

	SAR Evaluation Report				
	DUT Information				
Manufacturer Brand Name Model Name FCC ID	Panasonic Corporation KX-TGDA66 KX-TGDA66 ACJ96NKX-TGDA66				
DUT Type Intended Use	handset Image: Section of the s				
	Prepared by				
Testing Laboratory	IMST GmbH, Test Center Carl-Friedrich-Gauß-Str. 2 – 4 47475 Kamp-Lintfort Germany				
Laboratory Accreditation	ry Accreditation The Test Center facility 'Dosimetric Test Lab' within IMST GmbH is accredited by the German National 'Deutsche Akkreditierungsstelle GmbH (DAkkS)' for testing according to the scope as listed in the accreditation certificate: D-PL-12139-01-01. The German Bundesnetzagentur (BNetzA) recognizes IMST GmbH as CAB-EMC on the basis of the Council Decision of 22. June 1998 concerning the conclusion of the MRA between the European Community and the United States of America (1999/178/EC) in accordance with § 4 of the Recognition Ordinance of 11. January 2016. The recognition is valid until 20. July 2021 under the registration number: BNetzA-CAB-16/21-14.				
	Prepared for				
Manufacturer	Panasonic Corporation 1-62, 4-Chome Minoshima, Hakata-ku 812-8531 Fukuoka Japan				
	Test Specification				
Applied Standard / Rule Exposure Category Test Result	IEEE 1528-2013; FCC CFR 47 § 2.1093 ☑ general public / uncontrolled exposure ☑ PASS				
	Report Information				
Data Stored Issue Date Revision Date Revision Number*	6210313 May 4, 2021				
	*A new revision replaces all previous revisions and thus, become invalid herewith.				
Remarks	This report relates only to the item(s) evaluated. This report shall not be reproduced, except in its entirety, without the prior written approval of IMST GmbH. The results and statements contained in this report reflect the evaluation for the certain model described above. The manufacturer is responsible for ensuring that all production devices meet the intent of the requirements described in this report.				

Table of Contents

1	Su	bject of Investigation and Test Results	3
	1.1	Technical Data of DUT	3
	1.2	Product Family / Model Variants	3
	1.3	Antenna Configuration	3
	1.4	Test Specification / Normative References	4
	1.5	Attestation of Test Results	
2		ality Assurance	
3	Ex	posure Criteria and Limits	5
	3.1	SAR Limits	5
	3.2	Exposure Categories	5
	3.3	Distinction between Maximum Permissible Exposure and SAR Limits	5
4	Th	e Measurement System	6
	4.1	Phantoms	7
	4.2	E-Field-Probes	8
5	Ме	asurement Procedure	9
	5.1	General Requirement	9
	5.2	Test Position of DUT operating next to the Human Ear	9
	5.3	Measurement Procedure	. 12
6	Sy	stem Verification and Test Conditions	
	6.1	Date of Testing	. 13
	6.2	Environment Conditions	. 13
	6.3	Tissue Simulating Liquid Recipes	. 13
	6.4	Tissue Simulating Liquid Parameters	. 14
	6.5	Simplified Performance Checking	
7	SA	R Measurement Conditions and Results	.15
	7.1	Test Conditions	. 15
	7.2	Tune-Up Information	. 15
	7.3	Measured Output Power	. 15
	7.4	Standalone SAR Test Exclusion according to KDB 447498	. 16
	7.5	SAR Measurement Results	. 17
8	Ad	ministrative Measurement Data	.18
	8.1	Calibration of Test Equipment	. 18
	8.2	Uncertainty Assessment	. 19
9	Re	port History	.21
	Appen	dix A - Pictures	. 23
	Appen	dix B - SAR Distribution Plots	. 25
	Appen	dix C - System Verification Plots	. 26
	Appen	dix D – Certificates of Conformity	. 27
	Appen	dix E – Calibration Certificates for DAEs	. 30
	Appen	dix F – Calibration Certificates for E-Field Probes	. 35
	Appen	dix G – Calibration Certificates for Dipoles	. 44

1 Subject of Investigation and Test Results

The KX-TGDA66 is a new handset from Panasonic Corporation operating in DECT UPCS (TDD) standard with one integrated antenna. The objective of the measurements performed by IMST is the dosimetric assessment on one device in the intended use positions.

1.1 Technical Data of DUT

Product Specifications					
Manufacturer Panasonic Corporation					
Model Name	KX-TGDA66 (refer to chapter 1.2)				
SN / IMST DUT No.	N/A / SAR 01				
Operation Mode	DECT UPCS (TDD)				
Frequency Range	1921.536 – 1928.448 MHz				
Number of Channels	5				
Maximum Active Slots	1				
Maximum Duty Cycle	4.17 % (1/24 crest factor)				
Antenna Type	integrated				
Maximum Output Power	refer chapter 7.3				
Power Supply	2x NiMH 1.2 V (DC 2.4V)				
Used Accessory	-				
DUT Stage	☐ production unit ☐ identical prototype				
Notes:					

1.2 Product Family / Model Variants

As declared by the manufacturer, the assessed KX-TGDA66 is technically identical to the product variant KX-TGDA63. Both variants are electrically identical and the only difference is that they are sold with different base stations.

1.3 Antenna Configuration

167mm
99753.
V

Fig. 1: Sketch of DUT.

1.4 Test Specification / Normative References

The tests documented in this report have been performed according to the standards and rules described below.

