

TEST Report

Applicant:	Shanghai WeihonghangCulture Communication Co., Ltd.
Address of Applicant:	1st Floor, Building 1, 947 Jinle Road,Baoshan District, Shanghai
Manufacturer :	Shanghai WeihonghangCulture Communication Co., Ltd.
Address of Manufacturer :	1st Floor, Building 1, 947 Jinle Road,Baoshan District, Shanghai
Equipment Under Test (El Product Name:	True Wireless Glasses
Model No.:	MG-C08
Series model:	N/A
Trade Mark:	MGALL
FCC ID:	2BK8J-MG-C08
Applicable standards: Date of sample receipt:	FCC CFR Title 47 Part 15 Subpart C Section 15.247 Nov. 12, 2024
Date of Test:	Nov. 12, 2024 ~ Nov. 18, 2024
Date of report issued:	Nov. 18, 2024
Test Result :	PASS *

* In the configuration tested, the EUT complied with the standards specified above.

1. Version

Version No.	Date	Description
00	Nov. 18, 2024	Original

Tested/ Prepared By

Heber He Date:

Nov. 18, 2024

Project Engineer

Bruce Zhu Date:

Nov. 18, 2024

Reviewer

Nov. 18, 2024

Approved By :

Check By:

2. Contents

1.	VERSION	2
2.	CONTENTS	3
3.	TEST SUMMARY	4
-	GENERAL INFORMATION	
	 4.1. GENERAL DESCRIPTION OF EUT 4.2. TEST MODE 4.3. DESCRIPTION OF SUPPORT UNITS 4.4. DEVIATION FROM STANDARDS 4.5. ABNORMALITIES FROM STANDARD CONDITIONS 4.6. TEST FACILITY 4.7. TEST LOCATION 4.8. ADDITIONAL INSTRUCTIONS 	7 7 7 7 7
5.	TEST INSTRUMENTS LIST	8
6.	TEST RESULTS AND MEASUREMENT DATA	9
	 6.1. CONDUCTED EMISSIONS	.12 .13 .17 .21 .26 .26 .30 .32 .32 .37
7.	TEST SETUP PHOTO	.45
8.	EUT CONSTRUCTIONAL DETAILS	.45

3. Test Summary

Test Item	Section in CFR 47	Result
Antenna Requirement	15.203/15.247 (c)	Pass
AC Power Line Conducted Emission	15.207	Pass
Conducted Peak Output Power	15.247 (b)(1)	Pass
20dB Occupied Bandwidth	15.247 (a)(1)	Pass
Carrier Frequencies Separation	15.247 (a)(1)	Pass
Hopping Channel Number	15.247 (a)(1)(iii)	Pass
Dwell Time	15.247 (a)(1)(iii)	Pass
Radiated Emission	15.205/15.209	Pass
Band Edge	15.247(d)	Pass

Remarks:

- 1. Pass: The EUT complies with the essential requirements in the standard.
- 2. Test according to ANSI C63.10:2013

Measurement Uncertainty

Test Item	Frequency Range	Measurement Uncertainty	Notes
Radiated Emission	30~1000MHz	4.37 dB	(1)
Radiated Emission	1~18GHz	5.40 dB	(1)
Radiated Emission	18-40GHz	5.45 dB	(1)
Conducted Disturbance	0.15~30MHz	2.68 dB	(1)
Note (1): The measurement unc	ertainty is for coverage factor of k	=2 and a level of confidence of §	95%.

4. General Information

4.1. General Description of EUT

Product Name:	True Wireless Glasses
Model No.:	MG-C08
Series model:	N/A
Test sample(s) ID:	HTT202411322-1(Engineer sample)
	HTT202411322-2(Normal sample)
Operation Frequency:	2402MHz~2480MHz
Channel numbers:	79
Channel separation:	1MHz
Modulation type:	GFSK, π/4-DQPSK, 8-DPSK
Antenna Type:	Chip Antenna
Antenna gain:	2.58dBi
Power Supply:	DC 3.7V From Battery and DC 5V From External Circuit
Adapter Information	Mode: GS-0500200
(Auxiliary test provided by the lab):	Input: AC100-240V, 50/60Hz, 0.3A max
	Output: DC 5V, 2A

Operation Frequency each of channel								
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency	
1	2402MHz	21	2422MHz	41	2442MHz	61	2462MHz	
2	2403MHz	22	2423MHz	42	2443MHz	62	2463MHz	
3	2404MHz	23	2424MHz	43	2444MHz	63	2464MHz	
4	2405MHz	24	2425MHz	44	2445MHz	64	2465MHz	
5	2406MHz	25	2426MHz	45	2446MHz	65	2466MHz	
6	2407MHz	26	2427MHz	46	2447MHz	66	2467MHz	
7	2408MHz	27	2428MHz	47	2448MHz	67	2468MHz	
8	2409MHz	28	2429MHz	48	2449MHz	68	2469MHz	
9	2410MHz	29	2430MHz	49	2450MHz	69	2470MHz	
10	2411MHz	30	2431MHz	50	2451MHz	70	2471MHz	
11	2412MHz	31	2432MHz	51	2452MHz	71	2472MHz	
12	2413MHz	32	2433MHz	52	2453MHz	72	2473MHz	
13	2414MHz	33	2434MHz	53	2454MHz	73	2474MHz	
14	2415MHz	34	2435MHz	54	2455MHz	74	2475MHz	
15	2416MHz	35	2436MHz	55	2456MHz	75	2476MHz	
16	2417MHz	36	2437MHz	56	2457MHz	76	2477MHz	
17	2418MHz	37	2438MHz	57	2458MHz	77	2478MHz	
18	2419MHz	38	2439MHz	58	2459MHz	78	2479MHz	
19	2420MHz	39	2440MHz	59	2460MHz	79	2480MHz	
20	2421MHz	40	2441MHz	60	2461MHz			

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

Channel	Frequency
The lowest channel	2402MHz
The middle channel	2441MHz
The Highest channel	2480MHz

4.2. Test mode

Transmitting mode Keep the EUT in continuously transmitting mode.

Remark: During the test, the test voltage was tuned from 85% to 115% of the nominal rated supply voltage, and found that the worst case was under the nominal rated supply condition. So the report just shows that condition's data.

4.3. Description of Support Units

None.

4.4. Deviation from Standards

None.

4.5. Abnormalities from Standard Conditions

None.

4.6. Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

FCC-Registration No.: 779513 Designation Number: CN1319

Shenzhen HTT Technology Co.,Ltd. has been accredited on the US Federal Communications Commission list of test facilities recognized to perform electromagnetic emissions measurements.

A2LA-Lab Cert. No.: 6435.01

Shenzhen HTT Technology Co.,Ltd. has been listed by American Association for Laboratory Accreditation to perform electromagnetic emission measurement.

The 3m-Semi anechoic test site fulfils CISPR 16-1-4 according to ANSI C63.10 and CISPR 16-1-4:2010.

4.7. Test Location

All tests were performed at:

Shenzhen HTT Technology Co.,Ltd.

1F, Building B, Huafeng International Robotics Industrial Park, Hangcheng Road, Nanchang Community, Xixiang Street, Bao'an District, Shenzhen, Guangdong, China Tel: 0755-23595200

Fax: 0755-23595201

4.8. Additional Instructions

Test Software	Special AT test command provided by manufacturer to Keep the EUT in continuously transmitting mode and hopping mode
Power level setup	Default

