

Choose Scandinavian trust

RADIO TEST REPORT – REP032851

Type of assessment: Final product testing	
_{Applicant:} INPECO SA Via Torraccia, 26 – 6883 Novazzano – Swit	zerland
Product: Main RFID architecture	
Model: CEB-A	
FCC ID: 2BALJ-CEBA0001	IC Registration number:
 Specifications: FCC 47 CFR Part 15 Subpart C RSS-210, Issue 10, December 2019, Amendment (April 2020) 	
Date of issue: June 19, 2024	

O. Frau

Tested by

Signature

D. Guarnone

Reviewed by

Doule	equonone
Signature	7

This test report shall not be partially reproduced without the prior written consent of Nemko S.p.A. The phase of sampling of equipment under test is carried out by the customer. Results indicated in this test report refer exclusively to the tested samples and apply to the sample as received. This Test Report, when bearing the Nemko name and logo is only valid when issued by a Nemko laboratory, or by a laboratory having special agreement with Nemko. Doc. n. TRF001; Rev. 0; Date: 2020-11-30

Lab locations

Company name	Nemko Spa
Address	Via del Carroccio, 4
City	Biassono
Province	MB
Postal code	20853
Country	Italy
Telephone	+39 039 220 12 01
Facsimile	+39 039 220 12 21
Website	www.nemko.com
Site number	682159 (FCC) and 9109A (ISED), 10 m semi anechoic chamber

Limits of responsibility

Note that the results contained in this report relate only to the items tested and were obtained in the period between the date of initial receipt of samples and the date of issue of the report. This test report has been completed in accordance with the requirements of ISO/IEC 17025. All results contain in this report are within Nemko Spa ISO/IEC 17025 accreditation.

Copyright notification

Nemko Spa authorizes the applicant to reproduce this report provided it is reproduced in its entirety and for use by the company's employees only. Any use which a third party makes of this report, or any reliance on or decisions to be made based on it, are the responsibility of such third parties. Nemko Spa accepts no responsibility for damages, if any, suffered by any third party as a result of decisions made or actions based on this report.

Table of contents

Table of	contents	3
Section ²	I. Report summary	4
1.1	Test specifications	4
1.2	Test methods	4
1.3	Statement of compliance	4
1.4	Exclusions	4
1.5	Test report revision history	4
Section	2. Summary of test results	5
2.1	FCC Part 15 Subpart C, general requirements test results	5
2.2	IC RSS-GEN, Issue 5, test results	5
2.3	IC RSS-210, Issue 10, test results	5
Section	3. Equipment under test (EUT) details	6
3.1	Applicant/Manufacture	6
3.2	Sample information	6
3.3	EUT information	6
3.4	Technical information	6
3.5	Product description and theory of operation	7
3.6	EUT exercise details	7
3.7	EUT interface ports	7
3.8	Support equipment	7
Section	4. Engineering considerations	8
4.1	Modifications incorporated in the EUT	8
4.2	Technical judgment	8
4.3	Deviations from laboratory tests procedures	8
Section	5. Test conditions	9
5.1	Atmospheric conditions	9
5.2	Power supply range	9
Section	6. Measurement uncertainty	. 10
6.1	Uncertainty of measurement	10
Section	7. Test equipment	. 11
7.1	Test equipment list	11
Section	8. Testing data	. 12
8.1	RSS-Gen 6.7 Occupied bandwidth	12
8.2	FCC 15.209(a) and RSS-210, Radiated emissions limits	14
Section	9. Block diagrams of test set-ups and EUT photos	.25
9.1	Radiated emissions set-up below 30 MHz	25
9.2	Radiated emissions set-up below 1 GHz	26
9.3	Radiated emissions set-up above 1 GHz	27
9.4	Set-up photos	28
95	External photos	ito.

Section 1. Report summary

1.1 Test specifications

FCC 47 CFR Part 15, Subpart C	Intentional radiators
December 2019, Amendment (April 2020)	General field strength limits

1.2 Test methods

ANSI C63.10 v2013	American National Standard of Procedures for Compliance Testing of Unlicensed Wireless Devices
RSS-Gen, Issue 5, April 2018	General Requirements for Compliance of Radio Apparatus
Amendment 1 (March 2019)	
Amendment 2 (February 2021)	

1.3 Statement of compliance

In the configuration tested, the EUT was found compliant.

