

Shenzhen HTT Technology Co., Ltd.

Report No.: HTT202408037F01

TEST Report

Applicant: Shenzhen Qishun Innovation Technology Development Co.,

LTD

Address of Applicant: 1906, Block A, RongchuangZhihui Building, Minzhi Street,

Longhua District, Shenzhen

Manufacturer: Shenzhen Qishun Innovation Technology Development Co.,

LTD

Address of 1906, Block A, RongchuangZhihui Building, Minzhi Street,

Manufacturer: Longhua District, Shenzhen

Equipment Under Test (EUT)

Product Name: True Wireless BT headphones

Model No.: TF-T50

Series model: N/A

Trade Mark: TRANSFORMERS

FCC ID: 2BAQF-TF-T50

Applicable standards: FCC CFR Title 47 Part 15 Subpart C Section 15.247

Date of sample receipt: Aug. 01, 2024

Date of Test: Aug. 01, 2024 ~ Aug. 12, 2024

Date of report issued: Aug. 12, 2024

Test Result: PASS *

^{*} In the configuration tested, the EUT complied with the standards specified above.

1. Version

Version No.	Date	Description
00	Aug. 12, 2024	Original

Tested/ Prepared By	Heber He	Date:	Aug. 12, 2024
	Project Engineer		
Check By:	Bruce Zhu	Date:	Aug. 12, 2024
	Reviewer	_	
Approved By :	Kevin Young HT	Date:	Aug. 12, 2024
	Authorized Signature		

2. Contents

	Page
1. VERSION	2
2. CONTENTS	3
3. TEST SUMMARY	
4. GENERAL INFORMATION	
4.1. GENERAL DESCRIPTION OF EUT	
4.2. TEST MODE	
4.3. DESCRIPTION OF SUPPORT UNITS	
4.5. ABNORMALITIES FROM STANDARD CONDITIONS	
4.6. TEST FACILITY	
4.7. TEST LOCATION	
4.8. ADDITIONAL INSTRUCTIONS	
5. TEST INSTRUMENTS LIST	
6. TEST RESULTS AND MEASUREMENT DATA	9
6.1. CONDUCTED EMISSIONS	9
6.2. CONDUCTED PEAK OUTPUT POWER	
6.3. 20DB EMISSION BANDWIDTH	13
6.4. Frequencies Separation	_
6.5. HOPPING CHANNEL NUMBER	
6.6. DWELL TIME	
6.7. BAND EDGE	
6.7.1. Conducted Emission Method	
6.7.2. Radiated Emission Method	
6.8. Spurious Emission	
6.8.2. Radiated Emission Method	
6.9. ANTENNA REQUIREMENT	
7. TEST SETUP PHOTO	41
8 FUT CONSTRUCTIONAL DETAILS	/1

3. Test Summary

Test Item	Section in CFR 47	Result
Antenna Requirement	15.203/15.247 (c)	Pass
AC Power Line Conducted Emission	15.207	Pass
Conducted Peak Output Power	15.247 (b)(1)	Pass
20dB Occupied Bandwidth	15.247 (a)(1)	Pass
Carrier Frequencies Separation	15.247 (a)(1)	Pass
Hopping Channel Number	15.247 (a)(1)(iii)	Pass
Dwell Time	15.247 (a)(1)(iii)	Pass
Radiated Emission	15.205/15.209	Pass
Band Edge	15.247(d)	Pass

Remarks:

- 1. Pass: The EUT complies with the essential requirements in the standard.
- 2. Test according to ANSI C63.10:2013

Measurement Uncertainty

Test Item	Frequency Range	Measurement Uncertainty	Notes			
Radiated Emission	30~1000MHz	4.37 dB	(1)			
Radiated Emission	1~18GHz	5.40 dB	(1)			
Radiated Emission	18-40GHz	5.45 dB	(1)			
Conducted Disturbance	0.15~30MHz	2.68 dB	(1)			
Note (1): The measurement unce	ertainty is for coverage factor of k	=2 and a level of confidence of 9	95%.			

4. General Information

4.1. General Description of EUT

Product Name:	True Wireless BT headphones
Model No.:	TF-T50
Series model:	N/A
Test sample(s) ID:	HTT202408037-1(Engineer sample)
	HTT202408037-2(Normal sample)
Operation Frequency:	2402MHz~2480MHz
Channel numbers:	79
Channel separation:	1MHz
Modulation type:	GFSK, π/4-DQPSK
Antenna Type:	Chip Antenna
Antenna gain:	3.00 dBi
Power Supply:	DC 3.7V From Battery and DC 5V From External Circuit
Adapter Information	Mode: GS-0500200
(Auxiliary test provided by the lab):	Input: AC100-240V, 50/60Hz, 0.3A max
	Output: DC 5V, 2A

Operation Frequency each of channel							
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
1	2402MHz	21	2422MHz	41	2442MHz	61	2462MHz
2	2403MHz	22	2423MHz	42	2443MHz	62	2463MHz
3	2404MHz	23	2424MHz	43	2444MHz	63	2464MHz
4	2405MHz	24	2425MHz	44	2445MHz	64	2465MHz
5	2406MHz	25	2426MHz	45	2446MHz	65	2466MHz
6	2407MHz	26	2427MHz	46	2447MHz	66	2467MHz
7	2408MHz	27	2428MHz	47	2448MHz	67	2468MHz
8	2409MHz	28	2429MHz	48	2449MHz	68	2469MHz
9	2410MHz	29	2430MHz	49	2450MHz	69	2470MHz
10	2411MHz	30	2431MHz	50	2451MHz	70	2471MHz
11	2412MHz	31	2432MHz	51	2452MHz	71	2472MHz
12	2413MHz	32	2433MHz	52	2453MHz	72	2473MHz
13	2414MHz	33	2434MHz	53	2454MHz	73	2474MHz
14	2415MHz	34	2435MHz	54	2455MHz	74	2475MHz
15	2416MHz	35	2436MHz	55	2456MHz	75	2476MHz
16	2417MHz	36	2437MHz	56	2457MHz	76	2477MHz
17	2418MHz	37	2438MHz	57	2458MHz	77	2478MHz
18	2419MHz	38	2439MHz	58	2459MHz	78	2479MHz
19	2420MHz	39	2440MHz	59	2460MHz	79	2480MHz
20	2421MHz	40	2441MHz	60	2461MHz		

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

Channel	Frequency
The lowest channel	2402MHz
The middle channel	2441MHz
The Highest channel	2480MHz

4.2. Test mode

Transmitting mode Keep the EUT in continuously transmitting mode.

Remark: During the test, the test voltage was tuned from 85% to 115% of the nominal rated supply voltage, and found that the worst case was under the nominal rated supply condition. So the report just shows that condition's data.

4.3. Description of Support Units

None.

4.4. Deviation from Standards

None.

4.5. Abnormalities from Standard Conditions

None.