	Test Specifications							
	Test Standard / Rule Description Issue D							
	IEEE 1528-2013	IEEE Recommended Practice for Determining the Peak Spatial- Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques.	June 14, 2013					
	FCC CFR 47 § 2.1091	Code of Federal Regulations; Title 47. Radiofrequency radiation exposure evaluation: Mobile Devices.	October 01, 2010					
	FCC CFR 47 § 2.1093	Code of Federal Regulations; Title 47. Radiofrequency radiation exposure evaluation: Portable Devices.	October 01, 2010					
	RSS-102, Issue 5	Radio Frequency (RF) Exposure Compliance of Radiocommunication Apparatus (All Frequency Bands)	March, 2015					
		Measurement Methodology KDB						
\boxtimes	KDB 865664 D01 v01r04	SAR measurement 100 MHz to 6 GHz	August 07, 2015					
\boxtimes	KDB 865664 D02 v01r01	Exposure Reporting	October 23, 2015					
	Product KDB							
	KDB 447498 D01 v06	General RF Exposure Guidance	October 23, 2015					
\boxtimes	KDB 648474 D04 v01r03	Handset SAR	October 23, 2015					

1.5 Attestation of Test Results

	Highest Reported SAR								
Band	Equipment Class	Freq. [MHz]	СН	DUT* Position	Gap [mm]	Pic. No.	Highest Reported SAR1g [W/kg]	SAR1g Limit [W/kg]	
DECT	PUE	1924.99	0	Left Cheek	0	5	0.045	1.6	PASS
Notes:	Notes: To establish a connection at a specific channel and with maximum output power, engineering test software has been used. All measured SAR results and configurations are shown in chapter 7								

2 Quality Assurance

The responsible test engineer states that all the measurements and evaluations have been performed under the guidelines of the valid quality assurance plan according to DIN EN ISO IEC 17025-2017.

Prepared by:

Dessislava Patrishkova Test Engineer

Reviewed by:

Alexander Rahn Quality Assurance

3 Exposure Criteria and Limits

3.1 SAR Limits

Human Exposure Limits							
Condition	Uncontrolled En (General Pop		Controlled Environment (Occupational)				
	SAR Limit [W/kg]	Mass Avg.	SAR Limit [W/kg]	Mass Avg.			
SAR averaged over the whole body mass	0.08	whole body	0.4	whole body			
Peak spatially-averaged SAR for the head, neck & trunk	1.6	1g of tissue*	8.0	1g of tissue*			
Peak spatially-averaged SAR in the limbs	4.0	10g of tissue*	20.0	10g of tissue*			
Note: *Defined as a tissue volume in the shape of a cube							

Table 1: SAR limits specified in IEEE Standard C95.1-2005 and Health Canada's Safety Code 6.

In this report the comparison between the exposure limits and the measured data is made using the spatial peak SAR; the power level of the device under test guarantees that the whole body averaged SAR is not exceeded.

3.2 Exposure Categories

General Public / Uncontrolled Exposure

General population comprises individuals of all ages and of varying health status, and may include particularly susceptible groups or individuals. In many cases, members of the public are unaware of their exposure to electromagnetic fields. Moreover, individual members of the public cannot reasonably be expected to take precautions to minimize or avoid exposure.

Occupational /	Controlled Exposure
----------------	---------------------

The occupationally exposed population consists of adults who are generally exposed under known conditions and are trained to be aware of potential risk and to take appropriate precautions.

Table 2:RF exposure categories.

3.3 Distinction between Maximum Permissible Exposure and SAR Limits

The biological relevant parameter describing the effects of electromagnetic fields in the frequency range of interest is the specific absorption rate SAR (dimension: power/mass). It is a measure of the power absorbed per unit mass. The SAR may be spatially averaged over the total mass of an exposed body or its parts. The SAR is calculated from the r.m.s. electric field strength *E* inside the human body, the conductivity σ and the mass density ρ of the biological tissue:

$$SAR = \sigma \frac{E^2}{\rho} = c \frac{\partial T}{\partial t} \bigg|_{t \to 0+}$$
 (1)

The specific absorption rate describes the initial rate of temperature rise $\partial T / \partial t$ as a function of the specific heat capacity *c* of the tissue. A limitation of the specific absorption rate prevents an excessive heating of the human body by electromagnetic energy.

As it is sometimes difficult to determine the SAR directly by measurement (e.g. whole body averaged SAR), the standard specifies more readily measurable maximum permissible exposures in terms of external electric E and magnetic field strength H and power density S, derived from the SAR limits. The limits for E, H and S have been fixed so that even under worst case conditions, the limits for the specific absorption rate SAR are not exceeded.

4 The Measurement System

DASY is an abbreviation of <u>"D</u>osimetric <u>A</u>ssessment <u>Sy</u>stem" and describes a system that is able to determine the SAR distribution inside a phantom of a human being according to different standards. The DASY4 system consists of the following items as shown in Fig: 2. Additionally, Fig: 3 shows the equipment, similar to the installations in other laboratories.

- Fully compliant with all current measurement standards as stated in Fig. 9
- High precision robot with controller
- Measurement server (for surveillance of the robot operation and signal filtering)
- Data acquisition electronics DAE (for signal amplification and filtering)
- Field probes calibrated for use in liquids
- Electro-optical converter EOC (conversion from the optical into a digital signal)
- Light beam (improving of the absolute probe positioning accuracy)
- Two SAM phantoms filled with tissue simulating liquid
- DASY4 software
- SEMCAD

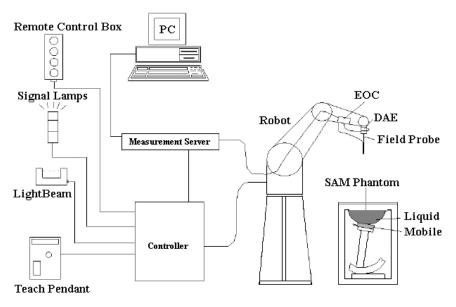


Fig. 2: The DASY4 measurement system.