Testing was completed against all relevant requirements of the test standard. Results obtained indicate that the product under test complies in full with the requirements tested. The test results relate only to the items tested.

See "Summary of test results" for full details.

1.4 Exclusions

None

1.5 Test report revision history

Revision #	Details of changes made to test report
REP032851	Original report issued

Section 2. Summary of test results

2.1 FCC Part 15 Subpart C, general requirements test results

Part	Test description	Verdict
§15.207(a)	Conducted limits	Not applicable
§15.31(e)	Variation of power source	Pass ¹
§15.31(m)	Number of operating frequencies	Pass ²
§15.203	Antenna requirement	Pass ³
§15.209	Radiated emission limits; general requirements.	Pass

Notes: The EUT is supplied by a vehicle battery.

¹ Measurements of the variation of the input power or the radiated signal level of the fundamental frequency component of the emission, as appropriate, was performed with the supply voltage varied between 85 % and 115 % of the nominal rated supply voltage. No noticeable output power variation was observed

² The use a single operating frequency of 125 kHz nominal.

³ The Antennas use a unique coupling to the intentional radiator.

2.2 IC RSS-GEN, Issue 5, test results

Part	Test description	Verdict
6.7	Occupied bandwidth	Pass
6.9	Operating bands and selection of test frequencies	Pass ¹
6.11	Transmitter frequency stability	Pass ²

Notes: The EUT is supplied by a vehicle battery.

 $^{\rm 1}$ The use a single operating frequency of 125 kHz nominal.

² Measurements of the variation of the input power or the radiated signal level of the fundamental frequency component of the emission, as appropriate, was performed with the supply voltage varied between 85 % and 115 % of the nominal rated supply voltage. No noticeable output power variation was observed. No requirements for temperature variation.

2.3 IC RSS-210, Issue 10, test results

Part	Test description	Verdict
7.2	General field strength limits	Pass

Notes:

Section 3. Equipment under test (EUT) details

3.1 Applicant/Manufacture

Applicant name	INPECO SA
Applicant address	Via Torraccia, 26 – 6883 Novazzano – Switzerland
Manufacture name	Same as applicant
Manufacture address	Same as applicant

3.2 Sample information

Receipt date	March 12, 2024
Nemko sample ID number	PRJ0053534

3.3 EUT information

Product name	Main RFID architecture	
Model	CEB-A	
Model variant		
Serial number	PRJ00535340001 (Number assigned by Nemko S.p.A.)	

3.4 Technical information

Operating band	
Operating frequency	125 kHz
Modulation type	ASK
Occupied bandwidth (99 %)	481.9 Hz
Field strength, dBµV/m @ 3 m	71.03
Emission designator	482HA1D
Spurious emission, dBµV/m @ 3 m	44.2
Power supply requirements	24 Vdc, from AC/DC power supply 230 Vac, 50 Hz
Antenna information	The EUT uses a unique antenna coupling/ non-detachable antenna to the intentional radiator.

3.5 Product description and theory of operation

The EUT is a 125 kHz Radio Frequency Identification Device (RFID) for samples Carriers.

3.6 EUT exercise details

The EUT has been tested forced in continuous transmission mode.

3.7 EUT interface ports

Description	Qty.
CAN BUS	1

3.8 Support equipment

Description	Brand name	Model, Part number, Serial number, Revision level
PC	HP	Compaq 6720s
CAN adapter	IXXAT	USB-to-CAN II
TAG RFID		

Section 4. Engineering considerations

4.1 Modifications incorporated in the EUT

There were no modifications performed to the EUT during this assessment.

4.2 Technical judgment

None

4.3 Deviations from laboratory tests procedures

No deviations were made from laboratory procedures.

Section 5. Test conditions

5.1 Atmospheric conditions

Temperature	15 °C – 35 °C
Relative humidity	20 % – 75 %
Air pressure	86 kPa (860 mbar) – 106 kPa (1060 mbar)

When it is impracticable to carry out tests under these conditions, a note to this effect stating the ambient temperature and relative humidity during the tests shall be recorded and stated.