4.6. Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

FCC-Registration No.: 779513 Designation Number: CN1319

Shenzhen HTT Technology Co.,Ltd. has been accredited on the US Federal Communications Commission list of test facilities recognized to perform electromagnetic emissions measurements.

A2LA-Lab Cert. No.: 6435.01

Shenzhen HTT Technology Co.,Ltd. has been listed by American Association for Laboratory Accreditation to perform electromagnetic emission measurement.

The 3m-Semi anechoic test site fulfils CISPR 16-1-4 according to ANSI C63.10 and CISPR 16-1-4:2010.

4.7. Test Location

All tests were performed at:

Shenzhen HTT Technology Co.,Ltd.

1F, Building B, Huafeng International Robotics Industrial Park, Hangcheng Road, Nanchang Community, Xixiang Street, Bao'an District, Shenzhen, Guangdong, China

Tel: 0755-23595200 Fax: 0755-23595201

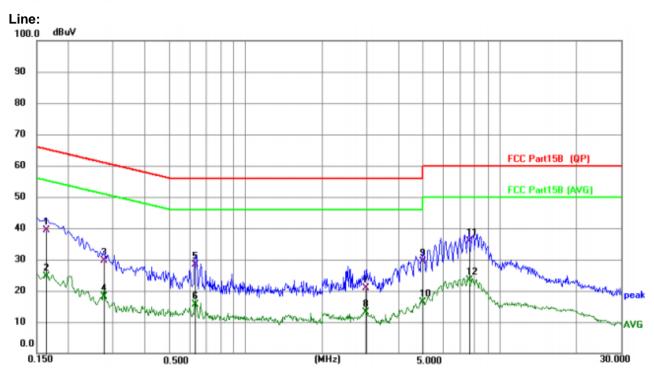
4.8. Additional Instructions

Test Software	Special AT test command provided by manufacturer to Keep the EUT in continuously transmitting mode and hopping mode
Power level setup	Default

5. Test Instruments list

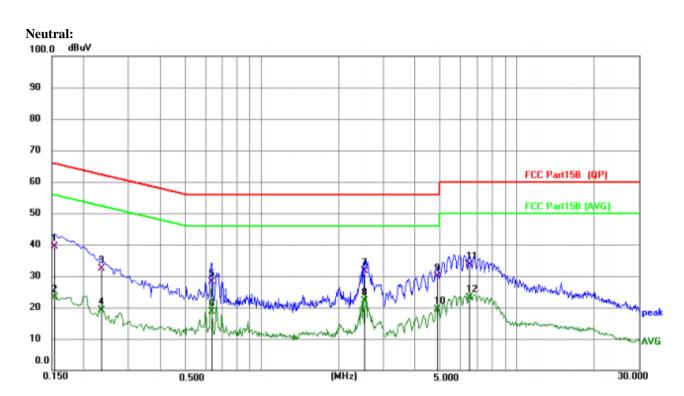
<u>J.</u>	163t III3ti uiile	1100 1100	1			
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)
1	3m Semi- Anechoic Chamber	Shenzhen C.R.T technology co., LTD	9*6*6	HTT-E028	Aug. 10 2024	Aug. 09 2027
2	Control Room Shenzhen C.R.T technology co., LTD		4.8*3.5*3.0	HTT-E030	Aug. 10 2024	Aug. 09 2027
3	EMI Test Receiver	Rohde&Schwar	ESCI7	HTT-E022	Apr. 26 2024	Apr. 25 2025
4	Spectrum Analyzer	Rohde&Schwar	FSP			Apr. 25 2025
5	Coaxial Cable	ZDecl	ZT26-NJ-NJ-0.6M	HTT-E018	Apr. 26 2024	Apr. 25 2025
6	Coaxial Cable	ZDecl	ZT26-NJ-SMAJ-2M	HTT-E019	Apr. 26 2024	Apr. 25 2025
7	Coaxial Cable	ZDecl	ZT26-NJ-SMAJ-0.6M	HTT-E020	Apr. 26 2024	Apr. 25 2025
8	Coaxial Cable	ZDecl	ZT26-NJ-SMAJ-8.5M	HTT-E021	Apr. 26 2024	Apr. 25 2025
9	Composite logarithmic antenna	Schwarzbeck	VULB 9168	HTT-E017	May. 21 2024	May. 20 2025
10	Horn Antenna	Schwarzbeck	BBHA9120D	HTT-E016	May. 20 2024	May. 19 2025
11	Loop Antenna	Zhinan	ZN30900C	HTT-E039	Apr. 26 2024	Apr. 25 2025
12	Horn Antenna	Beijing Hangwei Dayang	OBH100400	HTT-E040	Apr. 26 2024	Apr. 25 2025
13	low frequency Amplifier	Sonoma Instrument	310	HTT-E015	Apr. 26 2024	Apr. 25 2025
14	high-frequency Amplifier	HP	8449B	HTT-E014	Apr. 26 2024	Apr. 25 2025
15	Variable frequency power supply	ariable frequency power Shenzhen Anbiao		HTT-082	Apr. 26 2024	Apr. 25 2025
16	EMI Test Receiver	Rohde & Schwarz	ESCS30	HTT-E004	Apr. 26 2024	Apr. 25 2025
17	Artificial Mains	Rohde & Schwarz	ESH3-Z5	HTT-E006	May. 23 2024	May. 22 2025
18	Artificial Mains	Rohde & Schwarz	ENV-216	HTT-E038	May. 23 2024	May. 22 2025
19	Cable Line	Robinson	Z302S-NJ-BNCJ-1.5M	HTT-E001	Apr. 26 2024	Apr. 25 2025
20	Attenuator	Robinson	6810.17A	HTT-E007	Apr. 26 2024	Apr. 25 2025
21	Variable frequency power supply	Shenzhen Yanghong Electric Co., Ltd	YF-650 (5KVA)	HTT-E032	Apr. 26 2024	Apr. 25 2025
22	Control Room	Shenzhen C.R.T technology co., LTD	8*4*3.5	HTT-E029	Aug. 10 2024	Aug. 09 2027
23	DC power supply	Agilent	E3632A	HTT-E023	Apr. 26 2024	Apr. 25 2025
24	EMI Test Receiver	Agilent	N9020A	HTT-E024	Apr. 26 2024	Apr. 25 2025
25	Analog signal generator	Agilent	N5181A	HTT-E025	Apr. 26 2024	Apr. 25 2025
26	Vector signal generator	Agilent	N5182A	HTT-E026	Apr. 26 2024	Apr. 25 2025
27	Power sensor	Keysight	U2021XA	HTT-E027	Apr. 26 2024	Apr. 25 2025
28	Temperature and humidity meter	Shenzhen Anbiao Instrument Co., Ltd	TH10R	HTT-074	Apr. 28 2024	Apr. 27 2025
29	Radiated Emission Test Software	Farad	EZ-EMC	N/A	N/A	N/A
30	Conducted Emission Test Software	Farad	EZ-EMC	N/A	N/A	N/A
31	RF Test Software	panshanrf	TST	N/A	N/A	N/A
_	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·			