Fig. 3: The measurement set-up with a DASY system and phantoms containing tissue simulating liquid.

The DUT operating at the maximum power level is placed by a non-metallic device holder (delivered from Schmid & Partner) in the above described positions at a shell phantom of a human being. The distribution of the electric field strength *E* is measured in the tissue simulating liquid within the shell phantom. For this miniaturised field probes with high sensitivity and low field disturbance are used. Afterwards the corresponding SAR values are calculated with the known electrical conductivity σ and the mass density ρ of the tissue in the SEMCAD FDTD software. The software is able to determine the averaged SAR values (averaging region 1 g or 10 g) for compliance testing.

The measurements are done by two scans: first a coarse scan determines the region of the maximum SAR, afterwards the averaged SAR is measured in a second scan within the shape of a cube.

4.1 Phantoms

TWIN SAM PHANTOM V4.0				
* 5 · · · · · · · · · · · · · · · · · ·	Specific Anthropomorphic Mannequin defined in IEEE 1528 and IEC 62209-1 and delivered by Schmid & Partner Engineering AG. It enables the dosimetric evaluation of left and right hand phone usage as well as body mounted usage at the flat phantom region. The details and the Certificate of conformity can be found in Fig. 10 on page 28.			
Shell Thickness	2 ± 0.2 mm (6 ± 0.2 mm at ear point)			
Dimensions	Length: 1000 mm; Width: 500 mm Height: adjustable feet			
Filling Volume	approx. 25 liters			

ELI PHANTOM V4.0				
	Phantom for compliance testing of handheld and body-mounted wireless devices in the frequency range of 30 MHz to 6 GHz. The details and the Certificate of conformity can be found in Fig. 11 on page 29.			
Shell Thickness	2.0 ± 0.2 mm (bottom plate)			
Dimensions	Major axis: 600 mm Minor axis: 400 mm			
Filling Volume	approx. 30 liters			

4.2 E-Field-Probes

For the measurements the Dosimetric E-Field Probes ET3DV6R or EX3DV4 with following specifications are used. They are manufactured and calibrated in accordance with FCC and IEEE 1528-2013 recommendations annually by Schmid & Partner Engineering AG.

	ET3DV6R
Construction	Symmetrical design with triangular core Built-in optical fiber for surface detection system (ET3DV6 only) Built-in shielding against static charges PEEK enclosure material (resistant to organic solvents, e.g., DGBE)
Dimensions	Overall length: 337 mm (Tip: 16 mm) Tip diameter: 6.8 mm (Body: 12 mm) Distance from probe tip to dipole centers: 2.7 mm
Frequency	10 MHz to 2.3 GHz Linearity: ± 0.2 dB (30 MHz to 2.3 GHz)
Directivity	Axial isotropy: \pm 0.2 dB in TSL (rotation around probe axis) Spherical isotropy: \pm 0.4 dB in TSL (rotation normal to probe axis)
Dynamic Range	5 μ W/g to > 100 mW/g; Linearity: ± 0.2 dB
Calibration Range	450 MHz / 750 MHz / 835 MHz / 1750 MHz / 1900 MHz

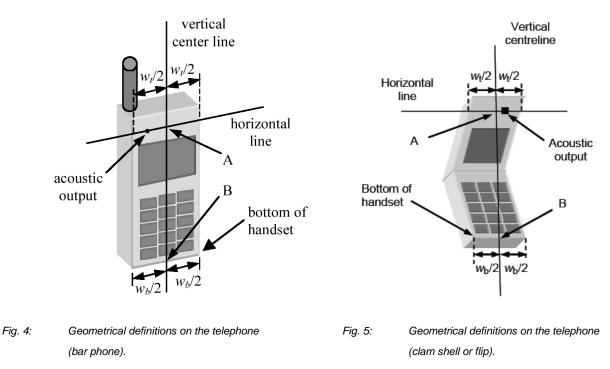
EX3DV4	

	EX3DV4
Construction	Symmetrical design with triangular core Built-in shielding against static charges PEEK enclosure material (resistant to organic solvents, e.g., DGBE)
Dimensions	Overall length: 337 mm (Tip: 20 mm) Tip diameter: 2.5 mm (Body: 12 mm) Typical distance from probe tip to dipole centers: 1 mm
Frequency	10 MHz to > 6 GHz Linearity: \pm 0.2 dB (30 MHz to 6 GHz)
Directivity	Axial isotropy: \pm 0.3 dB in TSL (rotation around probe axis) Spherical isotropy: \pm 0.5 dB in TSL (rotation normal to probe axis)
Dynamic Range	10 μ W/g to > 100 mW/g Linearity: ± 0.2 dB (noise: typically < 1 μ W/g)
Calibration Range	2450 MHz / 2600 MHz / 5250 MHz / 5600 MHz / 5800 MHz

5 Measurement Procedure

5.1 General Requirement

The test shall be performed in a laboratory with an environment which avoids influence on SAR measurements by ambient EM sources and any reflection from the environment itself. The ambient temperature shall be in the range of 20°C to 26°C and 30-70% humidity. All tests have been conducted according the latest version of all relevant KDBs.


