

Report Reference No	
FCC ID Compiled by	
(position+printed name+signature).	Engineer/Cindy Zheng Cindy Zheng
Supervised by (position+printed name+signature)	Engineer/ Cindy Zheng Manager/Haley Wen RF Manager/ Vivian Jiang
Approved by	······································
(position+printed name+signature)	RF Manager/ Vivian Jiang
Date of issue	
Testing Laboratory Name	MAXLAB Testing Co.,Ltd.
Address	. 1/F, Building B, Xinshidai GR Park, Shiyan Street, Bao'an I Shenzhen, Guangdong, 518052, People's Republic of Chin
Applicant's name	Shenzhen George Zebra Network Technology Co. Ltd
Address	 Room 301, Building 3, Nanchang Huafeng Industrial Park, Nanchang Community, Xixiang Street, Baoan District, She China
Test specification	
121 12	FCC Part 15.247:
Standard	: ANSI C63.10-2020 KDB558074 D01 V05r02: April 2, 2019
MAXLAB Testing Co.,Ltd. is acknow Testing Co.,Ltd. takes no responsibi	in whole or in part for non-commercial purposes as long as the ledged as copyright owner and source of the material. MAXLA lity for and will not assume liability for damages resulting from liced material due to its placement and context.
Test item description	: True wireless earbuds
Trade Mark	
Manufacturer	5
	: A70
Model/Type reference	
Model/Type reference	
Model/Type reference Listed Models Modulation	: GFSK, π/4DQPSK, 8-DPSK
Model/Type reference Listed Models Modulation Frequency	: GFSK, π/4DQPSK, 8-DPSK . From 2402MHz to 2480MHz
Model/Type reference Listed Models Modulation	 GFSK, π/4DQPSK, 8-DPSK From 2402MHz to 2480MHz DC 3.7V From Battery or DC 5V by USB port

PASS

TEST REPORT

Equipment under Test	Max	True wireless earbuds
Model /Type	:	A70
Listed Models	Max	N/A Maxie Maxie Maxie Maxie
Model Declaration	:	N/A
Applicant	nat	Shenzhen George Zebra Network Technology Co. Ltd
Address	14.	Room 301, Building 3, Nanchang Huafeng Industrial Park, Nanchang Community, Xixiang Street, Baoan District, Shenzhen, China
Manufacturer	13X18	Shenzhen George Zebra Network Technology Co. Ltd
Address	<i>ln</i> .	Room 301, Building 3, Nanchang Huafeng Industrial Park, Nanchang Community, Xixiang Street, Baoan District, Shenzhen, China
10		

Test Result:

The test report merely corresponds to the test sample. It is not permitted to copy extracts of these test result without the written permission of the test laboratory.

Contents

2 SUMMARY				5
2.1 General Remarks				
2.2 Product Description				
2.3 Equipment Under Test				
2.4 Short description of the Equipment und				
2.5 EUT operation mode				
2.6 Block Diagram of Test Setup				6
2.7 Related Submittal(s) / Grant (s)				
2.8 Modifications				6
3 TEST ENVIRONMENT				-
3.1 Address of the test laboratory				
3.2 Test Facility		••••••		
3.3 Environmental conditions		••••••		
3.4 Summary of measurement results				
3.5 Statement of the measurement uncertain	nty			8
3.6 Equipments Used during the Test				
4 TEST CONDITIONS AND RESU	LTC			4.4
4 TEST CONDITIONS AND RESU	LIJ	••••••	••••••	
4.1 AC Power Conducted Emission				
4.2 Radiated Emission				
4.3 Maximum Peak Output Power				
4.4 20dB Bandwidth				
4.5 Frequency Separation				
4.6 Number of Hopping Channel	••••••	••••••		
4.7 Time of Occupancy (Dwell Time)				
4.8 Out-of-band Emissions				
4.9 Pseudorandom Frequency Hopping Seq				
4.10 Antenna Requirement				40
5 TEST SETUP PHOTOS OF THE	FUT			11

Report No.: MAX250424011-P01R01

1 <u>TEST STANDARDS</u>

The tests were performed according to following standards:

<u>FCC Rules Part 15.247</u>: Frequency Hopping, Direct Spread Spectrum and Hybrid Systems that are in operation within the bands of 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz. <u>ANSI C63.10-2020</u>: American National Standard for Testing Unlicensed Wireless Devices

KDB558074 D01 V05r02: Guidance for Performing Compliance Measurements on Digital Transmission

Systems (DTS) Operating Under §15.247

2 <u>SUMMARY</u>

Report No.: MAX250424011-P01R01

2.1 General Remarks

:	April 21, 2025
	14. IA.
:	April 21, 2025
	April 27, 2025
	:

2.2 Product Description

Product Name:	True wireless earbuds	lar.	b.	U.
Model/Type reference:	A70			
Power supply:	DC 3.7V From Battery or DC 5V	by USB port	130	
Adapter information (Auxiliary test supplied by testing Lab)	Model: EP-TA20CBC Input: AC 100-240V 50/60Hz Output: DC 5V 2A Firmware Version: EPTA5.14.2 Manufacture: Huizhou Dongyan	g Yienbi Electronic	s Co., Ltd	Max
Hardware version:	1 30 30	130	130	130
Software version:	421 121	131	121	131
Testing sample ID:	MAX250424011-P01R01-1# (Ei MAX250424011-P01R01-2# (N		W.	b.
Bluetooth :				
Supported Type:	Bluetooth BR/EDR	130	124	
Modulation:	GFSK, π/4DQPSK, 8-DPSK	Mar	Nar	131
Operation frequency:	2402MHz~2480MHz	14.	14.	14.
Channel number:	79		10	
Channel separation:	1MHz	130	Jab	N
Antenna type:	PCB Antenna	Mar	Mar	Nar
Antenna gain:	-1.37 dBi	1.	A.	1

2.3 Equipment Under Test

Power supply system utilised

Power supply voltage	:	0	230V / 50 Hz	0	120V / 60Hz	
		0	12 V DC	0	24 V DC	¥.
			Other (specified in blank be	ow)	
0, 0,		0	DC 3.7V From Battery		0	0

2.4 Short description of the Equipment under Test (EUT)

This is a True wireless earbuds. There are 1 pairs of headphones inside the headphone charging case. The left and right ears are consistent and tested on the right ear. For more details, refer to the user's manual of the EUT.

2.5 EUT operation mode

MAXLAB Testing Co., Ltd.

The Applicant provides communication tools software(Engineer mode) to control the EUT for staying in continuous transmitting (Duty Cycle more than 98%) and receiving mode for testing .There are 79 channels provided to the EUT and Channel 00/39/78 were selected to test.

Operation Frequency:

	Channel		0		Frequency (MHz)	
	00				2402	
121	01	.13		181	2403	131
h	- <i>M</i> ,	h.		IA.	$\cdot h$	IA.
	38				2440	
	39				2441	()
134 13	40		134		2442	
			-	1		
No	77	No		M.a.	2479	Ma
	78				2480	

2.6 Block Diagram of Test Setup

EUT

	DC 3.7V from battery	
0	.\0	

2.7 Related Submittal(s) / Grant (s)

This submittal(s) (test report) is intended for the device filing to comply with Section 15.247 of the FCC Part 15, Subpart C Rules.

2.8 Modifications

No modifications were implemented to meet testing criteria.

3 <u>TEST ENVIRONMENT</u>

3.1 Address of the test laboratory

MAXLAB Testing Co.,Ltd.

1/F, Building B, Xinshidai GR Park, Shiyan Street, Bao'an District, Shenzhen, Guangdong, 518052, People's Republic of China

3.2 Test Facility

FCC-Registration No.: 562200 Designation Number: CN1338

MAX Testing Co.,Ltd. has been listed on the US Federal Communications Commission list of test facilities recognized to perform electromagnetic emissions measurements.

Industry Canada Registration Number. Is: 11093A CAB identifier: CN0019

The Laboratory has been registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing.

A2LA-Lab Cert. No.: 4707.01

MAX Testing Co.,Ltd. has been listed by American Association for Laboratory Accreditation to perform electromagnetic emission measurement.

The 3m-Semi anechoic test site fulfils CISPR 16-1-4 according to ANSI C63.10 and CISPR 16-1-4:2010.