The following instruments are used to monitor the environmental conditions:

Equipment	Manufacturer	Model no.	Asset no.	Cal date	Next cal.
Thermo-hygrometer data loggers	Testo	175-H2	20012380/305	2022-12	2024-12
Thermo-hygrometer data loggers	Testo	175-H2	38203337/703	2022-12	2024-12
Barometer	Castle	GPB 3300	072015	2023-04	2024-04

5.2 Power supply range

The normal test voltage for equipment to be connected to the mains shall be the nominal mains voltage. For the purpose of the present document, the nominal voltage shall be the declared voltage, or any of the declared voltages ±5 %, for which the equipment was designed.

Section 6. Measurement uncertainty

6.1 Uncertainty of measurement

The measurement uncertainty was calculated for each test and quantity listed in this test report, according to CISPR 16-4-2 and other specific test standard and is documented in Nemko Spa working manual WML1002.

The assessment of conformity for each test performed on the equipment is performed not taking into account the measurement uncertainty. The two following possible verdicts are stated in the report:

P (Pass) - The measured values of the equipment respect the specification limit at the points tested. The specific risk of false accept is up to 50% when the measured result is close to the limit.

F (Fail) - One or more measured values of the equipment do not respect the specification limit at the points tested. The specific risk of false reject is up to 50% when the measured result is close to the limit.

Hereafter Nemko's measurement uncertainties are reported:

EUT	Туре	Test Range		Measurement Uncertainty	Notes
	Frequency error	0.001 MHz ÷ 40 GHz	0.08 ppm	(1)	
		0.009 MHz ÷ 30 MHz	1.1 dB	(1)	
		Carrier power	30 MHz ÷ 18 GHz	1.5 dB	(1)
		RF Output Power	18 MHz ÷ 40 GHz	3.0 dB	(1)
			40 MHz ÷ 140 GHz	5.0 dB	(1)
		Adjacent channel power	1 MHz ÷ 18 GHz	1.4 dB	(1)
			0.009 MHz ÷ 18 GHz	3.0 dB	(1)
		Conducted spurious emissions	18 GHz ÷ 40 GHz	4.2 dB	(1)
			40 GHz ÷ 220 GHz	6.0 dB	(1)
		Intermodulation attenuation	1 MHz ÷ 18 GHz	2.2 dB	(1)
		Attack time – frequency behaviour	1 MHz ÷ 18 GHz	2.0 ms	(1)
		Attack time – power behaviour	1 MHz ÷ 18 GHz	2.5 ms	(1)
	Conducted	Release time – frequency behaviour	1 MHz ÷ 18 GHz	2.0 ms	(1)
		Release time – power behaviour	1 MHz ÷ 18 GHz	2.5 ms	(1)
Transmittor	T	Transient behaviour of the transmitter-Transient frequency behaviour	1 MHz ÷ 18 GHz	0.2 kHz	(1)
Transmitter	Transient behaviour of the transmitter – Power level slope	1 MHz ÷ 18 GHz	9%	(1)	
	Frequency deviation - Maximum permissible frequency deviation	0.001 MHz ÷ 18 GHz	1.3%	(1)	
	Frequency deviation - Response of the transmitter to modulation frequencies above 3 kHz	0.001 MHz ÷ 18 GHz	0.5 dB	(1)	
		Dwell time	-	3%	(1)
		Hopping Frequency Separation	0.01 MHz ÷ 18 GHz	1%	(1)
		Occupied Channel Bandwidth	0.01 MHz ÷ 18 GHz	2%	(1)
	Modulation Bandwidth	0.01 MHz ÷ 18 GHz	2%	(1)	
		0.009 MHz ÷ 26.5 GHz	6.0 dB	(1)	
		Radiated spurious emissions	26.5 GHz ÷ 66 GHz	8.0 dB	(1)
	Radiated		66 GHz ÷ 220 GHz	10 dB	(1)
	Raulated		10 kHz ÷ 26.5 GHz	6.0 dB	(1)
		Effective radiated power transmitter	26.5 GHz ÷ 66 GHz	8.0 dB	(1)
			66 GHz ÷ 220 GHz	10 dB	(1)

NOTES:

(1) The reported expanded uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k = 2, which for a normal distribution corresponds to a coverage probability of approximately 95 %

