment. The peripheral devices are also connected to the main power through a LISN that provides a 50ohm/50uH coupling impedance with 50ohm termination. (Please refer to the block diagram of the test setup and photographs). Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.10(latest version) on conducted measurement. 					
Test setup:	Referen	ice Plane				
	AUX Equipment Test table/Insulation plan Remarkc E.U.T: Equipment Under Test LISN: Line Impedence Stabilization Test table height=0.8m	EMI Receiver	— AC power			
Test Instruments:	Refer to section 5.10 for det	tails				
Test mode:	Refer to section 5.3 for deta	nils.				
Test results:	Passed					
Remark:	During the test, pre-scan Almode. The report only reflect		enna 3 was worse case			

Measurement Data:

Product name:	Data transmission Module	Product model:	MA58R
Test by:	Mike	Test mode:	5.8GHz Tx mode
Test frequency:	150 kHz ~ 30 MHz	Phase:	Line
Test voltage:	AC 120 V/60 Hz	Environment:	Temp: 22.5℃ Huni: 55%

	Freq	Read Level	LISN Factor	Aux Factor		Level	Limit Line	Over Limit	Remark
	MHz	dBu∇	<u>dB</u>	<u>d</u> B		dBu₹	dBu⊽	<u>dB</u>	
1	0.266	36.21	10.25	-0.23	0.02	46.25	61.25	-15.00	QP
2	0.266	26.45	10.25	-0.23	0.02	36.49	51.25	-14.76	Average
3	0.377	28.53	10.27	0.27	0.03	39.10	58.34	-19.24	QP
4	0.377	16.36	10.27	0.27	0.03	26.93	48.34	-21.41	Average
2 3 4 5 6 7 8 9	1.082	30.92	10.32	0.38	0.07	41.69	56.00	-14.31	QP
6	1.082	15.31	10.32	0.38	0.07	26.08	46.00	-19.92	Average
7	1.868	7.02	10.33	-0.25	0.19	17.29	46.00	-28.71	Average
8	3.058	21.76	10.35	-0.20	0.07	31.98	56.00	-24.02	QP
9	3.860	6.31	10.38	-0.07	0.08	16.70	46.00	-29.30	Average
10	8.148	21.50	10.53	1.58	0.10	33.71	60.00	-26.29	QP
11	18.426	32.85	10.87	1.67	0.15	45.54	60.00	-14.46	QP
12	18.721	20.89	10.88	1.51	0.15	33.43	50.00	-16.57	Average

Notes

- 1. An initial pre-scan was performed on the line and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level =Receiver Read level + LISN Factor + Aux Factor + Cable Loss.

Product name:	Data transmission Module	Product model:	MA58R	
Test by:	Mike	Test mode:	5.8GHz Tx mode	
Test frequency:	150 kHz ~ 30 MHz	Phase:	Neutral	
Test voltage:	AC 120 V/60 Hz	Environment:	Temp: 22.5℃ Huni: 55%	

	Freq	Read Level	LISN Factor	Aux Factor	Cable Loss	Level	Limit Line	Over Limit	Remark
	MHz	dBu∜	<u>dB</u>	<u>db</u>	₫B	dBu₹	dBu∜	<u>dB</u>	
1	0.253	37.67	10.24	0.01	0.01	47.93	61.64	-13.71	QP
2	0.253	28.75	10.24	0.01	0.01	39.01	51.64	-12.63	Average
3	0.393	21.83	10.27	-0.06	0.04	32.08	47.99	-15.91	Average
4	0.402	31.84	10.27	-0.06	0.04	42.09	57.81	-15.72	QP
1 2 3 4 5 6 7 8 9	0.513	17.78	10.28	0.03	0.03	28.12	46.00	-17.88	Average
6	1.049	15.53	10.31	0.09	0.06	25.99	46.00	-20.01	Average
7	1.088	33.01	10.31	0.09	0.07	43.48	56.00	-12.52	QP
8	2.133	26.98	10.32	0.19	0.19	37.68	56.00	-18.32	QP
9	3.603	10.59	10.37	0.44	0.08	21.48	46.00	-24.52	Average
10	7.566	22.81	10.50	0.95	0.10	34.36	60.00	-25.64	QP
11	19.845	24.17	10.88	0.31	0.15	35.51	50.00	-14.49	Average
12	19.950	35.93	10.88	0.23	0.19	47.23	60.00	-12.77	QP

Motos

- 1. An initial pre-scan was performed on the line and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level =Receiver Read level + LISN Factor + Aux Factor + Cable Loss.