3.3 Environmental conditions

During the measurement the environmental conditions were within the listed ranges:

Radiated	Emission:

Temperature:	24 ° C
2t 12t 1	2 $\sqrt{2}$
Humidity:	45 %
13, 13,	10,
Atmospheric pressure:	950-1050mbar

AC Power Conducted Emission:

Temperature:	25 ° C
A. 1.9.	121 121
Humidity:	46 %
No 10	lo Mo
Atmospheric pressure:	950-1050mbar

Conducted testing:

Temperature:	25 ° C
Humidity:	44 %
Atmospheric pressure:	950-1050mbar

3.4 Summary of measurement results

Test Specification clause	Test case	Test Mode	Test Channel		orded eport	Test result
§15.247(a)(1)	Carrier Frequency separation	GFSK Π/4DQPSK 8DPSK	☑ Lowest☑ Middle☑ Highest	GFSK Π/4DQPSK 8DPSK	⊠ Middle	Compliant
§15.247(a)(1)	Number of Hopping channels	GFSK Π/4DQPSK 8DPSK	⊠ Full	GFSK	⊠ Full	Compliant
§15.247(a)(1)	Time of Occupancy (dwell time)	GFSK Π/4DQPSK 8DPSK	☑ Lowest☑ Middle☑ Highest	GFSK N/4DQPSK 8DPSK	⊠ Middle	Compliant
§15.247(a)(1)	Spectrumbandwidth of aFHSS system20dB bandwidth	GFSK Π/4DQPSK 8DPSK	☑ Lowest☑ Middle☑ Highest	GFSK ∏/4DQPSK 8DPSK	☑ Lowest☑ Middle☑ Highest	Compliant
§15.247(b)(1)	Maximum output peak power	GFSK Π/4DQPSK 8DPSK	☑ Lowest☑ Middle☑ Highest	GFSK Π/4DQPSK 8DPSK	☑ Lowest☑ Middle☑ Highest	Compliant
§15.247(d)	Band edgecompliance conducted	GFSK Π/4DQPSK 8DPSK	⊠ Lowest ⊠ Highest	GFSK Π/4DQPSK 8DPSK	⊠ Lowest ⊠ Highest	Compliant
§15.205	Band edgecompliance radiated	GFSK N/4DQPSK 8DPSK	⊠ Lowest ⊠ Highest	GFSK Π/4DQPSK 8DPSK	⊠ Lowest ⊠ Highest	Compliant
§15.247(d)	TX spuriousemissions conducted	GFSK Π/4DQPSK 8DPSK	☑ Lowest☑ Middle☑ Highest	GFSK N/4DQPSK 8DPSK	☑ Lowest☑ Middle☑ Highest	Compliant
§15.247(d)	TX spuriousemissions radiated	GFSK Π/4DQPSK 8DPSK	☑ Lowest☑ Middle☑ Highest	GFSK	☑ Lowest☑ Middle☑ Highest	Compliant
§15.209(a)	TX spurious Emissions radiated Below 1GHz	GFSK Π/4DQPSK 8DPSK	⊠ Lowest ⊠ Middle ⊠ Highest	GFSK	⊠ Middle	Compliant
§15.107(a) §15.207	Conducted Emissions 9KHz-30 MHz	Charging	1	Charging	1	Compliant

Remark:

1. The measurement uncertainty is not included in the test result.

2. We tested all test mode and recorded worst case in report

3.5 Statement of the measurement uncertainty

The data and results referenced in this document are true and accurate. The reader is cautioned that there may be errors within the calibration limits of the equipment and facilities. The measurement uncertainty was calculated for all measurements listed in this test report acc. to TR-100028-01" Electromagnetic compatibility and Radio spectrum Matters (ERM);Uncertainties in the measurement of mobile radio equipment characteristics; Part 1" and TR-100028-02 "Electromagnetic compatibility and Radio spectrum Matters (ERM);Uncertainties in the measurement of mobile radio equipment characteristics; Part 2" and is documented in the MAXLAB Testing Co.,Ltd.quality system acc. to DIN EN ISO/IEC 17025. Furthermore, component and process variability of devices similar to that tested may result in additional deviation. The manufacturer has the sole responsibility of continued compliance of the device. Hereafter the best measurement capability for MAXLAB Testing Co.,Ltd.:

Test	Range	Measurement Uncertainty	Notes
Radiated Emission	9KHz~30MHz	3.82 dB	(1)
Radiated Emission	30~1000MHz	4.06 dB	(1)
Radiated Emission	1~18GHz	5.14 dB	(1)
Radiated Emission	18-40GHz	5.38 dB	(1)
Conducted Disturbance	0.15~30MHz	2.14 dB	(1)
Transmitter power conducted	1~40GHz	0.57 dB	(1)
Conducted spurious emission	1~40GHz	1.60 dB	(1)
OBW	1~40GHz	25 Hz	(1)

(1) This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

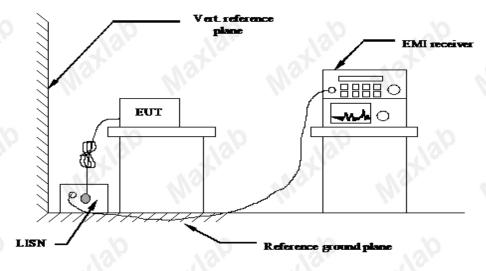
3.6 Equipments Used during the Test

Conducted Emission	on				
Test Equipment	Manufacturer	Model	Serial No.	Date of Cal.	Due Date
Shielding Room	ZhongYu Electron	7.3(L)x3.1(W)x2.9(H)	MAX252	2024-10-27	2025-10-26
EMI Test Receiver	R&S	ESCI 7	MAX552	2024-10-27	2025-10-26
Coaxial Switch	ANRITSU CORP	MP59B	MAX225	2024-10-27	2025-10-26
ENV216 2-L-V- NETZNACHB.DE	ROHDE&SCHWARZ	ENV216	MAX226	2024-10-27	2025-10-26
Coaxial Cable	MAX	N/A	MAX227	N/A	N/A
EMI Test Software	AUDIX	E3	N/A	N/A	N/A
Thermo meter	KTJ	TA328	MAX233	2024-10-27	2025-10-26
Absorbing clamp	Elektronik- Feinmechanik	MDS21	MAX229	2024-10-27	2025-10-26
LISN	R&S	ENV216	308	2024-10-27	2025-10-26
LISN	R&S	ENV216	314	2024-10-27	2025-10-26

Radiation Test equi	oment				
Test Equipment	Manufacturer	Model	Serial No.	Date of Cal.	Due Date
3m Semi- Anechoic Chamber	ZhongYu Electron	9.2(L)*6.2(W)* 6.4(H)	MAX250	2024-10-27	2025-10-20
Control Room	ZhongYu Electron	6.2(L)*2.5(W)* 2.4(H)	MAX251	N/A	N/A
EMI Test Receiver	Rohde & Schwarz	ESU26	MAX203	2024-10-27	2025-10-26
BiConiLog Antenna SCHWARZBEC		VULB9163	MAX214	2024-10-27	2025-10-20
Double -ridged waveguide horn	SCHWARZBECK MESS-ELEKTRONIK	BBHA 9120 D	MAX208	2024-10-27	2025-10-20
Horn Antenna	ETS-LINDGREN	3160	MAX217	2024-10-27	2025-10-20
EMI Test Software	AUDIX	E3	N/A	N/A	N/A
Coaxial Cable	MAX	N/A	MAX213	2024-10-27	2025-10-2
Coaxial Cable	MAX	N/A	MAX211	2024-10-27	2025-10-20
Coaxial cable	MAX	N/A	MAX210	2024-10-27	2025-10-2
Coaxial Cable	MAX	N/A	MAX212	2024-10-27	2025-10-20
Amplifier(100kHz- 3GHz)	HP	8347A	MAX204	2024-10-27	2025-10-2
Amplifier(2GHz- 20GHz)	HP	84722A	MAX206	2024-10-27	2025-10-26
Amplifier (18-26GHz)	Rohde & Schwarz	AFS33-18002 650-30-8P-44	MAX218	2024-10-27	2025-10-26
Band filter	Amindeon	82346	MAX219	2024-10-27	2025-10-20
Power Meter	Anritsu	ML2495A	MAX540	2024-10-27	2025-10-2
Power Sensor	Anritsu	MA2411B	MAX541	2024-10-27	2025-10-2
Wideband Radio Communication	Rohde & Schwarz	CMW500	MAX575	2024-10-27	2025-10-20

- ACCESS TO GLOBAL MARKET	I.a. V.a.				
MAXLAB Testin	ng Co.,Ltd.		Report No.: I	MAX250424011-F	P01R01
Tester					
Splitter	Agilent	11636B	MAX237	2024-10-27	2025-10-26
Loop Antenna	ZHINAN	ZN30900A	MAX534	2024-10-27	2025-10-26
Breitband hornantenne	SCHWARZBECK	BBHA 9170	MAX579	2024-10-27	2025-10-26
Amplifier	TDK	PA-02-02	MAX574	2024-10-27	2025-10-26
Amplifier	TDK	PA-02-03	MAX576	2024-10-27	2025-10-26
PSA Series Spectrum Analyzer	Rohde & Schwarz	FSP	MAX578	2024-10-27	2025-10-26
a Na	No.	No.	nla.	alla.	Na

Analyzer	Ilyzer Rohde & Schwarz FSP		MAX578	2024-10-27	2025-10-26	
, vuo	Ma	Ma	NIQ.	Ma	Ma	
RF Conducted Test						
Test Equipment	Manufacturer	Model	Serial No.	Date of Cal.	Due Date	
MXA Signal Analyzer	Agilent	N9020A	MAX566	2024-10-27	2025-10-26	
EMI Test Receiver	R&S	ESCI 7	MAX552	2024-10-27	2025-10-26	
Spectrum Analyzer	Agilent	E4440A	MAX533	2024-10-27	2025-10-26	
MXG vector Signal Generator	Agilent	N5182A	MAX567	2024-10-27	2025-10-26	
ESG Analog Signal Generator	Agilent	E4428C	MAX568	2024-10-27	2025-10-26	
USB RF Power Sensor	DARE	RPR3006W	MAX569	2024-10-27	2025-10-26	
RF Switch Box	Shongyi	RFSW3003328	MAX571	2024-10-27	2025-10-26	
Programmable Constant Temp & Humi Test Chamber	WEWON	WHTH-150L-40-880	MAX572	2024-10-27	2025-10-26	
. U.	No	No	M.o.	No	No	



Report No.: MAX250424011-P01R01

4 TEST CONDITIONS AND RESULTS

4.1 AC Power Conducted Emission

TEST CONFIGURATION

TEST PROCEDURE

1 The equipment was set up as per the test configuration to simulate typical actual usage per the user's manual. The EUT is a tabletop system, a wooden table with a height of 0.8 meters is used and is placed on the ground plane as per ANSI C63.10-2020

2 Support equipment, if needed, was placed as per ANSI C63.10-2020 All I/O cables were positioned to simulate typical actual usage as per ANSI C63.10-2020 The EUT received power from adapter, the adapter received AC120V/60Hz and AC 240V/60Hz power through a Line Impedance Stabilization Network (LISN) which supplied power source and was grounded to the ground plane.