6. Test results and Measurement Data


6.1. Conducted Emissions

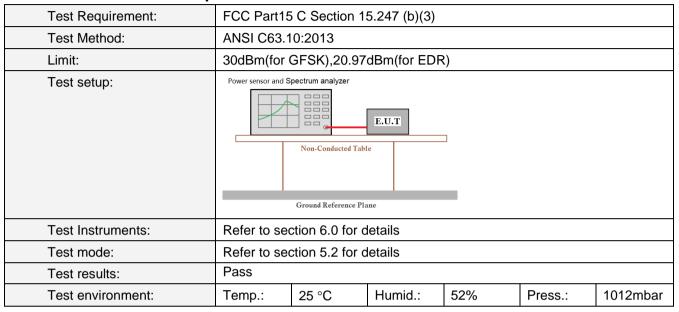
o.i. Odilaadta Elilissioli	5				
Test Requirement:	FCC Part15 C Section 15.20	7			
Test Method:	ANSI C63.10:2013				
Test Frequency Range:	150KHz to 30MHz				
Class / Severity:	Class B RBW=9KHz, VBW=30KHz, Sweep time=auto				
Receiver setup:					
Limit:	Fragues au rongo (MIII-)	Limit	(dBuV)		
	Frequency range (MHz)	Quasi-peak	Average		
	0.15-0.5	66 to 56*	56 to 46*		
	0.5-5	56	46		
	5-30	60	50		
Test setup:	* Decreases with the logarith Reference Plan				
Test procedure:	AUX Equipment E.U.T Test table/Insulation plane Remark E.U.T. Equipment Under Test LISN: Line Impedence Stabilization Network Test table height=0.8m 1. The E.U.T and simulators line impedance stabilization 500hm/50uH coupling imp 2. The peripheral devices are LISN that provides a 500h termination. (Please refer photographs).	This provides a uring equipment. The main power through a redance with 50ohm			
Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relipositions of equipment and all of the interface cables must be according to ANSI C63.10:2013 on conducted measurement.					
Test Instruments:	Refer to section 6.0 for detail				
Test mode:	Refer to section 5.2 for detail				
Test environment:	· · · · · · · · · · · · · · · · · · ·	mid.: 52%	Press.: 1012mbar		
Test voltage:	AC 120V, 60Hz				
Test results:	Pass				

Remark: Based on all tested data, the EUT complied with the FCC Part 15.207 standard limit for a wireless device, and withthe worst case as below:



Measurement data:

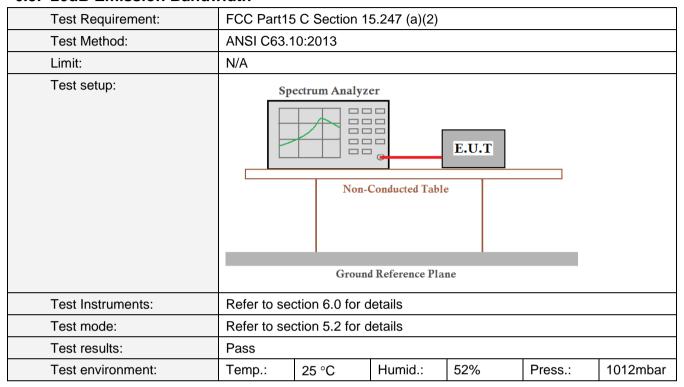
No. Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
	MHz		dB	dBuV	dBuV	dB	Detector
1	0.1635	29.20	10.18	39.38	65.28	-25.90	QP
2	0.1635	14.44	10.18	24.62	55.28	-30.66	AVG
3	0.2758	19.31	10.23	29.54	60.94	-31.40	QP
4	0.2758	8.02	10.23	18.25	50.94	-32.69	AVG
5	0.6315	18.08	10.32	28.40	56.00	-27.60	QP
6	0.6316	5.29	10.32	15.61	46.00	-30.39	AVG
7	2.9670	10.44	10.50	20.94	56.00	-35.06	QP
8	2.9670	2.68	10.50	13.18	46.00	-32.82	AVG
9	4.9650	18.85	10.61	29.46	56.00	-26.54	QP
10	4.9650	5.89	10.61	16.50	46.00	-29.50	AVG
11 *	7.5705	25.28	10.63	35.91	60.00	-24.09	QP
12	7.5705	12.82	10.63	23.45	50.00	-26.55	AVG


No. Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
	MHz		dB	dBuV	dBuV	dB	Detector
1	0.1539	29.17	10.16	39.33	65.79	-26.46	QP
2	0.1539	12.91	10.16	23.07	55.79	-32.72	AVG
3	0.2341	22.25	10.22	32.47	62.30	-29.83	QP
4	0.2341	8.85	10.22	19.07	52.30	-33.23	AVG
5	0.6360	17.83	10.35	28.18	56.00	-27.82	QP
6	0.6360	8.40	10.35	18.75	46.00	-27.25	AVG
7	2.5260	21.28	10.43	31.71	56.00	-24.29	QP
8 *	2.5260	11.69	10.43	22.12	46.00	-23.88	AVG
9	4.8615	19.37	10.56	29.93	56.00	-26.07	QP
10	4.8615	8.76	10.56	19.32	46.00	-26.68	AVG
11	6.5220	23.06	10.66	33.72	60.00	-26.28	QP
12	6.5220	12.50	10.66	23.16	50.00	-26.84	AVG

Notes:

- 1. An initial pre-scan was performed on the line and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level =Receiver Read level + LISN Factor + Cable Los

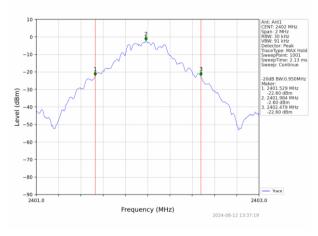
6.2. Conducted Peak Output Power



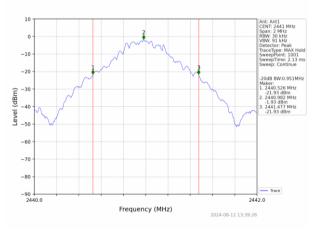
Measurement Data

Mode	Test channel	Test channel Peak Output Power (dBm)		Result	
	Lowest	-0.65			
GFSK	Middle	-0.01	30.00	Pass	
	Highest	1.02		l	
	Lowest	0.26			
π/4-DQPSK	Middle	0.89	20.97	Pass	
	Highest	1.75			