6.3 Conducted Output Power

Measurement Data:

-			
Test CH	Maximum Conducted Output Power (dBm)	Limit(dBm)	Result
Lowest	21.05		
Middle	20.97	30.00	Pass
Highest	21.01		

Test plot as follows:

6.4 Occupy Bandwidth

Test Requirement:	FCC Part15 E Section Section 15.407 (e)		
Limit:	N/A (26dB Emission Bandwidth and 99% Occupy Bandwidth) 6dB EBW: >500kHz		
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane		
Test Instruments:	Refer to section 5.10 for details		
Test mode:	Refer to section 5.3 for details		
Test results:	Passed		

Measurement Data:

Test CH	26dB EBW(MHz) 99%OBW(MHz)		Limit
Lowest	1.3459	1.182	
Middle	1.3546	1.182	N/A
Highest	1.3372	1.188	

Test CH	6dB EBW(MHz)	Limit	Result
Lowest	0.684		
Middle	0.690	>500kHz	Pass
Highest	0.702		

Test plot as follows:

Project No.: JYTSZE2110043

6.5 Power Spectral Density

Test Requirement:	FCC Part15 E Section 15.407 (a)(3)		
Limit:	30 dBm/500kHz		
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane		
Test Instruments:	Refer to section 5.10 for details		
Test mode:	Refer to section 5.3 for details		
Test results:	Passed		

Measurement Data:

Test CH	Power Spectral Density (dBm/500KHz)	Limit(dBm/500KHz)	Result
Lowest	20.96		
Middle	20.90	30.00	Pass
Highest	20.90		

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366 Page 17 of 37

Test plot as follows:

6.6 Band Edge

Test Requirement:	FCC Part 15 E Section	15.407 (b)				
Receiver setup:	Detector	RBW	VBW	Remark		
·	Quasi-peak	120kHz	300kHz	Quasi-peak Value		
	RMS	1MHz	3MHz	Average Value		
Test Procedure:	 RMS 1MHz 3MHz Average Value limit: E[dBμV/m] = EIRP[dBm] + 95.2=68.2 dBuV/m, for EIPR[dBm]=-27dBm. E[dBμV/m] = EIRP[dBm] + 95.2=105.2 dBuV/m, for EIPR[dBm]=10dBm. E[dBμV/m] = EIRP[dBm] + 95.2=110.8 dBuV/m, for EIPR[dBm]=15.6dBm. E[dBμV/m] = EIRP[dBm] + 95.2=122.2 dBuV/m, for EIPR[dBm]=27dBm. 1. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter camber. The table was rotated 360 degrees to determine the position of the highest radiation. 2. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower. 3. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement. 4. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rotatable was turned from 0 degrees to 360 degrees to find the maximum reading. 5. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode. 6. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re- 					
Test setup:	- 190m	AE LUT (Turntable) Ground Reference in	Hom Antenna Tower	Swwww.		
Toot Instruments:	Potenta section 5.10 fo	Test Receiver	Pre- Angelier Controller			
Test Instruments:	Refer to section 5.10 for details					
Test mode:	Refer to section 5.3 for details					
Test results:	Passed					

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

Measurement Data (worst case):