5 All support equipments received AC power from a second LISN, if any.

6 The EUT test program was started. Emissions were measured on each current carrying line of the EUT using a spectrum Analyzer / Receiver connected to the LISN powering the EUT.The LISN has two monitoring points: Line 1 (Hot Side) and Line 2 (Neutral Side). Two scans were taken: one with Line 1 connected to Analyzer / Receiver and Line 2 connected to a 50 ohm load; the second scan had Line 1 connected to a 50 ohm load and Line 2 connected to the Analyzer / Receiver.

7 Analyzer / Receiver scanned from 150 KHz to 30MHz for emissions in each of the test modes.

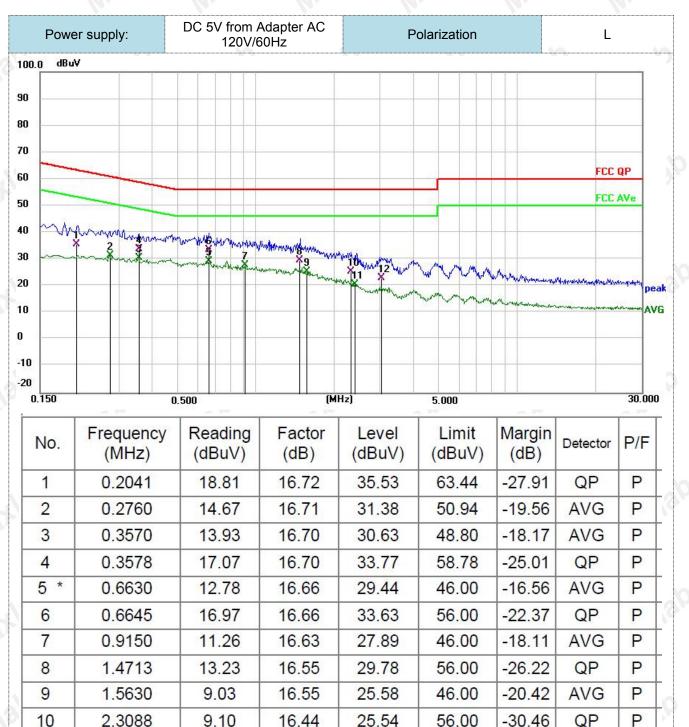
8 During the above scans, the emissions were maximized by cable manipulation.

AC Power Conducted Emission Limit

For intentional device, according to § 15.207(a) AC Power Conducted Emission Limits is as following :

	Limit (dE	BuV)
Frequency range (MHz)	Quasi-peak	Average
0.15-0.5	66 to 56*	56 to 46*
0.5-5	56	46
5-30	60	50

* Decreases with the logarithm of the frequency


TEST RESULTS

Remark:

This mode is for testing data in the charging state.

Report No.: MAX250424011-P01R01

Note:1).Level ($dB\mu V$)= Reading ($dB\mu V$)+ Factor (dB)

2.4000

3.0235

11

12

2). Factor (dB)=insertion loss of LISN (dB) + Cable loss (dB)

4.11

6.85

3). Margin(dB) = Limit (dB μ V) - Level (dB μ V)

20.54

23.19

16.43

16.34

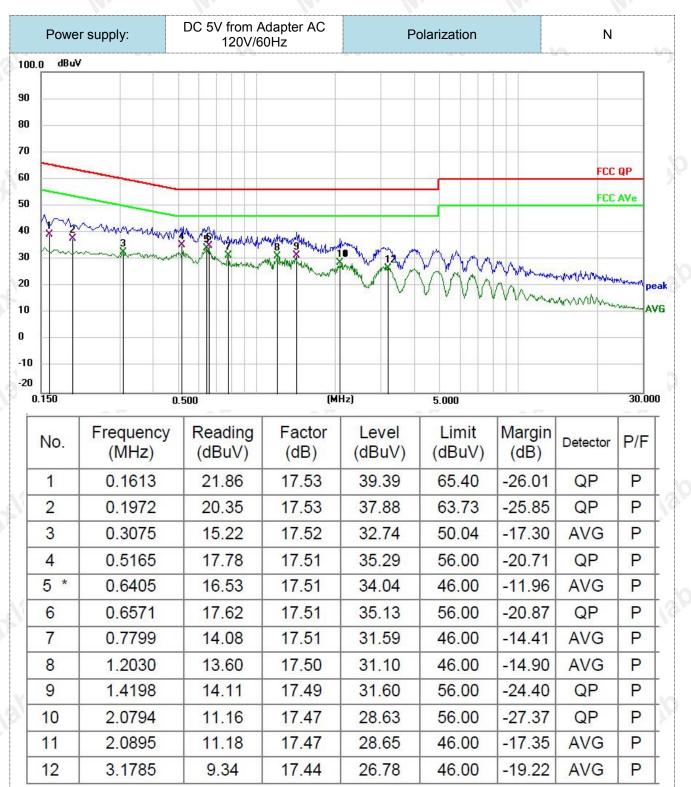
46.00

56.00

-25.46

-32.81

AVG


QP

P

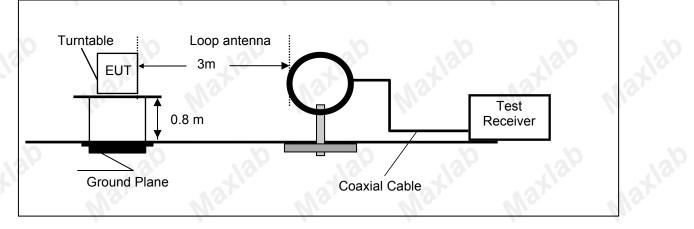
P

Report No.: MAX250424011-P01R01

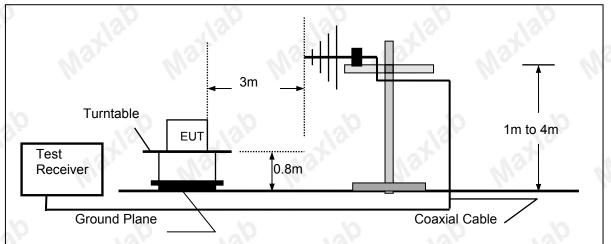
Note:1).Level (dBµV)= Reading (dBµV)+ Factor (dB)

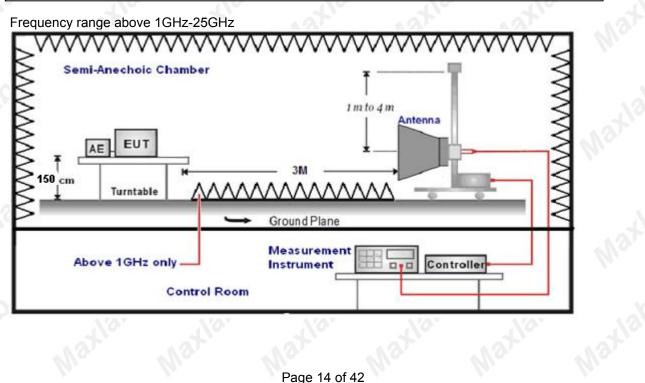
2). Factor (dB)=insertion loss of LISN (dB) + Cable loss (dB)

3). Margin(dB) = Limit (dB μ V) - Level (dB μ V)



4.2 Radiated Emission


Report No.: MAX250424011-P01R01


TEST CONFIGURATION

Frequency range 9KHz – 30MHz

Frequency range 30MHz – 1000MHz

TEST PROCEDURE

Report No.: MAX250424011-P01R01

- 1. The EUT was placed on a turn table which is 0.8m above ground plane when testing frequency range 9 KHz –1GHz;the EUT was placed on a turn table which is 1.5m above ground plane when testing frequency range 1GHz 25GHz.
- 2. Maximum procedure was performed by raising the receiving antenna from 1m to 4m and rotating the turn table from 0° to 360° to acquire the highest emissions from EUT.
- 3. And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical.
- 4. Repeat above procedures until all frequency measurements have been completed.
- 5. Radiated emission test frequency band from 9KHz to 25GHz.
- 6. The distance between test antenna and EUT as following table states:

Test Distance
3
3
3
0 1

. Setting test receiver/spectrum as following table states:

Setting test receiver/spectrum as following table states.						
Test Frequency range	Test Receiver/Spectrum Setting	Detector				
9KHz-150KHz	RBW=200Hz/VBW=3KHz,Sweep time=Auto	QP				
150KHz-30MHz	RBW=9KHz/VBW=100KHz,Sweep time=Auto	QP				
30MHz-1GHz	RBW=120KHz/VBW=1000KHz,Sweep time=Auto	QP				
1GHz-40GHz	Peak Value: RBW=1MHz/VBW=3MHz, Sweep time=Auto Average Value: RBW=1MHz/VBW=10Hz, Sweep time=Auto	Peak				

Field Strength Calculation

The field strength is calculated by adding the Antenna Factor and Cable Factor and subtracting the Amplifier Gain and Duty Cycle Correction Factor(if any) from the measured reading. The basic equation with a sample calculation is as follows:

FS = RA + AF + CL - AG

Where FS = Field Strength	CL = Cable Attenuation Factor (Cable Loss)
RA = Reading Amplitude	AG = Amplifier Gain
AF = Antenna Factor	

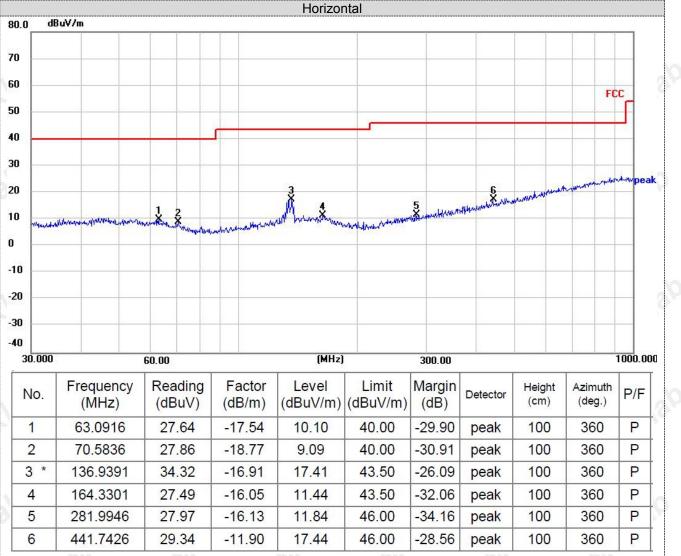
Transd=AF +CL-AG

RADIATION LIMIT

For intentional device, according to § 15.209(a), the general requirement of field strength of radiated emission from intentional radiators at a distance of 3 meters shall not exceed the following table. According to § 15.247(d), in any 100kHz bandwidth outside the frequency band in which the EUT is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20dB below that in the100kHz bandwidth within the band that contains the highest level of desired power.

The pre-test have done for the EUT in three axes and found the worst emission at position shown in test setup photos.

Frequency (MHz)	Distance (Meters)	Radiated (dBµV/m)	Radiated (µV/m)
0.009-0.49	3	20log(2400/F(KHz))+40log(300/3)	2400/F(KHz)
0.49-1.705	3	20log(24000/F(KHz))+ 40log(30/3)	24000/F(KHz)
1.705-30	3	20log(30)+ 40log(30/3)	30
30-88	3	40.0	100
88-216	3	43.5	150
216-960	3	46.0	200
Above 960	3	54.0	500

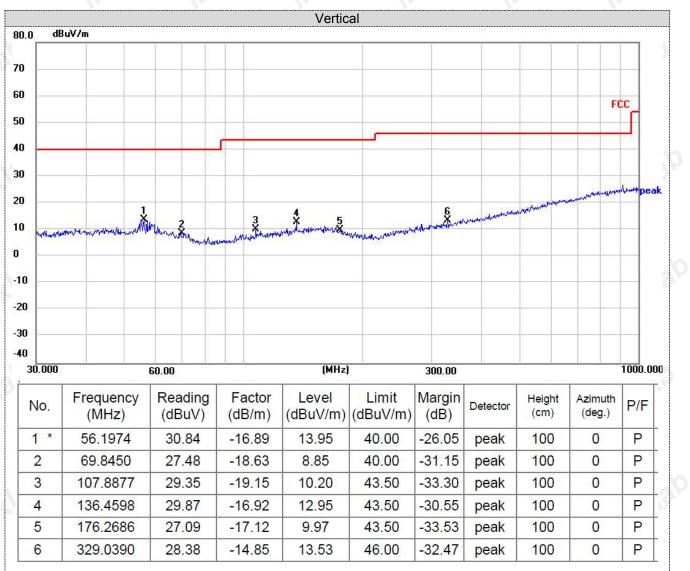


TEST RESULTS

Remark:

- 1. This test was performed with EUT in X, Y, Z position and the worse case was found when EUT in X position.
- 2. We measured Radiated Emission at GFSK, π/4 DQPSK and 8-DPSK mode from 9 KHz to 25GHz and recorded worst case at GFSK DH5 mode.
- 3. For below 1GHz testing recorded worst at GFSK DH5 middle channel.
- 4. Radiated emission test from 9 KHz to 10th harmonic of fundamental was verified, and no emission found except system noise floor in 9 KHz to 30MHz and not recorded in this report.

For 30MHz-1GHz


Note:1).Level (dBµV/m)= Reading (dBµV/m)+ Factor (dB/m)

2). Factor(dB/m)=Antenna Factor (dB/m) + Cable loss (dB) - Pre Amplifier gain (dB)

3). Margin(dB) = Limit (dBµV/m) - Level (dBµV/m)

Report No.: MAX250424011-P01R01

Note:1).Level (dBµV/m)= Reading (dBµV/m)+ Factor (dB/m)

2). Factor(dB/m)=Antenna Factor (dB/m) + Cable loss (dB) - Pre Amplifier gain (dB)

3). Margin(dB) = Limit (dB μ V/m) - Level (dB μ V/m)

Report No.: MAX250424011-P01R01

For 1GHz to 25GHz

Note: GFSK, $\pi/4$ DQPSK and 8-DPSK all have been tested, only worse case GFSK is reported.

~				GFSK (abo	ve 1GHZ)			0	
Freque	ncy(MHz)	:	24	2402		Polarity:		HORIZONTAL	
Frequency (MHz)	-	sion vel V/m)	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)
4804.00	57.09	PK	74	16.91	61.45	32.40	5.11	41.87	-4.36
4804.00	46.87	AV	54	7.13	51.23	32.40	5.11	41.87	-4.36
7206.00	55.15	PK	74	18.85	55.78	36.58	6.43	43.64	-0.63
7206.00	45.00	AV	54	9.00	45.63	36.58	6.43	43.64	-0.63

N	<u>)</u>	10		12	10.		0	10		2
	Freque	Frequency(MHz): requency (MHz) Emission Level (dBuV/m)			2402		Polarity:		VERTICAL	
	Frequency (MHz)	Lev	vel	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)
	4804.00	56.16	PK	74	17.84	60.52	32.40	5.11	41.87	-4.36
N	4804.00	46.10	AV	54	7.90	50.46	32.40	5.11	41.87	-4.36
	7206.00	54.71	PK	74	19.29	55.34	36.58	6.43	43.64	-0.63
	7206.00	44.63	AV	54	9.37	45.26	36.58	6.43	43.64	-0.63

Freque	ency(MHz)	:	2441		Polarity:		HORIZONTAL		
Frequency (MHz)	Emis Lev (dBu)	/el	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)
4882.00	56.90	PK	74	17.10	60.85	32.56	5.34	41.85	-3.95
4882.00	46.79	AV	54	7.21	50.74	32.56	5.34	41.85	-3.95
7323.00	54.90	PK	74	19.10	55.26	36.54	6.81	43.71	-0.36
7323.00	44.98	AV	54	9.02	45.34	36.54	6.81	43.71	-0.36

Freque	ncy(MHz)	:	2441		Polarity:		VERTICAL			
Frequency (MHz)	Emis Lev (dBu)	/el	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)	
4882.00	56.68	PK	74	17.32	60.63	32.56	5.34	41.85	-3.95	
4882.00	46.46	AV	54	7.54	50.41	32.56	5.34	41.85	-3.95	
7323.00	54.90	PK	74	19.10	55.26	36.54	6.81	43.71	-0.36	
7323.00	45.11	AV	54	8.89	45.47	36.54	6.81	43.71	-0.36	

Freque	ency(MHz)	:	2480		Polarity:		HORIZONTAL		
Frequency (MHz)	Emis Le ^v (dBu	vel	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)
4960.00	57.10	PK	74	16.90	60.56	32.73	5.64	41.83	-3.46
4960.00	46.80	AV	54	7.20	50.26	32.73	5.64	41.83	-3.46
7440.00	55.28	PK	74	18.72	55.34	36.50	7.23	43.79	-0.06
7440.00	45.20	AV	54	8.80	45.26	36.50	7.23	43.79	-0.06
124		a	104		24	A YA		AY	A A Y

A CP A Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z									
Freque	ency(MHz)	:	2480		Polarity:		VERTICAL		
Frequency (MHz)	Emis Lev (dBu)	vel	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)
4960.00	56.95	PK	74	17.05	60.41	32.73	5.64	41.83	-3.46
4960.00	46.78	AV	54	7.22	50.24	32.73	5.64	41.83	-3.46
7440.00	55.06	PK	74	18.94	55.12	36.50	7.23	43.79	-0.06
7440.00	45.20	AV	54	8.80	45.26	36.50	7.23	43.79	-0.06

REMARKS:

- 1. Emission level (dBuV/m) =Raw Value (dBuV)+Correction Factor (dB/m)
- 2. Correction Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)- Pre-amplifier
- 3. Margin value = Limit value- Emission level.
- 4. -- Mean the PK detector measured value is below average limit.
- 5. The other emission levels were very low against the limit.

