

FCC RF Test Report

APPLICANT	: PAX Technology Limited
EQUIPMENT	: Wireless Data Terminal
BRAND NAME	: PAX
MODEL NAME	: X5
FCC ID	: V5PX5
STANDARD	: FCC Part 15 Subpart C §15.247
CLASSIFICATION	: (DTS) Digital Transmission System

The product was received on May 22, 2019 and testing was completed on Dec. 27, 2019. We, Sporton International (ShenZhen) Inc., would like to declare that the tested sample has been evaluated in accordance with the test procedures and has been in compliance with the applicable technical standards.

The test results in this report apply exclusively to the tested model / sample. Without written approval of Sporton International (ShenZhen) Inc., the test report shall not be reproduced except in full.

Dogue Cher

Reviewed by: Derreck Chen / Supervisor

File Shih

Approved by: Eric Shih / Manager

Sporton International (ShenZhen) Inc. 1/F, 2/F, Bldg 5, Shiling Industrial Zone, Xinwei Village, Xili, Nanshan, Shenzhen, 518055 People's Republic of China

TABLE OF CONTENTS

REV	/ISION	I HISTORY	.3
SUN	/MAR	Y OF TEST RESULT	.4
1	GENE	RAL DESCRIPTION	.5
	1.1	Applicant	.5
	1.2	Manufacturer	.5
	1.3	Product Feature of Equipment Under Test	.5
	1.4	Product Specification of Equipment Under Test	.6
	1.5	Modification of EUT	.6
	1.6	Testing Location	.6
	1.7	Test Software	.7
	1.8	Applicable Standards	.7
2	TEST	CONFIGURATION OF EQUIPMENT UNDER TEST	.8
	2.1	Carrier Frequency Channel	.8
	2.2	Test Mode	.9
	2.3	Connection Diagram of Test System	10
	2.4	Support Unit used in test configuration and system	11
	2.5	EUT Operation Test Setup	11
	2.6	Measurement Results Explanation Example	11
3	TEST	RESULT	12
	3.1	6dB and 99% Bandwidth Measurement	12
	3.2	Output Power Measurement	17
	3.3	Power Spectral Density Measurement	18
	3.4	Conducted Band Edges and Spurious Emission Measurement	23
	3.5	Radiated Band Edges and Spurious Emission Measurement	28
	3.6	AC Conducted Emission Measurement	32
	3.7	Antenna Requirements	34
4	LIST	OF MEASURING EQUIPMENT	35
5	UNCE	RTAINTY OF EVALUATION	35
APF	PENDI	X A. CONDUCTED TEST RESULTS	
APF	PENDI	X B. AC CONDUCTED EMISSION TEST RESULT	
APF	PENDI	X C. RADIATED SPURIOUS EMISSION	
APF	PENDI	X D. DUTY CYCLE PLOTS	

APPENDIX E. SETUP PHOTOGRAPHS

REVISION HISTORY

REPORT NO.	VERSION	DESCRIPTION	ISSUED DATE
FR952227B	Rev. 01	Initial issue of report	Jan. 16, 2020

Report Section	FCC Rule	Description	Limit	Result	Remark
3.1	15.247(a)(2)	6dB Bandwidth	≥ 0.5MHz	Pass	-
3.1	-	99% Bandwidth	-	Pass	-
3.2	15.247(b)(3)	Conducted Output Power	≤ 30dBm	Pass	-
3.3	15.247(e)	Power Spectral Density	≤ 8dBm/3kHz	Pass	-
3.4	15.247(d)	Conducted Band Edges and Spurious Emission	≤ 30dBc	Pass	-
3.5	15.247(d)	Radiated Band Edges and Spurious Emission	15.209(a) & 15.247(d)	Pass	Under limit 10.83 dB at 2488.060 MHz
3.6	15.207	AC Conducted Emission	15.207(a)	Pass	Under limit 5.72 dB at 9.20 MHz
3.7	15.203 & 15.247(b)	Antenna Requirement	N/A	Pass	-

Declaration of Conformity:

The test results with all measurement uncertainty excluded are presented in accordance with the regulation limits or requirements declared by manufacturers.

Comments and Explanations:

The declared of product specification for EUT presented in the report are provided by the manufacturer, and the manufacturer takes all the responsibilities for the accuracy of product specification.

1 General Description

1.1 Applicant

PAX Technology Limited

Room 2416, 24/F., Sun Hung Kai Centre, 30 Harbour Road, Wanchai, Hong Kong

1.2 Manufacturer

PAX Computer Technology (Shenzhen) Co., Ltd.

4/F, No.3 Building, Software Park, Second Central Science-Tech Road, High-Tech industrial Park, Shenzhen, Guangdong, P.R.C.

1.3 Product Feature of Equipment Under Test

Product Feature			
Equipment	Wireless Data Terminal		
Brand Name	PAX		
Model Name	X5		
FCC ID	V5PX5		
	WCDMA/LTE/GNSS/NFC		
	WLAN 2.4GHz 802.11b/g/n HT20/HT40		
EUT supports Radios application	WLAN 5GHz 802.11a/n HT20/HT40		
	WLAN 5GHz 802.11ac VHT20/VHT40/VHT80		
	Bluetooth BR/EDR/LE		
	Conducted: 353022100101986 353022100101994		
IMEI Code	Conduction: 353022100102067/353022100102075		
	Radiation: N/A		
HW Version	N/A		
SW Version	N/A		
EUT Stage	Production Unit		

Remark: The above EUT's information was declared by manufacturer. Please refer to the specifications or user's manual for more detailed description.

1.4 Product Specification of Equipment Under Test

Standards-related Product Specification			
Tx/Rx Frequency Range	2402 MHz ~ 2480 MHz		
Number of Channels	40		
Carrier Frequency of Each Channel	40 Channel(37 hopping + 3 advertising channel)		
Maximum Output Power to Antenna	2.30 dBm (0.0017 W)		
99% Occupied Bandwidth	1.051MHz		
Antenna Type / Gain	Fixed Internal Antenna with gain 1.50 dBi		
Type of Modulation	Bluetooth LE : GFSK		

1.5 Modification of EUT

No modifications are made to the EUT during all test items.

1.6 Testing Location

Sporton International (Kunshan) Inc. is accredited to ISO/IEC 17025:2017 by American Association for Laboratory Accreditation with Certificate Number 5145.02.

Test Firm	Sporton International (Kunshan) Inc.			
	No. 1098, Pengxi North Road, Kunshan Economic Development Zone			
Test Site Location	Jiangsu Province 215300 People's Republic of China			
	TEL : +86-512-57900158			
	FAX : +86-512-579009	58		
Teet Cite No	Sporton Site No. FCC Designation No. FCC Test Firm Regis		FCC Test Firm Registration No.	
Test Site No.	03CH05-KS CN1257 314309			

Sporton International (Shenzhen) Inc. is accredited to ISO/IEC 17025:2017 by American Association for

Laboratory Accreditation with Certificate Number 5145.01.

Test Firm	Sporton International (Shenzhen) Inc.			
Test Site Location	1/F, 2/F, Bldg 5, Shiling Industrial Zone, Xinwei Village, Xili, Nanshan, Shenzhen, 518055 People's Republic of China TEL: +86-755-86379589 FAX: +86-755-86379595			
	Sporton Site No.	FCC Designation No.	FCC Test Firm Registration No.	
Test Site No.	CO01-SZ TH01-SZ	CN1256	421272	

1.7 Test Software

lt	em	Site	Manufacture	Name	Version
	1.	03CH05-KS	AUDIX	E3	6.2009-8-24al
	2.	CO01-SZ	AUDIX	E3	6.120613b

1.8 Applicable Standards

According to the specifications of the manufacturer, the EUT must comply with the requirements of the following standards:

- 47 CFR Part 15 Subpart C §15.247
- FCC KDB 558074 D01 15.247 Meas Guidance v05r02
- ANSI C63.10-2013

Remark:

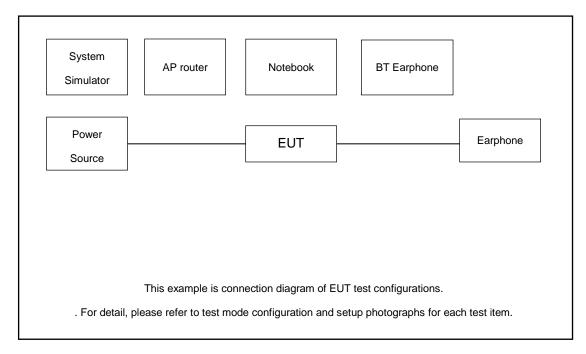
- 1. All test items were verified and recorded according to the standards and without any deviation during the test.
- 2. This EUT has also been tested and complied with the requirements of FCC Part 15, Subpart B, recorded in a separate test report.