ANT1									
Test channel: Lowest channel									
Detector: Peak Value									
Frequency (MHz)	Read Level (dBuV/m)	Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Margin [dB]	Polarization			
5650.00	40.26	18.87	59.13	68.20	9.07	Horizontal			
5700.00	40.85	19.05	59.90	105.20	45.30	Horizontal			
5720.00	45.71	19.00	64.71	110.80	46.09	Horizontal			
5725.00	53.92	18.99	72.91	122.20	49.29	Horizontal			
5650.00	40.36	18.87	59.23	68.20	8.97	Vertical			
5700.00	40.22	19.05	59.27	105.20	45.93	Vertical			
5720.00	53.85	19.00	72.85	110.80	37.95	Vertical			
5725.00	60.71	18.99	79.70	122.20	42.50	Vertical			
		Test channel: F	lighest channe	l					
		Detector: F	Peak Value						
Frequency (MHz)	Read Level (dBuV/m)	Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Margin [dB]	Polarization			
5850.00	39.53	19.10	58.63	122.20	63.57	Horizontal			
5855.00	40.26	19.12	59.38	110.80	51.42	Horizontal			
5875.00	40.22	19.23	59.45	105.20	45.75	Horizontal			
5925.00	40.74	19.39	60.13	68.20	8.07	Horizontal			
5850.00	40.55	19.10	59.65	122.20	62.55	Vertical			
5855.00	40.92	19.12	60.04	110.80	50.76	Vertical			
5875.00	39.59	19.23	58.82	105.20	46.38	Vertical			
5925.00	40.33	19.39	59.72	68.20	8.48	Vertical			

Remark:

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

^{1.} Final Level = Receiver Read level + Factor.

^{2.} The emission levels of other frequencies are very lower than the limit and not show in test report.

ANT2								
	Test channel: Lowest channel							
		Detector: F	Peak Value					
Frequency (MHz)	Read Level (dBuV/m)	Factor (dB)	Factor (dB) Level Limit Lin (dBuV/m) (dBuV/m			Polarization		
5650.00	40.42	18.87	59.29	68.20	8.91	Horizontal		
5700.00	40.43	19.05	59.48	105.20	45.72	Horizontal		
5720.00	46.10	19.00	65.10	110.80	45.70	Horizontal		
5725.00	54.13	18.99	73.12	122.20	49.08	Horizontal		
5650.00	40.83	18.87	59.70	68.20	8.50	Vertical		
5700.00	39.91	19.05	58.96	105.20	46.24	Vertical		
5720.00	54.21	19.00	73.21	110.80	37.59	Vertical		
5725.00	61.06	18.99	80.05	122.20	42.15	Vertical		
		Test channel: H	lighest channe	I				
		Detector: F	Peak Value					
Frequency (MHz)	Read Level (dBuV/m)	Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Margin [dB]	Polarization		
5850.00	39.58	19.10	58.68	122.20	63.52	Horizontal		
5855.00	40.04	19.12	59.16	110.80	51.64	Horizontal		
5875.00	40.25	19.23	59.48	105.20	45.72	Horizontal		
5925.00	40.47	19.39	59.86	68.20	8.34	Horizontal		
5850.00	40.54	19.10	59.64	122.20	62.56	Vertical		
5855.00	41.18	19.12	60.30	110.80	50.50	Vertical		
5875.00	39.76	19.23	58.99	105.20	46.21	Vertical		
5925.00	40.10	19.39	59.49	68.20	8.71	Vertical		

Remark:

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366 Page 21 of 37

^{1.} Final Level = Receiver Read level + Factor.

^{2.} The emission levels of other frequencies are very lower than the limit and not show in test report.

	ANT3								
	Test channel: Lowest channel								
	Detector: Peak Value								
Frequency (MHz)	Read Level (dBuV/m)	Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Margin [dB]	Polarization			
5650.00	40.03	18.87	58.90	68.20	9.30	Horizontal			
5700.00	40.70	19.05	59.75	105.20	45.45	Horizontal			
5720.00	45.34	19.00	64.34	110.80	46.46	Horizontal			
5725.00	54.32	18.99	73.31	122.20	48.89	Horizontal			
5650.00	40.71	18.87	59.58	68.20	8.62	Vertical			
5700.00	40.45	19.05	59.50	105.20	45.70	Vertical			
5720.00	53.45	19.00	72.45	110.80	38.35	Vertical			
5725.00	60.25	18.99	79.24	122.20	42.96	Vertical			
	Test channel: Highest channel								
		Detector: F	Peak Value						
Frequency (MHz)	Read Level (dBuV/m)	Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Margin [dB]	Polarization			
5850.00	39.90	19.10	59.00	122.20	63.20	Horizontal			
5855.00	39.78	19.12	58.90	110.80	51.90	Horizontal			
5875.00	40.21	19.23	59.44	105.20	45.76	Horizontal			
5925.00	40.94	19.39	60.33	68.20	7.87	Horizontal			
5850.00	40.67	19.10	59.77	122.20	62.43	Vertical			
5855.00	41.26	19.12	60.38	110.80	50.42	Vertical			
5875.00	39.99	19.23	59.22	105.20	45.98	Vertical			
5925.00	40.04	19.39	59.43	68.20	8.77	Vertical			