Results of Band Edges Test (Radiated)

Note: GFSK, Pi/4 DQPSK and 8-DPSK all have been tested, only worse case GFSK is reported.

10		0	10	GFS	n -			0	N.O.
Test Fred	Test Frequency(MHz):			Lowest channel		Polarity:		HORIZONTAL	
Frequency (MHz)	Emis Lev (dBu)	/el	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)
2310.00	49.83	PK	74	24.17	60.25	27.42	4.31	42.15	-10.42
2310.00	39.84	AV	54	14.16	50.26	27.42	4.31	42.15	-10.42
2390.00	48.13	PK	74	25.87	58.42	27.55	4.35	42.19	-10.29
2390.00	38.23	AV	54	15.77	48.52	27.55	4.35	42.19	-10.29
2400.00	45.44	PK	74	28.56	55.63	27.70	4.39	42.28	-10.19
2400.00	35.07	AV	54	18.93	45.26	27.70	4.39	42.28	-10.19

Test Freq	luency(MF	łz):	Lowest	channel	Polarity:		VERTICAL		
Frequency (MHz)	Emis Lev (dBu)	/el	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)
2310.00	48.03	PK	74	25.97	58.45	27.42	4.31	42.15	-10.42
2310.00	37.82	AV	54	16.18	48.24	27.42	4.31	42.15	-10.42
2390.00	45.17	PK	74	28.83	55.46	27.55	4.35	42.19	-10.29
2390.00	34.97	AV	54	19.03	45.26	27.55	4.35	42.19	-10.29
2400.00	43.15	PK	74	30.85	53.34	27.70	4.39	42.28	-10.19
2400.00	32.66	AV	54	21.34	42.85	27.70	4.39	42.28	-10.19

Test Freq	(MHz) (dBuV/m)			Highest channel		Polarity:		HORIZONTAL		
Frequency (MHz)	Le	vel	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)	
2483.50	44.79	PK	74	29.21	55.42	27.55	4.38	42.56	-10.63	
2483.50	34.63	AV	54	19.37	45.26	27.55	4.38	42.56	-10.63	
2500.00	41.61	PK	74	32.39	52.34	27.69	4.46	42.88	-10.73	
2500.00	31.53	AV	54	22.47	42.26	27.69	4.46	42.88	-10.73	
Xo.	7.0		7.0.	10		Y.O.	X		7.9.	

Test Freq	uency(Mł	lz):	Highest channel		Polarity:		VERTICAL		
Frequency (MHz)	Emis Lev (dBu)	vel	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)
2483.50	42.02	PK	74	31.98	52.65	27.55	4.38	42.56	-10.63
2483.50	32.23	AV	54	21.77	42.86	27.55	4.38	42.56	-10.63
2500.00	39.39	PK	74	34.61	50.12	27.69	4.46	42.88	-10.73
2500.00	29.54	AV	54	24.46	40.27	27.69	4.46	42.88	-10.73

REMARKS: 📎

- 1. Emission level (dBuV/m) =Raw Value (dBuV)+Correction Factor (dB/m)
- 2. Correction Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)- Pre-amplifier
- 3. Margin value = Limit value- Emission level.
- 4. -- Mean the PK detector measured value is below average limit.
- 5. The other emission levels were very low against the limit.

4.3 Maximum Peak Output Power

Limit

The Maximum Peak Output Power Measurement is 30dBm(for GFSK)/20.97dBm(for EDR)

Test Procedure

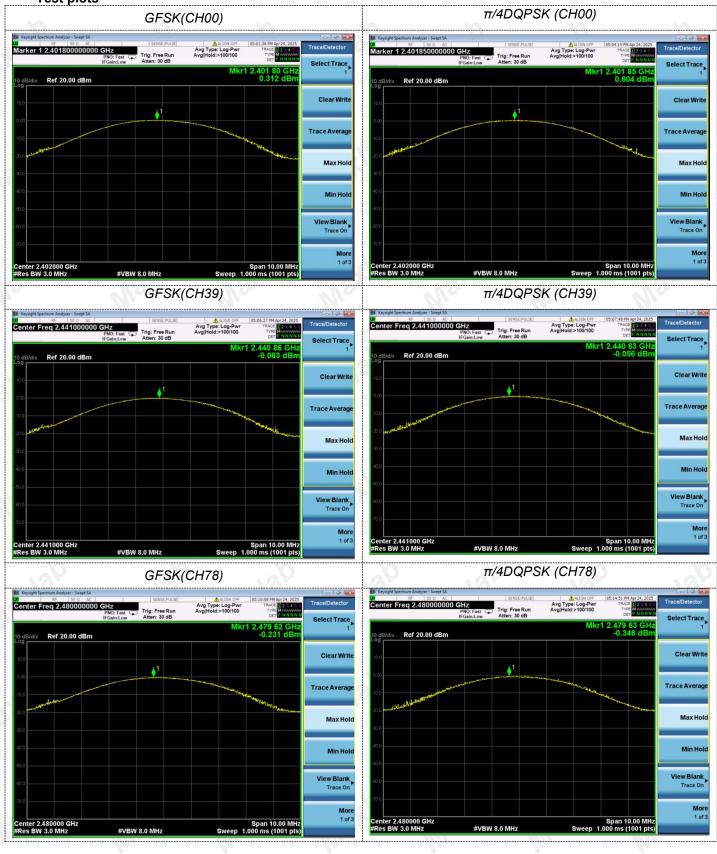
1. Remove the antenna from the EUT and then connect a low RF cable from the antenna port to the spectrum. 2. Set the spectrum analyzer: RBW = 1MHz. VBW = 1MHz. for GFSK; RBW = 2MHz. VBW = 2MHz. for π /4DQPSK and 8-DPSK; Sweep = auto; Detector Function = Peak.

3. Keep the EUT in transmitting at lowest, medium and highest channel individually. Record the max value.

Test Configuration

h	
EUT	 SPECTRUM
	ANALYZER

Test Results


Туре	Channel	Output power (dBm)	Limit (dBm)	Result
	00	0.321		
GFSK	39	-0.063	30.00	Pass
atta	78	-0.231		at lo
	00	0.604	Ma.	Ma
π/4DQPSK	39	-0.056	20.97	Pass
0	78	-0.346	10 .0	
	00	1.500	13. 13.	N
8-DPSK	39	0.881	20.97	Pass
	78	0.700	10	1.

Note: 1.The test results including the cable lose.



Report No.: MAX250424011-P01R01

Test plots

4.4 20dB Bandwidth

<u>Limit</u>

For frequency hopping systems operating in the 2400MHz-2483.5MHz no limit for 20dB bandwidth.

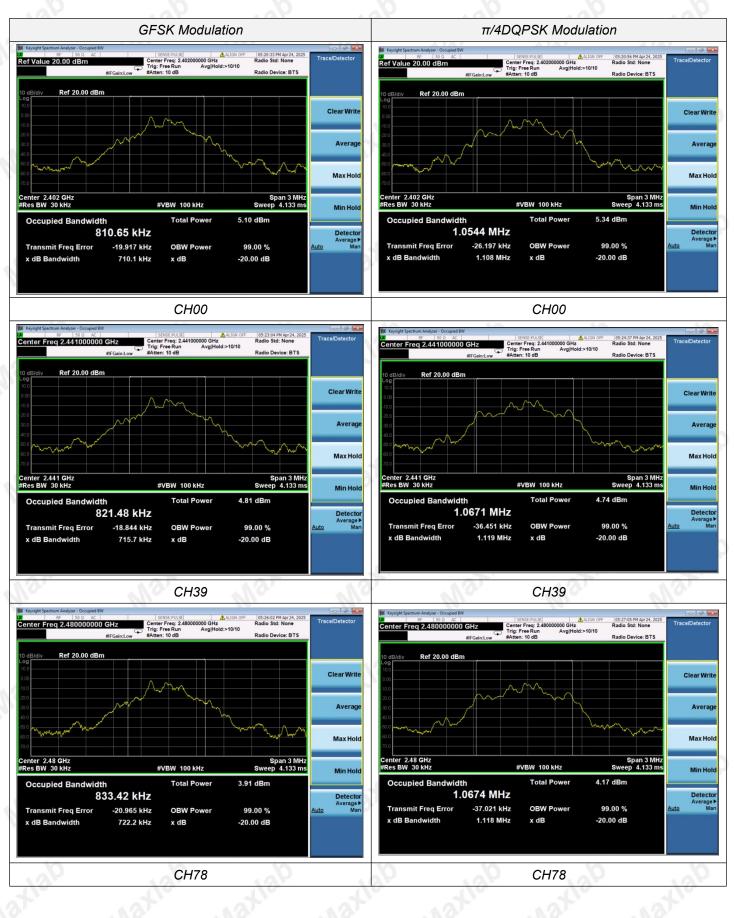
Test Procedure

The transmitter output was connected to the spectrum analyzer through an attenuator. The bandwidth of the fundamental frequency was measured by spectrum analyzer with 30 KHz RBW and 91 KHz VBW.

Report No.: MAX250424011-P01R01

The 20dB bandwidth is defined as the total spectrum the power of which is higher than peak power minus 20dB.