5. Test Instruments list

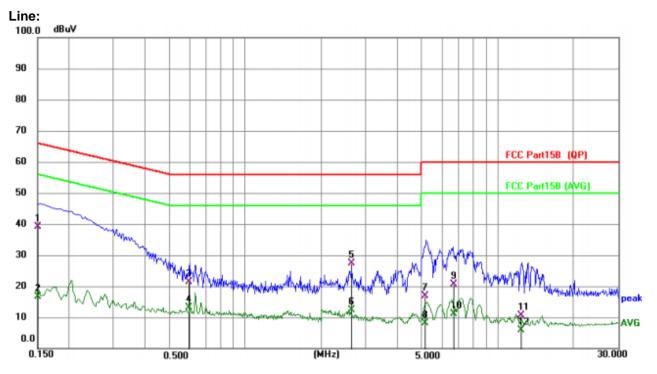
						1
ltem	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)
1	3m Semi- Anechoic Chamber	Shenzhen C.R.T technology co., LTD	9*6*6	HTT-E028	Aug. 10 2024	Aug. 09 2027
2	Control Room Shenzhen C.R.T technology co., LTD		4.8*3.5*3.0	HTT-E030	Aug. 10 2024	Aug. 09 2027
3	EMI Test Receiver	Rohde&Schwar	ESCI7	HTT-E022	Apr. 26 2024	Apr. 25 2025
4	Spectrum Analyzer	Rohde&Schwar	FSP	HTT-E037	Apr. 26 2024	Apr. 25 2025
5	Coaxial Cable	ZDecl	ZT26-NJ-NJ-0.6M	HTT-E018	Apr. 26 2024	Apr. 25 2025
6	Coaxial Cable	ZDecl	ZT26-NJ-SMAJ-2M	HTT-E019	Apr. 26 2024	Apr. 25 2025
7	Coaxial Cable	ZDecl	ZT26-NJ-SMAJ-0.6M	HTT-E020	Apr. 26 2024	Apr. 25 2025
8	Coaxial Cable	ZDecl	ZT26-NJ-SMAJ-8.5M	HTT-E021	Apr. 26 2024	Apr. 25 2025
9	Composite logarithmic antenna	Schwarzbeck	VULB 9168	HTT-E017	May. 21 2024	May. 20 2025
10	Horn Antenna	Schwarzbeck	BBHA9120D	HTT-E016	May. 20 2024	May. 19 2025
11	Loop Antenna	Zhinan	ZN30900C	HTT-E039	Apr. 26 2024	Apr. 25 2025
12	Horn Antenna	Beijing Hangwei Dayang	OBH100400	HTT-E040	Apr. 26 2024	Apr. 25 2025
13	low frequency Amplifier	Sonoma Instrument	310	HTT-E015	Apr. 26 2024	Apr. 25 2025
14	high-frequency Amplifier			HTT-E014	Apr. 26 2024	Apr. 25 2025
15	Variable frequency power supply	Shenzhen Anbiao Instrument Co., Ltd	ANB-10VA	HTT-082	Apr. 26 2024	Apr. 25 2025
16	EMI Test Receiver	Rohde & Schwarz	ESCS30	HTT-E004	Apr. 26 2024	Apr. 25 2025
17	Artificial Mains	Rohde & Schwarz	ESH3-Z5	HTT-E006	May. 23 2024	May. 22 2025
18	Artificial Mains	Rohde & Schwarz	ENV-216	HTT-E038	May. 23 2024	May. 22 2025
19	Cable Line	Robinson	Z302S-NJ-BNCJ-1.5M	HTT-E001	Apr. 26 2024	Apr. 25 2025
20	Attenuator	Robinson	6810.17A	HTT-E007	Apr. 26 2024	Apr. 25 2025
21	Variable frequency power supply	Shenzhen Yanghong Electric Co., Ltd	YF-650 (5KVA)	HTT-E032	Apr. 26 2024	Apr. 25 2025
22	Control Room	Shenzhen C.R.T technology co., LTD	8*4*3.5	HTT-E029	Aug. 10 2024	Aug. 09 2027
23	DC power supply	Agilent	E3632A	HTT-E023	Apr. 26 2024	Apr. 25 2025
24	EMI Test Receiver	Agilent	N9020A	HTT-E024	Apr. 26 2024	Apr. 25 2025
25	Analog signal generator	Agilent	N5181A	HTT-E025	Apr. 26 2024	Apr. 25 2025
26	Vector signal generator	Agilent	N5182A	HTT-E026	Apr. 26 2024	Apr. 25 2025
27	Power sensor	Keysight	U2021XA	HTT-E027	Apr. 26 2024	Apr. 25 2025
28	Temperature and Shenzhen Anbiao		TH10R	HTT-074	Apr. 28 2024	Apr. 27 2025
29	Radiated Emission Test Software	Farad	EZ-EMC	N/A	N/A	N/A
30	Conducted Emission Test Software	Farad	EZ-EMC	N/A	N/A	N/A
31	RF Test Software	panshanrf	TST	N/A	N/A	N/A

Tel: 0755-23595200 Fax: 0755-23595201

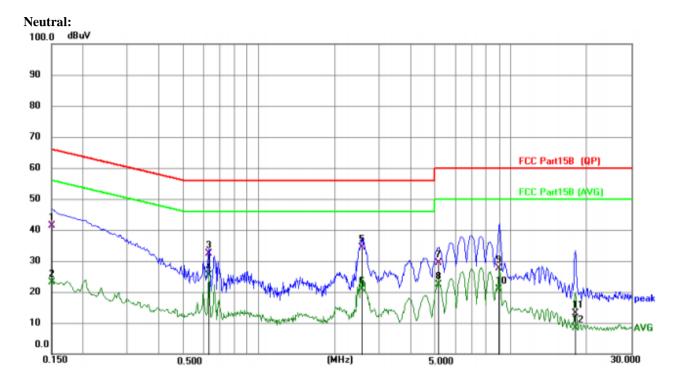
1F, Building B, Huafeng International Robotics Industrial Park, Hangcheng Road, Nanchang Community, Xixiang Street, Bao'an District, Shenzhen, Guangdong, China

6. Test results and Measurement Data

6.1. Conducted Emissions


Test Requirement:	FCC Part15 C Section 15.207						
Test Method:	ANSI C63.10:2013						
Test Frequency Range:	150KHz to 30MHz						
Class / Severity:	Class B	Class B					
Receiver setup:	RBW=9KHz, VBW=30KHz, Sv	weep time=auto					
Limit:		Lim	it (dBuV)				
	Frequency range (MHz)	Quasi-peak		erage			
	0.15-0.5	66 to 56*		o 46*			
	0.5-5	56		46			
	5-30	60	5	50			
Test setup:							
Test procedure:	 * Decreases with the logarithm of the frequency. Reference Plane LISN						
Test Instruments:	Refer to section 6.0 for details						
Test mode:	Refer to section 5.2 for details		1	1			
Test environment:	Temp.: 25 °C Hun	nid.: 52%	Press.:	1012mbar			
Test voltage:	AC 120V, 60Hz						

Remark: Based on all tested data, the EUT complied with the FCC Part 15.207 standard limit for a wireless device, and with the worst case as below:


Report No.: HTT202411322F01

Measurement data:

No. Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
	MHz		dB	dBuV	dBuV	dB	Detector
1 *	0.1503	28.90	10.16	39.06	65.98	-26.92	QP
2	0.1503	6.58	10.16	16.74	55.98	-39.24	AVG
3	0.5996	11.13	10.31	21.44	56.00	-34.56	QP
4	0.5996	2.74	10.31	13.05	46.00	-32.95	AVG
5	2.6256	16.89	10.47	27.36	56.00	-28.64	QP
6	2.6256	1.86	10.47	12.33	46.00	-33.67	AVG
7	5.1748	6.29	10.61	16.90	60.00	-43.10	QP
8	5.1748	-2.36	10.61	8.25	50.00	-41.75	AVG
9	6.6755	9.94	10.62	20.56	60.00	-39.44	QP
10	6.6755	0.63	10.62	11.25	50.00	-38.75	AVG
11	12.4538	-0.27	10.87	10.60	60.00	-49.40	QP
12	12.4538	-4.98	10.87	5.89	50.00	-44.11	AVG