Remark:

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

^{1.} Final Level = Receiver Read level + Factor.

^{2.} The emission levels of other frequencies are very lower than the limit and not show in test report.

6.7 Spurious Emission

6.7.1 Restricted Band

0.7.1 Restricted Barid	Г							
Test Requirement:	FCC Part15 E Sect	FCC Part15 E Section 15.407(b)						
Test Frequency Range:	5.35GHz to 5.46GH	łz						
Test site:	Measurement Dista	nce: 3m						
Receiver setup:	Frequency	Detector	RBW	VBW	Remark			
	Above 1GHz	Peak RMS	1MHz	3MHz	Peak Value			
I impit.	Frequency		1MHz it (dBuV/m @:	3MHz	Average Value Remark			
Limit:			74.00)	Peak Value			
	Above 1GHz		54.00		Average Value			
Test Procedure:	 The EUT was placed on the top of a rotating table 1.5 meters above ground at a 3 meter camber. The table was rotated 360 degrees to determine the position of the highest radiation. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement. For each suspected emission, the EUT was arranged to its worst call and then the antenna was tuned to heights from 1 meter to 4 meters and the rotal table was turned from 0 degrees to 360 degrees to find maximum reading. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode. If the emission level of the EUT in peak mode was 10dB lower than limit specified, then testing could be stopped and the peak values of EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak average method as specified and then reported in a data sheet. 							
Test setup:		(Turntable)	Hom Anter	Antenna Tower				
Test Instruments:	Refer to section 5.1	0 for details						
Test mode:	Refer to section 5.3							
Test results:	Passed(Refer to se	ction 6.6)						
	· ·	· · · · · · · · · · · · · · · · · · ·						