Test Configuration



Test Results

Modulation	Channel	20dB bandwidth (MHz)	Result
134	CH00	0.710	131 1
GFSK	CH39	0.716	at at
	CH78	0.722	NIC NIC
	CH00	1.108	-
π/4DQPSK	CH39	1.119	Pass
	CH78	1.118	Jar
131	CH00	1.152	131 13
8-DPSK	CH39	1.239	h. h.
	CH78	1.120	

Test Graphs

4.5 Frequency Separation

LIMIT

According to 15.247(a)(1), frequency hopping systems shall have hopping channel carrier frequencies separated by minimum of 25KHz or the 2/3*20dB bandwidth of the hopping channel, whichever is greater.

TEST PROCEDURE

The transmitter output was connected to the spectrum analyzer through an attenuator. The bandwidth of the fundamental frequency was measured by spectrum analyzer with 300 KHz RBW and 910 KHz VBW.

TEST CONFIGURATION

TEST RESULTS

Modulation	Channel	Channel Separation (MHz)	Limit(MHz)	Result
GFSK	CH38	1.000	0.722	Deee
Gron	CH39	1.000	Pass	
	CH38	1.002	0.746	Deee
π/4DQPSK	CH39	1.002	0.746	Pass
8-DPSK	CH38	4.944		Deen
0-DH2K	CH39	1.014	0.826	Pass

Note:We have tested all mode at high, middle and low channel, and recorded worst case at middle

Report No.: MAX250424011-P01R01

Test Graphs

4.6 Number of Hopping Channel

<u>Limit</u>

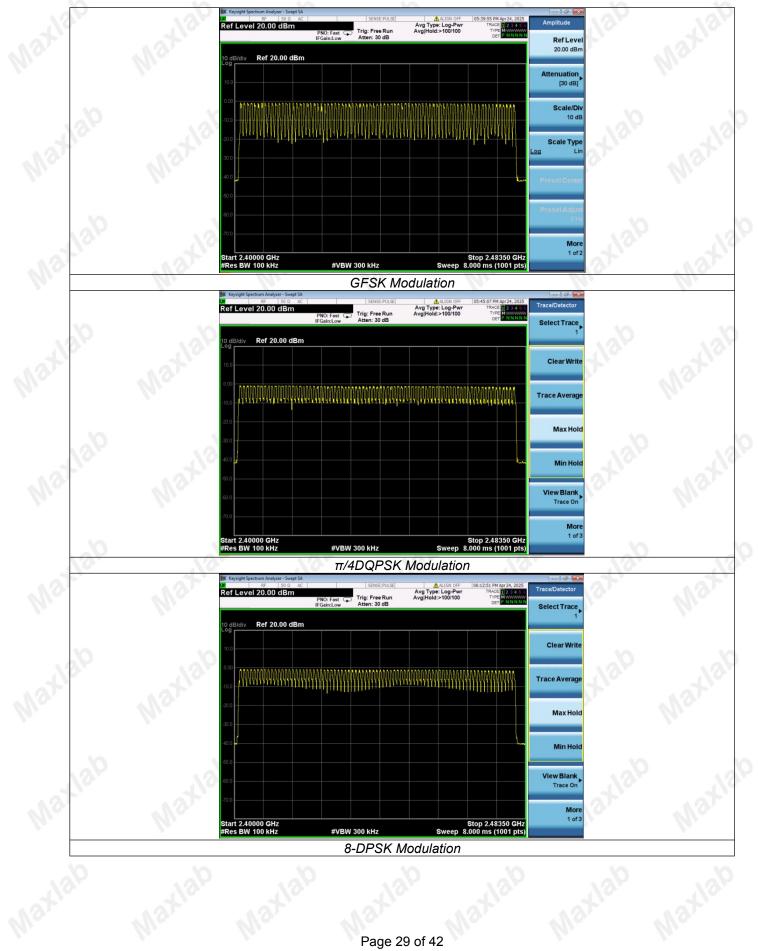
Frequency hopping systems in the 2400–2483.5 MHz band shall use at least 15 channels.

Test Procedure

The transmitter output was connected to the spectrum analyzer through an attenuator. Set spectrum analyzer start 2400MHz to 2483.5MHz with 100 KHz RBW and 300 KHz VBW.

Test Configuration

EUT		SPECTRUM
No.	No.	


Test Results

Modulation	Number of Hopping Channel	Limit	Result
GFSK	79	Q.	No No
π/4DQPSK	79	≥15	Pass
8-DPSK	79	Na. Na.	Mar

Test Graphs

4.7 Time of Occupancy (Dwell Time)

<u>Limit</u>

The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed.

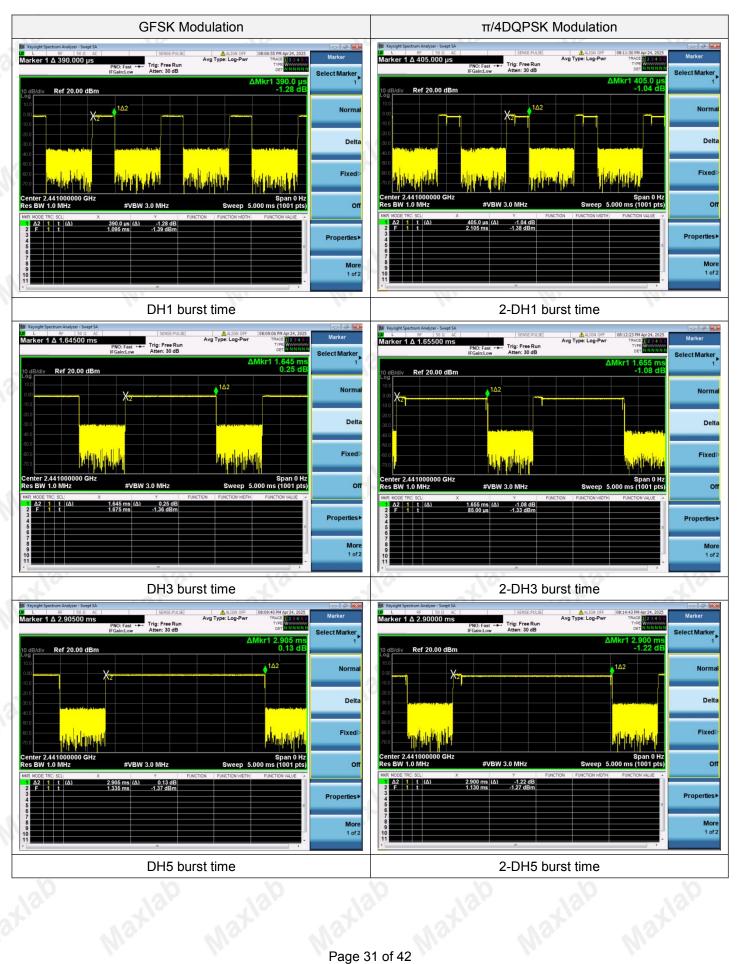
Test Procedure

The transmitter output was connected to the spectrum analyzer through an attenuator. Set center frequency of spectrum analyzer=operating frequency with 1MHz RBW and 3MHz VBW, Span 0Hz.

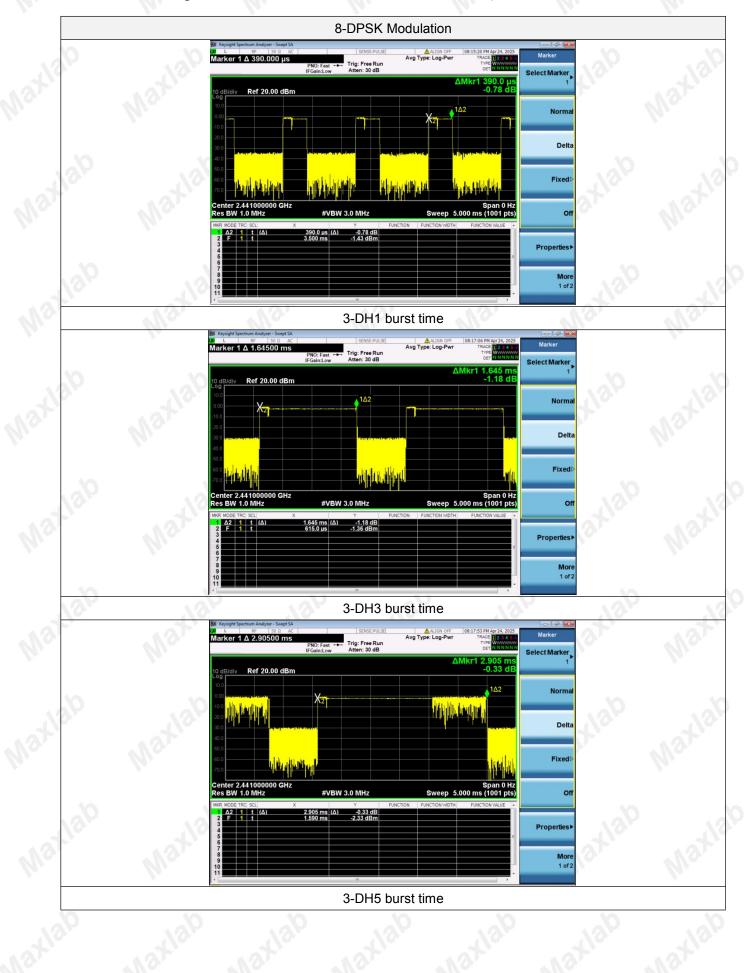
Test Configuration

EUT	1/3/0	SPECTRUM ANALYZER
12	12	13 13

Test Results


Modulation	Packet	Burst time (ms)	Dwell time (s)	Limit (s)	Result	
3	DH1	0.390	0.125	ANT.	13t	
GFSK	DH3	1.645	0.263	0.40	Pass	
	DH5	2.905	0.310			
-10	2-DH1	0.405	0.130	5	0	
π/4DQPSK	2-DH3 1.65		0.265	0.40	Pass	
. 1.2	2-DH5	2.900	0.309	131	121	
la.	3-DH1	0.390	0.125	la.	la.	
8-DPSK	3-DH3	3-DH3 1.645		0.263 0.40		
	3-DH5	2.905	0.310	0	10	