	MHz					Over	
			dB	dBuV	dBuV	dB	Detector
	0.1510	31.17	10.16	41.33	65.94	-24.61	QP
	0.1510	13.06	10.16	23.22	55.94	-32.72	AVG
	0.6328	22.09	10.35	32.44	56.00	-23.56	QP
*	0.6328	15.15	10.35	25.50	46.00	-20.50	AVG
	2.5698	23.92	10.43	34.35	56.00	-21.65	QP
	2.5698	10.35	10.43	20.78	46.00	-25.22	AVG
	5.1657	18.78	10.58	29.36	60.00	-30.64	QP
	5.1657	11.72	10.58	22.30	50.00	-27.70	AVG
	8.9846	16.85	10.83	27.68	60.00	-32.32	QP
	8.9846	10.17	10.83	21.00	50.00	-29.00	AVG
	17.9990	2.00	11.24	13.24	60.00	-46.76	QP
	17.9990	-2.94	11.24	8.30	50.00	-41.70	AVG
	*	0.6328 * 0.6328 2.5698 2.5698 5.1657 5.1657 8.9846 8.9846 17.9990	0.6328 22.09 * 0.6328 15.15 2.5698 23.92 2.5698 10.35 5.1657 18.78 5.1657 11.72 8.9846 16.85 8.9846 10.17 17.9990 2.00	0.6328 22.09 10.35 * 0.6328 15.15 10.35 2.5698 23.92 10.43 2.5698 10.35 10.43 5.1657 18.78 10.58 5.1657 11.72 10.58 8.9846 16.85 10.83 8.9846 10.17 10.83 17.9990 2.00 11.24	0.6328 22.09 10.35 32.44 * 0.6328 15.15 10.35 25.50 2.5698 23.92 10.43 34.35 2.5698 10.35 10.43 20.78 5.1657 18.78 10.58 29.36 5.1657 11.72 10.58 22.30 8.9846 16.85 10.83 27.68 8.9846 10.17 10.83 21.00 17.9990 2.00 11.24 13.24	0.6328 22.09 10.35 32.44 56.00 * 0.6328 15.15 10.35 25.50 46.00 2.5698 23.92 10.43 34.35 56.00 2.5698 10.35 10.43 20.78 46.00 5.1657 18.78 10.58 29.36 60.00 5.1657 11.72 10.58 22.30 50.00 8.9846 16.85 10.83 27.68 60.00 8.9846 10.17 10.83 21.00 50.00 17.9990 2.00 11.24 13.24 60.00	0.6328 22.09 10.35 32.44 56.00 -23.56 * 0.6328 15.15 10.35 25.50 46.00 -20.50 2.5698 23.92 10.43 34.35 56.00 -21.65 2.5698 10.35 10.43 20.78 46.00 -25.22 5.1657 18.78 10.58 29.36 60.00 -30.64 5.1657 11.72 10.58 22.30 50.00 -27.70 8.9846 16.85 10.83 27.68 60.00 -32.32 8.9846 10.17 10.83 21.00 50.00 -29.00 17.9990 2.00 11.24 13.24 60.00 -46.76

Notes:

1. An initial pre-scan was performed on the line and neutral lines with peak detector.

2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.

3. Final Level =Receiver Read level + LISN Factor + Cable Los

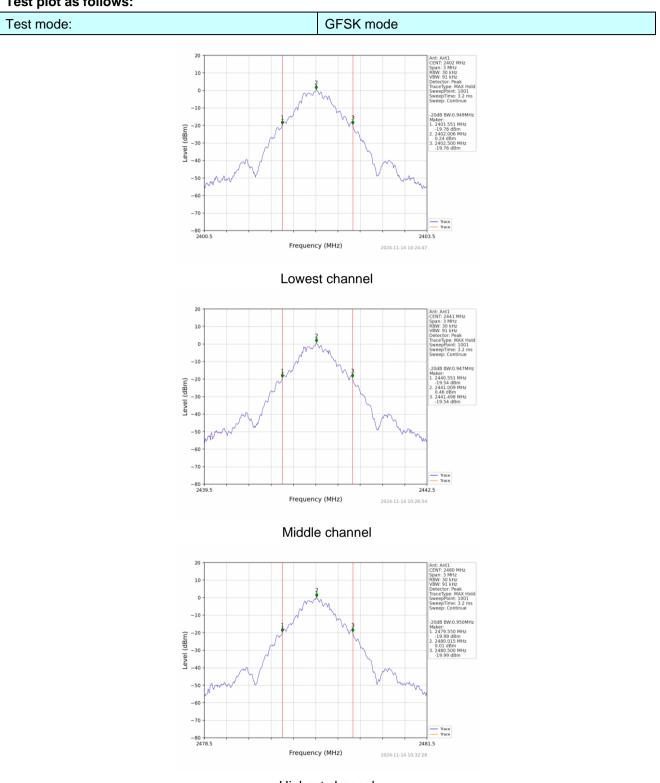
Test Requirement: FCC Part15 C Section 15.247 (b)(3) ANSI C63.10:2013 Test Method: Limit: 30dBm(for GFSK),20.97dBm(for EDR) Power sensor and Spectrum analyzer Test setup: E.U.T Non-Conducted Table Ground Reference Plane **Test Instruments:** Refer to section 6.0 for details Test mode: Refer to section 5.2 for details Pass Test results: 52% Press.: Test environment: Temp.: 25 °C Humid.: 1012mbar

6.2. Conducted Peak Output Power

Measurement Data

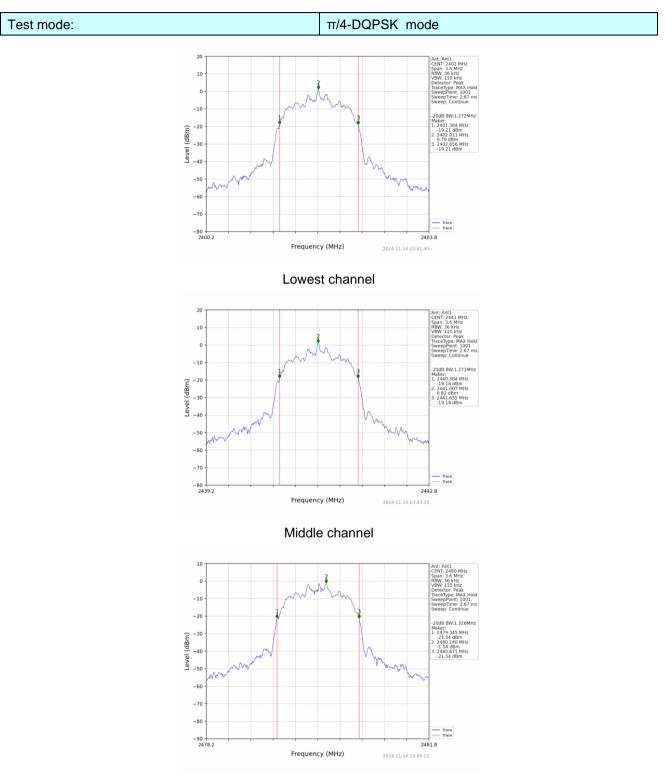
Mode	TX	Frequency	Packet		ted Output Power (dBm)	Verdict
Wode	Туре	(MHz)	Туре	ANT1	Limit	Verdiet
		2402	DH5	2.17	<=30	Pass
GFSK	SISO	2441	DH5	2.28	<=30	Pass
		2480	DH5	2.06	<=30	Pass
		2402	2DH5	2.86	<=20.97	Pass
Pi/4DQPSK	SISO	2441	2DH5	2.91	<=20.97	Pass
		2480	2DH5	2.72	<=20.97	Pass
		2402	3DH5	3.14	<=20.97	Pass
8DPSK	SISO	2441	3DH5	3.24	<=20.97	Pass
		2480	3DH5	3.10	<=20.97	Pass

6.3. 20dB Emission Bandwidth


Test Requirement:	FCC Part15 C Section 15.247 (a)(2)							
Test Method:	ANSI C63.1	ANSI C63.10:2013						
Limit:	N/A	N/A						
Test setup:	Sp	Non-						
Test Instruments:	Refer to see	ction 6.0 for c	details					
Test mode:	Refer to see	ction 5.2 for c	details					
Test results:	Pass							
Test environment:	Temp.:	25 °C	Humid.:	52%	Press.:	1012mbar		