2 Test Configuration of Equipment Under Test

2.1 Carrier Frequency Channel

Frequency Band	Channel	Freq. (MHz)	Channel	Freq. (MHz)
	0	2402	21	2444
	1	2404	22	2446
	2	2406	23	2448
	3	2408	24	2450
	4	2410	25	2452
	5	2412	26	2454
	6	2414	27	2456
	7	2416	28	2458
	8	2418	29	2460
	9	2420	30	2462
2400-2483.5 MHz	10	2422	31	2464
	11	2424	32	2466
	12	2426	33	2468
	13	2428	34	2470
	14	2430	35	2472
	15	2432	36	2474
	16	2434	37	2476
	17	2436	38	2478
	18	2438	39	2480
	19	2440	-	-
-	20	2442	-	-

2.2 Test Mode


- a. The EUT has been associated with peripherals and configuration operated in a manner tended to maximize its emission characteristics in a typical application. Frequency range investigated: conduction emission (150 kHz to 30 MHz), radiation emission (9 kHz to the 10th harmonic of the highest fundamental frequency or to 40 GHz, whichever is lower). For radiated measurement, pre-scanned in three orthogonal panels, X, Y, Z. The worst cases (Z plane) were recorded in this report.
- b. AC power line Conducted Emission was tested under maximum output power.

The following summary table is showing all test modes to demonstrate in compliance with the standard.

	Summary table of Test Cases				
Test Item	Data Rate / Modulation				
Test item	Bluetooth LE / GFSK				
Conducted	Mode 1: Bluetooth Tx CH00_2402 MHz_1Mbps				
	Mode 2: Bluetooth Tx CH19_2440 MHz_1Mbps				
TCs	Mode 3: Bluetooth Tx CH39_2480 MHz_1Mbps				
Radiated	Mode 1: Bluetooth Tx CH00_2402 MHz_1Mbps				
	Mode 2: Bluetooth Tx CH19_2440 MHz_1Mbps				
TCs	Mode 3: Bluetooth Tx CH39_2480 MHz_1Mbps				
AC	Made 1: WCDMA Read II Idle + Riveteeth Link + WI AN Link (2.4C) + Eerobene +				
Conducted	Mode 1: WCDMA Band II Idle + Bluetooth Link + WLAN Link (2.4G) + Earphone +				
Emission	Battery + USB Cable (Charging from Adapter)				
Remark: For	Remark: For Radiated Test Cases, The tests were performance with Adapter, Earphone and USB				
Cab	Cable.				

2.3 Connection Diagram of Test System

2.4 Support Unit used in test configuration and system

Item	Equipment	Trade Name	Model Name	FCC ID	Data Cable	Power Cord
1.	Base Station(LTE)	Anritsu MT8820C N/A		N/A	N/A	Unshielded,1.8m
2.	Bluetooth Earphone	Samsung	EO-MG900 PYAHS-107W		N/A	N/A
3.	WLAN AP	Dlink	DIR-820L	KA2IR820LA1	N/A	Unshielded,1.8m
4.	NOTE BOOK	Lenovo	E540	FCC DoC	AC I/P : Unshielded, 1.2m DC O/P : Shielded, 1.8m	N/A

2.5 EUT Operation Test Setup

For BLE function, the engineering test program was provided and enabled to make EUT continuous transmit/receive.

For AC power line conducted emissions, the EUT was set to connect with the WLAN AP under large package sizes transmission.

2.6 Measurement Results Explanation Example

For all conducted test items:

The offset level is set in the spectrum analyzer to compensate the RF cable loss and attenuator factor between EUT conducted output port and spectrum analyzer. With the offset compensation, the spectrum analyzer reading level is exactly the EUT RF output level.

Example :

The spectrum analyzer offset is derived from RF cable loss and attenuator factor.

Offset = RF cable loss + attenuator factor.

Following shows an offset computation example with cable loss 5.0 dB and 10dB attenuator.

Offset(dB) = RF cable loss(dB) + attenuator factor(dB).

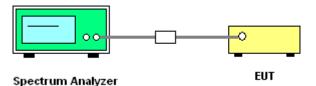
= 5.0 + 10 = 15.0 (dB)

3 Test Result

3.1 6dB and 99% Bandwidth Measurement

3.1.1 Limit of 6dB and 99% Bandwidth

The minimum 6 dB bandwidth shall be at least 500 kHz.


3.1.2 Measuring Instruments

The section 4.0 of List of Measuring Equipment of this test report is used for test.

3.1.3 Test Procedures

- 1. The testing follows ANSI C63.10-2013 clause 11.8
- 2. The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement.
- 3. Set to the maximum power setting and enable the EUT transmit continuously.
- Make the measurement with the spectrum analyzer's resolution bandwidth (RBW) = 100 kHz. Set the Video bandwidth (VBW) = 300 kHz. In order to make an accurate measurement. The 6 dB bandwidth must be greater than 500 kHz.
- 5. For 99% Bandwidth Measurement, the spectrum analyzer's resolution bandwidth (RBW) is set 30kHz and set the Video bandwidth (VBW) = 100kHz.
- 6. Measure and record the results in the test report.

3.1.4 Test Setup

3.1.5 Test Result of 6dB Bandwidth

Please refer to Appendix A.

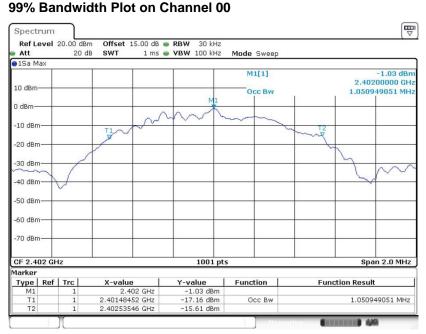
6 dB Bandwidth Plot on Channel 00

Date: 15.JUN.2019 16:12:16

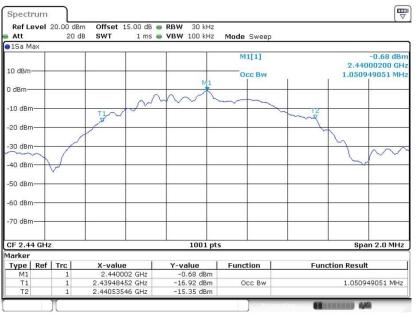
6 dB Bandwidth Plot on Channel 19

Date: 15. JUN. 2019 16: 20: 28

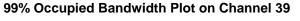
6 dB Bandwidth Plot on Channel 39

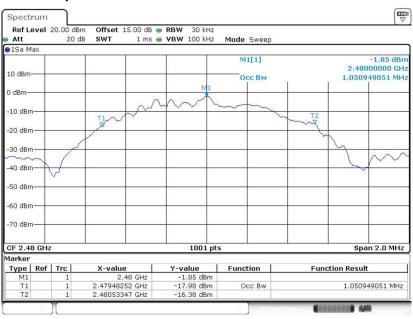


Date: 15.JUN.2019 16:34:46


3.1.6 Test Result of 99% Occupied Bandwidth

Please refer to Appendix A.


Date: 15.JUN.2019 16:19:09



99% Occupied Bandwidth Plot on Channel 19

Date: 15.JUN.2019 16:30:18

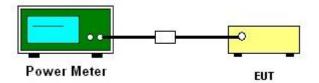
Date: 15.JUN.2019 16:40:48

Note : The occupied channel bandwidth is maintained within the band of operation for all of the modulations.

3.2 Output Power Measurement

3.2.1 Limit of Output Power

For systems using digital modulation in the 2400-2483.5MHz, the limit for output power is 30dBm. If transmitting antenna of directional gain greater than 6dBi is used, the output power from the intentional radiator shall be reduced below the above stated value by the amount in dB that the directional gain of the antenna exceeds 6 dBi. In case of point-to-point operation, the limit has to be reduced by 1dB for every 3dB that the directional gain of the antenna exceeds 6dBi.


3.2.2 Measuring Instruments

The section 4.0 of List of Measuring Equipment of this test report is used for test.

3.2.3 Test Procedures

- The testing follows the Measurement Procedure of ANSI C63.10-2013 clause 11.9.1.3 PKPM1 Peak power meter or ANSI C63.10-2013 clause 11.9.2.3.2 Method AVGPM-G method.
- 2. The RF output of EUT was connected to the power meter by RF cable and attenuator. The path loss was compensated to the results for each measurement.
- 3. Set to the maximum power setting and enable the EUT transmit continuously.
- 4. Measure the conducted output power and record the results in the test report.