5.2 Test Position of DUT operating next to the Human Ear

5.2.1 Phantom Requirements

The phantom is a simplified representation of the human anatomy and comprised of material with electrical properties similar to the corresponding tissues. The physical characteristics of the phantom model shall resemble the head and the neck of a user since the shape is a dominant parameter for exposure.

5.2.2 Reference Points

As it cannot be expected that the user will hold the mobile phone exactly in one well defined position, different operational conditions shall be tested. The standards require two test positions. For an exact description helpful geometrical definitions are introduced and shown in Fig. 4 - 6. There are two imaginary lines on the mobile, the vertical centerline and the horizontal line. The vertical centerline passes through two points on the front side of the handset: the midpoint of the width w_t of the handset at the level of the acoustic output (point A on Fig. 4 and 6), and the midpoint of the width w_b of the bottom of the handset (point B). The horizontal line is perpendicular to the vertical centerline and passes through the center of the acoustic output (see Fig. 4). The horizontal line is also tangential to the face of the handset at point A. The two lines intersect at point A.

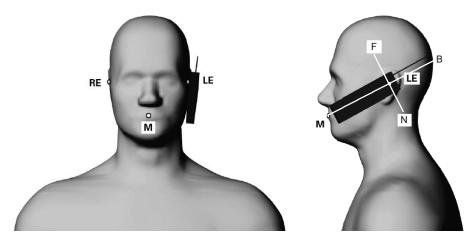


Fig. 6: Phantom reference points.

According to Fig. 6 the human head position is given by means of the following three reference points: auditory canal opening of both ears (RE and LE) and the center of the closed mouth (M). The ear reference points are 15 - 17 mm above the entrance to the ear canal along the BM line (back-mouth), as shown in Fig. 6. The plane passing through the two ear canals and M is defined as the reference plane. The line NF (Neck-Front) perpendicular to the reference plane and passing through the RE (or LE) is called the reference pivoting line. Line BM is perpendicular to the NF line. With this definitions the test positions are given by

5.2.3 Cheek Position:

Position the handset close to the surface of the phantom such that point A is on the (virtual) extension of the line passing through points RE and LE on the phantom (see Fig. 6), such that the plane defined by the vertical center line and the horizontal line of the phone is approximately parallel to the sagittal plane of the phantom. Translate the handset towards the phantom along the line passing through RE and LE until the handset touches the ear. While maintaining the handset in this plane, rotate it around the LE-RE line until the vertical centerline is in the plane normal to MB-NF including the line MB (called the reference plane). Rotate the phone around the vertical centerline until the phone (horizontal line) is symmetrical with respect to the line NF. While maintaining the vertical centerline in the reference plane, keeping point A on the line passing through RE and LE, and maintaining the phone contact with the ear, rotate the handset about the line NF until any point on the handset is in contact with a phantom point below the ear.

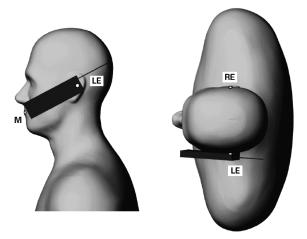
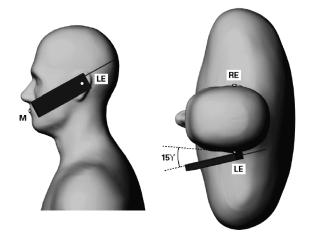



Fig. 7: The cheek position.

5.2.4 Tilted Position:

Fig. 8: The tilted position.

While maintaining the orientation of the phone retract the phone parallel to the reference plane far enough to enable a rotation of the phone by 15°. Rotate the phone around the horizontal line by 15°. While maintaining the orientation of the phone, move the phone parallel to the reference plane until any part of the phone touches the head. In this position, point A will be located on the line RE-LE.

5.2.5 Test to be Performed

The SAR test shall be performed with both phone positions described above, on the left and right side of the phantom. The device shall be measured for all modes operating when the device is next to the ear, even if the different modes operate in the same frequency band.

For devices with retractable antenna the SAR test shall be performed with the antenna fully extended and fully retracted. Other factors that may affect the exposure shall also be tested. For example, optional antennas or optional battery packs which may significantly change the volume, lengths, flip open/closed, etc. of the device, or any other accessories which might have the potential to considerably increase the peak spatial-average SAR value.

The SAR test shall be performed at the high, middle and low frequency channels of each operating mode. If the SAR measured at the middle channel for each test configuration is at least 3.0 dB lower than the SAR limit, testing at the high and low channels is optional.

5.3 Measurement Procedure

The following steps are used for each test position:

• Establish a call with the maximum output power with a base station simulator. The connection between the mobile phone and the base station simulator is established via air interface.

Revision Date:

- Measurement of the local E-field value at a fixed location (P1). This value serves as a reference value for calculating a possible power drift.
- Measurement of the SAR distribution with resolution settings for area scan and zoom scan according KDB 865664 D01 as shown in Table 3.
- The used extrapolation and interpolation routines are all based on the modified Quadratic Shepard's method [DASY4].
- Repetition of the E-field measurement at the fixed location (P1) and repetition of the whole procedure if the two results differ by more than \pm 0.21dB.