Note:We have tested all mode at high,middle and low channel,and recoreded worst case at middle channel. Dwell time=Pulse time (ms) × (1600 ÷ 2 ÷ 79) ×31.6 Second for DH1, 2-DH1, 3-DH1 Dwell time=Pulse time (ms) × (1600 ÷ 4 ÷ 79) ×31.6 Second for DH3, 2-DH3, 3-DH2 Dwell time=Pulse time (ms) × (1600 ÷ 6 ÷ 79) ×31.6 Second for DH5, 2-DH5, 3-DH3



Report No.: MAX250424011-P01R01

Test Graphs

Report No.: MAX250424011-P01R01

4.8 Out-of-band Emissions

<u>Limit</u>

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF con-ducted or a radiated measurement, pro-vided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter com-plies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required.

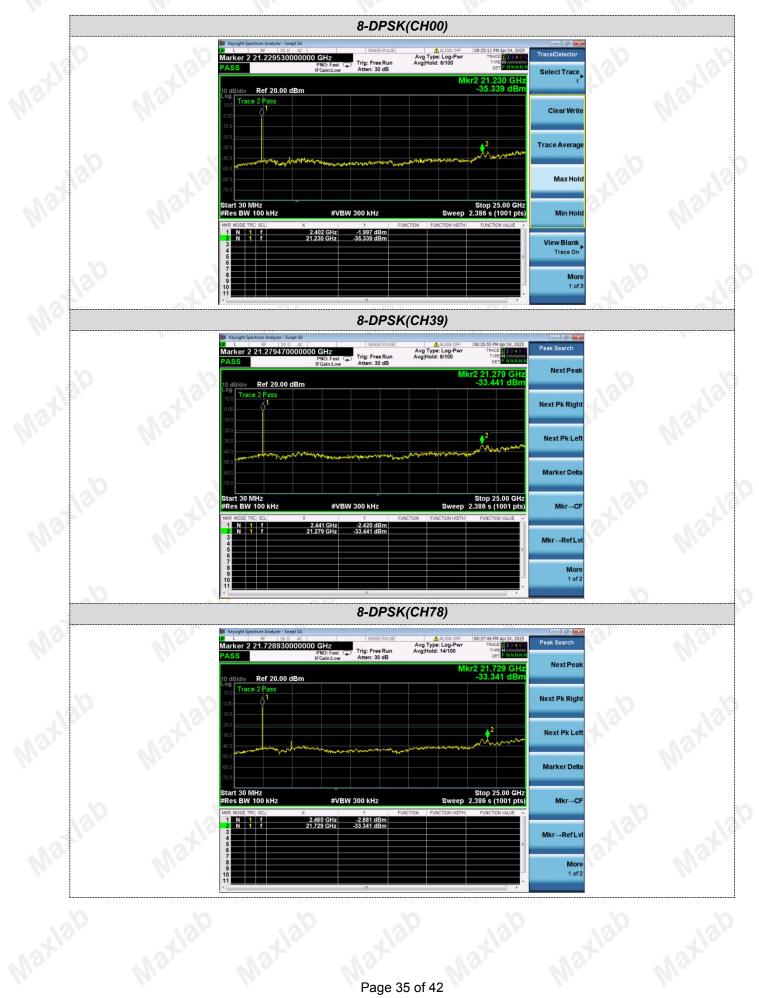
Test Procedure

Connect the transmitter output to spectrum analyzer using a low loss RF cable, and set the spectrum analyzer to RBW=100 kHz, VBW= 300 kHz, peak detector, and max hold. Measurements utilizing these setting are made of the in-band reference level, bandedge and out-of-band emissions.

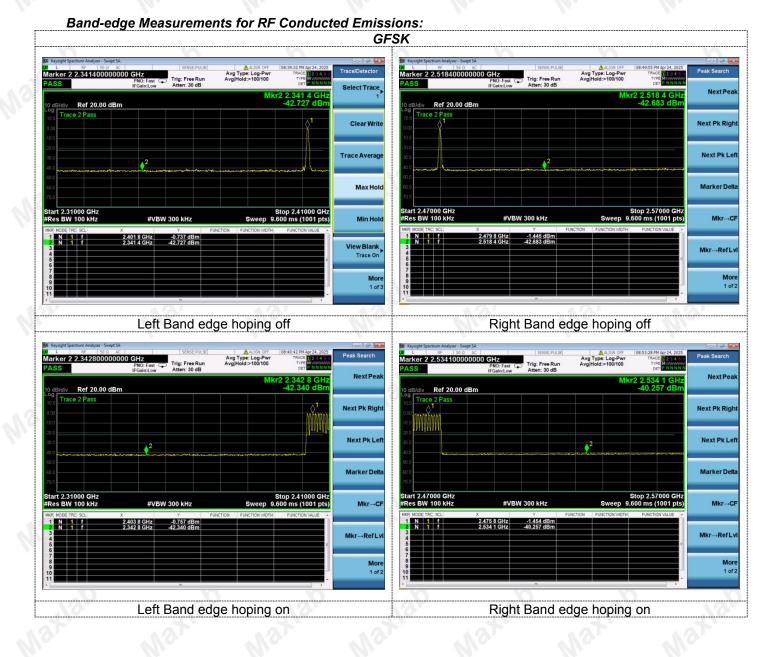
Test Configuration

Test Results

Remark: The measurement frequency range is from 30MHz to the 10th harmonic of the fundamental frequency. The lowest, middle and highest channels are tested to verify the spurious emissions and bandage measurement data.


We measured all conditions (DH1, DH3, DH5) and recorded worst case at DH5

30MHz-25G



Report No.: MAX250424011-P01R01

Report No.: MAX250424011-P01R01

			<i></i>	QPSK			
🗱 Keysight Spectrum Analyzer - Swept D L RF 50 Ω	AC SENSE:PULSE	ALIGN OFF 08:42:15 PM Apr 24, 2025	Peak Search	Keysight Spectrum Analyzer - Swept 1	AC SENSE:PULSE	ALIGN OFF 08:54:05 PM Apr 24, 2025	00
Marker 2 2.352800000	PNO: Fast IFGain:Low Atten: 30 dB	Avg Type: Log-Pwr Avg Hold:>100/100 Det PNNNHN		Marker 2 2.529300000 PASS	PNO: Fast Free Run IFGain:Low Atten: 30 dB	Avg Type: Log-Pwr Avg Hold:>100/100 TYPE	Peak Searc
		Mkr2 2.352 8 GHz	NextPeak		IFGain:Low Atten: 30 db	Mkr2 2.529 3 GHz	NextP
10 dB/div Ref 20.00 dE	Bm	-42.046 dBm		10 dB/div Ref 20.00 dB	m	-41.391 dBm	
		⊘ ¹	Next Pk Right				Next Pk R
-10.0				-10.0			_
-20.0			Next Pk Left	-20.0			Next Pk
-40.0	2	and a second		-40.0 management	14	2 	
-60.0			Marker Delta	-50.0			MarkerD
-70.0				-70.0			
Start 2.31000 GHz #Res BW 100 kHz	#VBW 300 kHz	Stop 2.41000 GHz Sweep 9.600 ms (1001 pts)	Mkr→CF	Start 2.47000 GHz #Res BW 100 kHz	#VBW 300 kHz	Stop 2.57000 GHz Sweep 9.600 ms (1001 pts)	Mkr-
MKR MODE TRC SCL		CTION FUNCTION WIDTH FUNCTION VALUE		MKR MODE TRC SCL	X Y FUNC		
2 N 1 f	2.401 8 GHz -0.795 dBm 2.352 8 GHz -42.046 dBm		Mkr→RefLvl	1 N 1 f 2 N 1 f 3	2.479 8 GHz -1.587 dBm 2.529 3 GHz -41.391 dBm		Mkr→Re
4 5 6		a de la constante de la consta		4 5 6			WIRI - Ke
7			More	7			N
10		-	1 of 2	10			1
				1.	AV.		-1 N
	Left Band edg	e hoping off	10		Right Band edg	ae hopina off	
	Lott Band odg				ragin Bana oa,	go noping on	
Keysight Spectrum Analyzer - Swept L RF 50 Ω Marker 2 2.351400000	AC SENSE:PULSE	ALIGN OFF 08:44:38 PM Apr 24, 2025 Avg Type: Log-Pwr TRACE 2:34 3 Avg Hold:>100/100 Type	Peak Search	Keysight Spectrum Analyzer - Swept Δ RF 50 Ω Marker 2 2.519200000	AC SENSE:PULSE	ALIGN OFF 08:59:02 PM Apr 24, 2025 Avg Type: Log-Pwr TRACE 2 3 4 5	Peak Searc
PASS	PNO: Fast Trig: Free Run IFGain:Low Atten: 30 dB	Avg Hold:>100/100 TYPE M		PASS	PNO: Fast Trig: Free Run IFGain:Low Atten: 30 dB	Avg Hold:>100/100 TYPE MUNICIPAL OF PINNINN	
10 dB/div Ref 20.00 dE	Bm	Mkr2 2.351 4 GHz -42.063 dBm	NextPeak	10 dB/div Ref 20.00 dB	m	Mkr2 2.519 2 GHz -41.083 dBm	NextF
Trace 2 Pass				Trace 2 Pass			
0.00			Next Pk Right				Next Pk R
-10.0				-10.0			
-30.0	2		Next Pk Left	-30.0	2		Next Pk
-50.0		an a		-40.0			
-60.0			Marker Delta	-60.0			Marker
Start 2.31000 GHz		Stop 2.41000 GHz		Start 2.47000 GHz		Stop 2 57000 GHz	
#Res BW 100 kHz	#VBW 300 kHz	Stop 2.41000 GHz Sweep 9.600 ms (1001 pts)	Mkr→CF	#Res BW 100 kHz	#VBW 300 kHz	Stop 2.57000 GHz Sweep 9.600 ms (1001 pts)	Mkr-
MKR MODE TRC SCL 1 N 1 f 2 N 1 f	X Y FUN 2.403 2 GHz -0.775 dBm 2.351 4 GHz -42.063 dBm	CTION FUNCTION WIDTH FUNCTION VALUE		MKR MODE TRC SCL 1 N 1 f 2 N 1 f	X Y FUNC 2.475 0 GHz -1.712 dBm 2.519 2 GHz -41.083 dBm	CTION FUNCTION WIDTH FUNCTION VALUE	_
3			Mkr→RefLvl	3			Mkr→Re
6 7		н		6		E	
8 9			More 1 of 2	8 9 10			N
11		*		11		-	
O.	Left Band edd	e hoping on			Right Band ed	ae hopina on	