Section 7. Test equipment

7.1 Test equipment list

Table 7.1-1: Equipment list					
Equipment	Manufacturer	Model no.	Asset no.	Cal cycle	Next cal.
EMI receiver	R&S	ESU8	100202	2023-09	2024-09
EMI Receiver	Rohde & Schwarz	ESW44	101620	2023-08	2024-08
Antenna Trilog 25MHz - 8GHz	Schwarzbeck Mess-Elektronik	VULB9162	9162-025	2021-07	2024-07
Antenna 1 - 18 GHz	Schwarzbeck Mess-Elektronik	STLP9148	STLP 9148-152	2021-09	2024-09
Broadband Amplifier	Schwarzbeck Mess-Elektronik	BBV9718	BBV9718-137	2023-04	2024-04
Antenna Loop Attiva	Teseq	HLA6121+PI6121	45749	2023-07	2026-07
Controller	Maturo	FCU3.0	10041	NCR	NCR
Tilt antenna mast	Maturo	TAM4.0-E	10042	NCR	NCR
Turntable	Maturo	TT4.0-5T	2.527	NCR	NCR
Semi-anechoic chamber	Nemko S.p.a.	10m semi-anechoic chamber	530	2023-09	2025-09
EMI receiver	R&S	ESU8	100202	2023-09	2024-09
Attenuator	Aeroflex / Weinschel	2	CC8577	2023-07	2024-07
LISN 9 kHz ÷ 30 MHz	R&S	ESH2-Z5	881 362/006	2024-03	2025-03
Shielded room	Siemens	Conducted emission test room	1862	NCR	NCR

Notes: NCR - no calibration required, VOU - verify on use

Section 8. Testing data

8.1 RSS-Gen 6.7 Occupied bandwidth

8.1.1 Definitions and limits

The occupied bandwidth or the "99% emission bandwidth" is defined as the frequency range between two points, one above and the other below the carrier frequency, within which 99% of the total transmitted power of the fundamental transmitted emission is contained. The occupied bandwidth shall be reported for all equipment in addition to the specified bandwidth required in the applicable RSSs.

The following conditions shall be observed for measuring the occupied bandwidth:

The transmitter shall be operated at its maximum carrier power measured under normal test conditions.

The span of the spectrum analyzer shall be set large enough to capture all products of the modulation process, including the emission skirts, around the carrier frequency, but small enough to avoid having other emissions (e.g. on adjacent channels) within the span.

The detector of the spectrum analyzer shall be set to "Sample". However, a peak, or peak hold, may be used in place of the sampling detector since this usually produces a wider bandwidth than the actual bandwidth (worst-case measurement). Use of a peak hold (or "Max Hold") may be necessary to determine the occupied / x dB bandwidth if the device is not transmitting continuously.

The resolution bandwidth (RBW) shall be in the range of 1% to 5% of the actual occupied / x dB bandwidth and the video bandwidth (VBW) shall not be smaller than three times the RBW value. Video averaging is not permitted.

Note: It may be necessary to repeat the measurement a few times until the RBW and VBW are in compliance with the above requirement.

For the 99% emission bandwidth, the trace data points are recovered and directly summed in linear power level terms. The recovered amplitude data points, beginning at the lowest frequency, are placed in a running sum until 0.5% of the total is reached, and that frequency recorded. The process is repeated for the highest frequency data points (starting at the highest frequency, at the right side of the span, and going down in frequency). This frequency is then recorded. The difference between the two recorded frequencies is the occupied bandwidth (or the 99% emission bandwidth).

8.1.2 Test summary

Verdict	Pass		
Tested by	O. Frau	Test date	March 13, 2024

8.1.3 Observations, settings and special notes

Spectrum analyser settings:

Resolution bandwidth:	1% to 5% of the actual occupied
Video bandwidth:	≥ 3 × RBW
Detector mode:	Peak
Trace mode:	Max Hold

8.1.4 Test equipment used

Equipment	Manufacturer	Model no.	Asset no.
EMI receiver	R&S	ESU8	100202
Antenna Loop Attiva+Power Inseter	Teseq	HLA6121+PI6121	45749
Controller	Maturo	FCU3.0	10041
Tilt antenna mast	Maturo	TAM4.0-E	10042
Turntable	Maturo	TT4.0-5T	2.527
Semi-anechoic chamber	Nemko S.p.a.	10m semi-anechoic chamber	530