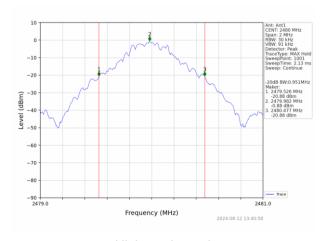
6.3. 20dB Emission Bandwidth


Measurement Data

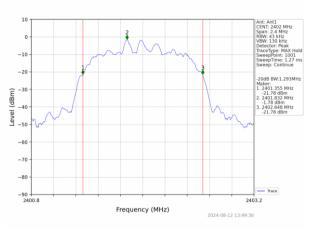
Mode	Test channel	20dB Emission Bandwidth (MHz)	Result	
	Lowest	0.950		
GFSK	Middle	0.951	Pass	
	Highest	0.951		
	Lowest	1.293		
π/4-DQPSK	Middle	1.295	Pass	
	Highest	1.301		

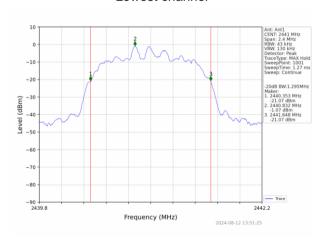


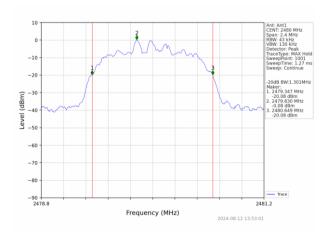
Test plot as follows:


Test mode: GFSK mode

Lowest channel


Middle channel


Highest channel


Test mode: $\pi/4$ -DQPSK mode

Lowest channel

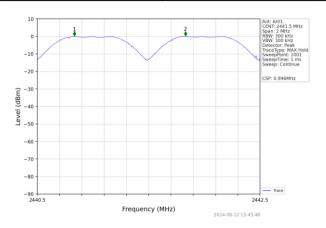
Middle channel

Highest channel

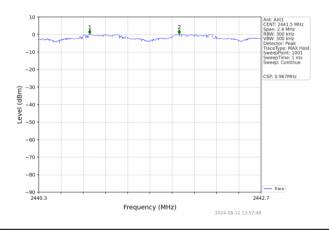
6.4. Frequencies Separation

<u> </u>							
Test Requirement:	FCC Part1	5 C Section 1	5.247 (a)(1)				
Test Method:	ANSI C63.	10:2013					
Receiver setup:	RBW=100k	(Hz, VBW=30	00KHz, detec	tor=Peak			
Limit:		B bandwidth 〈: 0.025MH	lz or 2/3 of	the 20dB b	andwidth	(whichever	is
Test setup:	Sp						
Test Instruments:	Refer to se	ction 6.0 for o	details				
Test mode:		ction 5.2 for o	Jetalis				
Test results:	Pass	Ī	Ī	T	1		
Test environment:	Temp.:	25 °C	Humid.:	52%	Press.:	1012mb	ar

Measurement Data


Mode	Test channel	Frequencies Separation (MHz)	Limit (kHz)	Result
			25KHz or	
GFSK	Middle	0.996	2/3*20dB	Pass
			bandwidth	
			25KHz or	
π/4-DQPSK	Middle	0.967	2/3*20dB	Pass
			bandwidth	
	GFSK	GFSK Middle	GFSK Middle 0.996	GFSK Middle 0.996 2/3*20dB bandwidth 25KHz or 7/4-DQPSK Middle 0.967 2/3*20dB

Remark: We have tested all mode at high, middle and low channel, and recorded worst case at middle



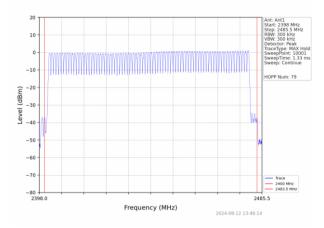
Test plot as follows:

Modulation mode: GFSK

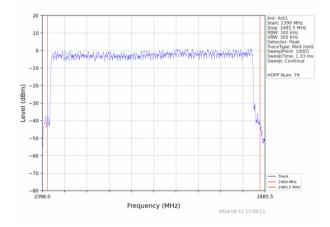
Test mode: π/4-DQPSK

6.5. Hopping Channel Number

Test Requirement:	FCC Part1	FCC Part15 C Section 15.247 (a)(1)(iii)						
Test Method:	ANSI C63.	10:2013						
Receiver setup:		RBW=100kHz, VBW=300kHz, Frequency range=2400MHz-2483.5MHz, Detector=Peak						
Limit:	15 channel	S						
Test setup:	Spe			E.U.T				
Test Instruments:	Refer to se	ction 6.0 for c	letails					
Test mode:		ction 5.2 for c						
Test results:	Pass	Pass						
Test environment:	Temp.:	25 °C	Humid.:	52%	Press.:	1012mbar		


Measurement Data:

Mode	Hopping channel numbers	Limit	Result
GFSK	79	>45	Pass
π/4-DQPSK	79	≥15	Pass



Test plot as follows:

Test mode: GFSK

Test mode: $\pi/4$ -DQPSK

6.6. Dwell Time

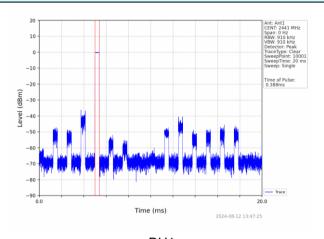
Test Requirement:	FCC Part1	FCC Part15 C Section 15.247 (a)(1)(iii)							
Test Method:	ANSI C63.	10:2013							
Receiver setup:	RBW=1MH	RBW=1MHz, VBW=1MHz, Span=0Hz, Detector=Peak							
Limit:	0.4 Second								
Test setup:	Sp								
Test Instruments:	Refer to se	ction 6.0 for c	letails						
Test mode:	Refer to se	ction 5.2 for c	letails						
Test results:	Pass	Pass							
Test environment:	Temp.:	25 °C	Humid.:	52%	Press.:	1012mbar			

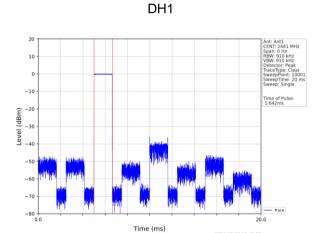
Measurement Data

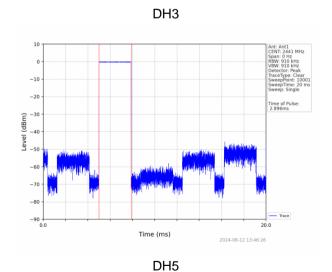
Modulation	Packet	Burst time (ms)	Dwell time (ms)	Limit (ms)	Result	
	DH1	0.388	124.160			
GFSK	DH3	1.642	266.004	400	Pass	
	DH5	2.896	309.872			
	2-DH1	0.396	126.324			
π/4DQPSK	2-DH3	1.654	261.332	400	Pass	
	2-DH5	2.896	289.600			

Note:We have tested all mode at high, middle and low channel, and recoreded worst case at middle channel.

