FCC Test Report (BT-LE) Report No.: RF160819E01G-2 FCC ID: COF-WMBNBM26A Test Model: WM-BN-BM-26_A_FF4 Series Model: Refer to section 3.1 for more details Received Date: Aug. 26, 2019 Test Date: Aug. 31 to Sep. 11, 2019 Issued Date: Sep. 23, 2019 Applicant: UNIVERSAL GLOBAL SCIENTIFIC INDUSTRIAL CO., LTD. Address: 141, Lane 351, Sec. 1, Taiping Road., Tsaotuen, Nantou 54261, Taiwan Issued By: Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch Hsin Chu Laboratory Lab Address: E-2, No.1, Li Hsin 1st Road, Hsinchu Science Park, Hsinchu City 300, Taiwan. Test Location: E-2, No.1, Li Hsin 1st Road, Hsinchu Science Park, Hsinchu City 300, Taiwan. FCC Registration / Designation Number: 723255 / TW2022 This report is for your exclusive use. Any copying or replication of this report to or for any other person or entity, or use of our name or trademark, is permitted only with our prior written permission. This report sets forth our findings solely with respect to the test samples identified herein. The results set forth in this report are not indicative or representative of the quality or characteristics of the lot from which a test sample was taken or any similar or identical product unless specifically and expressly noted. Our report includes all of the tests requested by you and the results thereof based upon the information that you provided to us. You have 60 days from date of issuance of this report to notify us of any material error or omission caused by our negligence, provided, however, that such notice shall be in writing and shall specifically address the issue you wish to raise. A failure to raise such issue within the prescribed time shall constitute your unqualified acceptance of the completeness of this report, the tests conducted and the correctness of the report contents. Unless specific mention, the uncertainty of measurement has been explicitly taken into account to declare the compliance or non-compliance to the specification. The report must not be used by the client to claim product certification, approval, or endorsement by TAF or any government agencies. Report No.: RF160819E01G-2 Page No. 1 / 26 Report Format Version: 6.1.1 Reference No.: 190823C13 # **Table of Contents** | R | eleas | e Control Record | 3 | |--------|--|---|--| | 1 | C | Certificate of Conformity | 4 | | 2 | 5 | Summary of Test Results | 5 | | | 2.1
2.2 | Measurement Uncertainty | | | 3 | C | General Information | 6 | | | 3.1
3.2
3.2.1
3.3
3.4
3.4.1
3.5 | General Description of EUT (BT-LE) Description of Test Modes Test Mode Applicability and Tested Channel Detail Duty Cycle of Test Signal Description of Support Units Configuration of System under Test General Description of Applied Standards | 8
9
10
.11
.11 | | 4 | 7 | Test Types and Results | 13 | | 5 | 4.1.3
4.1.4
4.1.5
4.1.6
4.1.7
4.2.1
4.2.2
4.2.3
4.2.4
4.2.5
4.2.6
4.2.7 | Test Instruments Test Procedures Deviation from Test Standard Test Setup EUT Operating Conditions Test Results Conducted Output Power Measurement | 13
14
15
16
16
17
18
23
23
23
23
23
23
24 | | - | | dix – Information of the Testing Laboratories | | | \sim | Phall | AIV = اا المن النقيب المن المن المن المن المن المن المن المن | 40 | # **Release Control Record** | Issue No. | Description | Date Issued | |----------------|-------------------|---------------| | RF160819E01G-2 | Original release. | Sep. 23, 2019 | Page No. 3 / 26 Report Format Version: 6.1.1 # 1 Certificate of Conformity **Product:** 802.11b/g/n + BT Wireless LAN Module Brand: USI Test Model: WM-BN-BM-26_A_FF4 Series Model: Refer to section 3.1 for more details Sample Status: ENGINEERING SAMPLE Applicant: UNIVERSAL GLOBAL SCIENTIFIC INDUSTRIAL CO., LTD. **Test Date:** Aug. 31 to Sep. 11, 2019 **Standards:** 47 CFR FCC Part 15, Subpart C (Section 15.247) ANSI C63.10: 2013 The above equipment has been tested by **Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch**, and found compliance with the requirement of the above standards. The test record, data evaluation & Equipment Under Test (EUT) configurations represented herein are true and accurate accounts of the measurements of the sample's EMC characteristics under the conditions specified in this report. Wendy Wu / Specialist **Approved by:** , **Date:** Sep. 23, 2019 May Chen / Manager # 2 Summary of Test Results | 47 CFR FCC Part 15, Subpart C (SECTION 15.247) | | | | | | | |--|---|--------|--|--|--|--| | FCC