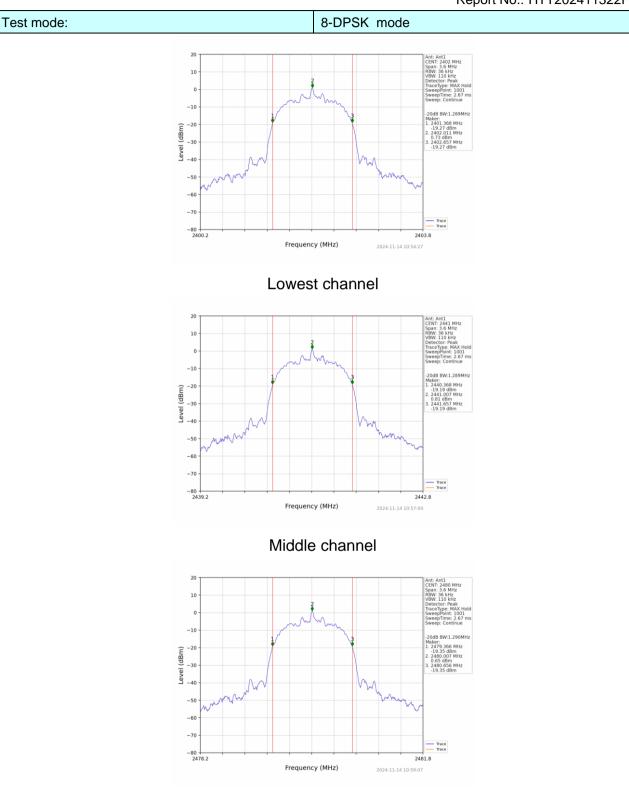
Measurement Data

Mode	ΤX	Frequency	Packet	ANT	20dB Bandy	width (MHz)	Verdict
Mode	Туре	(MHz)	Туре	ANT	Result	Limit	veruici
		2402	DH5	1	0.949	/	Pass
GFSK	SISO	2441	DH5	1	0.947	/	Pass
		2480	DH5	1	0.950	/	Pass
		2402	2DH5	1	1.272	/	Pass
Pi/4DQPSK	SISO	2441	2DH5	1	1.271	/	Pass
		2480	2DH5	1	1.326	/	Pass
		2402	3DH5	1	1.289	/	Pass
8DPSK SISO	SISO	2441	3DH5	1	1.289	/	Pass
		2480	3DH5	1	1.290	/	Pass



Test plot as follows:

Highest channel

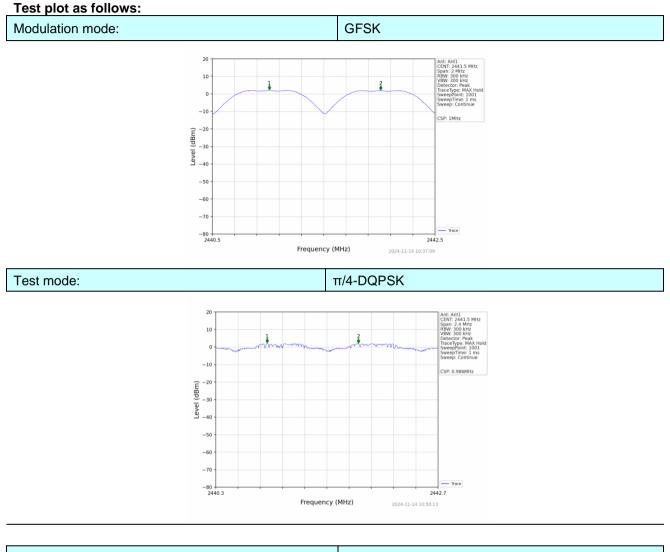


Highest channel

Report No.: HTT202411322F01

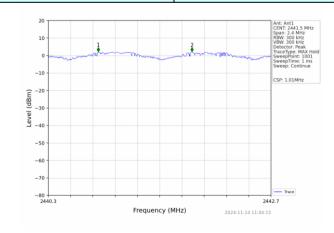
Highest channel

6.4. Frequencies Separation


· · ·									
Test Requirement:	FCC Part1	FCC Part15 C Section 15.247 (a)(1)							
Test Method:	ANSI C63.	10:2013							
Receiver setup:	RBW=100k	KHz, VBW=30	0KHz, detec	tor=Peak					
Limit:		B bandwidth ≺ ∶ 0.025MH	z or 2/3 of	the 20dB b	bandwidth	(whichever	is		
Test setup:	Sp								
Test Instruments:	Refer to se	ction 6.0 for c	letails						
Test mode:	Refer to se	ction 5.2 for c	letails						
Test results:	Pass								
Test environment:	Temp.:	25 °C	Humid.:	52%	Press.:	1012mb	ar		

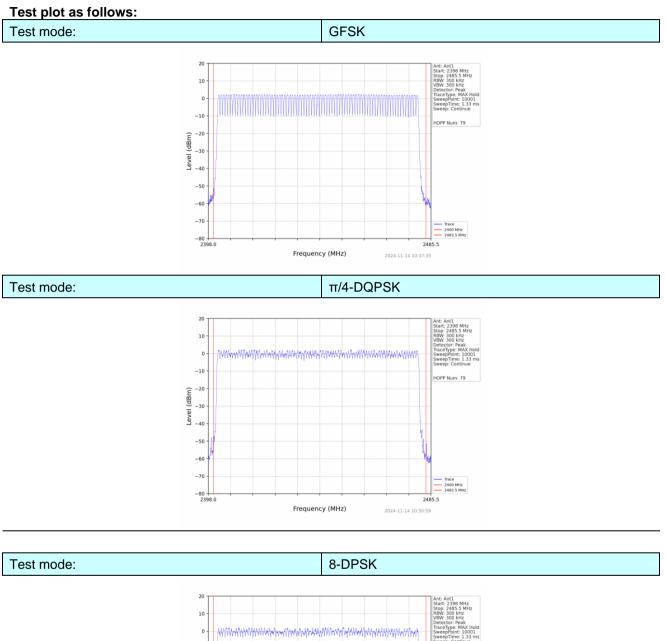
Measurement Data

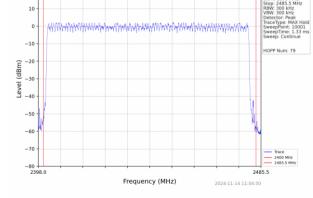
Mode	Test channel	Frequencies Separation (MHz)	Limit (kHz)	Result			
			25KHz or				
GFSK	Middle	1.000	2/3*20dB	Pass			
			bandwidth				
			25KHz or				
π/4-DQPSK	Middle	0.986	2/3*20dB	Pass			
			bandwidth				
			25KHz or				
8-DPSK	Middle	1.010	2/3*20dB	Pass			
			bandwidth				


Remark: We have tested all mode at high, middle and low channel, and recorded worst case at middle

Modulation mode:

8-DPSK


Test Requirement:	FCC Part15 C Section 15.247 (a)(1)(iii)						
Test Method:	ANSI C63.1	ANSI C63.10:2013					
Receiver setup:		RBW=100kHz, VBW=300kHz, Frequency range=2400MHz-2483.5MHz, Detector=Peak					
Limit:	15 channels	15 channels					
Test setup:	Spe			2.U.T			
Test Instruments:	Refer to see	ction 6.0 for c	letails				
Test mode:	Refer to see	ction 5.2 for c	letails				
Test results:	Pass						
Test environment:	Temp.:	25 °C	Humid.:	52%	Press.:	1012mbar	


6.5. Hopping Channel Number

Measurement Data:

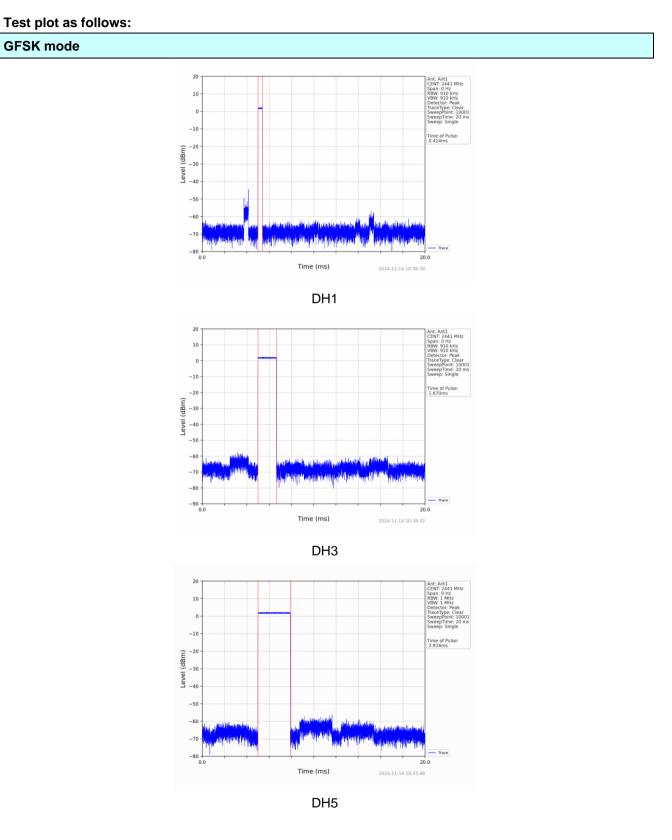
Mode	Hopping channel numbers	Limit	Result
GFSK	79		Pass
π/4-DQPSK	79	≥15	Pass
8-DPSK	79		Pass