8.1.5 Test data

Table 8.1-1: 99 % bandwidth results

Modulation	99 % bandwidth
ASK	481.9 Hz

2 Marker Table						
Туре	Ref	Trc	X-Value	Y-Value	Function	Function Result
M1		1	124.99 kHz	70.93 dBµV/m	Occ Bw	481.938688697 Hz
Τ1		1	124.76914 kHz	54.75 dBµV/m	Occ Bw Centroid	125.01010654 kHz
T2		1	125.25108 kHz	50.75 dBµV/m	Occ Bw Freq Offset	10.106539791 Hz

8.2 FCC 15.209(a) and RSS-210, Radiated emissions limits

8.2.1 Definitions and limits

FCC:

- (a) Except as provided elsewhere in this subpart, the emissions from an intentional radiator shall not exceed the field strength levels specified in the Table 8.2-1 below.
- (c) The level of any unwanted emissions from an intentional radiator operating under these general provisions shall not exceed the level of the fundamental emission. For intentional radiators which operate under the provisions of other sections within this part and which are required to reduce their unwanted emissions to the limits specified in this table, the limits in this table are based on the frequency of the unwanted emission and not the fundamental frequency. However, the level of any unwanted emissions shall not exceed the level of the fundamental frequency.
- (d) The emission limits shown in the above table are based on measurements employing a CISPR quasi-peak detector except for the frequency bands 9–90 kHz, 110–490 kHz and above 1000 MHz. Radiated emission limits in these three bands are based on measurements employing an average detector.

IC:

Unless otherwise indicated, equipment for which emissions fall within the restricted frequency bands listed in RSS-Gen shall comply with the provisions set forth in RSS-Gen.

RSS-Gen includes the general field strength limits of unwanted emissions, where applicable, for transmitters and receivers operating in accordance with the provisions specified in this standard.

Unless otherwise indicated, unwanted emissions of transmitters and receivers are permitted to fall within the restricted frequency bands listed in RSS-Gen and the TV bands 54-72 MHz, 76-88 MHz, 174-216 MHz and 470-602 MHz; however, fundamental emissions are prohibited in these bands, except where equipment operation is permitted in the applicable RSS.

Transmitters whose wanted and unwanted emissions fall within the general field strength limits specified in RSS-Gen may operate licence-exempt in any of the frequency bands, other than the restricted frequency bands listed in RSS-Gen and the TV bands 54-72 MHz, 76-88 MHz, 174-216 MHz and 470-602 MHz, and shall be certified under RSS-210. Under no circumstances shall the level of any unwanted emissions exceed the level of the fundamental emissions

Devices operating below 490 kHz for which all emissions are at least 40 dB below the general field strength limit listed in RSS-Gen (for transmitters at frequencies below 30 MHz) are Category II devices and are subject to the requirements specified in RSS-310, Licence-Exempt Radio Apparatus: Category II Equipment.

Frequency,	Field streng	gth of emissions	Measurement distance, m	
MHz	μV/m	dBµV/m		
0.009–0.490	2400/F	67.6 – 20 × log10(F)	300	•
0.490-1.705	24000/F	87.6 – 20 × log ₁₀ (F)	30	l
1.705-30.0	30	29.5	30	
30–88	100	40.0	3	
88–216	150	43.5	3	
216–960	200	46.0	3	l
above 960	500	54.0	3	

Table 8.2-1: FCC §15.209 and RSS-Gen – Radiated emission limits

Notes: In the emission table above, the tighter limit applies at the band edges.

For frequencies above 1 GHz the limit on peak RF emissions is 20 dB above the maximum permitted average emission limit applicable to the equipment under test.