		≤ 3 GHz	≥ 3 GHz	
	······································	5 ± 1 mm	½·δ·ln(2) ± 0.5 mm	
		30° ± 1°	20° ± 1°	
		≤ 2 GHz: ≤ 15 mm 2 - 3 GHz: ≤ 12 mm	3 - 4 GHz: ≤ 12 mm 4 - 6 GHz: ≤ 10 mm	
an spatial r	resolution: Δx_{Area} , Δy_{Area}	measurement plane orientation	n, is smaller than the above, ust be \leq the corresponding x or	
can spatial	resolution: ΔX_{Zoom} , ΔY_{Zoom}	≤ 2 GHz: ≤ 8 mm 2 - 3 GHz: ≤ 5 mm*	3 - 4 GHz: ≤ 5 mm* 4 - 6 GHz: ≤ 4 mm*	
Uniform g	ırid: ΔZ _{zoom} (n)	3 - 4 GHz: ≤ 4 mm ≤ 5 mm 5 - 6 GHz: ≤ 2 mm		
graded	$\Delta Z_{Zoom}(1)$: between 1 st two points closest to phantom surface	≤ 4 mm	3 - 4 GHz: ≤ 3 mm 4 - 5 GHz: ≤ 2.5 mm 5 - 6 GHz: ≤ 2 mm	
gnu	ΔZ_{Zoom} (n>1): between subsequent points	≤ 1.5• ΔZ _{Zoom} (n-1)		
x, y, z		3 - 4 GHz: ≥ 28 mm ≥ 30 mm 5 - 6 GHz: ≥ 22 mm		
	of probe se ingle from nt location an spatial r can spatial Uniform g graded grid	$\frac{\Delta Z}{\text{graded}} \frac{\Delta Z}{\text{grade}} \frac{\Delta Z}{\text{grad}} \Delta Z$	ncefromclosestmeasurementpoint $5 \pm 1 \text{ mm}$ an spatial resolution: Δx_{Area} , Δy_{Area} $30^{\circ} \pm 1^{\circ}$ $\leq 2 \text{ GHz}: \leq 15 \text{ mm}$ an spatial resolution: Δx_{Area} , Δy_{Area} $\forall Nen \text{ the x or y dimension measurement plane orientation the measurement resolution multiplicationan spatial resolution: \Delta x_{Area}, \Delta y_{Area}\forall Nen \text{ the x or y dimension measurement plane orientation the measurement resolution multiplicationan spatial resolution: \Delta x_{Area}, \Delta y_{Area}\leq 2 \text{ GHz}: \leq 12 \text{ mm}can spatial resolution: \Delta x_{Zoom}, \Delta Y_{Zoom}\leq 2 \text{ GHz}: \leq 8 \text{ mm}2 - 3 \text{ GHz}: \leq 8 \text{ mm}2 - 3 \text{ GHz}: \leq 5 \text{ mm}^*Uniform grid: \Delta Z_{Zoom}(n)\leq 5 \text{ mm}gradedgrid\Delta Z_{Zoom}(1): between 1^{\text{st}} two pointsclosest to phantom surface\Delta Z_{Zoom}(n>1): between subsequentpoints\leq 4 \text{ mm}$	

 $^{\circ}$ when zoom scan is required and the reported SAR from the area scan based 1-g SAR estimation procedures of KDB 447498 is ≤ 1.4 W/kg, ≤ 8 mm, ≤ 7 mm and ≤ 5 mm zoom scan resolution may be applied, respectively, for 2 GHz to 3 GHz, 3 GHz to 4 GHz and 4 GHz to 6 GHz

Table 3:Parameters for SAR scan procedures.

6 System Verification and Test Conditions

6.1 Date of Testing

Date of Testing							
Band	Test Position	Frequency [MHz]	Date of System Check	Date of SAR Measurement			
DECT	Head	1900	April 28, 2021	April 28, 2021			

Table 4: Date of testing.

6.2 Environment Conditions

Environment Conditions								
Ambient Temperature[°C]	Liquid Temperature [°C]	Humidity [%]						
22.0 ± 2	22.0 ± 2	40.0 ± 10						
Notes: To comply with the required noise level (less than 12 mW/kg) periodically measurements without a DUT were conducted.								

Table 5: Environment Conditions.

6.3 Tissue Simulating Liquid Recipes

	Tissue Simulating Liquid							
Fre	equency Range	Water	Tween 20	Tween 80	Salt	Preventol	DGME	Triton X/100
	[MHz]	[%]	[%]	[%]	[%]	[%]	[%]	[%]
	Head Tissue							
	450	50.8	47.5	-	1.6	0.1	-	-
	700 - 1000	52.8	46.0	-	1.1	0.1	-	-
	1600 - 1800	55.4	44.1	-	0.4	0.1	-	-
\boxtimes	1850 - 1980	55.2	44.5	-	0.2	0.1	-	-
	2000 - 2700	55.7	45.2	-	-	0.1	-	-
	5000 - 6000	65.5	-	-	-	-	17.25	17.25

Table 6:Recipes of the tissue simulating liquid.

M S

6.4 Tissue Simulating Liquid Parameters

For the measurement of the following parameters the Speag DAK-3.5 dielectric probe kit is used, representing the open-ended coaxial probe measurement procedure.

Recommended values for the dielectric parameters of the tissue simulating liquids are given in IEEE 1528 and FCC published RF Exposure KDB Procedures. All tests were carried out using liquids with dielectric parameters within +/- 5% of the recommended values. The dielectric properties of the tissue simulating liquid have been measured within 24 h before SAR testing. The depth of the tissue simulant was at least 15.0 cm for all system check and device tests, measured from the ear reference point in case of the SAM phantom and from the inner surface of the flat phantom.