6.6. Dwell Time

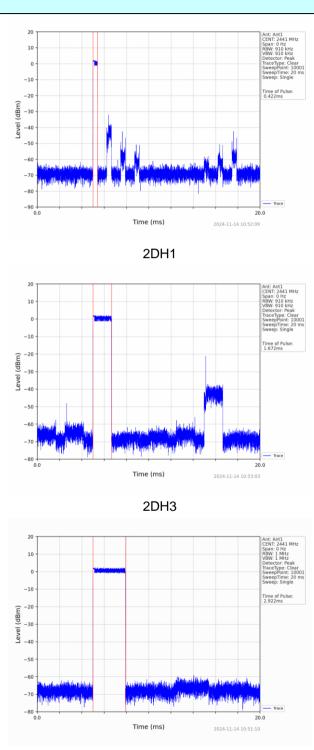
Test Requirement:	FCC Part15	FCC Part15 C Section 15.247 (a)(1)(iii)						
Test Method:	ANSI C63.1	ANSI C63.10:2013						
Receiver setup:	RBW=1MH	RBW=1MHz, VBW=1MHz, Span=0Hz, Detector=Peak						
Limit:	0.4 Second	0.4 Second						
Test setup:	Sp							
Test Instruments:	Refer to see	ction 6.0 for c	letails					
Test mode:	Refer to see	ction 5.2 for c	letails					
Test results:	Pass							
Test environment:	Temp.:	25 °C	Humid.:	52%	Press.:	1012mbar		

Measurement Data

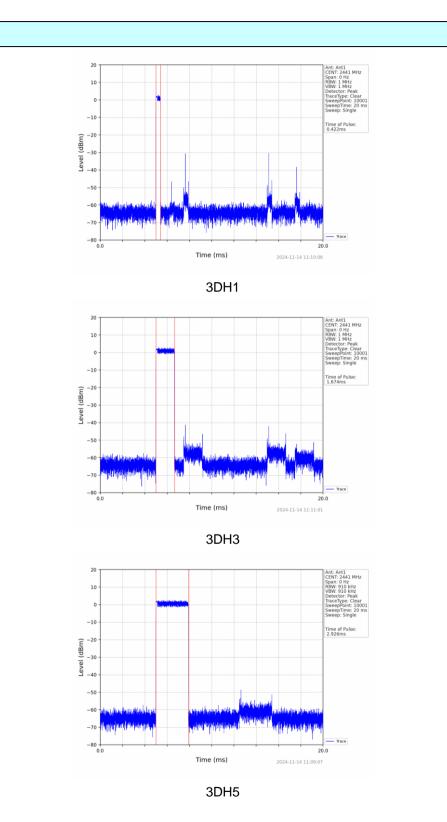
Modulation	Packet	Burst time (ms)	Dwell time (ms)	Limit (ms)	Result	
	DH1	0.414	132.480			
GFSK	DH3	1.670	260.520	400	Pass	
	DH5	2.916	314.928			
	2-DH1	0.422	135.040			
π/4DQPSK	2-DH3	1.672	274.208	400	Pass	
	2-DH5	2.922	330.186			
	3-DH1	0.422	135.040			
8DPSK	3DPSK 3-DH3		276.210	400	Pass	
	3-DH5	2.926	298.452			


Note:We have tested all mode at high, middle and low channel, and recoreded worst case at middle channel.

Dwell time=Pulse time (ms) × (1600 ÷ 2 ÷ 79) ×31.6 Second for DH1, 2-DH1, 3-DH1


Dwell time=Pulse time (ms) x (1600 \div 4 \div 79) x31.6 Second for DH3, 2-DH3, 3-DH3

Dwell time=Pulse time (ms) × (1600 \div 6 \div 79) ×31.6 Second for DH5, 2-DH5, 3-DH5



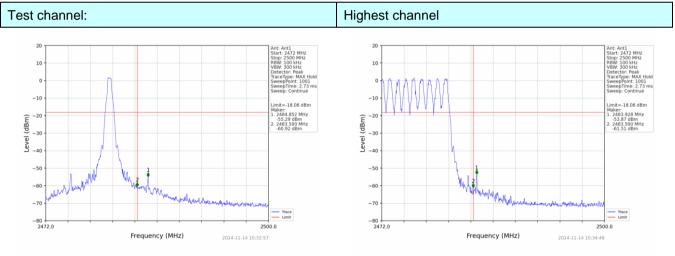
π/4-DQPSK mode

2DH5

8-DPSK mode

6.7. Band Edge

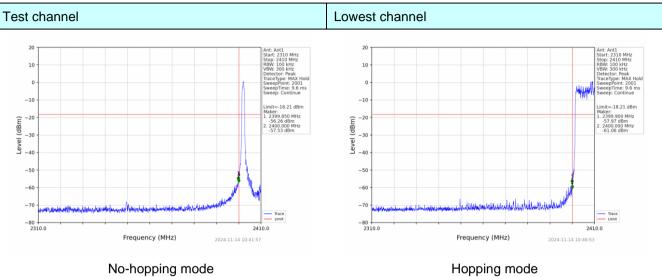
6.7.1. Conducted Emission Method

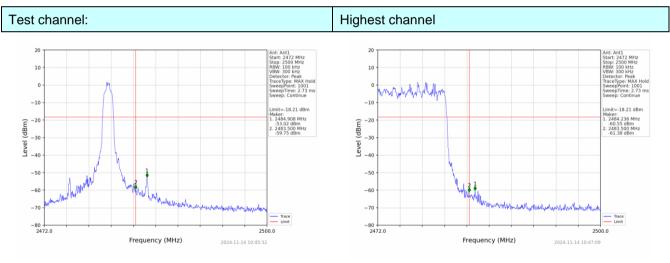

Tast Day Sugar		0					
Test Requirement:	FCC Part15 C	Section 1	5.247 (d)				
Test Method:	ANSI C63.10:2013						
Receiver setup:	RBW=100kHz	, VBW=30	0kHz, Detect	or=Peak			
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.						
Test setup:	Spectrun		E.U ucted Table	T			
Test Instruments:	Refer to sectio	on 6.0 for d	letails				
Test mode:	Refer to sectio	on 5.2 for d	letails				
Test results:	Pass						
Test environment:	Temp.: 2	5 °C	Humid.:	52%	Press.:	1012mbar	

Test plot as follows:

Report No.: HTT202411322F01

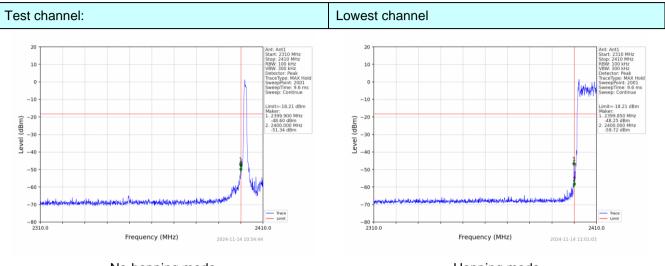
GFSK Mode: Test channel Lowest channel 10 10 0 6 libiti -10 -10 -18.08 dB 18.08 dBn 7.150 MHz -20 (dBm) -21 Level (dBm) -30 -30 Leve -40 -40 -50 -50 -60 -60 -70 -70 -80 2310.0 2410.0 2410.0 Frequency (MHz) Frequency (MHz) 2024-11-14 10:25:23 2024-11-14 10:34:35 No-hopping mode Hopping mode




No-hopping mode

Hopping mode

π /4-DQPSK Mode:



No-hopping mode

Hopping mode

8-DPSK Mode:

No-hopping mode

Hopping mode

No-hopping mode

Hopping mode

6.7.2. Radiated E	Emission Me	ethod				
Test Requirement:	FCC Part15	C Section 1	5.209 and 15	.205		
Test Method:	ANSI C63.1	0:2013				
Test Frequency Range:		estrict bands data was sho		, only the wo	orst band's (2	2310MHz to
Test site:	Measureme	ent Distance:				
Receiver setup:	Frequenc					emark
	Above 1G	Hz Pea				k Value
	Peak					ge Value
Limit:	Fre	equency	Limit (d	dBuV/m @3n	,	emark
	Abo	ve 1GHz		54.00 74.00		ge Value k Value
	1. The EUT was placed on the top of a rotating table 1.5 meters above the					
Test Procedure:	 ground a determin 2. The EUT antenna, tower. 3. The ante ground to horizonta measure 4. For each and then and then and the r maximum 5. The test-Specified 6. If the em limit spece EUT wou 10dB ma 	t a 3 meter c e the position was set 3 m which was m anna height is o determine t al and vertical ment. suspected e the antenna ota table was n reading. receiver syst d Bandwidth v ission level o cified, then te and be reported urgin would be	amber. The tan of the higher eters away frounted on the varied from the maximum polarizations mission, the was tuned to sturned from em was set to with Maximum f the EUT in sting could b ed. Otherwise ere-tested or	able was rota st radiation. form the interf ne top of a var one meter to value of the s of the anter EUT was arr o heights from 0 degrees to ne hold Mode peak mode v e stopped ar the emission ne by one us	ated 360 degr erence-recein inable-height four meters a field strength nna are set to anged to its w n 1 meter to 4 0 360 degrees ct Function an	rees to ving antenna above the . Both o make the worst case I meters s to find the hd er than the alues of the t have usi-peak or
Test Instruments:		ction 6.0 for d				•
Test mode:						
	Refer to section 5.2 for details					
Test results:	PassTemp.:25 °CHumid.:52%Press.:1012mbar					

Padiated Emission Method c 7 0

Shenzhen HTT Technology Co.,Ltd.

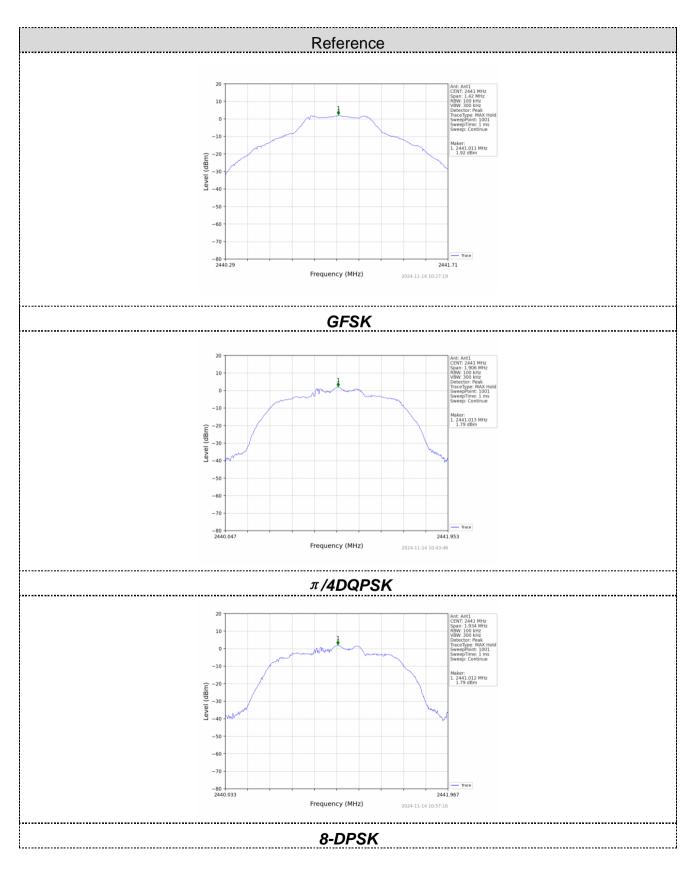
Tel: 0755-23595200 Fax: 0755-23595201

Measurement Data

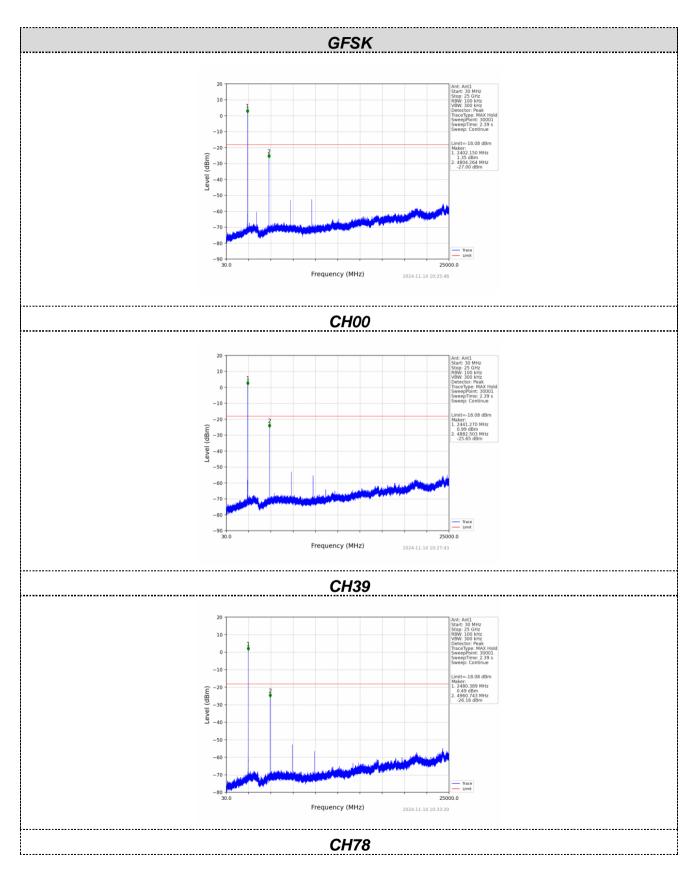
Remark: GFSK, Pi/4 DQPSK,8-DPSK all have been tested, only worse case GFSK is reported.

Operation Mode: GFSK

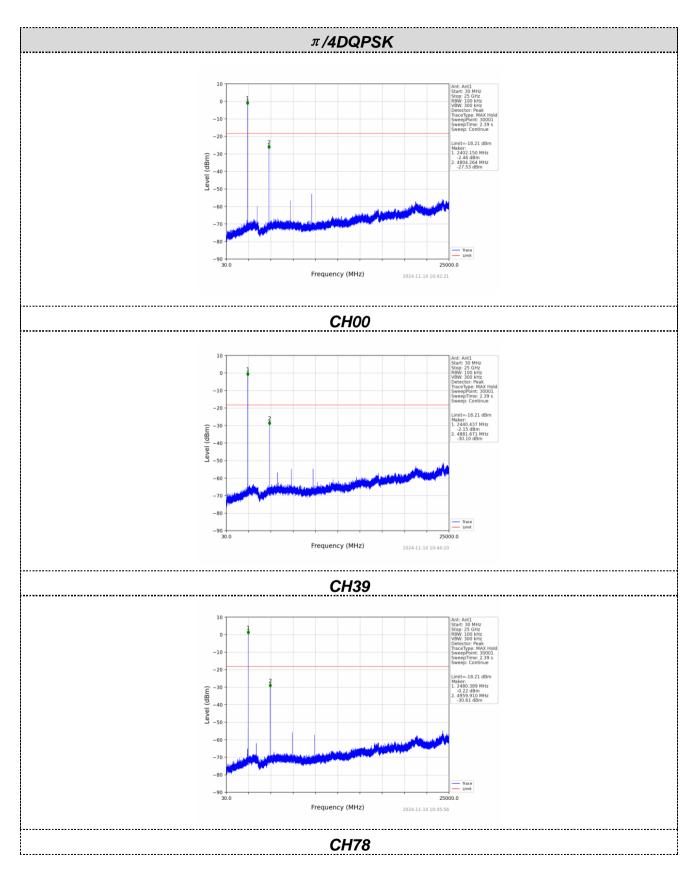
Freque	ncy(MHz)):	24	02	Pola	arity:	Н		<u>NL</u>
Frequency (MHz)	Emis Le [.] (dBu	vel	Limit Margin (dBuV/m) (dB)		Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)
2390.00	60.55	PK	74	13.45	61.94	27.2	4.31	32.9	-1.39
2390.00	45.28	AV	54	8.72	46.67	27.2	4.31	32.9	-1.39
Freque	ncy(MHz)):	24	02	Pola	arity:		VERTICAL	
Frequency (MHz)	Emis Le (dBu	vel	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)
2390.00	58.75	PK	74	15.25	60.14	27.2	4.31	32.9	-1.39
2390.00	46.09	AV	54	7.91	47.48	27.2	4.31	32.9	-1.39
Freque	ncy(MHz)):	2480		P olarity:		н	IORIZONTA	NL
Frequency (MHz)	Emis Le (dBu		Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)
2483.50	56.18	PK	74	17.82	57.11	27.4	4.47	32.8	-0.93
2483.50	46.15	AV	54	7.85	47.08	27.4	4.47	32.8	-0.93
Freque	ncy(MHz)):	24	80	Pola	arity:		VERTICAL	
Frequency (MHz)	Emission Level (dBuV/m)		Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)
2483.50	56.10	PK	74	17.90	57.03	27.4	4.47	32.8	-0.93
2483.50	44.06	AV	54	9.94	44.99	27.4	4.47	32.8	-0.93