8.2.1 Definitions and limits, continued

Table 8.2-2: IC restricted frequency bands

MHz	MHz	MHz	GHz
0.090-0.110	12.51975-12.52025	399.9–410	5.35-5.46
2.1735-2.1905	12.57675-12.57725	608–614	7.25–7.75
3.020-3.026	13.36–13.41	960–1427	8.025–8.5
4.125-4.128	16.42-16.423	1435–1626.5	9.0–9.2
4.17725-4.17775	16.69475-16.69525	1645.5-1646.5	9.3–9.5
4.20725-4.20775	16.80425-16.80475	1660–1710	10.6-12.7
5.677-5.683	25.5–25.67	1718.8–1722.2	13.25–13.4
6.215-6.218	37.5–38.25	2200-2300	14.47–14.5
6.26775-6.26825	73–74.6	2310-2390	15.35–16.2
6.31175-6.31225	74.8–75.2	2655–2900	17.7–21.4
8.291-8.294	108–138	3260–3267	22.01–23.12
8.362-8.366	156.52475-156.52525	3332–3339	23.6-24.0
8.37625-8.38675	156.7–156.9	3345.8–3358	31.2–31.8
8.41425-8.41475	240–285	3500-4400	36.43-36.5
12.29–12.293	322–335.4	4500–5150	Above 38.6

Note: Certain frequency bands listed in Table 8.2-2 and above 38.6 GHz are designated for low-power licence-exempt applications. These frequency bands and the requirements that apply to the devices are set out in this Standard

8.2.2 Definitions and limits, continued

Table 8.2-3: FCC restricted frequency bands

MHT	MHT	MH-	CH-
	IVITIZ	IVITIZ	0112
0.090-0.110	16.42–16.423	399.9–410	4.5–5.15
0.495-0.505	16.69475-16.69525	608–614	5.35-5.46
2.1735-2.1905	16.80425-16.80475	960–1240	7.25–7.75
4.125-4.128	25.5-25.67	1300–1427	8.025-8.5
4.17725-4.17775	37.5–38.25	1435–1626.5	9.0–9.2
4.20725-4.20775	73–74.6	1645.5-1646.5	9.3–9.5
6.215-6.218	74.8–75.2	1660–1710	10.6–12.7
6.26775-6.26825	108-121.94	1718.8–1722.2	13.25-13.4
6.31175–6.31225	123–138	2200–2300	14.47–14.5
8.291-8.294	149.9-150.05	2310-2390	15.35-16.2
8.362-8.366	156.52475-156.52525	2483.5-2500	17.7–21.4
8.37625-8.38675	156.7-156.9	2690-2900	22.01-23.12
8.41425-8.41475	162.0125-167.17	3260–3267	23.6–24.0
12.29-12.293	167.72-173.2	3332–3339	31.2-31.8
12.51975-12.52025	240–285	3345.8–3358	36.43-36.5
12.57675-12.57725	322-335.4	3600-4400	Above 38.6
13.36–13.41			

8.2.3 Test summary

Verdict	Pass		
Tested by	O. Frau	Test date	March 13, 2024

8.2.4 Observations, settings and special notes

The spectrum was searched from 30 MHz to the 10th harmonic. EUT was set to receiving mode. Radiated measurements were performed at a distance of 10 m and 3 m.

Spectrum analyser settings for radiated measurements within restricted bands below 1 GHz:

Resolution bandwidth:	100 kHz
Video bandwidth:	300 kHz
Detector mode:	Peak
Trace mode:	Max Hold

Spectrum analyser settings for peak radiated measurements within restricted bands above 1 GHz:

Resolution bandwidth:	1 MHz
Video bandwidth:	3 MHz
Detector mode:	Peak
Trace mode:	Max Hold

8.2.5 Test equipment used

Equipment	Manufacturer	Model no.	Asset no.
EMI Receiver	Rohde & Schwarz	ESW44	101620
Antenna Loop Attiva+Power Inseter	Teseq	HLA6121+PI6121	45749
Antenna Trilog 25MHz - 8GHz	Schwarzbeck Mess-Elektronik	VULB9162	9162-025
Antenna 1 - 18 GHz	Schwarzbeck Mess-Elektronik	STLP9148	STLP 9148-152
Broadband Amplifier	Schwarzbeck Mess-Elektronik	BBV9718	BBV9718-137
Controller	Maturo	FCU3.0	10041
Tilt antenna mast	Maturo	TAM4.0-E	10042
Turntable	Maturo	TT4.0-5T	2.527
Semi-anechoic chamber	Nemko S.p.a.	10m semi-anechoic chamber	530