Clause | Test Item | Result | Remarks | | | | | 15.205 & 209
& 15.247(d) | Radiated Emissions & Band Edge
Measurement | PASS | Meet the requirement of limit. Minimum passing margin is -9.5dB at 31.45MHz. | | | | | 15.247(b) | Conducted power | PASS | Meet the requirement of limit. | | | | ### Note: - 1. Determining compliance based on the results of the compliance measurement, not taking into account measurement instrumentation uncertainty. - 2. This report is supplementary report. # 2.1 Measurement Uncertainty Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the EUT as specified in CISPR 16-4-2: | Measurement | Frequency | Expanded Uncertainty (k=2) (±) | |---------------------------------|---------------|--------------------------------| | Radiated Emissions up to 1 GHz | 9kHz ~ 30MHz | 3.0 dB | | Radiated Effissions up to 1 GHz | 30MHz ~ 1GHz | 5.1 dB | | | 1GHz ~ 6GHz | 5.1 dB | | Radiated Emissions above 1 GHz | 6GHz ~ 18GHz | 5.0 dB | | | 18GHz ~ 40GHz | 5.2 dB | # 2.2 Modification Record There were no modifications required for compliance. # 3 General Information # 3.1 General Description of EUT (BT-LE) | Product | 802.11b/g/n + BT Wireless LAN Module | |-----------------------|--------------------------------------| | Brand | USI | | Test Model | WM-BN-BM-26_A_FF4 | | Series Model | Refer to Note | | Status of EUT | ENGINEERING SAMPLE | | Power Supply Rating | 3.6Vdc from host equipment | | Modulation Type | GFSK | | Modulation Technology | DTS | | Transfer Rate | Up to 1Mbps | | Operating Frequency | 2402MHz ~ 2480MHz | | Number of Channel | 40 | | Output Power | 5.284mW | | Antenna Type | Refer to Note | | Antenna Connector | Refer to Note | | Accessory Device | NA | | Data Cable Supplied | NA | #### Note: 1. This report is prepared for FCC class II permissive change. The difference compared with the Report No.: RF160819E01D-2 as the following: ♦ Added the one new model name to change the RF matching and layout is same as following table: | Original | | | | | | | |----------|-------------------|--|--|--|--|--| | Brand | Model | Diffenence | | | | | | | WM-BN-BM-26_A | - | | | | | | USI | WM-BN-BM-26_A_FF2 | R30 capacitor 1.8pF change to 2.7pF belongs to part of
antenna matching circuit. C46 inductor remove | | | | | | | WM-BN-BM-26_A_FF3 | R30 resistor 0 Ohm change to 3.3nH inductor belongs to
part of antenna matching circuit Add 27pF capacitor on C172 | | | | | | Newly | | | | | | | | Brand | Model | Diffenence | | | | | | USI | WM-BN-BM-26_A_FF4 | 1. C172 change to Open 2. R30's Capacitor change to 2.2pf 3. C46's Inductor change to 1.0nH Ant Feeding Series 1 Shunt 1 C172 Name Component Supplier Value | | | | | From the above models, new model: WM-BN-BM-26_A_FF4 was selected as representative model for the test and its data was recorded in this report. - 2. According to above conditions, only Conducted power and Radiated Emissions need to be performed. And all data were verified to meet the requirements. - 3. There are WLAN, BT technology used for the EUT. 4. The antenna provided to the EUT, please refer to the following table: | Brand | Model | Antenna Net
Gain(dBi) | Frequency range (GHz to GHz) | Antenna
Type | Connector
Type | |-------|-------------------|--------------------------|------------------------------|-----------------|-------------------| | YAGEO | ANT3216LL11R2400A | 3.68 | 2.4~2.4835 | Chip | NA | - 5. WLAN and BT technology cannot transmit at same time. - 6. The above EUT information is declared by manufacturer and for more detailed features description, please refer to the manufacturer's specifications or user's manual. # 3.2 Description of Test Modes 40 channels are provided to this EUT: | CHANNEL | FREQ.
(MHz) | CHANNEL | FREQ.
(MHz) | CHANNEL | FREQ.
(MHz) | CHANNEL | FREQ.