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

Unwanted Emissions out of the Postricted Bands

ns out of the Re							
FCC Part 15 C Se	ection 15.	209 an	d 15.205				
9kHz to 40GHz							
3m							
Frequency	Detec	ctor	RBW	VI	BW	N Remark	
30MHz-1GHz		1	120KHz	300)KHz	Quasi-peak Value	
Ahove 1GHz			1MHz	31	ЛHz	Peak Value	
RMS 1MHz 3MHz Averag				Average Value			
						Remark	
						uasi-peak Value	
						uasi-peak Value	
						uasi-peak Value	
960MHZ-1GH	IZ					uasi-peak Value	
Above 1GHz	<u>.</u>				,	Average Value Peak Value	
1GHz)/1.5m(a The table was highest radiat 2. The EUT was antenna, which tower. 3. The antenna ground to det horizontal and measuremen 4. For each sus and then the and the rota to maximum rea 5. The test-rece Specified Bar 6. If the emission limit specified the EUT would 10dB margin	above 10s rotated tion. Is set 3 minch was maken the ight is termine the divertical transpected ending. In the ight is adding. In the ight is a level of the igh	eters and a second of the max polarization was turned et un max with Ma f the EU sting coorted. (e) re-tes	egrees to determine the don the top of from one medimum value of the top of t	ind attermin interformation interfor	ference ariable- four m field sinna are a 360 ccct Function was 100 nd the pssions ing pea	eter chamber. Position of the e-receiving Pheight antenna neters above the trength. Both e set to make the to its worst case eter to 4 meters degrees to find the ection and dB lower than the peak values of that did not have ak, quasi-peak or	
Table	0.8m	4m			s		
	9kHz to 40GHz 3m Frequency 30MHz-1GHz Above 1GHz Frequency 30MHz-88MH 88MHz-216MH 216MHz-960M 960MHz-1GH Above 1GHz 1. The EUT was 1GHz)/1.5m(The table was highest radia: 2. The EUT was antenna, which tower. 3. The antenna ground to det horizontal and measurement 4. For each sus and then the and the rotal to maximum real. 5. The test-recessive Specified Bar. 6. If the emission limit specified the EUT wou 10dB margin average meth. Below 1GHz	9kHz to 40GHz 3m Frequency 30MHz-1GHz Above 1GHz Frequency 30MHz-88MHz 88MHz-216MHz 216MHz-960MHz 960MHz-1GHz Above 1GHz 1. The EUT was placed of 1GHz)/1.5m(above 10The table was rotated highest radiation. 2. The EUT was set 3 mantenna, which was more tower. 3. The antenna height is ground to determine the horizontal and vertical measurement. 4. For each suspected eand then the antenna and the rota table was maximum reading. 5. The test-receiver system specified Bandwidth was maximum reading. 6. If the emission level of limit specified, then te the EUT would be reputodB margin would be average method as specified. Below 1GHz	9kHz to 40GHz 3m Frequency Detector 30MHz-1GHz Quasi-peak Above 1GHz RMS Frequency Limit 30MHz-88MHz 88MHz-88MHz 216MHz-960MHz 960MHz-1GHz Above 1GHz 1. The EUT was placed on the 1GHz)/1.5m(above 1GHz) at The table was rotated 360 de highest radiation. 2. The EUT was set 3 meters a antenna, which was mounted tower. 3. The antenna height is varied ground to determine the max horizontal and vertical polariz measurement. 4. For each suspected emission and then the antenna was turned and the rota table was turned maximum reading. 5. The test-receiver system was Specified Bandwidth with Ma 6. If the emission level of the EU limit specified, then testing of the EUT would be reported. On 10dB margin would be re-test average method as specified. Below 1GHz	Frequency Detector RBW 30MHz-1GHz Quasi-peak 120KHz Above 1GHz RMS 1MHz Frequency Limit (dBuV/m @3 30MHz-88MHz 40.0 88MHz-216MHz 43.5 216MHz-960MHz 46.0 960MHz-1GHz 54.0 Above 1GHz 74.0 1. The EUT was placed on the top of a rotati 1GHz)/1.5m(above 1GHz) above the ground to determine the maximum value of highest radiation. 2. The EUT was set 3 meters away from the antenna, which was mounted on the top of tower. 3. The antenna height is varied from one measurement. 4. For each suspected emission, the EUT was and then the antenna was tuned to height and the rota table was turned from 0 degres maximum reading. 5. The test-receiver system was set to Peak Specified Bandwidth with Maximum Hold of the EUT in peak maximum reading. 5. The test-receiver system was set to Peak Specified Bandwidth with Maximum Hold of the EUT would be reported. Otherwise the 10dB margin would be re-tested one by o average method as specified and then reported. Below 1GHz	PikHz to 40GHz 3m Frequency	9kHz to 40GHz 3m Frequency Detector RBW VBW 30MHz-1GHz Quasi-peak 120KHz 300KHz Above 1GHz Peak 1MHz 3MHz Frequency Limit (dBuV/m @ 3m) 30MHz-88MHz 40.0 Q 88MHz-216MHz 43.5 Q 216MHz-960MHz 46.0 Q 960MHz-1GHz 54.0 Q Above 1GHz 74.0 1 1. The EUT was placed on the top of a rotating table 0.8 1GHz)/1.5m(above 1 GHz) above the ground at a 3 m The table was rotated 360 degrees to determine the phighest radiation. 2. The EUT was set 3 meters away from the interference antenna, which was mounted on the top of a variable-tower. 3. The antenna height is varied from one meter to four m ground to determine the maximum value of the field shorizontal and vertical polarizations of the antenna armeasurement. 4. For each suspected emission, the EUT was arranged and then the antenna was tuned to heights from 1 me and the rota table was turned from 0 degrees to 360 c maximum reading. 5. The test-receiver system was set to Peak Detect Func Specified Bandwidth with Maximum Hold Mode. 6. If the emission level of the EUT in peak mode was 10 limit specified, then testing could be stopped and the the EUT would be reported. Otherwise the emissions 10dB margin would be re-tested one by one using peaverage method as specified and then reported in a december of the EUT would be reported. Otherwise the emissions 10dB margin would be re-tested one by one using peaverage method as specified and then reported in a december of the EUT would be reported. Otherwise the emissions 10dB margin would be re-tested one by one using peaverage method as specified and then reported in a december of the EUT would be reported. Otherwise the emissions 10dB margin would be re-tested one by one using peaverage method as specified and then reported in a december of the EUT would be reported.	