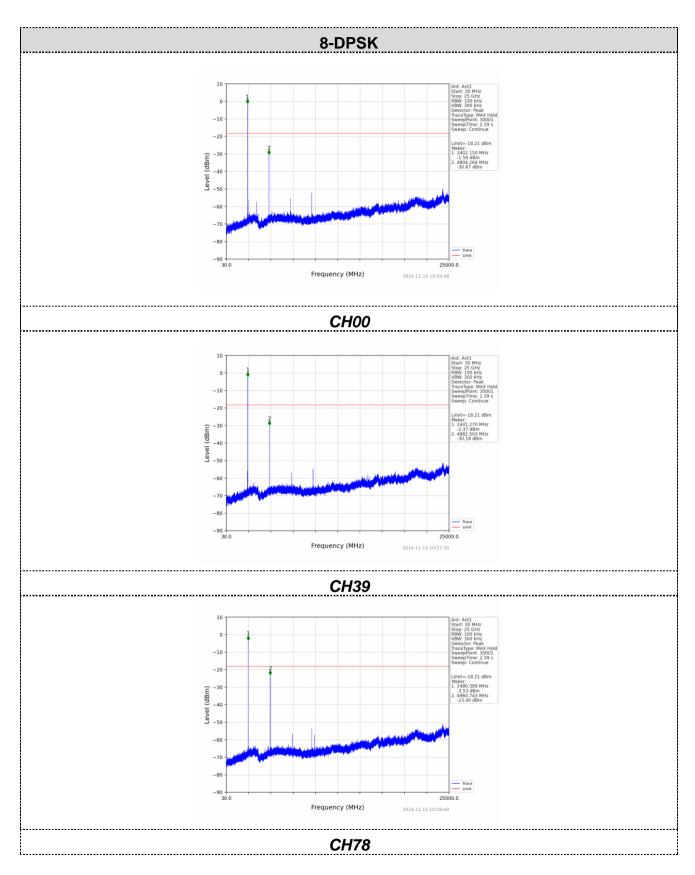


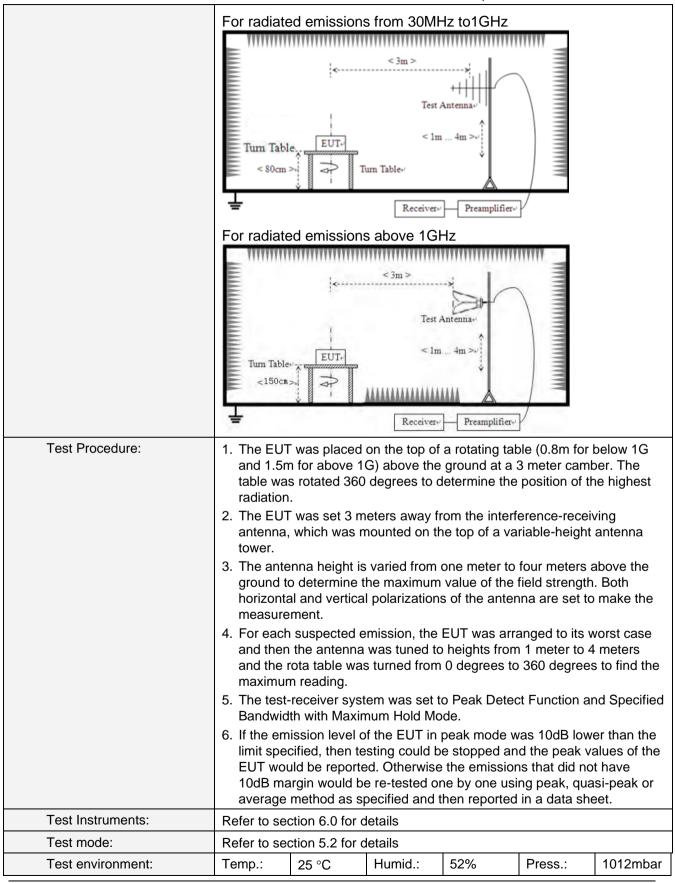
6.8. Spurious	Emission
---------------	----------


6.8.1. Conducted Emission Method

Test Requirement:	FCC Part15	C Section 1	5.247 (d)							
Test Method:	ANSI C63.1	0:2013								
Limit:	spectrum in is produced the 100 kHz	tentional rad by the intent bandwidth v power, base	iator is opera tional radiato within the bar	e frequency b ting, the radio r shall be at lo nd that contain n RF conduct	o frequency p east 20 dB be ns the highes	oower that elow that in st level of				
Test setup:	Sp	Spectrum Analyzer E.U.T Non-Conducted Table								
Test Instruments:	Refer to see	ction 6.0 for c	letails							
Test mode:	Refer to see	Refer to section 5.2 for details								
Test results:	Pass	Pass								
Test environment:	Temp.:	Temp.: 25 °C Humid.: 52% Press.: 1012mbar								







6.8.2. Radiated E	mission Method								
Test Requirement:	FCC Part15 C Section	on 15	5.209						
Test Method:	ANSI C63.10:2013								
Test Frequency Range:	9kHz to 25GHz								
Test site:	Measurement Distar	nce: 3	3m						
Receiver setup:	Frequency		Detector	RB۱	N VBW		'	Value	
	9KHz-150KHz	Qı	lasi-peak	200H	Ηz	600H	z	Quasi-peak	
	150KHz-30MHz	Qı	uasi-peak	9K⊢	lz	30KH	z	Quasi-peak	
	30MHz-1GHz	Qı	uasi-peak	120K	Hz	300K⊦	lz	Quasi-peak	
	Above 1GHz		Peak	1M⊦	lz	3MHz	Z	Peak	
	7.0070 10112		Peak	1M⊦	łz	10Hz		Average	
Limit:	Frequency		Limit (u∖	//m)	V	alue	Ν	leasurement Distance	
	0.009MHz-0.490M	lHz	2400/F(k	(Hz)		QP		300m	
	0.490MHz-1.705M	lHz	24000/F(24000/F(KHz)		QP		30m	
	1.705MHz-30MH	z	30		QP		30m		
	30MHz-88MHz	100		QP		-			
	88MHz-216MHz	2	150			QP			
	216MHz-960MH					QP		3m	
	960MHz-1GHz		500		QP			•	
	Above 1GHz		500		Average				
			5000		Peak				
Test setup:	For radiated emiss	sions	from 9kH	z to 30	MH	z		_	
	<pre></pre>								

6.8.2. Radiated Emission Method

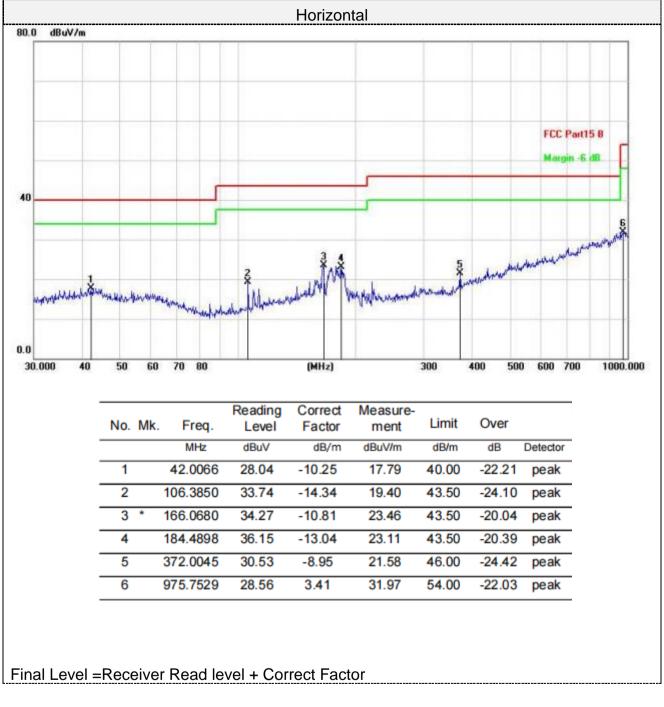
Shenzhen HTT Technology Co.,Ltd.