(MHz) | |---------|----------------|---------|----------------|---------|----------------|---------|----------------| | 0 | 2402 | 10 | 2422 | 20 | 2442 | 30 | 2462 | | 1 | 2404 | 11 | 2424 | 21 | 2444 | 31 | 2464 | | 2 | 2406 | 12 | 2426 | 22 | 2446 | 32 | 2466 | | 3 | 2408 | 13 | 2428 | 23 | 2448 | 33 | 2468 | | 4 | 2410 | 14 | 2430 | 24 | 2450 | 34 | 2470 | | 5 | 2412 | 15 | 2432 | 25 | 2452 | 35 | 2472 | | 6 | 2414 | 16 | 2434 | 26 | 2454 | 36 | 2474 | | 7 | 2416 | 17 | 2436 | 27 | 2456 | 37 | 2476 | | 8 | 2418 | 18 | 2438 | 28 | 2458 | 38 | 2478 | | 9 | 2420 | 19 | 2440 | 29 | 2460 | 39 | 2480 | ### 3.2.1 Test Mode Applicability and Tested Channel Detail | EUT
CONFIGURE | | APPLICABLE TO | | DESCRIPTION | |------------------|-------|---------------|------|-------------| | MODE | RE≥1G | RE<1G | APCM | DESCRIPTION | | - | √ | V | V | - | Where RE≥1G: Radiated Emission above 1GHz RE<1G: Radiated Emission below 1GHz **APCM:** Antenna Port Conducted Measurement **NOTE:** 1. In the original report, the EUT had been pre-tested on the positioned of each 3 axis. The worst case was found when positioned on **X-plane**. ### **Radiated Emission Test (Above 1GHz):** Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates and antenna ports (if EUT with antenna diversity architecture). Following channel(s) was (were) selected for the final test as listed below. | AVAILABLE CHANNEL TESTED CHANNEL | | MODULATION TYPE | DATA RATE (Mbps) | |----------------------------------|-----------|-----------------|------------------| | 0 to 39 | 0, 19, 39 | GFSK | 1 | # Radiated Emission Test (Below 1GHz): Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates and antenna ports (if EUT with antenna diversity architecture). Following channel(s) was (were) selected for the final test as listed below. | AVAILABLE CHANNEL | TESTED CHANNEL | MODULATION TYPE | DATA RATE (Mbps) | |-------------------|----------------|-----------------|------------------| | 0 to 39 | 39 | GFSK | 1 | # **Antenna Port Conducted Measurement:** Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates and antenna ports (if EUT with antenna diversity architecture). Following channel(s) was (were) selected for the final test as listed below. | AVAILABLE CHANNEL | TESTED CHANNEL | MODULATION TYPE | DATA RATE (Mbps) | |-------------------|----------------|-----------------|------------------| | 0 to 39 | 0, 19, 39 | GFSK | 1 | ### **Test Condition:** | APPLICABLE TO | BLE TO ENVIRONMENTAL CONDITIONS (System) | | TESTED BY | |---------------|--|--------------|-----------| | RE≥1G | 22deg. C, 67%RH | 120Vac, 60Hz | Ryan Du | | RE<1G | RE<1G 23deg. C, 67%RH | | Ryan Du | | APCM | 25deg. C, 60%RH | 120Vac, 60Hz | Ryan Du | Report No.: RF160819E01G-2 Page No. 9 / 26 Reference No.: 190823C13 # 3.3 Duty Cycle of Test Signal Duty cycle = 0.388 ms / 0.626 ms = 0.620, Duty factor = $10 * \log (1 / \text{ Duty cycle}) = 2.1$ # 3.4 Description of Support Units The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests. | ID | Product | Brand | Model No. | Serial No. | FCC ID | Remarks | |----|-----------------|---------|-----------|------------|--------|--------------------| | A. | . Test Tool NA | | NA | NA | NA | Supplied by client | | B. | DC Power Supply | Topward | 6603D | 795558 | NA | Provided by Lab | #### Note: ^{1.} All power cords of the above support units are non-shielded (1.8m). | ID | Descriptions | Qty. | Length (m) | Shielding
(Yes/No) | Cores (Qty.) | Remarks | |----|--------------|------|------------|-----------------------|--------------|-----------------| | 1. | DC Cable | 1 | 1.8 | No | 0 | Provided by Lab | # 3.4.1 Configuration of System under Test Report No.: RF160819E01G-2 Page No. 11 / 26 Report Format Version: 6.1.1 Reference No.: 190823C13 | | TEITIAG | | |--------|--|--| | 3.5 | General Description of Applied Standards | | | | | | | | he EUT is a RF Product. According to the specifications of the manufacturer, it must comply with the | | | re | equirements of the following standards: | | | F