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366 Page 24 of 37

Measurement Data (worst case):

Below 1GHz

Product Name:	Data transmission Module	Product Model:	MA58R
Test By:	Mike	Test mode:	5.8GHz Tx mode
Test Frequency:	30 MHz ~ 1 GHz	Polarization:	Vertical
Test Voltage:	DC 5.0V	Environment:	Temp: 24°C Huni: 57%

Suspe	Suspected Data List∂									
NO.₽	Freq.⊬ [MHz]∂	Reading[d BµV/m]∂	Level⊬ [dBµV/m]∂	Factor⊬ [dB]⊬	Limit⊬ [dBµV/m]⊬	Margin⊬ [dB]⊬	Trace∂	Polarity∂		
1₽	47.9468₽	32.72₽	15.47₽	-17.25₽	40.00₽	24.53₽	PK₽	Vertical₽		
24□	72.1022₽	42.00₽	22.89₽	-19.11₽	40.00₽	17.11₽	PK₽	Vertical₽		
3₽	168.044	35.78₽	16.87₽	-18.91₽	43.50₽	26.63₽	PK₽	Vertical₽		
4₽	192.006	40.81₽	23.33₽	-17.48₽	43.50₽	20.17₽	PK₽	Vertical₽		
5⇔	381.757	35.05₽	22.41₽	-12.64₽	46.00₽	23.59₽	PK₽	Vertical∉		
6₄∍	598.767	36.20₽	27.81₽	-8.39₽	46.00₽	18.19₽	PK₽	Vertical₽		

Remark:

- 1. Final Level = Receiver Read level + Factor (Antenna Factor + Cable Loss Preamplifier Factor).
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product Name:	Data transmission Module	Product Model:	MA58R
Test By:	Mike	Test mode:	5.8GHz Tx mode
Test Frequency:	30 MHz ~ 1 GHz	Polarization:	Horizontal
Test Voltage:	DC 5.0V	Environment:	Temp: 24℃ Huni: 57%

Suspected Data List									
NO.₽	Freq.	Reading[d	Level⊬	Factor	Limitℯ	Margin⊎	Trace₽	Polarity∂	
110.5	[MHz]∂	BµV/m]∂	[dBµV/m]∂	[dB]∂	[dBµV/m]∂	[dB]∂	Hace	r oldricy.	
1₽	48.1408₽	30.55₽	13.31₽	-17.24₽	40.00₽	26.69₽	PK₽	Horizontal₽	
2↔	72.2962₽	48.39₽	29.27₽	-19.12₽	40.00₽	10.73₽	PK₽	Horizontal₽	
3₽	168.432	47.25₽	28.35₽	-18.90₽	43.50₽	15.15₽	PK₽	Horizontal₽	
4₽	191.909	49.33₽	31.85₽	-17.48₽	43.50₽	11.65₽	PK₽	Horizontal₽	
5⇔	505.153	34.23₽	24.74₽	-9.49₽	46.00₽	21.26₽	PK₽	Horizontal₽	
6₽	639.706	34.21₽	26.12₽	-8.09₽	46.00₽	19.88₽	PK₽	Horizontal₽	

Remark:

- 1. Final Level = Receiver Read level + Factor (Antenna Factor + Cable Loss Preamplifier Factor).
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Page 27 of 37