	Tissue Simulating Liquids Parameters									
Ar	mbient Tempe	erature(C) : 22.	.0 ± 2	Liquid Terr	nperature(C)	: 22.0 ± 2	Humi	dity(%) : 40.0) ± 5	
		Frequency			Permittivity		c	Conductivity		
Band	Date	Frequency	Channel	Measured	Target	Delta	Measured	Target	Delta	
		[MHz]		٤'	٤'	+/- 5 [%]	σ [S/m]	σ [S/m]	+/- 5 [%]	
		1900.0	System Check	39.7	40.0	-0.7	1.39	1.40	-0.8	
DECT	April 28, 2021	April 28,	1921.536	4	39.6	40.0	-0.9	1.41	1.40	0.5
1900 MHz		1924.992	2	39.6	40.0	-0.9	1.41	1.40	0.7	
		1928.448	0	39.6	40.0	-1.0	1.42	1.40	1.1	

Table 7:Parameters of the head tissue simulating liquid.

6.5 Simplified Performance Checking

The simplified performance check was realized using the dipole validation kit. The input power of the dipole antenna was 250 mW (CW) and it was placed under the flat part of the SAM phantom. The target and measured results are listed in the table 8 and shown in Appendix C - System Verification Plots. The target values were adopted from the calibration certificates found also in the appendix.

	System Check Results									
		Measured				Target		Delta		
Frequency [MHz]	Frequency Dipole #SN [MHz]		with 250 mW scaled to 1 W			normalized to 1 W		+/- 10 [%]		Date
			10g	1g	10g	1g	10g	1g	10g	
1900	D1900V2 #535	9.17	4.88	36.68	19.52	39.20	20.50	-6.43	-4.78	April 28, 2021

Table 8:Dipole target and measured results.

7 SAR Measurement Conditions and Results

7.1 Test Conditions

Test Conditions								
Band	TX Range [MHz]	Used Channels	Crest Factor	Phantom				
DECT	1921.536 - 1928.448	04, 02, 00	24	SAM Twin Phantom V4.0				
Notes:								

Table 9: Used channels and crest factors during the test.

7.2 Tune-Up Information

Tune-Up Output Power								
Band	Frequency [MHz]	СН	Max. Tune-Up Limit [dBm]					
	1921.536	04	20.0					
DECT	1924.992	02	20.0					
	1928.448	00	20.0					
Notes: According to the manufacturer both antennas have the same tune-up output values.								

 Table 10:
 Maximum transmitting output power values for DECT declared by the manufacturer.

7.3 Measured Output Power

Max. Averaged Output Power								
Antenna	Mode	Frequency [MHz]	СН	Measured Output Power [dBm]				
		1921.536	04	19.8				
DECT	GFSK	1924.992	02	19.9				
		1928.448	00	19.9				
Notes: -								

 Table 11:
 Conducted output power values for DECT.

7.4 Standalone SAR Test Exclusion according to KDB 447498

SAR test exclusion is determined for the DUT according to KDB 447498 D01 with 1g SAR exclusion thresholds for 100 MHz to 6GHz at test separation distances \leq 50 mm determined by:

[(max power of channel. incl. tune-up tolerance. mW) / (min test separation distance. mm)] * [$\sqrt{f}(GHz)$]

 \leq 3.0 for 1g SAR and \leq 7.5 for 10g extremity SAR, where

- f(GHz) is the RF channel transmit frequency in GHz
- Power and distance are rounded to the nearest mW and mm before calculation
- The result is rounded to one decimal place for comparison

When the minimum test separation distance is < 5 mm, a distance of 5 mm is applied to determine SAR test exclusion.

	Standalone SAR Test Exclusion Consideration (FCC)											
Mode	Freq.	Distance	Output Power (peak)		Maximum Duty Cycle			Inresnoid		SAR Testing	Estimated	SAR Testing
	[MHz]	[mm]	[dBm]	[mW]	[%]	[dBm]	[mW]	Value	SAR 1g	Exclusio	SAR Values	Required
DECT	1925	5	20.0	100.00	4.17	6.20	4.17	1.2	≤ 3.0	YES	measured	NO
Notes:												

Table 12:	SAR test exclusion for the applicable transmitter according to KDB 447498.
	SAR lesi exclusion for the applicable transmitter according to RDB 447490.

When the standalone SAR test exclusion applies to an antenna that transmits simultaneously with other antennas the standalone SAR must be estimated according to KDB 447498 in order to determine simultaneous transmission SAR test exclusion:

 (max. power of channel. including tune-up tolerance. mW)/(min. test separation distance. mm)]·[√f(GHz)/x] W/kg for test separation distances ≤ 50 mm;

where *x* = 7.5 for 1-g SAR and *x* = 18.75 for 10-g SAR

When the minimum test separation distance is < 5 mm, a distance of 5 mm is applied to determine SAR test exclusion.

• 0.4 W/kg for 1g SAR and 1.0 W/kg for 10g SAR. when the test separation distance is > 50 mm

I M S

7.5 SAR Measurement Results

SAR assessment was conducted in the worst case configuration with output power values according to the tables in Chapter 7.3. According to KDB 447498 D01, the reported SAR is the measured SAR value adjusted for maximum tune-up tolerance limit shown in Table 10.