K | CC Part 15, Subpart C (15.247)
DB 558074 D01 15.247 Meas Guidance v05r02 | | | Α | NSI C63.10-2013 | | | | | | | Α | Il test items have been performed and recorded as per the above standards. | ### 4 Test Types and Results # 4.1 Radiated Emission and Bandedge Measurement 4.1.1 Limits of Radiated Emission and Bandedge Measurement Radiated emissions which fall in the restricted bands must comply with the radiated emission limits specified as below table. Other emissions shall be at least 20dB below the highest level of the desired power: | Frequencies
(MHz) | Field Strength
(microvolts/meter) | Measurement Distance
(meters) | |----------------------|--------------------------------------|----------------------------------| | 0.009 ~ 0.490 | 2400/F(kHz) | 300 | | 0.490 ~ 1.705 | 24000/F(kHz) | 30 | | 1.705 ~ 30.0 | 30 | 30 | | 30 ~ 88 | 100 | 3 | | 88 ~ 216 | 150 | 3 | | 216 ~ 960 | 200 | 3 | | Above 960 | 500 | 3 | ### NOTE: - 1. The lower limit shall apply at the transition frequencies. - 2. Emission level $(dBuV/m) = 20 \log Emission level (uV/m)$. - 3. For frequencies above 1000MHz, the field strength limits are based on average detector, however, the peak field strength of any emission shall not exceed the maximum permitted average limits, specified above by more than 20dB under any condition of modulation. Report No.: RF160819E01G-2 Page No. 13 / 26 Report Format Version: 6.1.1 Reference No.: 190823C13 # 4.1.2 Test Instruments | DESCRIPTION & | MODEL NO | CEDIAL NO | CALIBRATED | CALIBRATED | |--------------------------------------|----------------------|-------------|---------------|---------------| | MANUFACTURER | MODEL NO. | SERIAL NO. | DATE | UNTIL | | Test Receiver
Agilent | N9038A | MY50010156 | July 17, 2019 | July 16, 2020 | | Pre-Amplifier EMCI | EMC001340 | 980142 | May 30, 2019 | May 29, 2020 | | Loop Antenna
Electro-Metrics | EM-6879 | 264 | Jan. 22, 2019 | Jan. 21, 2020 | | RF Cable | NA | LOOPCAB-001 | Jan. 14, 2019 | Jan. 13, 2020 | | RF Cable | NA | LOOPCAB-002 | Jan. 14, 2019 | Jan. 13, 2020 | | Pre-Amplifier
Mini-Circuits | ZFL-1000VH2B | AMP-ZFL-05 | Apr. 30, 2019 | Apr. 29, 2020 | | Trilog Broadband Antenna SCHWARZBECK | VULB 9168 | 9168-361 | Nov. 22, 2018 | Nov. 21, 2019 | | RF Cable | 8D | 966-3-1 | Mar. 18, 2019 | Mar. 17, 2020 | | RF Cable | 8D | 966-3-2 | Mar. 18, 2019 | Mar. 17, 2020 | | RF Cable | 8D | 966-3-3 | Mar. 18, 2019 | Mar. 17, 2020 | | Fixed attenuator
Mini-Circuits | UNAT-5+ | PAD-3m-3-01 | Sep. 27, 2018 | Sep. 26, 2019 | | Horn_Antenna
SCHWARZBECK | BBHA9120-D | 9120D-406 | Nov. 25, 2018 | Nov. 24, 2019 | | Pre-Amplifier EMCI | EMC12630SE | 980384 | Jan. 28, 2019 | Jan. 27, 2020 | | RF Cable | EMC104-SM-SM-1200 | 160922 | Jan. 28, 2019 | Jan. 27, 2020 | | RF Cable | EMC104-SM-SM-2000 | 180601 | June 10, 2019 | June 09, 2020 | | RF Cable | EMC104-SM-SM-6000 | 180602 | June 10, 2019 | June 09, 2020 | | Spectrum Analyzer
Keysight | N9030A | MY54490679 | July 17, 2019 | July 16, 2020 | | Pre-Amplifier EMCI | EMC184045SE | 980387 | Jan. 28, 2019 | Jan. 27, 2020 | | Horn_Antenna
SCHWARZBECK | BBHA 9170 | BBHA9170519 | Nov. 25, 2018 | Nov. 24, 2019 | | RF Cable | EMC102-KM-KM-1200 | 160924 | Jan. 28, 2019 | Jan. 27, 2020 | | RF Cable | EMC102-KM-KM-1200 | | Jan. 28, 2019 | Jan. 27, 2020 | | Software | ADT_Radiated_V8.7.08 | NA | NA | NA | | Antenna Tower & Turn Table Max-Full | MF-7802 | MF780208406 | NA | NA | | Boresight Antenna Fixture | FBA-01 | FBA-SIP01 | NA | NA | # Note: - 1. The calibration interval of the above test instruments is 12 months and the calibrations are traceable to NML/ROC and NIST/USA. - 2. The test was performed in 966 Chamber No. 3. - 3. Loop antenna was used for all emissions below 30 MHz. - 4. Tested Date: Aug. 31 to Sep. 11, 2019 #### 4.1.3 Test Procedures #### For Radiated emission below 30MHz - a. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter chamber room. The table was rotated 360 degrees to determine the position of the highest radiation. - b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower. - c. Parallel, perpendicular, and ground-parallel orientations of the antenna are set to make the measurement. - d. For each suspected emission, the EUT was arranged to its worst case and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading. - e. The test-receiver system was set to Quasi-Peak Detect Function and Specified Bandwidth with Maximum Hold Mode. #### NOTE: 1. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 9kHz at frequency below 30MHz. #### For Radiated emission above 30MHz - a. The EUT was placed on the top of a rotating table 0.8 meters (for 30MHz ~ 1GHz) / 1.5 meters (for above 1GHz) above the ground at 3 meter chamber room for test. The table was rotated 360 degrees to determine the position of the highest radiation. - b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower. - c. The height of antenna is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement. - d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading. - e. The test-receiver system was set to quasi-peak detect function and specified bandwidth with maximum hold mode when the test frequency is below 1 GHz. - f. The test-receiver system was set to peak and average detect function and specified bandwidth with maximum hold mode when the test frequency is above 1 GHz. If the peak reading value also meets average limit, measurement with the average detector is unnecessary. #### Note: - 1. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 120kHz for Quasi-peak detection (QP) at frequency below 1GHz. - 2. The resolution bandwidth of test receiver/spectrum analyzer is 1 MHz and the video bandwidth is 3 MHz for Peak detection (PK) at frequency above 1GHz. - 3. The resolution bandwidth of test receiver/spectrum analyzer is 1MHz and the video bandwidth is ≥ 1/T (Duty cycle < 98%) or 10Hz (Duty cycle ≥ 98%) for Average detection (AV) at frequency above 1GHz. - 4. All modes of operation were investigated and the worst-case emissions are reported. Report No.: RF160819E01G-2 Page No. 15 / 26 Report Format Version: 6.1.1 Reference No.: 190823C13 # 4.1.4 Deviation from Test Standard No deviation. # 4.1.5 Test Setup # For Radiated emission below 30MHz # For Radiated emission 30MHz to 1GHz # For Radiated emission above 1GHz For the actual test configuration, please refer to the attached file (Test Setup Photo). # 4.1.6 EUT Operating Conditions - a. Placed the EUT on the testing table. - b. Controlling software (sh use Test scripts.sh) has been activated to set the EUT under transmission condition continuously at specific channel frequency. ### 4.1.7 Test Results # Above 1GHz Data: | CHANNEL | TX Channel 0 | DETECTOR | Peak (PK) | |-----------------|--------------|----------|--------------| | FREQUENCY RANGE | 1GHz ~ 25GHz | FUNCTION | Average (AV) | | | ANTENNA POLARITY & TEST DISTANCE: HORIZONTAL AT 3 M | | | | | | | | | | |-----|---|-------------------------------|-------------------|----------------|--------------------------|----------------------------|------------------------|--------------------------------|--|--| | NO. | FREQ.
(MHz) | EMISSION
LEVEL
(dBuV/m) | LIMIT
(dBuV/m) | MARGIN
(dB) | ANTENNA
HEIGHT
(m) | TABLE
ANGLE
(Degree) | RAW
VALUE
(dBuV) | CORRECTION
FACTOR
(dB/m) | | | | 1 | 2390.00 | 54.0 PK | 74.0 | -20.0 | 1.16 H | 29 | 56.0 | -2.0 | | | | 2 | 2390.00 | 39.5 AV | 54.0 | -14.5 | 1.16 H | 29 | 41.5 | -2.0 | | | | 3 | *2402.00 | 101.1 PK | | | 1.16 H | 29 | 103.1 | -2.0 | | | | 4 | *2402.00 | 99.9 AV | | | 1.16 H | 29 | 101.9 | -2.0 | | | | 5 | 4804.00 | 40.7 PK | 74.0 | -33.3 | 1.80 H | 124 | 38.4 | 2.3 | | | | 6 | 4804.00 | 28.9 AV | 54.0 | -25.1 | 1.80 H | 124 | 26.6 | 2.3 | | | | | | ANTENNA | POLARITY | & TEST DI | STANCE: V | ERTICAL A | T 3 M | | | | | NO. | FREQ.