Left Band edge hoping on

Right Band edge hoping on

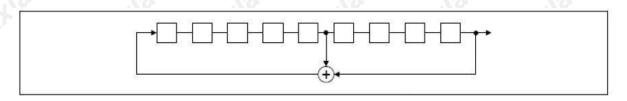
MAXLAB Testing Co., Ltd.

	8-L	PSK	
Keysight Spectrum Analyzer - Swept SA L	Avg Type: Log-Pwr TRACE 12 14 5 Avg Type: Log-Pwr TRACE 12 14 5 AvgHold:>00100	Krysight Spectrum Analyzer - Swept SA Krysight Spectrum Analyzer - Swept SA Marker 2 2.533700000000 GHz Trias Error Da	SE ALIGN OFF 08:59:34 PM Apr24, 2025 Avg Type: Log-Pwr TRACE 2 2 4 n Avg[Hold:>100/100 Type New Web
PND: Fast Photocologic	Mkr2 2.349 5 GHz -43.222 dBm	PASS PNO: Fast PNO: Fast Atten: 30 dB	n Avg Hold>100/100 TYPE MUNITYPE MKr2 2.533 7 GHz -42.736 dBm
100 grace 2 Pass	of Next Pk Right	10 dB/div Ref 20.00 dBm	
200	Next Pk Left		
400	Marker Delta	40.0 	2
500 000 000 000 000 000 000 000 000 000		5tart 2 47000 CHz	Stop 2 57000 GHz
Start 2.31000 GHz #VEW 300 kHz #WEW 300 kHz #VEW 300 kHz Image 100 kHz ¥UW 300 kHz Image 100 kHz X Y Function Image 100 kHz X Y Y Y Image 100 kHz X Y Y Y Y Y Image 100 kHz X Y Y Y Y Y Y Y Y Y Y Y Y Y	Stop 2.41000 GHz Sweep 9.600 ms (1001 pts) ION FUNCTION WOTH	Start 2.47000 GHz #VBW 300 kHz #VBW 300 kHz MR MOGETRC SCL Y 1 N 1 7 2.437 9 8 GHz -1.527 dBm 2 N 1 7 2.437 9 KHz -1.527 dBm	Stop 2.57000 GHz Sweep 9.600 ms (1001 pts) FUNCTION FUNCTION WIDTH FUNCTION VALUE
2 N 1 f 2.349 5 GHz 43.222 dBm 4 6 6 6	Mkr→RefLvl	2 N 1 f 2.533 7 GHz 42.736 dBm 3 4 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	
7	More 1 of 2	7 8 9 10	
Left Band edge	e hoping off		edge hoping off
L RF 50 R SENSE PULSE Marker 2 2.357000000000 GHz SENSE PULSE Trig: Free Run ASS IFGaint.ow Trig: Sense Pulse	Aug Type: Log-Pwr TRACE D 2 4 5 Avg Type: Log-Pwr TRACE D 2 4 5 Avg Hold:>100/100 Type Der WYDNNAL	Kysigkt Spectrum Analyzer-Swept SA B	ALIGN 0FF 09:04:01 PM Apr 24, 2025 Avg Type: Log-Pwr TRACE Nyg[Hold:>100/100 TYPE DIT TYPE
10 dB/div Ref 20.00 dBm	Mkr2 2.357 0 GHz -42.157 dBm	10 dB/div Ref 20.00 dBm	Mkr2 2.535 7 GHz -40.372 dBm
10.0	Next Pk Right		
20.0 200 200 200 200 200 200 200 200 200	Next Pk Left	-20.0	↓ ²
60.0 60.0	Marker Delta	-50.0 	
Start 2.31000 GHz #Res BW 100 kHz #VBW 300 kHz	Stop 2.41000 GHz Sweep 9.600 ms (1001 pts) Mkr⊸CF	Start 2.47000 GHz #Res BW 100 kHz #VBW 300 kHz	Stop 2.57000 GHz Sweep 9.600 ms (1001 pts)
MMR MODE TRC SCL X Y FUNCT 1 N 1 f 2.402.8 GHz -0.817 dBm 2 N 1 f 2.357.0 GHz -42.157 dBm	TION FUNCTION WIDTH FUNCTION VALUE	MRF MODE TRC SCL X Y 1 N 1 f 2.473 8 GHz -1.474 dBm 2 N 1 f 2.535 7 GHz -40.372 dBm	FUNCTION FUNCTION WDTH FUNCTION VALUE

Left Band edge hoping on

Right Band edge hoping on

4.9 Pseudorandom Frequency Hopping Sequence <u>TEST APPLICABLE</u>


For 47 CFR Part 15C section 15.247 (a) (1) requirement:

Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hop-ping channel, whichever is greater. Alternatively, frequency hopping systems operating in the 2400–2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW. The system shall hop to channel frequencies that are selected at the system hopping rate from a pseudo randomly ordered list of hopping frequencies. Each frequency must be used equally on the average by each transmitter. The system receivers shall have input bandwidths that match the hop-ping channel bandwidths of their corresponding transmitters and shall shift frequencies in synchronization with the transmitted signals.

EUT Pseudorandom Frequency Hopping Sequence Requirement

The pseudorandom frequency hopping sequence may be generated in a nice-stage shift register whose 5th and 9th stage outputs are added in a modulo-two addition stage. And the result is fed back to the input of the first stage. The sequence begins with the first one of 9 consecutive ones, for example: the shift register is initialized with nine ones.

- Number of shift register stages:9
- Length of pseudo-random sequence:29-1=511 bits
- Longest sequence of zeros:8(non-inverted signal)

Linear Feedback Shift Register for Generation of the PRBS sequence

An example of pseudorandom frequency hopping sequence as follows:

0	2	4	6	62	64	78 1			73 75 77		
					П						
8				1		1					
		<u> </u>		 1	<u> </u>	<i>ì</i>			. <u> </u>	Ц	

Each frequency used equally one the average by each transmitter.

The system receiver have input bandwidths that match the hopping channel bandwidths of their corresponding transmitter and shift frequencies in synchronization with the transmitted signals.

4.10 Antenna Requirement

Standard Applicable

For intentional device, according to FCC 47 CFR Section 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. And according to FCC 47 CFR Section 15.247 (c), if transmitting antennas of directional gain greater than 6dBi are used, the power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6dBi.

Report No.: MAX250424011-P01R01

Refer to statement below for compliance

The manufacturer may design the unit so that the user can replace a broken antenna, but the use of a standard antenna jack or electrical connector is prohibited. Further, this requirement does not apply to intentional radiators that must be professionally installed.

Antenna Connected Construction

The maximum gain of antenna is -1.37 dBi.

Remark:The antenna gain is provided by the customer, if the data provided by the customer is not accurate, MAXLAB Testing Co.,Ltd. does not assume any responsibility.

MaxLab

Report No.: MAX250424011-P01R01

of the EUT 5 Test Setup Photos Maxlab Maxiab

Reference to the appendix I for details.

Report No.: MAX250424011-P01R01

6 Photos of the EUT

Reference to the appendix II for details.

***************** End of Report ******