Above 1GHz

		ANT1			
	Test ch	annel: Lowest ch	nannel		
	Det	tector: Peak Valu			
Read Level (dBuV)	Factor(dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Margin (dB)	Polarization
52.81	6.97	59.78	74.00	14.22	Vertical
53.87	6.97	60.84	74.00	13.16	Horizontal
	Dete	ctor: Average Va	llue		
Read Level (dBuV)	Factor(dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Margin (dB)	Polarization
45.35	6.97	52.32	54.00	1.68	Vertical
45.79	6.97	52.76	54.00	1.24	Horizontal
	Test ch	eannel: Middle ch	annal	_	
Read Level	Factor(dB)	Level	Limit Line	Margin (dB)	Polarization
` ,	7.01	` ′	, ,	` ,	Vertical
	1				Horizontal
	1				
Read Level (dBuV)	Factor(dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Margin (dB)	Polarization
45.30	7.01	52.31	54.00	1.69	Vertical
46.20	7.01	53.21	54.00	0.79	Horizontal
	T	1.10.1			
Distributed	Det			Margin	T
(dBuV)	Factor(dB)	(dBuV/m)	(dBuV/m)	(dB)	Polarization
53.63	7.03	60.66	74.00	13.34	Vertical
53.89	1			13.08	Horizontal
	Dete				
Read Level (dBuV)	Factor(dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Margin (dB)	Polarization
45.19	7.03	52.22	54.00	1.78	Vertical
45.77	7.03	52.80	54.00	1.20	Horizontal
	(dBuV) 52.81 53.87 Read Level (dBuV) 45.35 45.79 Read Level (dBuV) 53.88 52.75 Read Level (dBuV) 45.30 46.20 Read Level (dBuV) 45.30 46.20	Read Level (dBuV) Factor(dB)	Test channel: Lowest channel: Lowest channel: Lowest channel: Peak Value	Test channel: Lowest channel	Test channel: Lowest channel

Remark:

^{1.} Final Level =Receiver Read level + Factor.

^{2.} The emission levels of other frequencies are lower than the limit 20dB and not show in test report.

			ANT2				
Test channel: Lowest channel							
Detector: Peak Value							
Frequency (MHz)	Read Level (dBuV)	Factor(dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Margin (dB)	Polarization	
11459.36	52.92	6.97	59.89	74.00	14.11	Vertical	
11459.36	54.05	6.97	61.02	74.00	12.98	Horizontal	
		Dete	ctor: Average Va	lue			
Frequency (MHz)	Read Level (dBuV)	Factor(dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Margin (dB)	Polarization	
11476.00	46.01	6.97	52.98	54.00	1.02	Vertical	
11476.00	45.30	6.97	52.27	54.00	1.73	Horizontal	
			annel: Middle ch				
_	1	Det	tector: Peak Valu		T		
Frequency (MHz)	Read Level (dBuV)	Factor(dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Margin (dB)	Polarization	
11501.36	53.61	7.01	60.62	74.00	13.38	Vertical	
11501.36	53.23	7.01	60.24	74.00	13.76	Horizontal	
Detector: Average Value							
Frequency (MHz)	Read Level (dBuV)	Factor(dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Margin (dB)	Polarization	
11501.36	45.26	7.01	52.27	54.00	1.73	Vertical	
11501.36	46.02	7.01	53.03	54.00	0.97	Horizontal	
		Test cha	annel: Highest ch	nannel			
	1	Det	ector: Peak Valu	ıe	1		
Frequency (MHz)	Read Level (dBuV)	Factor(dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Margin (dB)	Polarization	
11541.36	54.38	7.03	61.41	74.00	12.59	Vertical	
11541.36	53.72	7.03	60.75	74.00	13.25	Horizontal	
		Dete	ctor: Average Va	lue			
Frequency (MHz)	Read Level (dBuV)	Factor(dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Margin (dB)	Polarization	
	45.38	7.03	52.41	54.00	1.59	Vertical	
11541.36	45.50						

^{1.} Final Level =Receiver Read level + Factor.