 Section 8
 Testing data

 Test name
 FCC 15.209(a) and RSS-210, Radiated emissions

8.2.6 Test data

Figure 8.2-1: Radiated emissions with antenna loop

Frequency (MHz)	Level (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Detector
0.5775	26.3	71.4	-45.1	QP
0.6248	32.1	70.8	-38.7	QP
1.0410	33.5	66.4	-32.9	QP
1.1760	30.7	65.3	-34.6	QP
1.6440	28.2	62.4	-34.2	QP
2.6093	25.8	68.6	-42.8	QP
4.1483	27.1	68.6	-41.5	QP
5.1990	28.9	68.6	-39.7	QP
7.1633	25.3	68.6	-43.3	QP
8.4143	25.4	68.6	-43.2	QP
12.2370	25.3	68.6	-43.3	QP
18.3278	24.8	68.6	-43.8	QP
29.4135	24.0	68.6	-44.6	QP

Figure 8.2-2: Radiated emissions with antenna in horizontal polarization

Frequency (MHz)	Level (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Detector
30.7800	13.3	40.0	-26.7	QP
38.2500	12.5	40.0	-27.5	QP
44.5500	16.0	40.0	-24.0	QP
47.9400	22.0	40.0	-18.0	QP
53.1000	17.3	40.0	-22.7	QP
67.0200	12.9	40.0	-27.1	QP
72.5100	11.8	40.0	-28.2	QP
87.4500	26.5	40.0	-13.5	QP
105.8700	31.3	43.5	-12.2	QP
116.0400	33.8	43.5	-9.7	QP
122.9700	26.0	43.5	-17.5	QP
154.1700	32.3	43.6	-11.3	QP
161.5200	29.3	43.5	-14.2	QP
213.5700	26.9	43.5	-16.6	QP
216.0900	26.8	46.0	-19.2	QP
276.0000	27.3	46.0	-18.7	QP
300.0300	26.6	46.0	-19.4	QP
360.0000	26.0	46.0	-20.0	QP
375.9900	28.5	46.0	-17.5	QP
451.9800	31.3	46.0	-14.7	QP
547.9800	39.3	46.0	-6.7	QP
615.9900	38.7	46.0	-7.3	QP
731.9700	32.9	46.0	-13.1	QP
756.0000	32.5	46.0	-13.5	QP
872.0100	29.4	46.0	-16.6	QP

Figure 8.2-3: Radiated emissions with antenna in vertical polarization

Frequency (MHz)	Level (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Detector
34.5000	35.7	40.0	-4.3	QP
36.0000	39.9	40.0	-0.1	QP
44.0100	31.9	40.0	-8.1	QP
52.5000	31.7	40.1	-8.4	QP
53.0400	33.3	40.0	-6.7	QP
61.2900	29.6	40.0	-10.4	QP
74.4900	30.2	40.0	-9.8	QP
89.7900	36.9	43.5	-6.6	QP
94.4400	37.8	43.5	-5.7	QP
115.3800	34.2	43.6	-9.4	QP
138.9600	30.5	43.5	-13.0	QP
147.6900	21.9	43.5	-21.6	QP
161.9700	17.1	43.5	-26.4	QP
211.9800	29.4	43.5	-14.1	QP
216.0000	29.3	46.0	-16.7	QP
252.0000	12.8	46.1	-33.3	QP
315.9900	31.7	46.0	-14.3	QP
343.9800	32.3	46.0	-13.7	QP
427.9800	37.0	46.0	-9.0	QP
476.1600	27.6	46.0	-18.4	QP
567.9900	35.4	46.0	-10.6	QP
607.9800	44.2	46.1	-1.9	QP
667.9800	23.9	46.0	-22.1	QP
787.9800	28.2	46.0	-17.8	QP
907.9800	22.5	46.0	-23.5	QP

Figure 8.2-4: Radiated emissions with antenna in horizontal polarization

Section 9. Block diagrams of test set-ups and EUT photos

9.1 Radiated emissions set-up below 30 MHz

9.2 Radiated emissions set-up below 1 GHz

9.3 Radiated emissions set-up above 1 GHz

9.4 EUT & Set-up photos

See Annex: REP032851TRFWL_Test Setup photos.pdf

End of the test report