(MHz) | EMISSION
LEVEL
(dBuV/m) | LIMIT
(dBuV/m) | MARGIN
(dB) | ANTENNA
HEIGHT
(m) | TABLE
ANGLE
(Degree) | RAW
VALUE
(dBuV) | CORRECTION
FACTOR
(dB/m) | | | | 1 | 2390.00 | 54.3 PK | 74.0 | -19.7 | 2.89 V | 306 | 56.3 | -2.0 | | | | 2 | 2390.00 | 38.9 AV | 54.0 | -15.1 | 2.89 V | 306 | 40.9 | -2.0 | | | | 3 | *2402.00 | 90.2 PK | | | 2.89 V | 306 | 92.2 | -2.0 | | | | 4 | *2402.00 | 89.0 AV | | | 2.89 V | 306 | 91.0 | -2.0 | | | | 5 | 4804.00 | 40.7 PK | 74.0 | -33.3 | 3.29 V | 64 | 38.4 | 2.3 | | | | 6 | 4804.00 | 28.7 AV | 54.0 | -25.3 | 3.29 V | 64 | 26.4 | 2.3 | | | # **REMARKS:** - 1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m) - 2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) Pre-Amplifier Factor(dB) - 3. Margin value = Emission Level Limit value - 4. The other emission levels were very low against the limit. - 5. " * ": Fundamental frequency. Report No.: RF160819E01G-2 Page No. 18 / 26 Report Format Version: 6.1.1 Reference No.: 190823C13 | CHANNEL | TX Channel 19 | DETECTOR | Peak (PK) | |-----------------|---------------|----------|--------------| | FREQUENCY RANGE | 1GHz ~ 25GHz | FUNCTION | Average (AV) | | | | ANTENNA | POLARITY & | & TEST DIS | TANCE: HO | RIZONTAL | AT 3 M | | |-----|----------------|-------------------------------|-------------------|----------------|--------------------------|----------------------------|------------------------|--------------------------------| | NO. | FREQ.
(MHz) | EMISSION
LEVEL
(dBuV/m) | LIMIT
(dBuV/m) | MARGIN
(dB) | ANTENNA
HEIGHT
(m) | TABLE
ANGLE
(Degree) | RAW
VALUE
(dBuV) | CORRECTION
FACTOR
(dB/m) | | 1 | *2440.00 | 101.5 PK | | | 1.19 H | 32 | 103.6 | -2.1 | | 2 | *2440.00 | 100.3 AV | | | 1.19 H | 32 | 102.4 | -2.1 | | 3 | 4880.00 | 40.1 PK | 74.0 | -33.9 | 1.74 H | 98 | 37.8 | 2.3 | | 4 | 4880.00 | 28.0 AV | 54.0 | -26.0 | 1.74 H | 98 | 25.7 | 2.3 | | 5 | 7320.00 | 45.9 PK | 74.0 | -28.1 | 1.47 H | 144 | 37.7 | 8.2 | | 6 | 7320.00 | 34.6 AV | 54.0 | -19.4 | 1.47 H | 144 | 26.4 | 8.2 | | | | ANTENNA | POLARITY | 4 & TEST DI | STANCE: V | ERTICAL A | T 3 M | | | NO. | FREQ.
(MHz) | EMISSION
LEVEL
(dBuV/m) | LIMIT
(dBuV/m) | MARGIN
(dB) | ANTENNA
HEIGHT
(m) | TABLE
ANGLE
(Degree) | RAW
VALUE
(dBuV) | CORRECTION
FACTOR
(dB/m) | | 1 | *2440.00 | 90.6 PK | | | 2.92 V | 307 | 92.7 | -2.1 | | 2 | *2440.00 | 89.4 AV | | | 2.92 V | 307 | 91.5 | -2.1 | | 3 | 4880.00 | 39.9 PK | 74.0 | -34.1 | 3.31 V | 62 | 37.6 | 2.3 | | 4 | 4880.00 | 27.8 AV | 54.0 | -26.2 | 3.31 V | 62 | 25.5 | 2.3 | | 5 | 7320.00 | 45.2 PK | 74.0 | -28.8 | 2.36 V | 32 | 37.0 | 8.2 | | 6 | 7320.00 | 34.2 AV | 54.0 | -19.8 | 2.36 V | 32 | 26.0 | 8.2 | ### **REMARKS:** - 1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m) - 2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) Pre-Amplifier Factor(dB) - 3. Margin value = Emission Level Limit value - 4. The other emission levels were very low against the limit. - 5. " * ": Fundamental frequency. Page No. 19 / 26 Report Format Version: 6.1.1 | CHANNEL | TX Channel 39 | DETECTOR | Peak (PK) | |-----------------|---------------|----------|--------------| | FREQUENCY RANGE | 1GHz ~ 25GHz | FUNCTION | Average (AV) | | | | 7 | 7112 200112 | | | | | , | |--|----------------|-------------------------------|-------------------|----------------|--------------------------|----------------------------|------------------------|--------------------------------| | | | ANTENNA | POLARITY & | & TEST DIS | STANCE: HO | RIZONTAL | AT 3 M | | | NO. | FREQ.