3.2.4 Test Setup

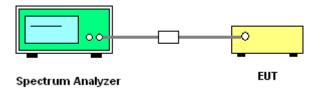
3.2.5 Test Result of Average Output Power

Please refer to Appendix A.

3.3 Power Spectral Density Measurement

3.3.1 Limit of Power Spectral Density

The peak power spectral density shall not be greater than 8dBm in any 3kHz band at any time interval of continuous transmission.

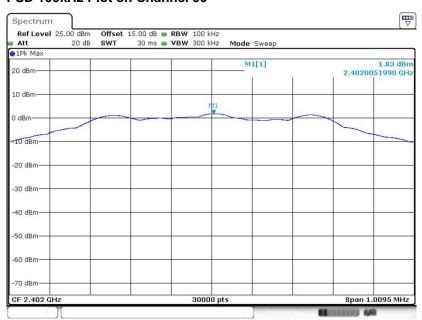

3.3.2 Measuring Instruments

The section 4.0 of List of Measuring Equipment of this test report is used for test.

3.3.3 Test Procedures

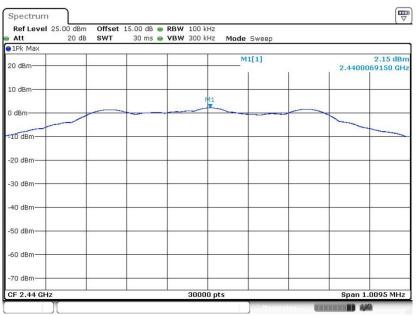
- 1. The testing follows Measurement Procedure of ANSI C63.10-2013 clause 11.10.2 Method PKPSD.
- 2. The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement.
- 3. Set to the maximum power setting and enable the EUT transmit continuously.
- Make the measurement with the spectrum analyzer's resolution bandwidth (RBW) = 3 kHz.
 Video bandwidth VBW = 10 kHz In order to make an accurate measurement, set the span to 1.5 times DTS Channel Bandwidth. (6dB BW)
- 5. Detector = peak, Sweep time = auto couple, Trace mode = max hold, Allow trace to fully stabilize. Use the peak marker function to determine the maximum power level.
- 6. Measure and record the results in the test report.
- 7. The Measured power density (dBm)/ 100kHz is a reference level and used as 20dBc down limit line for Conducted Band Edges and Conducted Spurious Emission.

3.3.4 Test Setup



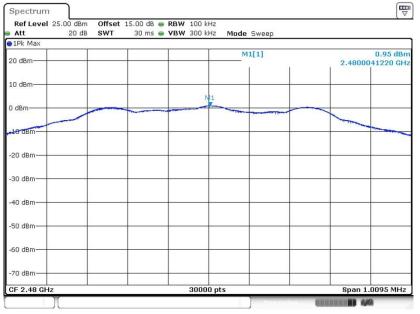
3.3.5 Test Result of Power Spectral Density

Please refer to Appendix A.

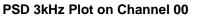

3.3.6 Test Result of Power Spectral Density Plots (100kHz)

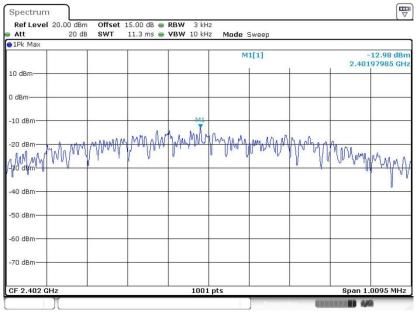
PSD 100kHz Plot on Channel 00

Date: 15.JUN.2019 16:15:17

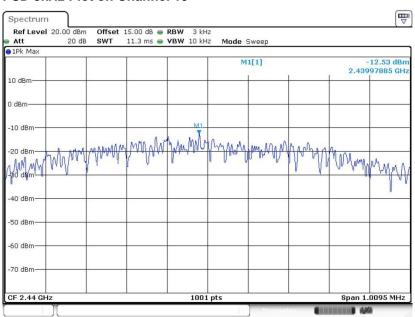

PSD 100kHz Plot on Channel 19

Date: 15.JUN.2019 16:25:13

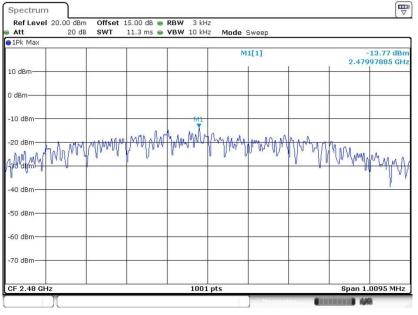

PSD 100kHz Plot on Channel 39



Date: 15.JUN.2019 16:38:19


3.3.7 Test Result of Power Spectral Density Plots (3kHz)

Date: 15.JUN.2019 16:12:33


PSD 3kHz Plot on Channel 19

Date: 15.JUN.2019 16:23:13

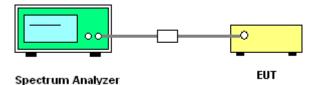
PSD 3kHz Plot on Channel 39

Date: 15.JUN.2019 16:37:23

3.4 Conducted Band Edges and Spurious Emission Measurement

3.4.1 Limit of Conducted Band Edges and Spurious Emission

All harmonics/spurious must be at least 30 dB down from the highest emission level within the authorized band.

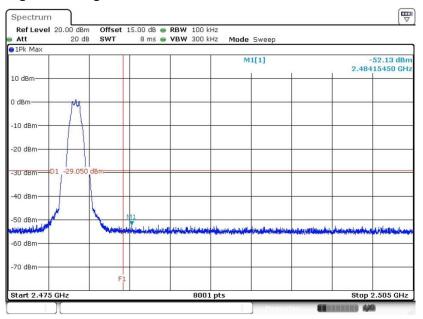

3.4.2 Measuring Instruments

The section 4.0 of List of Measuring Equipment of this test report is used for test.

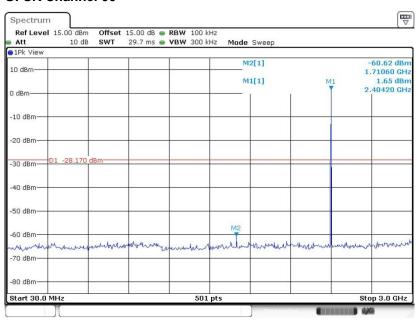
3.4.3 Test Procedure

- 1. The testing follows ANSI C63.10-2013 clause 11.13
- 2. The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement.
- 3. Set to the maximum power setting and enable the EUT transmit continuously.
- 4. Set RBW = 100 kHz, VBW=300 kHz, Peak Detector. Unwanted Emissions measured in any 100 kHz bandwidth outside of the authorized frequency band shall be attenuated by at least 20 dB relative to the maximum in-band peak PSD level in 100 kHz when maximum peak conducted output power procedure is used. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, the attenuation required under this paragraph shall be 30 dB instead of 20 dB.
- 5. Measure and record the results in the test report.
- 6. The RF fundamental frequency should be excluded against the limit line in the operating frequency band.