Reported SAR is calculated by the following formulas:

- Scaling factor tune up limit = tune-up limit power (mW) / RF power (mW)
- Scaling factor max. duty cycle = max. possible duty cycle / used duty cycle for SAR measurement
- Reported SAR = measured SAR * scaling factor tune up limit * scaling factor max. duty cycle

The plots with the highest measured SAR values are shown in Appendix B - SAR Distribution Plots.

SAR Measurement Results in Head Configuration (DECT)												
Band	Freq. [MHz]	СН	DUT*	Gap	Pic. No.	Measured SAR1g [W/kg]	Power Drift [dB]	Power [dBm]		Tune-Up	Reported SAR1g	Plot
			Position	[mm]				Measured	Limit	SF	[W/kg]	No.
DECT	1924.99	2	LC	0	3	0.042	-0.025	19.9	20.0	1.023	0.043	-
			LT	0	4	0.022	-0.046	19.9		1.023	0.023	-
			RC	0	5	0.034	-0.061	19.9		1.023	0.035	-
			RT	0	6	0.021	-0.200	19.9		1.023	0.021	-
	1921.54	4	LC	0	5	0.039	-0.195	19.8		1.023	0.040	-
	1924.99	0	LC	0	5	0.043	-0.063	19.9		1.047	0.045	1
Notes:	* LC – Left C	heek; LT -	- Left Tilted;	RC-Rig	ht Che	ek; RT – Ri	ght Tilted;					

7.5.1 SAR Measurement Results for DECT

Table 13:SAR measurement results in head configuration.

8 Administrative Measurement Data

8.1 Calibration of Test Equipment

Lest Foundant Manufacturer Model	Serial lumber	Last	
	uniber	Calibration	Next Calibration
DASY System Components			
Software Versions DASY4 SPEAG V4.7	N/A	N/A	N/A
Software Versions SEMCAD SPEAG V1.8	N/A	N/A	N/A
Dosimetric E-Field Probe SPEAG ET3DV6R	1579	02/2020	02/2022
☑ Dosimetric E-Field Probe SPEAG ET3DV6R	1669	03/2021	03/2023
Dosimetric E-Field Probe SPEAG EX3DV4	3536	08/2020	08/2022
Dosimetric E-Field Probe SPEAG EX3DV4	3860	10/2019	10/2021
☑ Data Acquisition Electronics SPEAG DAE 3	335	03/2021	03/2022
Data Acquisition Electronics SPEAG DAE 4	631	08/2020	08/2021
Phantom SPEAG SAM	1059	N/A	N/A
Phantom SPEAG SAM	1176	N/A	N/A
Phantom SPEAG SAM	1340	N/A	N/A
Phantom SPEAG SAM	1341	N/A	N/A
□ Phantom SPEAG ELI4	1004	N/A	N/A
Dipoles			
System Validation Dipole SPEAG D450V2	1014	03/2021	03/2024
System Validation Dipole SPEAG D835V2	470	03/2021	03/2024
System Validation Dipole SPEAG D1640V2	311	09/2018	09/2021
System Validation Dipole SPEAG D1750V2	1005	03/2021	03/2024
System Validation Dipole SPEAG D1900V2	535	03/2021	03/2024
System Validation Dipole SPEAG D1500V2	709	11/2018	11/2021
System Validation Dipole SPEAG D2400V2	1019	11/2018	11/2021
System Validation Dipole SPEAG D5GHzV2	1013	04/2020	04/2023
Material Measurement	1020	04/2020	04/2020
	46103220	08/2019	08/2021
☑ Dielectric Probe Kit SPEAG DAK-3.5	1234	02/2020	02/2022
Thermometer LKMelectronic DTM3000	3511	02/2020	02/2022
Power Meters and Sensors			
Power Meter Anritsu ML2487A 6K0	00002319	07/2020	07/2022
	990365	07/2020	07/2022
	00002078	07/2020	07/2022
	002122	07/2020	07/2022
Spectrum Analyzer Rohde & Schwarz FSP7 1	100433	01/2021	01/2023
RF Sources			
	46103220	08/2019	08/2021
	100142	N/A	N/A
Amplifiers			
	080504-1	N/A	N/A
	37452	N/A	N/A
Radio Tester	51 702	11/73	11/7
Radio Communication Tester Anritsu MT8815B 620	00576536	06/2020	06/2022
	00918336	05/2020	05/2022
Notes: Used test equipment for measurement is checked above.		00,2020	00, <u>2022</u>

Table 14: Calibration of test equipment.