(MHz) | EMISSION
LEVEL
(dBuV/m) | LIMIT
(dBuV/m) | MARGIN
(dB) | ANTENNA
HEIGHT
(m) | TABLE
ANGLE
(Degree) | RAW
VALUE
(dBuV) | CORRECTION
FACTOR
(dB/m) | | 1 | *2480.00 | 103.5 PK | | | 1.18 H | 19 | 105.7 | -2.2 | | 2 | *2480.00 | 102.3 AV | | | 1.18 H | 19 | 104.5 | -2.2 | | 3 | 2483.50 | 54.8 PK | 74.0 | -19.2 | 1.18 H | 19 | 57.0 | -2.2 | | 4 | 2483.50 | 40.5 AV | 54.0 | -13.5 | 1.18 H | 19 | 42.7 | -2.2 | | 5 | 4960.00 | 40.8 PK | 74.0 | -33.2 | 1.72 H | 124 | 38.3 | 2.5 | | 6 | 4960.00 | 28.8 AV | 54.0 | -25.2 | 1.72 H | 124 | 26.3 | 2.5 | | 7 | 7440.00 | 46.2 PK | 74.0 | -27.8 | 1.39 H | 125 | 37.8 | 8.4 | | 8 | 7440.00 | 34.7 AV | 54.0 | -19.3 | 1.39 H | 125 | 26.3 | 8.4 | | | | ANTENNA | POLARITY | & TEST D | ISTANCE: V | ERTICAL A | T 3 M | • | | NO. FREQ. (MHz) EMISSION LEVEL (dBuV/m) (dB) | | | | | ANTENNA
HEIGHT
(m) | TABLE
ANGLE
(Degree) | RAW
VALUE
(dBuV) | CORRECTION
FACTOR
(dB/m) | | 1 | *2480.00 | 92.5 PK | | | 2.94 V | 295 | 94.7 | -2.2 | | 2 | *2480.00 | 91.3 AV | | | 2.94 V | 295 | 93.5 | -2.2 | | 3 | 2483.50 | 54.5 PK | 74.0 | -19.5 | 2.94 V | 295 | 56.7 | -2.2 | | 4 | 2483.50 | 39.5 AV | 54.0 | -14.5 | 2.94 V | 295 | 41.7 | -2.2 | | 5 | 4960.00 | 40.0 PK | 74.0 | -34.0 | 3.25 V | 59 | 37.5 | 2.5 | | 6 | 4960.00 | 28.2 AV | 54.0 | -25.8 | 3.25 V | 59 | 25.7 | 2.5 | | 7 | 7440.00 | 45.6 PK | 74.0 | -28.4 | 2.44 V | 46 | 37.2 | 8.4 | | 8 | 7440.00 | 34.5 AV | 54.0 | -19.5 | 2.44 V | 46 | 26.1 | 8.4 | ### **REMARKS:** - 1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m) - 2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) Pre-Amplifier Factor(dB) - 3. Margin value = Emission Level Limit value - 4. The other emission levels were very low against the limit. - 5. " * ": Fundamental frequency. Report No.: RF160819E01G-2 Reference No.: 190823C13 Page No. 20 / 26 Report Format Version: 6.1.1 #### **Below 1GHz Data:** | CHANNEL | TX Channel 39 | DETECTOR | Quasi Book (QB) | |-----------------|---------------|----------|-----------------| | FREQUENCY RANGE | 9kHz ~ 1GHz | FUNCTION | Quasi-Peak (QP) | | ANTENNA POLARITY & TEST DISTANCE: HORIZONTAL AT 3 M | | | | | | | | | |---|----------------|-------------------------------|-------------------|----------------|--------------------------|----------------------------|------------------------|--------------------------------| | NO. | FREQ.
(MHz) | EMISSION
LEVEL
(dBuV/m) | LIMIT
(dBuV/m) | MARGIN
(dB) | ANTENNA
HEIGHT
(m) | TABLE
ANGLE
(Degree) | RAW
VALUE
(dBuV) | CORRECTION
FACTOR
(dB/m) | | 1 | 31.38 | 29.8 QP | 40.0 | -10.2 | 2.00 H | 150 | 39.3 | -9.5 | | 2 | 56.64 | 27.4 QP | 40.0 | -12.6 | 1.50 H | 133 | 36.1 | -8.7 | | 3 | 117.26 | 26.1 QP | 43.5 | -17.4 | 1.50 H | 55 | 36.2 | -10.1 | | 4 | 199.22 | 25.0 QP | 43.5 | -18.5 | 1.50 H | 267 | 35.1 | -10.1 | | 5 | 290.75 | 25.4 QP | 46.0 | -20.6 | 2.00 H | 86 | 32.2 | -6.8 | | 6 | 500.21 | 26.9 QP | 46.0 | -19.1 | 1.50 H | 155 | 28.3 | -1.4 | ### **REMARKS:** - 1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m) - 2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) Pre-Amplifier Factor(dB) - 3. Margin value = Emission Level Limit value - 4. The other emission levels were very low against the limit of frequency range 30MHz~1000MHz. - 5. The emission levels were very low against the limit of frequency range 9kHz~30MHz: the amplitude of spurious emissions attenuated more than 20 dB below the permissible value to be report. | CHANNEL | TX Channel 39 | DETECTOR | 0 10 1 (00) | |-----------------|---------------|----------|-----------------| | FREQUENCY RANGE | 9kHz ~ 1GHz | FUNCTION | Quasi-Peak (QP) | | | ANTENNA POLARITY & TEST DISTANCE: VERTICAL AT 3 M | | | | | | | | |-----|---|-------------------------------|-------------------|----------------|--------------------------|----------------------------|------------------------|--------------------------------| | NO. | FREQ.