3.4.4 Test Setup


3.4.5 Test Result of Conducted Band Edges Plots

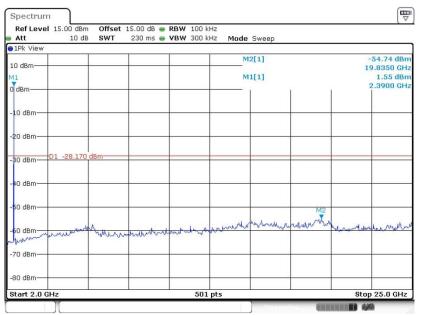
Date: 15.JUN.2019 16:15:38


High Band Edge Plot on Channel 39

Date: 15.JUN.2019 16:39:30

3.4.6 Test Result of Conducted Spurious Emission Plots

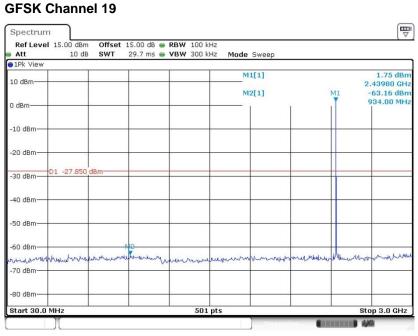
Conducted Spurious Emission Plot on Bluetooth LE 1Mbps



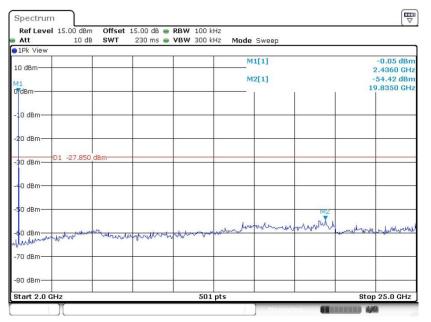
GFSK Channel 00

Date: 15.JUN.2019 16:16:07

Conducted Spurious Emission Plot on Bluetooth LE 1Mbps


GFSK Channel 00

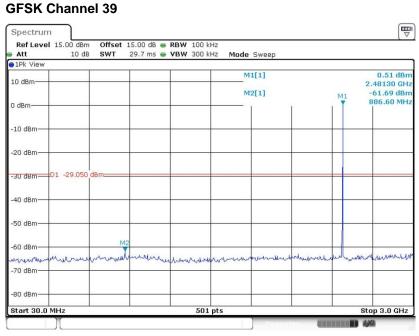
Date: 15.JUN.2019 16:16:59



Conducted Spurious Emission Plot on Bluetooth LE 1Mbps

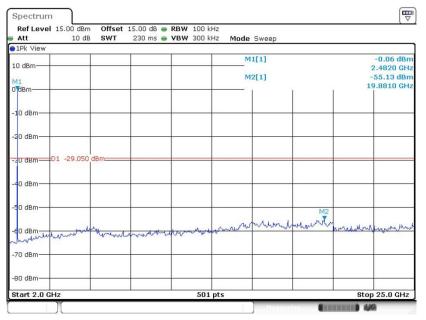
Date: 15.JUN.2019 16:27:06

Conducted Spurious Emission Plot on Bluetooth LE 1Mbps GFSK Channel 19



Date: 15.JUN.2019 16:28:17

Sporton International (Shenzhen) Inc. TEL : 86-755-8637-9589 FAX : 86-755-8637-9595 FCC ID: V5PX5



Conducted Spurious Emission Plot on Bluetooth LE 1Mbps

Date: 15.JUN.2019 16:40:08

Conducted Spurious Emission Plot on Bluetooth LE 1Mbps GFSK Channel 39

Date: 15.JUN.2019 16:40:24

Sporton International (Shenzhen) Inc. TEL : 86-755-8637-9589 FAX : 86-755-8637-9595 FCC ID: V5PX5

3.5 Radiated Band Edges and Spurious Emission Measurement

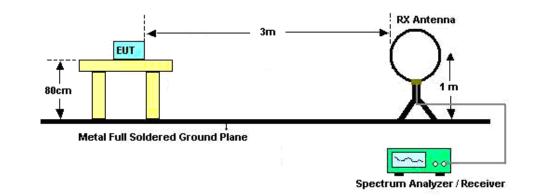
3.5.1 Limit of Radiated Band Edges and Spurious Emission

In any 100 kHz bandwidth outside the intentional radiator frequency band, all harmonics/spurious must be at least 20 dB below the highest emission level within the authorized band. If the output power of this device was measured by spectrum analyzer, the attenuation under this paragraph shall be 30 dB instead of 20 dB. In addition, radiated emissions which fall in the restricted bands must also comply with the limits as below.

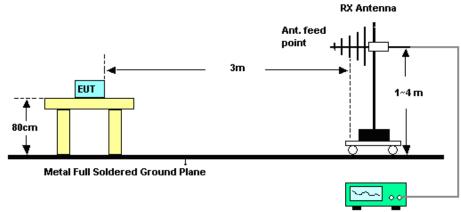
Frequency	Field Strength	Measurement Distance		
(MHz)	(microvolts/meter)	(meters)		
0.009 - 0.490	2400/F(kHz)	300		
0.490 – 1.705	24000/F(kHz)	30		
1.705 – 30.0	30	30		
30 – 88	100	3		
88 – 216	150	3		
216 - 960	200	3		
Above 960	500	3		

3.5.2 Measuring Instruments

The section 4.0 of List of Measuring Equipment of this test report is used for test.


3.5.3 Test Procedures

- 1. The testing follows ANSI C63.10-2013 clause 11.11 & 11.12
- 2. The EUT was arranged to its worst case and then tune the antenna tower (from 1 m to 4 m) and turntable (from 0 degree to 360 degrees) to find the maximum reading. A pre-amp and a high pass filter are used for the test in order to get better signal level.
- 3. The EUT was placed on a turntable with 0.8 meter for frequency below 1GHz and 1.5 meter for frequency above 1GHz respectively above ground.
- 4. The EUT was set 3 meters from the interference receiving antenna, which was mounted on the top of a variable height antenna tower.
- 5. Corrected Reading: Antenna Factor + Cable Loss + Read Level Preamp Factor = Level
- 6. For testing below 1GHz, if the emission level of the EUT in peak mode was 3 dB lower than the limit specified, then peak values of EUT will be reported, otherwise, the emissions will be repeated one by one using the CISPR quasi-peak method and reported.
- 7. For testing above 1GHz, the emission level of the EUT in peak mode was 20dB lower than average limit (that means the emission level in average mode also complies with the limit in average mode), then peak values of EUT will be reported, otherwise, the emissions will be measured in average mode again and reported.
- 8. Use the following spectrum analyzer settings:
 - (1) Span shall wide enough to fully capture the emission being measured;
 - (2) Set RBW=100 kHz for f < 1 GHz; VBW ≥ RBW; Sweep = auto; Detector function = peak; Trace = max hold;
 - (3) Set RBW = 1 MHz, VBW= 3MHz for $f \ge 1$ GHz for peak measurement. For average measurement:
 - VBW = 10 Hz, when duty cycle is no less than 98 percent.
 - VBW ≥ 1/T, when duty cycle is less than 98 percent where T is the minimum transmission duration over which the transmitter is on and is transmitting at its maximum power control level for the tested mode of operation.



3.5.4 Test Setup


For radiated emissions below 30MHz

For radiated emissions from 30MHz to 1GHz

Spectrum Analyzer / Receiver

Spectrum Analyzer / Receiver

Sporton International (Shenzhen) Inc. TEL : 86-755-8637-9589 FAX : 86-755-8637-9595 FCC ID: V5PX5 Page Number: 30 of 36Report Issued Date: Jan. 16, 2020Report Version: Rev. 01Report Template No.: BU5-FR15CBT4.0 Version 2.0

3.5.5 Test Results of Radiated Spurious Emissions (9 kHz ~ 30 MHz)

The low frequency, which started from 9 kHz to 30MHz, was pre-scanned and the result which was 20dB lower than the limit line was not reported.

There is a comparison data of both open-field test site and semi-Anechoic chamber, and the result came out very similar.

3.5.6 Test Result of Radiated Spurious at Band Edges

Please refer to Appendix C.

3.5.7 Duty Cycle

Please refer to Appendix D.

3.5.8 Test Result of Radiated Spurious Emission (30MHz ~ 10th Harmonic)

Please refer to Appendix C.

3.6 AC Conducted Emission Measurement

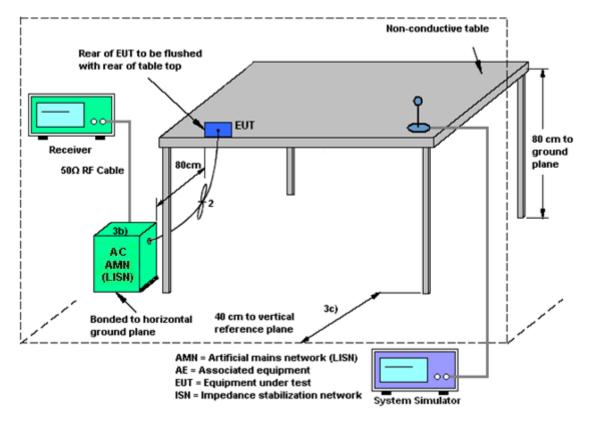
3.6.1 Limit of AC Conducted Emission

For equipment that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies within the band 150 kHz to 30 MHz shall not exceed the limits in the following table.

Frequency of emission (MHz)	Conducted limit (dBµV)				
Frequency of emission (MHZ)	Quasi-peak	Average			
0.15-0.5	66 to 56*	56 to 46*			
0.5-5	56	46			
5-30	60	50			

*Decreases with the logarithm of the frequency.