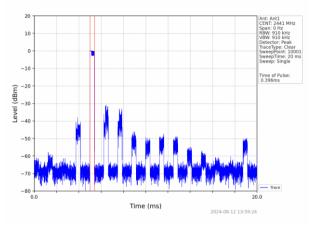
Dwell time=Pulse time (ms) \times (1600 \div 2 \div 79) \times 31.6 Second for DH1, 2-DH1


Dwell time=Pulse time (ms) x (1600 \div 4 \div 79) x31.6 Second for DH3, 2-DH3

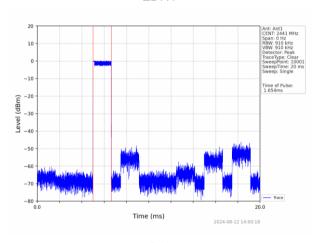

Dwell time=Pulse time (ms) x (1600 \div 6 \div 79) x31.6 Second for DH5, 2-DH5

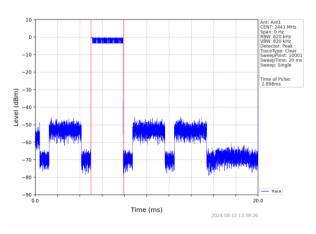

Test plot as follows:

GFSK mode

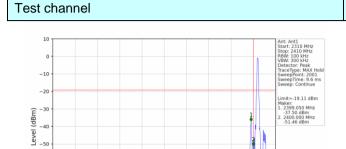


2024-08-12 13:48:20

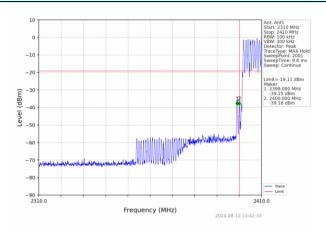



π/4-DQPSK mode

2DH1


6.7. Band Edge

6.7.1. Conducted Emission Method

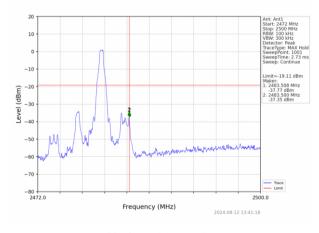

spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement. Test setup: Spectrum Analyzer Forund Reference Plane Test Instruments: Refer to section 6.0 for details Test mode: Refer to section 5.2 for details Test results: Pass	·····									
Receiver setup: RBW=100kHz, VBW=300kHz, Detector=Peak Limit: In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement. Test setup: Spectrum Analyzer Fest Instruments: Refer to section 6.0 for details Test mode: Refer to section 5.2 for details Test results: Pass	Test Requirement:	FCC Part15	FCC Part15 C Section 15.247 (d)							
Limit: In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement. Test setup: Spectrum Analyzer Feut Instruments: Refer to section 6.0 for details Test mode: Refer to section 5.2 for details Test results: Pass	Test Method:	ANSI C63.1	ANSI C63.10:2013							
spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement. Test setup: Spectrum Analyzer Forund Reference Plane Test Instruments: Refer to section 6.0 for details Test mode: Refer to section 5.2 for details Test results: Pass	Receiver setup:	RBW=100k	RBW=100kHz, VBW=300kHz, Detector=Peak							
Test Instruments: Refer to section 6.0 for details Test mode: Refer to section 5.2 for details Test results: Pass	Limit:	spectrum in is produced the 100 kHz the desired	is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated							
Test mode: Refer to section 5.2 for details Test results: Pass	Test setup:	Spec	Spectrum Analyzer E.U.T Non-Conducted Table							
Test results: Pass	Test Instruments:	Refer to see	ction 6.0 for o	details						
1001 1000.100	Test mode:	Refer to see	ction 5.2 for o	details						
Test environment: Temp.: 25 °C Humid.: 52% Press : 1012mbar	Test results:	Pass								
100 100 101 100 101 101 101 101 101 101	Test environment:	Temp.:	25 °C	Humid.:	52%	Press.:	1012mbar			

Test plot as follows: GFSK Mode:

Lowest channel

No-hopping mode

2024-08-12 13:37:36


Frequency (MHz)

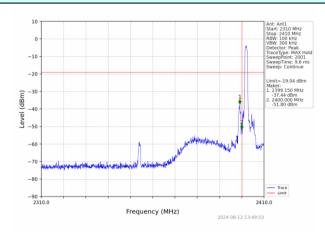
Hopping mode

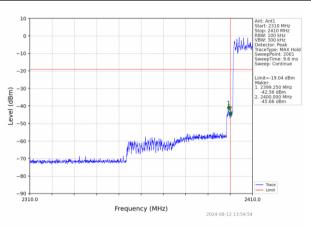
Test channel:

−90 ↓ 2310.0

Highest channel

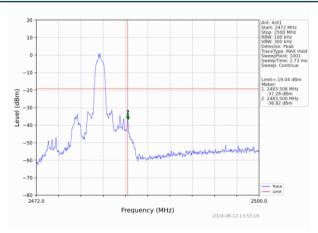
| Start .2472 MHz | Start .2472 MHz | Store .2500 MHz | HDM; 100 Htr | HDM; 172 mt; Maker | HDM; 172 mt; Maker | HDM; 173 mt; SweepTime : 273 mt; SweepTime

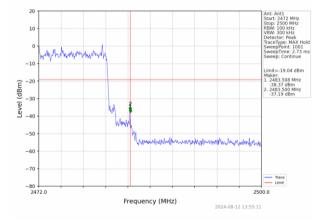

No-hopping mode


Hopping mode

π/4-DQPSK Mode:

Test channel Lowest channel




No-hopping mode

Hopping mode

Test channel:

Highest channel

No-hopping mode

Hopping mode

6.7.2. Radiated Emission Method

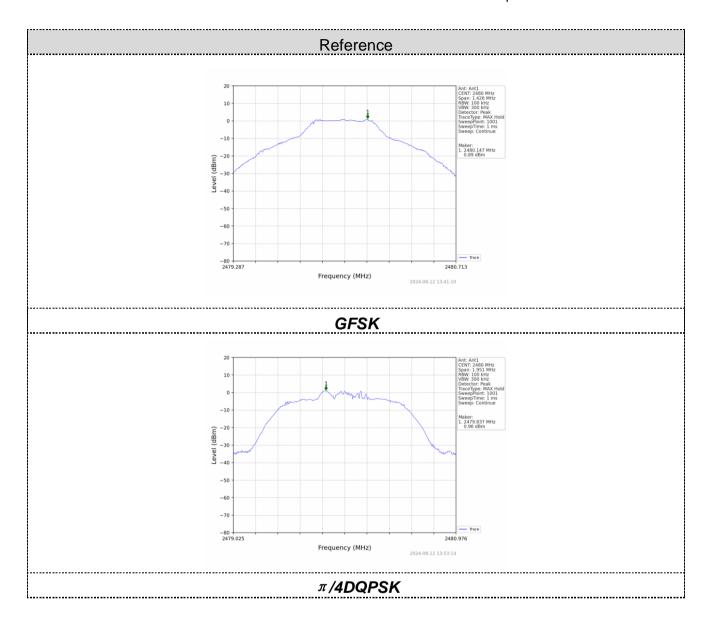
6.7.2. Radiated Emission Method							
Test Requirement:	FCC Part15 (C Section 1	5.209 a	nd 15.205			
Test Method:	ANSI C63.10	:2013					
Test Frequency Range:	All of the res 2500MHz) da			ested, only	the wo	orst band's (2310MHz to
Test site:	Measuremen	t Distance:	3m				
Receiver setup:	Frequency	Detec	ctor	RBW	VBW	/ R	emark
	Above 1GH	Pea		1MHz	3MH:		k Value
		Pea		1MHz	10Hz		age Value
Limit:	Fred	quency	L	imit (dBuV <u>.</u> 54.0		,	emark
	Abov	Above 1GHz			10		age Value ik Value
Test setup:	Tum Table** <150cm>*	EUI+	< 3m :	Test Antenna	?		
Test Procedure:	1. The EUT v	was placed	on the	top of a rot	ating tab	ole 1.5 meter	rs above the
	determine 2. The EUT vantenna, vantenna, vantenna, vantenna, vantenna, vantenna, vantenna ground to horizontal measurem 4. For each sand then tand the romaximum 5. The test-respecified 6. If the emislimit specified EUT would 10dB marg	the position was set 3 m which was no na height is determine to and vertical nent. Suspected e he antenna ta table was reading. Seceiver syst Bandwidth was ion level of fied, then ted be reported gin would be	varied he max turned was turned em was turned et at the	highest rac way from the don the top from one retimum value zations of the n, the EUT ned to height d from 0 de as set to Pea aximum Holl UT in peak ould be sto erwise the ested one by	diation. The interform of a variation of a variatio	four meters field strength and are set to anged to its and 1 meter to 360 degree of Function and	above the n. Both o make the worst case 4 meters s to find the ralues of the ot have asi-peak or
Test Instruments:	Refer to sect						
Test mode:	Refer to sect	ion <u>5</u> .2 for d	etails				
Test results:	Pass						_
Test environment:	Temp.:	25 °C	Humi	d.: 52%	o -	Press.:	1012mbar

Measurement Data

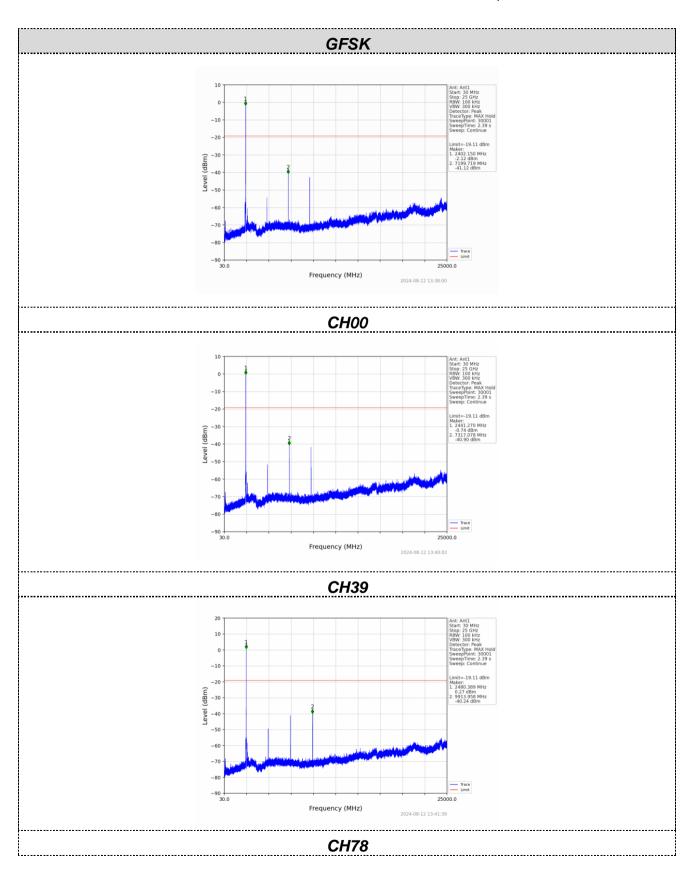
Remark: GFSK, Pi/4 DQPSK all have been tested, only worse case GFSK is reported.

Operation Mode: GFSK

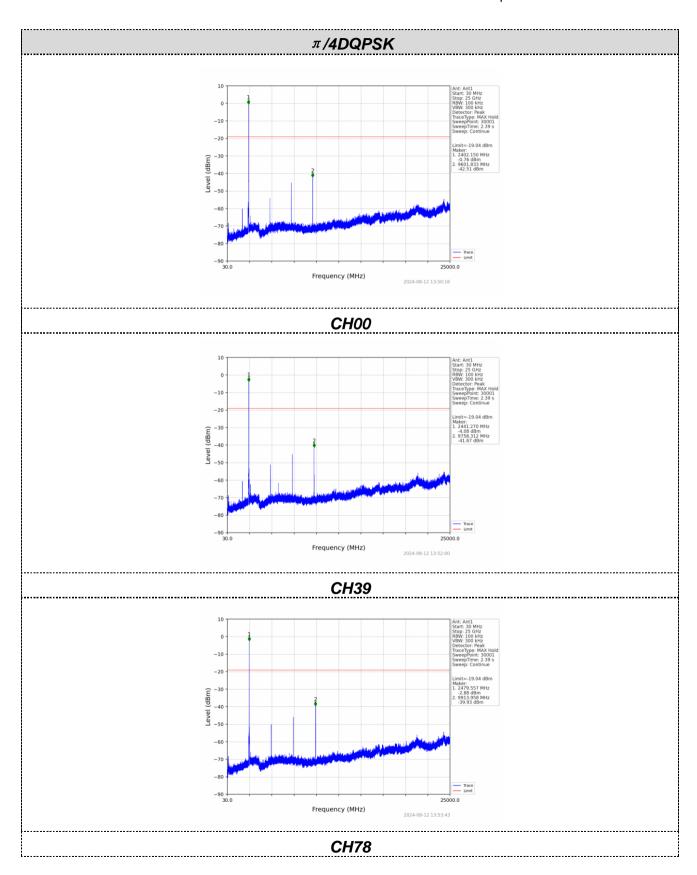
Freque	ncy(MHz)	:	24	02	Pola	arity:	Н	IORIZONTA	۱L
Frequency (MHz)	Emis Le [,] (dBu	vel	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)
2390.00	59.67	PK	74	14.33	61.06	27.2	4.31	32.9	-1.39
2390.00	45.20	AV	54	8.80	46.59	27.2	4.31	32.9	-1.39
Freque	ncy(MHz)	:	24	02	Pola	arity:		VERTICAL	
Frequency (MHz)	Emis Le [,] (dBu	vel	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)
2390.00	59.99	PK	74	14.01	61.38	27.2	4.31	32.9	-1.39
2390.00	46.84	AV	54	7.16	48.23	27.2	4.31	32.9	-1.39
Freque	ncy(MHz)	:	24	80	P ola	P olarity: HORIZONTAL		۸L	
Frequency (MHz)	Emis Le [,] (dBu	vel	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)
2483.50	56.59	PK	74	17.41	57.52	27.4	4.47	32.8	-0.93
2483.50	45.45	AV	54	8.55	46.38	27.4	4.47	32.8	-0.93
Freque	ncy(MHz)	:	24	80	Pola	arity:		VERTICAL	
Frequency (MHz)	Emis Le	vel	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)
2483.50	55.08	PK	74	18.92	56.01	27.4	4.47	32.8	-0.93
2483.50	44.09	AV	54	9.91	45.02	27.4	4.47	32.8	-0.93