Tel: 0755-23595200 Fax: 0755-23595201

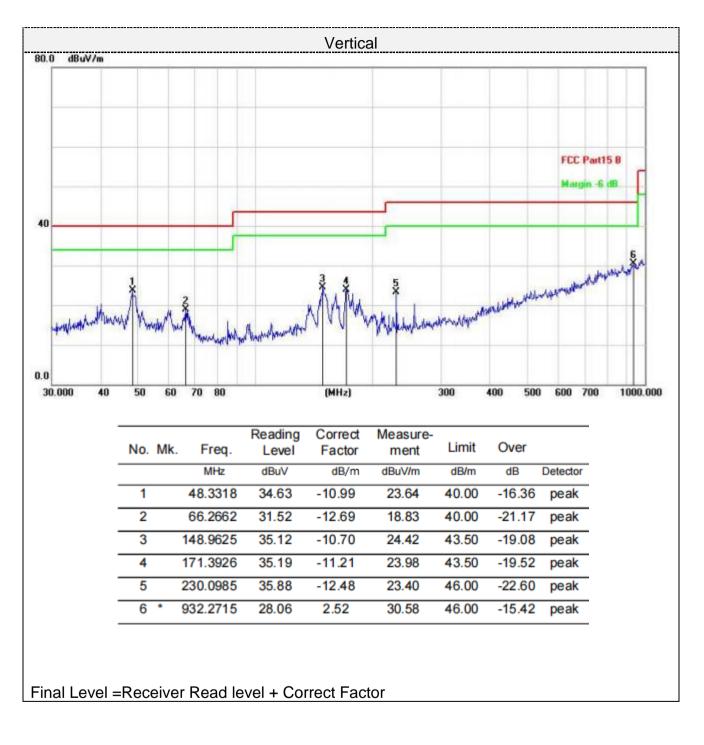
1F, Building B, Huafeng International Robotics Industrial Park, Hangcheng Road, Nanchang Community, Xixiang Street, Bao'an District, Shenzhen, Guangdong, China

Test voltage:	AC 120V, 60Hz
Test results:	Pass

Measurement data:


Remarks:

- 1. During the test, pre-scan the GFSK, π /4-DQPSK, 8-DPSK modulation, and found the GFSK modulation which it is worse case.
- 2. Pre-scan all kind of the place mode (X-axis, Y-axis, Z-axis), and found the Y-axis which it is worse case.
- 3. Radiated emission test from 9 KHz to 10th harmonic of fundamental was verified, and no emission found except system noise floor in 9 KHz to 30MHz and not recorded in this report.
- 4. Based on all tested data, the EUT complied with the FCC Part 15.207 standard limit for a wireless device, and with the worst case as DH5 2402MHz as below:



Report No.: HTT202411322F01

For 30MHz-1GHz

For 1GHz to 25GHz

Remark: For test above 1GHz GFSK,Pi/4 DQPSK and 8-DPSK were test at Low, Middle, and High channel; only the worst result of GFSK was reported as below:

Freque	Frequency(MHz):			2402		Polarity:		HORIZONTAL		
Frequency (MHz)		sion vel V/m)	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)	
4804.00	59.08	PK	74	14.92	53.38	31	6.5	31.8	5.7	
4804.00	42.09	AV	54	11.91	36.39	31	6.5	31.8	5.7	
7206.00	53.47	PK	74	20.53	40.82	36	8.15	31.5	12.65	
7206.00	43.13	AV	54	10.87	30.48	36	8.15	31.5	12.65	

Freque	Frequency(MHz):			2402		Polarity:		VERTICAL			
Frequency (MHz)	Emis Le ^r	vel	Limit (dBuV/m)	(dBuV/m) (dB)		Antenna Factor	Cable Factor	Pre- amplifier	Correction Factor		
	,	V/m)		, , ,	(dBuV)	(dB/m)	(dB)	(dB)	(dB/m)		
4804.00	59.16	PK	74	14.84	53.46	31	6.5	31.8	5.7		
4804.00	42.63	AV	54	11.37	36.93	31	6.5	31.8	5.7		
7206.00	53.49	PK	74	20.51	40.84	36	8.15	31.5	12.65		
7206.00	42.87	AV	54	11.13	30.22	36	8.15	31.5	12.65		

Frequency(MHz):			2441		Polarity:		HORIZONTAL		
Frequency (MHz)	Emis Le ^v (dBu		Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)
4882.00	59.94	PK	74	14.06	53.78	31.2	6.61	31.65	6.16
4882.00	43.66	AV	54	10.34	37.50	31.2	6.61	31.65	6.16
7323.00	51.97	PK	74	22.03	39.02	36.2	8.23	31.48	12.95
7323.00	44.00	AV	54	10.00	31.05	36.2	8.23	31.48	12.95

Frequency(MHz):			2441		Polarity:		VERTICAL			
Frequency (MHz)	Emis Le [.] (dBu		Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)	
4882.00	61.20	PK	74	12.80	55.04	31.2	6.61	31.65	6.16	
4882.00	42.73	AV	54	11.27	36.57	31.2	6.61	31.65	6.16	
7323.00	54.04	PK	74	19.96	41.09	36.2	8.23	31.48	12.95	
7323.00	44.56	AV	54	9.44	31.61	36.2	8.23	31.48	12.95	

Freque	Frequency(MHz):			2480		Polarity:		HORIZONTAL		
Frequency (MHz)	Emis Lev (dBu		Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)	
4960.00	62.34	PK	74	11.66	55.68	31.4	6.76	31.5	6.66	
4960.00	42.19	AV	54	11.81	35.53	31.4	6.76	31.5	6.66	
7440.00	54.49	PK	74	19.51	41.19	36.4	8.35	31.45	13.3	
7440.00	44.80	AV	54	9.20	31.50	36.4	8.35	31.45	13.3	

Freque	Frequency(MHz):			2480		Polarity:		VERTICAL			
Frequency (MHz)	Emis Lev (dBu		Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)		
4960.00	63.37	PK	74	10.63	56.71	31.4	6.76	31.5	6.66		
4960.00	42.45	AV	54	11.55	35.79	31.4	6.76	31.5	6.66		
7440.00	54.52	PK	74	19.48	41.22	36.4	8.35	31.45	13.3		
7440.00	44.64	AV	54	9.36	31.34	36.4	8.35	31.45	13.3		

Remark:

(1) Data of measurement within this frequency range shown "--- " in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.

(2) When the test results of Peak Detected below the limits of Average Detected, the Average Detected is not need completed.

Shenzhen HTT Technology Co.,Ltd.

1F, Building B, Huafeng International Robotics Industrial Park, Hangcheng Road, Nanchang Community, Xixiang Street, Bao'an District, Shenzhen, Guangdong, China

Tel: 0755-23595200 Fax: 0755-23595201

6.9. Antenna Requirement

Standard Applicable

For intentional device, according to FCC 47 CFR Section 15.203:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited

FCC CFR Title 47 Part 15 Subpart C Section 15.247(c) (1) (I):

(i) Systems operating in the 2400-2483.5 MHz band that is used exclusively for fixed. Point-to-point operations may employ transmitting antennas with directional gain greater than 6dBi provided the maximum conducted output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6dBi.

Antenna Connected Construction

The maximum gain of antenna was 2.58dBi.

Remark: The antenna gain is provided by the customer, if the data provided by the customer is not accurate, Shenzhen HTT Technology Co., Ltd. does not assume any responsibility.

7. Test Setup Photo

Reference to the **appendix I** for details.

8. EUT Constructional Details

Reference to the **appendix II** for details.

-----End-----