3.6.2 Measuring Instruments


The section 4.0 of List of Measuring Equipment of this test report is used for test.

3.6.3 Test Procedures

- 1. The EUT was placed 0.4 meter from the conducting wall of the shielding room was kept at least 80 centimeters from any other grounded conducting surface.
- 2. Connect EUT to the power mains through a line impedance stabilization network (LISN).
- 3. All the support units are connecting to the other LISN.
- 4. The LISN provides 50 ohm coupling impedance for the measuring instrument.
- 5. The FCC states that a 50 ohm, 50 microhenry LISN should be used.
- 6. Both sides of AC line were checked for maximum conducted interference.
- 7. The frequency range from 150 kHz to 30 MHz was searched.
- Set the test-receiver system to Peak Detect Function and specified bandwidth (IF Bandwidth = 9kHz) with Maximum Hold Mode. Then measurement is also conducted by Average Detector and Quasi-Peak Detector Function respectively.

3.6.4 Test Setup

3.6.5 Test Result of AC Conducted Emission

Please refer to Appendix B.

3.7 Antenna Requirements

3.7.1 Standard Applicable

If directional gain of transmitting antennas is greater than 6dBi, the power shall be reduced by the same level in dB comparing to gain minus 6dBi. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the rule.

3.7.2 Antenna Anti-Replacement Construction

An embedded-in antenna design is used.

3.7.3 Antenna Gain

The antenna peak gain of EUT is less than 6 dBi. Therefore, it is not necessary to reduce maximum peak output power limit.

4 List of Measuring Equipment

Instrument	Manufacturer	Model No.	Serial No.	Characteristics	Calibration Date	Test Date	Due Date	Remark
Spectrum Analyzer			101078	10Hz~40GHz	Apr. 18, 2019	Jun. 15, 2019	Apr. 17, 2020	Conducted (TH01-SZ)
Spectrum Analyzer	R&S	FSP30	101400	9KHz~30GHz	Dec. 22, 2018	Jun. 15, 2019	Dec. 21, 2019	Conducted (TH01-SZ)
Pulse Power Senor	Anritsu	MA2411B	1207253	30MHz~40GHz	Dec. 22, 2018	Jun. 15, 2019	Dec. 21, 2019	Conducted (TH01-SZ)
Power Meter	Anritsu	ML2495A	1218010	50MHz Bandwidth	Dec. 22, 2018	Jun. 15, 2019	Dec. 21, 2019	Conducted (TH01-SZ)
EMI Test Receiver	Keysight	N9038A	MY572901 51	3Hz~8.5GHz;M ax 30dBm	Jul18.2019	Dec. 27, 2019	Jul. 17, 2020	Radiation (03CH05-KS)
EXA Spectrum Analyzer	Keysight	N9010A	MY551502 44	10Hz-44G,MAX 30dB	Apr. 16, 2019	Dec. 27, 2019	Apr. 15, 2020	Radiation (03CH05-KS)
Loop Antenna	R&S	HFH2-Z2	100321	9kHz~30MHz	Nov. 10, 2019	Dec. 27, 2019	Nov. 09, 2020	Radiation (03CH05-KS)
Bilog Antenna	TeseQ	CBL6111D	49922	30MHz-1GHz	May 30, 2019	Dec. 27, 2019	May 29, 2020	Radiation (03CH05-KS)
Double Ridge Horn Antenna	ETS-Lindgren	3117	75959	1GHz~18GHz	Jan. 27, 2019	Dec. 27, 2019	Jan. 26, 2020	Radiation (03CH05-KS)
SHF-EHF Horn	Com-power	AH-840	101070	18GHz~40GHz	Jan. 05, 2019	Dec. 27, 2019	Jan. 04, 2020	Radiation (03CH05-KS)
Amplifier	SONOMA	310N	187289	9KHz-1GHz	Aug. 06, 2019	Dec. 27, 2019	Aug. 05, 2020	Radiation (03CH05-KS)
Amplifier	MITEQ	TTA1840-35- HG	2014749	18~40GHz	Jan. 14, 2019	Dec. 27, 2019	Jan. 13, 2020	Radiation (03CH05-KS)
high gain Amplifier	MITEQ	AMF-7D-0010 1800-30-10P	2025788	1Ghz-18Ghz	Aug. 17, 2019	Dec. 27, 2019	Aug. 16, 2020	Radiation (03CH05-KS)
Amplifier	Keysight	83017A	MY532703 16	500MHz~26.5G Hz	Oct. 18, 2019	Dec. 27, 2019	Oct. 17, 2020	Radiation (03CH05-KS)
AC Power Source	Chroma	61601	F1040900 04	N/A	NCR	Dec. 27, 2019	NCR	Radiation (03CH05-KS)
Turn Table	ChamPro	EM 1000-T	060762-T	0~360 degree	NCR	Dec. 27, 2019	NCR	Radiation (03CH05-KS)
EMI Receiver	R&S	ESR7	101630	9kHz~7GHz;	Dec. 23, 2018	Jun. 04, 2019	Dec. 22, 2019	Conduction (CO01-SZ)
AC LISN	EMCO	3816/2SH	00103912	9kHz~30MHz	Oct. 18, 2018	Jun. 04, 2019	Oct. 17, 2019	Conduction (CO01-SZ)
AC LISN (for auxiliary equipment)	EMCO	3816/2SH	00103892	9kHz~30MHz	Dec. 23, 2018	Jun. 04, 2019	Dec. 22, 2019	Conduction (CO01-SZ)
AC Power Source	Chroma	61602	616020000 891	100Vac~250Vac	Jul. 22, 2018	Jun. 04, 2019	Jul. 23, 2019	Conduction (CO01-SZ)

NCR: No Calibration Required

5 Uncertainty of Evaluation

The measurement uncertainties shown below were calculated in accordance with the requirements of ANSI 63.10-2013. All the measurement uncertainty value were shown with a coverage K=2 to indicate 95% level of confidence. The measurement data show herein meets or exceeds the CISPR measurement uncertainty values specified in CISPR 16-4-2 and can be compared directly to specified limit to determine compliance.

Uncertainty of Conducted Emission Measurement (150 kHz ~ 30 MHz)

Measuring Uncertainty for a Level of Confidence	2.6dB
of 95% (U = 2Uc(y))	2.008

Uncertainty of Radiated Emission Measurement (30 MHz ~ 1000 MHz)

Measuring Uncertainty for a Level of Confidence	5.0dB
of 95% (U = 2Uc(y))	3.00B

Uncertainty of Radiated Emission Measurement (1000 MHz ~ 18000 MHz)

Measuring Uncertainty for a Level of Confidence	5.0dB
of 95% (U = 2Uc(y))	3.00B

Uncertainty of Radiated Emission Measurement (18000 MHz ~ 40000 MHz)

Measuring Uncertainty for a Level of Confidence	5.0dB
of 95% (U = 2Uc(y))	3.00B

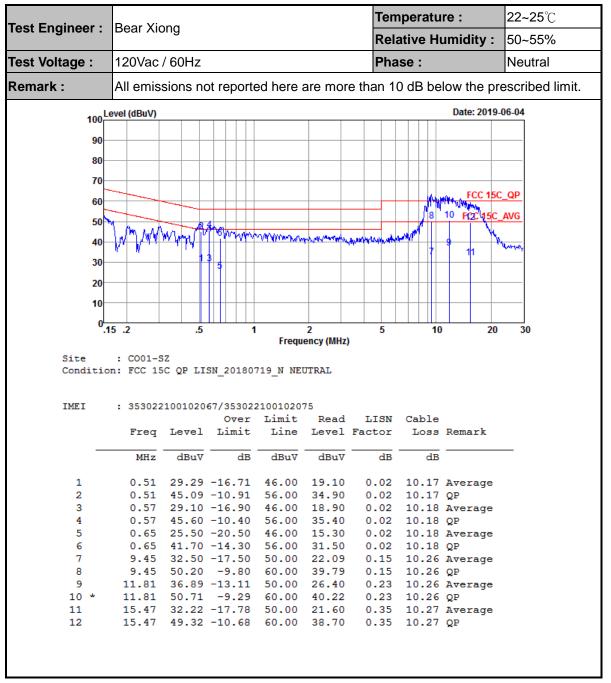
Appendix A. Conducted Test Results

Report Number : FR952227B

Test Engineer:	Jensen Wu	Temperature:	21~25	°C
Test Date:	2019/6/15	Relative Humidity:	51~54	%