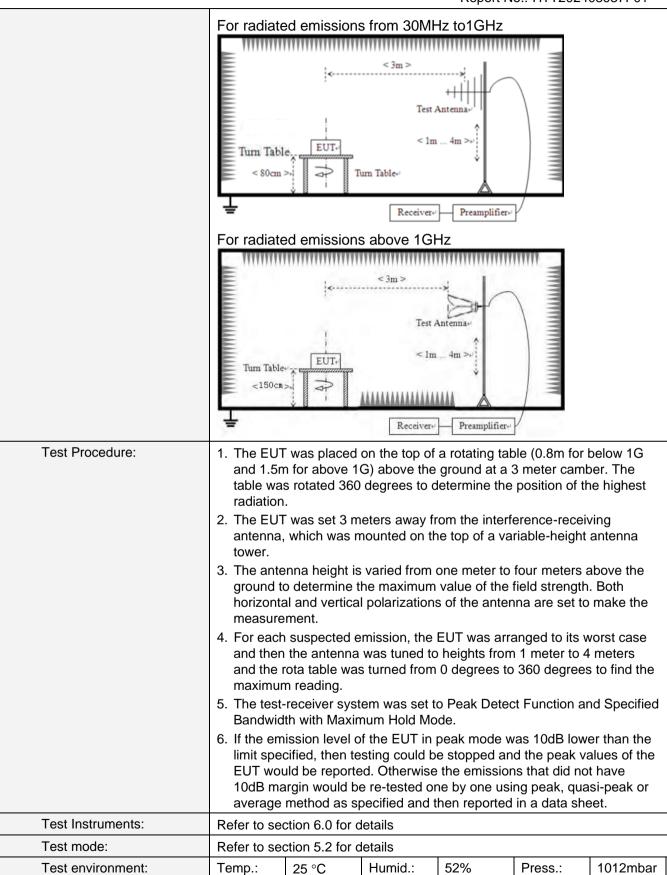


6.8. Spurious Emission


6.8.1. Conducted Emission Method

Test Requirement:	FCC Part15	FCC Part15 C Section 15.247 (d)									
Test Method:	ANSI C63.10	ANSI C63.10:2013									
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.										
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane										
Test Instruments:	Refer to section 6.0 for details										
Test mode:	Refer to section 5.2 for details										
Test results:	Pass										
Test environment:	Temp.:	25 °C	Humid.:	52%	Press.:	1012mbar					

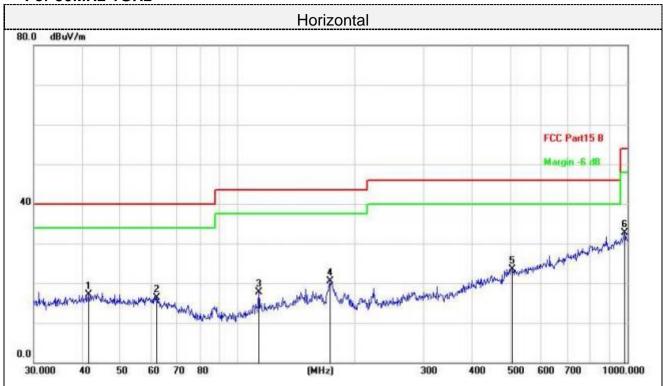




6.8.2. Radiated Emission Method

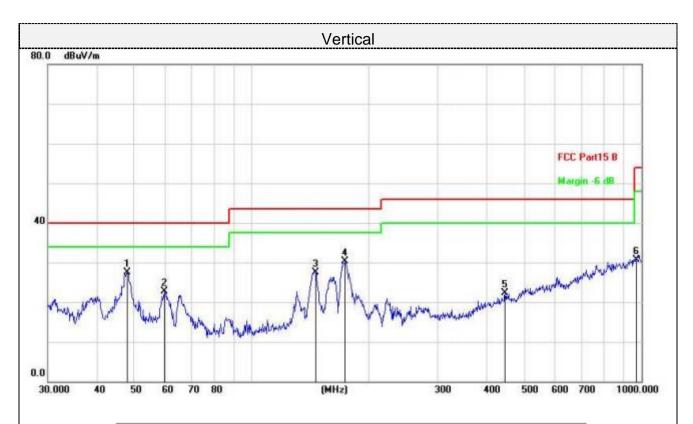
6.6.2. Radiated E	mission wethou										
Test Requirement:	FCC Part15 C Section	on 15	5.209								
Test Method:	ANSI C63.10:2013										
Test Frequency Range:	9kHz to 25GHz										
Test site:	Measurement Distar	nce: 3	3m								
Receiver setup:	Frequency										
	9KHz-150KHz	Quasi-peak									
	150KHz-30MHz Quasi-peak 9KHz 30KHz Quas										
	30MHz-1GHz	Qι	ıasi-peak	120K	Hz	300KH	lz	Quasi-peak			
	Above 1GHz		Peak	1MF	łz	3MHz	<u>-</u>	Peak			
	Above 10112		Peak	1MF	łz	10Hz	•	Average			
Limit:	Frequency		Limit (u\	//m)	V	alue	N	Measurement Distance			
	0.009MHz-0.490M	lHz	2400/F(k	(Hz)		QP		300m			
	0.490MHz-1.705M	lHz	24000/F(KHz)		QP		30m			
	1.705MHz-30MH	lz	30			QP		30m			
	30MHz-88MHz		100		QP						
	88MHz-216MHz	<u> </u>	150			QP					
	216MHz-960MH					QP		3m			
	960MHz-1GHz		500			QP		5111			
	Above 1GHz		500		Ave						
	7.5576 15112		5000		F	Peak					
Test setup:	For radiated emiss	sions	from 9kH	z to 30	MH:	Z					
	***********	11111	(1111111111111111	******	77777	******					
	Turn Table EUT		< 3m > Test A um Table-	ntenna lm							