8.2 Uncertainty Assessment

	Uncortainty					Stor	dard	vi ²
Error Sources	Uncertainty Value [± %]	Probability Distribution	Divisor	ci	ci	Standard Uncertainty [± %]		or veff
Measurement System				1g	10g	1g	10g	
Probe calibration	6.7	Normal	1	1	1	6.7	6.7	8
Axial isotropy	0.3	Rectangular	√3	√0.5	√0.5	0.1	0.1	8
Hemispherical isotropy	1.3	Rectangular	√3	√0.5	√0.5	0.5	0.5	×
Boundary effects	1.0	Rectangular	√3	1	1	0.6	0.6	8
Linearity	0.3	Rectangular	√3	1	1	0.2	0.2	8
System detection limit	1.0	Rectangular	√3	1	1	0.6	0.6	×
Modulation response	4.0	Rectangular	√3	1	1	2.3	2.3	×
Readout electronics	0.3	Normal	1	1	1	0.3	0.3	×
Response time	0.8	Rectangular	√3	1	1	0.5	0.5	×
Integration time	1.4	Rectangular	√3	1	1	0.8	0.8	×
RF ambient conditions - noise	3.0	Rectangular	√3	1	1	1.7	1.7	×
RF ambient conditions - refl.	3.0	Rectangular	√3	1	1	1.7	1.7	×
Probe positioner mech. tol.	0.4	Rectangular	√3	1	1	0.2	0.2	∞
Probe positioning	2.9	Rectangular	√3	1	1	1.7	1.7	∞
Algorithms for max SAR eval.	4.0	Rectangular	√3	1	1	2.3	2.3	×
Test Sample Related		·			•			
Test sample positioning	2.9	Normal	1	1	1	2.9	2.9	145
Device holder uncertainty	3.6	Normal	1	1	1	3.6	3.6	5
SAR drift measurement (< 0.2 dB)	4.7	Rectangular	√3	1	1	2.7	2.7	∞
SAR scaling	2.0	Rectangular	√3	1	1	1.2	1.2	×
Phantom and Set-up		•	•					
Phantom uncertainty	4.0	Rectangular	√3	1	1	2.3	2.3	∞
SAR correction for perm./cond.	1.9	Normal	1	1	0.84	1.9	1.6	∞
Liquid conductivity (meas.)	5.0	Normal	1	0.78	0.71	3.9	3.6	×
Liquid permittivity (meas.)	5.0	Normal	1	0.23	0.26	1.2	1.3	×
Liquid conductivity temp. unc.	2.9	Rectangular	√3	0.78	0.71	1.3	1.2	×
Liquid permittivity temp. unc.	1.8	Rectangular	√3	0.23	0.26	0.2	0.3	×
Combined Standard Uncertainty								
Coverage Factor for 95%						kp	=2	
Expanded Standard Uncertainty						22.2	21.9	

Table 15:Uncertainty budget for SAR measurements.

Revision No.:

Uncertainty Budget for SAR System Validation according to IEEE 1528-2013 (300 MHz - 6 GHz)									
Error Sources	Uncertainty Value [± %]	Probability Distribution	Divisor	ci	ci	Uncer	dard tainty %]	vi² or veff	
Measurement System	-	L		1g	10g	1g	10g		
Probe calibration	6.7	Normal	1	1	1	6.7	6.7	8	
Axial isotropy	0.3	Rectangular	√3	1	1	0.1	0.1	8	
Hemispherical isotropy	1.3	Rectangular	√3	0	0	0.0	0.0	8	
Boundary effects	1.0	Rectangular	√3	1	1	0.6	0.6	8	
Linearity	0.3	Rectangular	√3	1	1	0.2	0.2	8	
System detection limit	1.0	Rectangular	√3	1	1	0.6	0.6	8	
Modulation response	0.0	Rectangular	√3	0	0	0.0	0.0	8	
Readout electronics	0.3	Normal	1	1	1	0.3	0.3	8	
Response time	0.0	Rectangular	√3	0	0	0.0	0.0	8	
Integration time	0.0	Rectangular	√3	0	0	0.0	0.0	8	
RF ambient conditions - noise	1.0	Rectangular	√3	1	1	0.6	0.6	×	
RF ambient conditions - refl.	1.0	Rectangular	√3	1	1	0.6	0.6	8	
Probe positioner mech. tol.	0.4	Rectangular	√3	1	1	0.2	0.2	8	
Probe positioning	2.9	Rectangular	√3	1	1	1.7	1.7	8	
Algorithms for max SAR eval.	4.0	Rectangular	√3	1	1	2.3	2.3	8	
Validation Dipole		•		•	•		•		
Dev. of exp. dipole from num.	5.0	Normal	1	1	1	5.0	5.0	∞	
Input power and SAR drift (< 0.2 dB)	4.7	Rectangular	√3	1	1	2.7	2.7	×	
Dipole axis to liquid distance (< 2deg)	2.0	Rectangular	√3	1	1	1.2	1.2	×	
Phantom and Set-up		•		•	•		•		
Phantom uncertainty	4.0	Rectangular	√3	1	1	2.3	2.3	×	
SAR correction for perm./cond.	1.9	Normal	1	1	0.84	1.9	1.6	×	
Liquid conductivity (meas.)	5.0	Normal	1	0.78	0.71	3.9	3.6	x	
Liquid permittivity (meas.)	5.0	Normal	1	0.23	0.26	1.2	1.3	×	
Liquid conductivity temp. unc.	2.9	Rectangular	√3	0.78	0.71	1.3	1.2	×	
Liquid permittivity temp. unc.	1.8	Rectangular	√3	0.23	0.26	0.2	0.3	∞	
Combined Standard Uncertainty							10.6		
Coverage Factor for 95%							kp=2		
Expanded Standard Uncertainty						21.5	21.2		
Notes: Worst case probe calibration uncerta	ainty has been appl	ied for all available	e probes and	l frequer	ncies.				

Table 16:Uncertainty budget for SAR system validation.

9 Report History

Revision History									
Revision	Description of Revision	Date	Revised Page	Revised By					
/	Initial Release	May 4, 2021	-	-					

END OF THE SAR REPORT

Please refer to separated appendix file for the following data:

- Appendix A Pictures
- Appendix B SAR Distribution Plots
- Appendix C System Verification Plots
- Appendix D Certificates of Conformity
- Appendix E Calibration Certificates for DAEs
- Appendix F Calibration Certificates for E-Field Probes
- Appendix G Calibration Certificates for Dipoles