<u>TEST RESULTS DATA</u> 6dB and 99% Occupied Bandwid											
Mod.	Data Rate	Ntx	CH.	Freq. (MHz)	99% Occupied BW (MHz)	6dB BW (MHz)	6dB BW Limit (MHz)	Pass/Fail			
BLE	1Mbps	1	0	2402	1.051	0.673	0.50	Pass			
BLE	1Mbps	1	19	2440	1.051	0.673	0.50	Pass			
BLE	1Mbps	1	39	2480	1.051	0.673	0.50	Pass			

<u>TEST RESULTS DATA</u> <u>Average Power Table</u>									
Mod.	Data Rate	NTX	CH.	Freq. (MHz)	Duty Factor (dB)	Average Conducted Power (dBm)			
BLE	1Mbps	1	0	2402	2.04	2.00			
BLE	1Mbps	1	19	2440	2.04	2.30			
BLE	1Mbps	1	39	2480	2.04	1.10			


<u>TEST RESULTS DATA</u> Peak Power Density												
Mod.	Data Rate	NTX	CH.	Freq. (MHz)	Peak PSD (dBm /100kHz)	Peak PSD (dBm /3kHz)	DG (dBi)	Peak PSD Limit (dBm /3kHz)	Pass/Fail			
BLE	1Mbps	1	0	2402	1.83	-12.98	1.50	8.00	Pass			
BLE	1Mbps	1	19	2440	2.15	-12.53	1.50	8.00	Pass			
BLE	1Mbps	1	39	2480	0.95	-13.77	1.50	8.00	Pass			