Test voltage:	AC 120V, 60Hz
Test results:	Pass


Measurement data:

Remarks:

- 1. During the test, pre-scan the GFSK, $\pi/4$ -DQPSK modulation, and found the GFSK modulation which it is worse case.
- 2. Pre-scan all kind of the place mode (X-axis, Y-axis, Z-axis), and found the Y-axis which it is worse case.
- 3. Radiated emission test from 9 KHz to 10th harmonic of fundamental was verified, and no emission found except system noise floor in 9 KHz to 30MHz and not recorded in this report.
- 4. Based on all tested data, the EUT complied with the FCC Part 15.207 standard limit for a wireless device, and with the worst case as DH5 2402MHz as below:


For 30MHz-1GHz

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB/m	dBuV/m	dB/m	dB	Detector
1		41.5670	27.26	-10.24	17.02	40.00	-22.98	QP
2		61.9951	28.35	-11.96	16.39	40.00	-23.61	QP
3		113.3163	31.40	-13.74	17.66	43.50	-25.84	QP
4		172.5988	31.90	-11.44	20.46	43.50	-23.04	QP
5		506.4791	28.46	-4.97	23.49	46.00	-22.51	QP
6	*	982.6200	29.24	3.46	32.70	54.00	-21.30	QP

Final Level = Receiver Read level + Correct Factor

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB/m	dBuV/m	dB/m	dB	Detector
1	*	47.9940	38.52	-10.92	27.60	40.00	-12.40	QP
2		59.6493	34.28	-11.61	22.67	40.00	-17.33	QP
3		145.3506	38.73	-11.17	27.56	43.50	-15.94	QP
4		173.8135	41.87	-11.66	30.21	43.50	-13.29	QP
5		446.4141	28.71	-6.41	22.30	46.00	-23.70	QP
6		968.9338	27.43	3.34	30.77	54.00	-23.23	QP

Final Level =Receiver Read level + Correct Factor

For 1GHz to 25GHz

Remark: For test above 1GHz GFSK,Pi/4 DQPSK were test at Low, Middle, and High

channel; only the worst result of GFSK was reported as below:

Frequency(MHz):			2402		Polarity:		HORIZONTAL		
Frequency (MHz)	Emis Le		Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)
4804.00	58.43	PK	74	15.57	52.73	31	6.5	31.8	5.7
4804.00	42.25	AV	54	11.75	36.55	31	6.5	31.8	5.7
7206.00	54.42	PK	74	19.58	41.77	36	8.15	31.5	12.65
7206.00	44.03	AV	54	9.97	31.38	36	8.15	31.5	12.65

Freque	Frequency(MHz):			2402		Polarity:		VERTICAL		
Frequency (MHz)	Le	ssion vel V/m)	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)	
4804.00	58.23	PK	74	15.77	52.53	31	6.5	31.8	5.7	
4804.00	44.11	AV	54	9.89	38.41	31	6.5	31.8	5.7	
7206.00	52.11	PK	74	21.89	39.46	36	8.15	31.5	12.65	
7206.00	42.73	AV	54	11.27	30.08	36	8.15	31.5	12.65	

Frequency(MHz):			2441		Polarity:		HORIZONTAL		
Frequency (MHz)	Emission Level (dBuV/m)		Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)
4882.00	60.62	PK	74	13.38	54.46	31.2	6.61	31.65	6.16
4882.00	43.69	AV	54	10.31	37.53	31.2	6.61	31.65	6.16
7323.00	52.17	PK	74	21.83	39.22	36.2	8.23	31.48	12.95
7323.00	43.27	AV	54	10.73	30.32	36.2	8.23	31.48	12.95

Freque	Frequency(MHz):			2441		Polarity:		VERTICAL			
Frequency (MHz)	Emission Level		Limit	Margin	Raw Value	Antenna Factor	Cable Factor	Pre- amplifier	Correction Factor		
	(dBu	V/m)	(dBuV/m)	(dB)	(dBuV)	(dB/m)	(dB)	(dB)	(dB/m)		
4882.00	62.25	PK	74	11.75	56.09	31.2	6.61	31.65	6.16		
4882.00	42.87	AV	54	11.13	36.71	31.2	6.61	31.65	6.16		
7323.00	53.35	PK	74	20.65	40.40	36.2	8.23	31.48	12.95		
7323.00	44.13	AV	54	9.87	31.18	36.2	8.23	31.48	12.95		

Freque	Frequency(MHz):			2480		Polarity:		HORIZONTAL		
Frequency (MHz)	Emis Le		Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)	
4960.00	62.26	PK	74	11.74	55.60	31.4	6.76	31.5	6.66	
4960.00	42.78	AV	54	11.22	36.12	31.4	6.76	31.5	6.66	
7440.00	54.89	PK	74	19.11	41.59	36.4	8.35	31.45	13.3	
7440.00	46.06	AV	54	7.94	32.76	36.4	8.35	31.45	13.3	

Frequency(MHz):			2480		Polarity:		VERTICAL		
Fraguency	Emission		Limit	Morgin	Raw	Antenna	Cable	Pre-	Correction
Frequency	Le	Level		Margin	Value	Factor	Factor	amplifier	Factor
(MHz)	(dBu	V/m)	(dBuV/m)	(dB)	(dBuV)	(dB/m)	(dB)	(dB)	(dB/m)
4960.00	63.80	PK	74	10.20	57.14	31.4	6.76	31.5	6.66
4960.00	42.17	AV	54	11.83	35.51	31.4	6.76	31.5	6.66
7440.00	54.84	PK	74	19.16	41.54	36.4	8.35	31.45	13.3
7440.00	45.34	AV	54	8.66	32.04	36.4	8.35	31.45	13.3

Remark:

⁽¹⁾ Data of measurement within this frequency range shown "--- " in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.

⁽²⁾ When the test results of Peak Detected below the limits of Average Detected, the Average Detected is not need completed.

6.9. Antenna Requirement

Standard Applicable

For intentional device, according to FCC 47 CFR Section 15.203:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited

FCC CFR Title 47 Part 15 Subpart C Section 15.247(c) (1) (I):

(i) Systems operating in the 2400-2483.5 MHz band that is used exclusively for fixed. Point-to-point operations may employ transmitting antennas with directional gain greater than 6dBi provided the maximum conducted output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6dBi.

Antenna Connected Construction

The maximum gain of antenna was 3.00 dBi.

Remark: The antenna gain is provided by the customer, if the data provided by the customer is not accurate, Shenzhen HTT Technology Co., Ltd. does not assume any responsibility.

7. Test Setup Photo

Reference to the appendix I for details.

8. EUT Constructional Details

Reference to the appendix II for details.

-----End-----