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

^{2.} The emission levels of other frequencies are lower than the limit 20dB and not show in test report.

			ANT3			
		Test ch	annel: Lowest ch	nannel		
		De	tector: Peak Valu	ie		
Frequency (MHz)	Read Level (dBuV)	Factor(dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Margin (dB)	Polarization
11459.36	52.82	6.97	59.79	74.00	14.21	Vertical
11459.36	53.47	6.97	60.44	74.00	13.56	Horizontal
		Dete	ctor: Average Va	alue		
Frequency (MHz)	Read Level (dBuV)	Factor(dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Margin (dB)	Polarization
11476.00	45.50	6.97	52.47	54.00	1.53	Vertical
11476.00	45.94	6.97	52.91	54.00	1.09	Horizontal
		Test ch	annel: Middle ch	annel		
	1	De	tector: Peak Valu	ie	1	1
Frequency (MHz)	Read Level (dBuV)	Factor(dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Margin (dB)	Polarization
11501.36	53.60	7.01	60.61	74.00	13.39	Vertical
11501.36	53.00	7.01	60.01	74.00	13.99	Horizontal
Detector: Average Value						
Frequency (MHz)	Read Level (dBuV)	Factor(dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Margin (dB)	Polarization
11501.36	44.96	7.01	51.97	54.00	2.03	Vertical
11501.36	45.61	7.01	52.62	54.00	1.38	Horizontal
			annel: Highest ch			
	1	De	tector: Peak Valu			T
Frequency (MHz)	Read Level (dBuV)	Factor(dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Margin (dB)	Polarization
11541.36	53.72	7.03	60.75	74.00	13.25	Vertical
11541.36	53.54	7.03	60.57	74.00	13.43	Horizontal
		Dete	ctor: Average Va	alue		
Frequency (MHz)	Read Level (dBuV)	Factor(dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Margin (dB)	Polarization
11541.36	44.76	7.03	51.79	54.00	2.21	Vertical
11541.36	45.37	7.03	52.40	54.00	1.60	Horizontal
Remark: 1. Final Level =F	Receiver Read level	+ Factor				

^{1.} Final Level =Receiver Read level + Factor.

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

^{2.} The emission levels of other frequencies are lower than the limit 20dB and not show in test report.

6.8 Frequency stability

Test Requirement:	FCC Part15 E Section 15.407 (g)		
Limit:	Manufacturers of U-NII devices are responsible for ensuring frequency stability such that an emission is maintained within the band of operation under all conditions of normal operation as specified in the user's manual.		
Test setup:	Spectrum analyzer EUT Att. Variable Power Supply Note: Measurement setup for testing on Antenna connector		
Test procedure:	 The EUT is installed in an environment test chamber with external power source. Set the chamber to operate at 50 centigrade and external power source to output at nominal voltage of EUT. A sufficient stabilization period at each temperature is used prior to each frequency measurement. When temperature is stabled, measure the frequency stability. The test shall be performed under -30 to 50 centigrade and 85 to 115 percent of the nominal voltage. Change setting of chamber and external power source to complete all conditions. 		
Test Instruments:	Refer to section 5.10 for details		
Test mode:	Refer to section 5.3 for details		
Test results:	PASS		

Measurement Data (the worst channel):

Voltage vs. Frequency Stability (Middle channel=5750.68MHz)

Test conditions		F(8411-)	Man Pariation (man)
Temp(°C)	Voltage(dc)	Frequency(MHz)	Max. Deviation (ppm)
20	4.5V	5750.673	-1.22
	5.0V	5750.668	-2.09
	5.5V	5750.671	-1.57

Temperature vs. Frequency Stability (Middle channel=5180MHz)

Test conditions		Francisco (MIII-)	May Deviation (mmm)
Voltage(dc)	Temp(°C)	Frequency(MHz)	Max. Deviation (ppm)
5	-20	5750.673	-1.22
	-10	5750.668	-2.09
	0	5750.672	-1.39
	10	5750.668	-2.09
	20	5750.673	-1.22
	30	5750.672	-1.39
	40	5750.674	-1.04
	50	5750.669	-1.91