Appendix B. AC Conducted Emission Test Results

lost Engineer -	Boor Via	na				Tem	peratu	re :	22~25 ℃
Test Engineer :	Bear XIO	Bear Xiong					ative Hu	50~55%	
Fest Voltage :	120Vac	120Vac / 60Hz				Pha	se :	Line	
Remark :	All emiss	sions no	t reporte	ed here a	are more	e than 10) dB be	low the p	prescribed limit
								Data: 204	0.05.04
100	Level (dBuV)							Date: 201	9-00-04
90									
80									
70									
7								JU FOC 4	5C 00
60							42	A PARTY A	5C_QP
50	my	N	Smilling .	400 A + +			, Mi	¹⁴ FCC 15	C_AVG
	1 Martin	V MMF	2mg mary	and the state	Allen Loast Pres	Were winds	AU		N.
40	W 1				+			15	Manage we
30			3 5					13	
20					1 1				
20					+ + + + + + + + + + + + + + + + + + + +				
10 (Site			1 SN 20180'	Frequ	2 ency (MHz) NE	5	10) 2	20 30
10 (Site	.15 .2 : CO01-5 Lon: FCC 15	SZ SC QP LI:	-	Frequ	ency (MHz) Ne	-	10) 2	20 30
1(Site Condit:	.15 .2 : COO1-5 Lon: FCC 15 : 353022	5Z 5C QP LI: 210010200	SN_20180 67/35302 Over	Frequ 719_L LI 21001020 Limit	ency (MHz) NE 75 Read	LISN	Cable		20 30
1(Site Condit:	.15 .2 : COO1-5 Lon: FCC 15 : 353022	5Z 5C QP LI: 210010200	SN_20180 67/353022	Frequ 719_L LI 21001020 Limit	ency (MHz) NE 75 Read		Cable) 2 Remark	20 30
1(Site Condit:	.15 .2 : COO1-5 Lon: FCC 15 : 353022	5Z 5C QP LI: 210010200	SN_20180 67/35302 Over	Frequ 719_L LI 21001020 Limit	ency (MHz) NE 75 Read	LISN	Cable		20 30
1(Site Condit:	.15 .2 : CO01-S : CO01-S : 353022 Freq MHz	SZ SC QP LI: 210010200 Level dBuV	SN_20180 67/35302: Over Limit	Frequ 719_L LI 21001020 Limit Line dBuV	NE 75 Read Level dBuV	LISN Factor dB	Cable Loss 		
1(Site Condit: IMEI	.15 .2 : CO01-5 Lon: FCC 15 : 353022 Freq MHz 0.57	2 210010200 Level dBuV 32.60	5N_20180 67/353022 Over Limit dB	Frequ 719_L LI 210010200 Limit Line dBuV 46.00	NE Read Level dBuV 22.40	LISN Factor dB 0.02	Cable Loss 	Remark 	
1(Site Condit: IMEI -	.15 .2 : CO01-5 Lon: FCC 15 : 353022 Freq MHz 0.57 0.57	52 52 QP LI: 210010200 Level dBuV 32.60 47.50	5N_20180 67/35302: Over Limit dB -13.40	Frequ 719_L LI 210010200 Limit Line dBuV 46.00 56.00	ency (MHz) NE Read Level dBuV 22.40 37.30	LISN Factor dB 0.02 0.02	Cable Loss dB 10.18 10.18	Remark 	
10 Site Condit: IMEI 1 2 3 4	.15 .2 : CO01-5 Lon: FCC 15 : 353022 Freq MHz 0.57 0.57 0.67	52 52 QP LI: 210010200 Level dBuV 32.60 47.50 30.47	5N_20180 67/35302: Over Limit dB -13.40 -8.50	Frequ 719_L LI 21001020 Limit Line dBuV 46.00 56.00 46.00	ency (MHz) NE 75 Read Level dBuV 22.40 37.30 20.27	LISN Factor dB 0.02 0.02 0.02	Cable Loss dB 10.18 10.18 10.18 10.18 10.18	Remark Average QP Average QP	
10 Site Condit: IMEI 1 2 3 4 5	.15 .2 : CO01-5 Lon: FCC 15 : 353022 Freq MHz 0.57 0.57 0.67 0.67 0.87	22 210010200 Level dBuV 32.60 47.50 30.47 46.30 27.33	SN_20180 67/353022 Over Limit dB -13.40 -8.50 -15.53 -9.70 -18.67	Frequ 719_L LI 21001020 Limit Line dBuV 46.00 56.00 46.00 56.00 46.00	ency (MHz) NE 75 Read Level dBuV 22.40 37.30 20.27 36.10 17.10	LISN Factor dB 0.02 0.02 0.02 0.02 0.02 0.02 0.05	Cable Loss dB 10.18 10.18 10.18 10.18 10.18 10.18	Remark Average QP Average QP Average	
10 Site Condit: IMEI 1 2 3 4 5 6	.15 .2 : CO01-5 : CO01-5 : 353022 Freq MHz 0.57 0.57 0.67 0.67 0.87 0.87	22 210010200 Level dBuV 32.60 47.50 30.47 46.30 27.33 42.83	SN_20180 67/353022 Over Limit dB -13.40 -8.50 -15.53 -9.70 -18.67 -13.17	Frequ 719_L LI 21001020 Limit Line dBuV 46.00 56.00 46.00 56.00 46.00 56.00	ency (MHz) NE 75 Read Level dBuV 22.40 37.30 20.27 36.10 17.10 32.60	LISN Factor dB 0.02 0.02 0.02 0.02 0.02 0.02 0.05 0.05	Cable Loss dB 10.18 10.18 10.18 10.18 10.18 10.18 10.18	Remark Average QP Average QP Average QP	
10 Site Condit: IMEI 1 2 3 4 5 6 7	.15 .2 : CO01-5 : CO01-5 : 353022 Freq MHz 0.57 0.57 0.67 0.67 0.87 0.87 1.77	22 210010200 Level dBuV 32.60 47.50 30.47 46.30 27.33 42.83 27.79	5N_20180 67/353022 Over Limit dB -13.40 -8.50 -15.53 -9.70 -18.67 -13.17 -18.21	Frequ 719_L LI 21001020 Limit Line dBuV 46.00 56.00 46.00 56.00 46.00 56.00 46.00	ency (MHz) NE 75 Read Level 08uV 22.40 37.30 20.27 36.10 17.10 32.60 17.50	LISN Factor dB 0.02 0.02 0.02 0.02 0.02 0.05 0.05 0.10	Cable Loss dB 10.18 10.18 10.18 10.18 10.18 10.18 10.18 10.19	Remark Average QP Average QP Average QP Average	
10 Site Condit: IMEI 1 2 3 4 5 6 7 8	.15 .2 : CO01-5 : CO01-5 : 353022 Freq MHz 0.57 0.57 0.67 0.67 0.87 0.87 0.87 1.77 1.77	22 210010200 Level dBuV 32.60 47.50 30.47 46.30 27.33 42.83 27.79 43.13	5N_201807 67/353022 Over Limit dB -13.40 -8.50 -15.53 -9.70 -18.67 -13.17 -18.21 -12.87	Frequ 719_L LI 210010200 Limit Line dBuV 46.00 56.00 46.00 56.00 46.00 56.00 46.00 56.00	ency (MHz) NE Read Level dBuV 22.40 37.30 20.27 36.10 17.10 32.60 17.50 32.84	LISN Factor dB 0.02 0.02 0.02 0.02 0.02 0.02 0.05 0.05	Cable Loss dB 10.18 10.18 10.18 10.18 10.18 10.18 10.18 10.19 10.19	Remark Average QP Average QP Average QP Average QP	2 2 2 2
10 Site Condit: IMEI 1 2 3 4 5 6 7 8 9	.15 .2 : CO01-S : CO01-S : 353022 Freq MHz 0.57 0.57 0.67 0.67 0.87 0.87 1.77 1.77 3.17	22 210010200 Level dBuV 32.60 47.50 30.47 46.30 27.33 42.83 27.79 43.13 28.86	5N_20180' 67/35302: Over Limit dB -13.40 -8.50 -15.53 -9.70 -18.67 -13.17 -18.21 -12.87 -17.14	Frequ 719_L LI 21001020 Limit Line dBuV 46.00 56.00 46.00 56.00 46.00 56.00 46.00 56.00 46.00 56.00 46.00	NE Read Level 22.40 37.30 20.27 36.10 17.10 32.60 17.50 32.84 18.50	LISN Factor dB 0.02 0.02 0.02 0.02 0.02 0.02 0.05 0.05	Cable Loss dB 10.18 10.18 10.18 10.18 10.18 10.18 10.19 10.19 10.20	Remark Average QP Average QP Average QP Average QP Average	2 2 2 2
10 Site Condit: IMEI 1 2 3 4 5 6 7 8 9 10	.15 .2 : CO01-S : CO01-S : 353022 Freq MHz 0.57 0.67 0.67 0.67 0.87 1.77 1.77 3.17 3.17	210010200 Level dBuV 32.60 47.50 30.47 46.30 27.33 42.83 27.79 43.13 28.86 43.86	SN_20180' 67/35302: Over Limit dB -13.40 -8.50 -15.53 -9.70 -18.67 -13.17 -18.21 -12.87 -17.14 -12.14	Frequ 719_L LI 21001020 Limit Line dBuV 46.00 56.00 46.00 56.00 46.00 56.00 46.00 56.00 46.00 56.00 46.00 56.00	NE Read Level dBuV 22.40 37.30 20.27 36.10 17.10 32.60 17.50 32.84 18.50 33.50	LISN Factor dB 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.0	Cable Loss dB 10.18 10.18 10.18 10.18 10.18 10.18 10.19 10.19 10.20 10.20	Remark Average QP Average QP Average QP Average QP Average QP	2 2 2 2 2
10 Site Condit: IMEI 1 2 3 4 5 6 7 8 9 10 11	.15 .2 : CO01-S : CO01-S : 353022 Freq MHz 0.57 0.57 0.67 0.67 0.87 0.87 1.77 1.77 3.17 3.17 9.20	210010200 Level dBuV 32.60 47.50 30.47 46.30 27.33 42.83 27.79 43.13 28.86 43.86 39.28	SN_20180' 67/35302: Over Limit dB -13.40 -8.50 -15.53 -9.70 -18.67 -13.17 -18.21 -12.87 -17.14 -12.14 -10.72	Frequ 719_L LI 210010200 Limit Line dBuV 46.00 56.00 46.00 56.00 46.00 56.00 46.00 56.00 46.00 56.00 56.00 56.00	NE Read Level dBuV 22.40 37.30 20.27 36.10 17.10 32.60 17.50 32.84 18.50 33.50 28.70	LISN Factor dB 0.02 0.02 0.02 0.02 0.02 0.02 0.05 0.05	Cable Loss dB 10.18 10.18 10.18 10.18 10.18 10.18 10.19 10.19 10.20 10.20 10.25	Remark Average QP Average QP Average QP Average QP Average QP Average	2 2 2 2 2
10 Site Condit: IMEI 1 2 3 4 5 6 7 8 9 10	.15 .2 : CO01-S : CO01-S : 353022 Freq MHz 0.57 0.67 0.67 0.67 0.87 0.87 1.77 1.77 3.17 3.17 3.17 9.20 9.20	210010200 Level dBuV 32.60 47.50 30.47 46.30 27.33 42.83 27.79 43.13 28.86 43.86 39.28 54.28	SN_20180' 67/35302: Over Limit dB -13.40 -8.50 -15.53 -9.70 -18.67 -13.17 -18.21 -12.87 -17.14 -12.14 -10.72 -5.72	Frequ 719_L LI 210010200 Limit Line dBuV 46.00 56.00 56.00	ency (MHz) NE 75 Read Level 22.40 37.30 20.27 36.10 17.10 32.60 17.50 32.84 18.50 33.50 28.70 43.70	LISN Factor dB 0.02 0.02 0.02 0.02 0.02 0.02 0.05 0.05	Cable Loss dB 10.18 10.18 10.18 10.18 10.18 10.18 10.19 10.20 10.20 10.25 10.25	Remark Average QP Average QP Average QP Average QP Average QP Average QP	
10 Site Condit: IMEI 1 2 3 4 5 6 7 8 9 10 11 12 *	.15 .2 : COO1-S : COO1-S : 353022 Freq MHz 0.57 0.67 0.67 0.67 0.87 0.87 1.77 1.77 3.17 3.17 3.17 9.20 9.20 11.62	210010200 Level dBuV 32.60 47.50 30.47 46.30 27.33 42.83 27.79 43.13 28.86 43.86 39.28 54.28 29.88	SN_20180' 67/35302: Over Limit dB -13.40 -8.50 -15.53 -9.70 -18.67 -13.17 -18.21 -12.87 -17.14 -12.14 -10.72 -5.72	Frequ 719_L LI 210010200 Limit Line dBuV 46.00 56.00 46.00 56.00 46.00 56.00 46.00 56.00 46.00 56.00 46.00 56.00 46.00 56.00 46.00 56.00 50.00	NE Read Level dBuV 22.40 37.30 20.27 36.10 17.10 32.60 17.50 32.84 18.50 33.50 28.70 43.70 19.21	LISN Factor dB 0.02 0.02 0.02 0.02 0.02 0.02 0.05 0.05	Cable Loss dB 10.18 10.18 10.18 10.18 10.18 10.18 10.19 10.20 10.20 10.25 10.25 10.26	Remark Average QP Average QP Average QP Average QP Average QP Average QP	
10 Site Condit: IMEI 1 2 3 4 5 6 7 8 9 10 11 12 * 13	.15 .2 : CO01-5 : CO01-5 : 353022 Freq MHz 0.57 0.57 0.67 0.67 0.67 0.87 0.87 1.77 1.77 1.77 3.17 3.17 3.17 9.20 9.20 11.62 14.52	22 210010200 Level dBuV 32.60 47.50 30.47 46.30 27.33 42.83 27.79 43.13 28.86 39.28 54.28 29.88 54.28 29.88 52.98 34.39	5N_20180 67/353022 Over Limit dB -13.40 -8.50 -15.53 -9.70 -18.67 -13.17 -18.21 -12.87 -17.14 -12.14 -12.14 -10.72 -5.72 -20.12 -7.02	Frequ 719_L LI 21001020 Limit Line dBuV 46.00 56.00 46.00 56.00 46.00 56.00 46.00 56.00 46.00 56.00 46.00 56.00 50.00 60.00 50.00 60.00	ency (MHz) NE 75 Read Level dBuV 22.40 37.30 20.27 36.10 17.10 32.60 17.50 32.84 18.50 28.70 43.70 19.21 42.31 23.62	LISN Factor dB 0.02 0.02 0.02 0.02 0.02 0.05 0.05 0.10 0.10 0.16 0.33 0.33 0.41 0.41 0.50	Cable Loss dB 10.18 10.18 10.18 10.18 10.18 10.18 10.19 10.20 10.20 10.20 10.25 10.25 10.26 10.26 10.27	Remark Average QP Average QP Average QP Average QP Average QP Average QP Average	

Note:

- 1. Level($dB\mu V$) = Read Level($dB\mu V$) + LISN Factor(dB) + Cable Loss(dB)
- 2. Over Limit(dB) = Level(dBµV) Limit Line(dBµV)