(MHz) | EMISSION
LEVEL
(dBuV/m) | LIMIT
(dBuV/m) | MARGIN
(dB) | ANTENNA
HEIGHT
(m) | TABLE
ANGLE
(Degree) | RAW
VALUE
(dBuV) | CORRECTION
FACTOR
(dB/m) | | 1 | 31.45 | 30.5 QP | 40.0 | -9.5 | 1.50 V | 147 | 40.0 | -9.5 | | 2 | 145.40 | 28.9 QP | 43.5 | -14.6 | 2.00 V | 149 | 36.7 | -7.8 | | 3 | 188.83 | 28.3 QP | 43.5 | -15.2 | 1.00 V | 196 | 38.1 | -9.8 | | 4 | 330.05 | 25.0 QP | 46.0 | -21.0 | 1.50 V | 112 | 30.5 | -5.5 | | 5 | 500.04 | 34.1 QP | 46.0 | -11.9 | 1.50 V | 83 | 35.5 | -1.4 | | 6 | 520.85 | 29.1 QP | 46.0 | -16.9 | 1.50 V | 49 | 30.2 | -1.1 | ### **REMARKS:** - 1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m) - 2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) Pre-Amplifier Factor(dB) - 3. Margin value = Emission Level Limit value - 4. The other emission levels were very low against the limit of frequency range 30MHz~1000MHz. - 5. The emission levels were very low against the limit of frequency range 9kHz~30MHz: the amplitude of spurious emissions attenuated more than 20 dB below the permissible value to be report. # 4.2 Conducted Output Power Measurement # 4.2.1 Limits OF Conducted Output Power Measurement For systems using digital modulation in the 2400-2483.5 MHz bands: 1 Watt (30dBm) # 4.2.2 Test Setup #### 4.2.3 Test Instruments Refer to section 4.1.2 to get information of above instrument. ### 4.2.4 Test Procedures A peak power sensor was used on the output port of the EUT. A power meter was used to read the response of the peak power sensor. Record the power level. Average power sensor was used to perform output power measurement, trigger and gating function of wide band power meter is enabled to measure max output power of TX on burst. Duty factor is not added to measured value.. ### 4.2.5 Deviation from Test Standard No deviation. # 4.2.6 EUT Operating Conditions The software provided by client to enable the EUT under transmission condition continuously at lowest, middle and highest channel frequencies individually. # 4.2.7 Test Results # **FOR PEAK POWER** | Channel | Frequency (MHz) | Peak Power
(mW) | Peak Power
(dBm) | Limit (dBm) | Pass/Fail | |---------|-----------------|--------------------|---------------------|-------------|-----------| | 0 | 2402 | 3.177 | 5.02 | 30 | Pass | | 19 | 2440 | 3.589 | 5.55 | 30 | Pass | | 39 | 2480 | 5.284 | 7.23 | 30 | Pass | # **FOR AVERAGE POWER** | Channel | Frequency
(MHz) | Average Power (mW) | Average Power (dBm) | |---------|--------------------|--------------------|---------------------| | 0 | 2402 | 3.112 | 4.93 | | 19 | 2440 | 3.532 | 5.48 | | 39 | 2480 | 5.2 | 7.16 | Report No.: RF160819E01G-2 Reference No.: 190823C13 Page No. 24 / 26 Report Format Version: 6.1.1 | 5 Pictures of Test Arrangements | |---| | Please refer to the attached file (Test Setup Photo). | # Appendix - Information of the Testing Laboratories We, Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch, were founded in 1988 to provide our best service in EMC, Radio, Telecom and Safety consultation. Our laboratories are FCC recognized accredited test firms and accredited according to ISO/IEC 17025. If you have any comments, please feel free to contact us at the following: Lin Kou EMC/RF Lab Hsin Chu EMC/RF/Telecom Lab Tel: 886-2-26052180 Tel: 886-3-6668565 Fax: 886-2-26051924 Fax: 886-3-6668323 Hwa Ya EMC/RF/Safety Lab Tel: 886-3-3183232 Fax: 886-3-3270892 Email: service.adt@tw.bureauveritas.com Web Site: www.bureauveritas-adt.com The address and road map of all our labs can be found in our web site also. --- END --- Report No.: RF160819E01G-2 Page No. 26 / 26 Report Format Version: 6.1.1 Reference No.: 190823C13