Appendix C. Radiated Spurious Emission

2.4GHz 2400~2483.5MHz

BLE	Note	Frequency	Level	Over	Limit	Read	Antenna	Cable	Preamp	Ant	Table	Peak	Pol.
				Limit	Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
		(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)	(deg)	(P/A)	(H/V)
		2386.83	52.24	-21.76	74	48.1	31.2	5.48	32.54	300	229	Р	Н
		2378.38	42.1	-11.9	54	38.02	31.19	5.43	32.54	300	229	Α	Н
DIE	*	2402	74.51			70.36	31.2	5.48	32.53	300	229	Ρ	Н
BLE CH 00	*	2402	73.78			69.63	31.2	5.48	32.53	300	229	А	Н
2402MHz		2352.12	52.08	-21.92	74	48.03	31.18	5.43	32.56	119	289	Ρ	V
240211112		2347.83	42.11	-11.89	54	38.07	31.17	5.43	32.56	119	289	А	V
	*	2402	76.26			72.11	31.2	5.48	32.53	119	289	Ρ	V
	*	2402	75.49			71.34	31.2	5.48	32.53	119	289	А	V
		2483.68	52.71	-21.29	74	47.7	31.77	5.55	32.31	300	323	Ρ	Н
		2493.76	43.05	-10.95	54	37.87	31.89	5.55	32.26	300	323	А	Н
		2480	74.53			69.52	31.77	5.55	32.31	300	323	Ρ	Н
BLE CH 39		2480	73.51			68.5	31.77	5.55	32.31	300	323	А	Н
2480MHz		2499.46	52.62	-21.38	74	47.44	31.89	5.55	32.26	117	288	Ρ	V
240010112		2488.06	43.17	-10.83	54	38.04	31.89	5.55	32.31	117	288	А	V
		2480	75.44			70.43	31.77	5.55	32.31	117	288	Ρ	V
		2480	74.31			69.3	31.77	5.55	32.31	117	288	А	V
Remark		o other spurio I results are F		st Peak	and Averag	je limit lin	е.						

BLE (Band Edge @ 3m)

				В	LE (Harm	onic @	3m)						
BLE	Note	Frequency	Level	Over	Limit	Read	Antenna	Cable	Preamp	Ant	Table	Peak	Pol.
				Limit	Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
		(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)	(deg)	(P/A)	(H/V)
BLE		4806	39.54	-34.46	74	59.87	33.7	8.1	62.13	100	360	Р	н
CH 00													
2402MHz		4806	39.18	-34.82	74	59.51	33.7	8.1	62.13	100	360	Ρ	V
51.5		4878	41.07	-32.93	74	60.17	34.92	8.09	62.11	100	360	Р	Н
BLE CH 19		7320	41.65	-32.35	74	59.37	35.3	9.75	62.77	100	360	Р	н
2440MHz		4878	41.22	-32.78	74	60.32	34.92	8.09	62.11	100	360	Ρ	V
244011112		7320	41.2	-32.8	74	58.92	35.3	9.75	62.77	100	360	Ρ	V
BLE		4962	38.62	-35.38	74	58.8	33.85	8.05	62.08	100	360	Ρ	н
CH 39		7440	40.86	-33.14	74	57.69	36.11	9.84	62.78	100	360	Ρ	н
2480MHz		4962	38.75	-35.25	74	58.93	33.85	8.05	62.08	100	360	Ρ	V
		7440	40.54	-33.46	74	57.37	36.11	9.84	62.78	100	360	Ρ	V
Remark		o other spurio I results are P		st Peak	and Averag	e limit lin	e.						

2.4GHz 2400~2483.5MHz

Emission below 1GHz

2.4GHz BLE (LF)

BLE	Note	Frequency	Level	Over	Limit	Read	Antenna	Cable	Preamp	Ant	Table	Peak	Pol.
				Limit	Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
		(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)	(deg)	(P/A)	(H/V)
		31.94	21.45	-18.55	40	32.06	21.8	0.65	33.06			Р	н
		49.4	24.36	-15.64	40	41.48	15.17	0.81	33.1			Р	Н
		122.15	27.12	-16.38	43.5	41.24	17.72	1.22	33.06			Р	Н
		185.2	31.66	-11.84	43.5	48.13	14.95	1.51	32.93	100	69	Р	Н
2.4GHz		217.21	31.68	-14.32	46	47.55	15.37	1.63	32.87			Р	Н
BLE		256.98	24.32	-21.68	46	35.59	19.75	1.77	32.79			Р	Н
LF		45.52	20.35	-19.65	40	36.04	16.63	0.78	33.1			Р	V
		74.62	19.88	-20.12	40	38.82	13.1	0.96	33			Р	V
		116.33	26.02	-17.48	43.5	40.38	17.52	1.19	33.07			Р	V
		201.69	31.68	-11.82	43.5	47.86	15.14	1.58	32.9	100	36	Р	V
		256.01	30.55	-15.45	46	41.98	19.6	1.76	32.79			Р	V
		262.8	30.73	-15.27	46	41.81	19.9	1.79	32.77			Р	V
	1. No	o other spurio	us found.										
Remark	2. AI	l results are F	ASS agains	st limit li	ne.								

Note symbol

*	Fundamental Frequency which can be ignored. However, the level of any						
	unwanted emissions shall not exceed the level of the fundamental frequency.						
!	Test result is over limit line.						
P/A	Peak or Average						
H/V	Horizontal or Vertical						

A calculation example for radiated spurious emission is shown as below:

WIFI	Note	Frequency	Level	Over	Limit	Read	Antenna	Cable	Preamp	Ant	Table	Peak	Pol.
Ant.				Limit	Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
1+2		(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)	(deg)	(P/A)	(H/V)
802.11b		2390	55.45	-18.55	74	54.51	32.22	4.58	35.86	103	308	Р	н
CH 01													
2412MHz		2390	43.54	-10.46	54	42.6	32.22	4.58	35.86	103	308	А	Н

1. Level(dBµV/m) =

Antenna Factor(dB/m) + Cable Loss(dB) + Read Level(dBµV) - Preamp Factor(dB)

2. Over Limit(dB) = Level(dBµV/m) – Limit Line(dBµV/m)

For Peak Limit @ 2390MHz:

1. Level(dBµV/m)

= Antenna Factor(dB/m) + Cable Loss(dB) + Read Level(dBµV) - Preamp Factor(dB)

- = 32.22(dB/m) + 4.58(dB) + 54.51(dBµV) 35.86 (dB)
- = 55.45 (dBµV/m)
- 2. Over Limit(dB)
- = Level(dBµV/m) Limit Line(dBµV/m)
- $= 55.45(dB\mu V/m) 74(dB\mu V/m)$
- = -18.55(dB)

For Average Limit @ 2390MHz:

- 1. Level(dBµV/m)
- = Antenna Factor(dB/m) + Cable Loss(dB) + Read Level(dBµV) Preamp Factor(dB)
- = 32.22(dB/m) + 4.58(dB) + 42.6(dBµV) 35.86 (dB)
- = 43.54 (dBµV/m)
- 2. Over Limit(dB)
- = Level(dBµV/m) Limit Line(dBµV/m)
- $= 43.54(dB\mu V/m) 54(dB\mu V/m)$
- = -10.46(dB)

Both peak and average measured complies with the limit line, so test result is "PASS".

Appendix D. Duty Cycle Plots

Band	Duty Cycle(%)	T(ms)	1/T(kHz)	VBW Setting
Bluetooth LE	62.50	0.391	2.556	2.7KHz

Bluetooth LE

Ref Le	evel	30.00 dBn	n Offset 15.00 de	3 👄 RBW 10 MHz			
Att		30 de	8 🐵 SWT 1.5 ms	S VBW 10 MHz			
SGL 1Pk Ma							
JIPK MA	=×		1		D3[1]		0.23 dE
20101 2011					03[1]		626.09 µs
20 dBm·					M1[1]		1.64 dBm
10 dBm·							165.22 µs
to ubiii	M:	1	D	2 0	3		
0 dBm—	- 1				ř		
10 dBm							
-20 dBm							
Hab de	phum 1			Ung good when any we		hpts/	an when the state of the state
40 dBm	-		· · · · · · · · · · · · · · · · · · ·				
-50 dBm							
-30 ubii	·						
-60 dBm	-						
CF 2.44	1 GHz	:	I	691 pts	5		150.0 µs/
1arker							
Туре	Ref	Trc	X-value	Y-value	Function	Functio	n Result
M1		1	165.22 µs	1.64 dBm			
D2 D3	M1 M1	1	391.3 µs 626.09 µs	0.40 dB 0.23 dB			