RF-		STRE CC Part 15B -	ΡΟΠΤ
Model Name	: <u>One</u>	Touch Verio Flex	/ HVIN: ZH
Product Description	: Bloo	d glucose meter v	with BLE 5.0
Applicant	: Lifes	can Scotland Ltd	
Address	: Beec	hwood Park Nort	h
	INVE	RNESS, IV2 3E	D, SCOTLAND
Manufacturer	: Lifes	can Europe Gmb	Н
Address	: Gubelstrasse 34		
	6300	ZUG, SWITZER	LAND
Licence holder	: Lifes	can Europe Gmb	Н
Address	: Gube	elstrasse 34	
	6300	ZUG, SWITZER	LAND
Test Result according to the stallisted in clause 1 test standards:	ndards		POSITIVE
Test Report No. :	8012575	i1-04 Rev_2	08. February 2023 Date of issue

CSA Group Bayern GmbH Ohmstrasse 1-4 · 94342 STRASSKIRCHEN · GERMANY Tel.:+49(0)9424-94810 · Fax:+49(0)9424-9481440 File No. 80125751-04 Rev_2, page 1 of 21

Contents

1 <u>TEST STANDARDS</u>	3
2 <u>TEST RESULT SUMMARY</u>	4
2.1 Revision history of test report	4
2.2 Final assessment	4
3 EQUIPMENT UNDER TEST	5
3.1 Information provided by the Client	5
3.2 Sampling	5
3.3 Photo documentation of the EUT – Detailed photos see ATTACHMENT A	5
3.4 General remarks	5
3.5 Power supply system utilised	5
3.6 Highest internal frequency	5
3.7 Short description of the Equipment under Test (EUT)	5
3.8 EUT operation mode	5
3.9 EUT configuration	6
4 <u>TEST ENVIRONMENT</u>	7
4.1 Address of the test laboratory	7
4.2 Environmental conditions	7
4.3 Statement of the measurement uncertainty	7
4.4 Conformity Decision Rule	7
4.5 Measurement protocol for FCC and ISED	7
5 TEST CONDITIONS AND RESULTS	12
5.1 Conducted emission	12
5.2 Radiated emission < 1 GHz (electric field)	15
5.3 Radiated emission > 1 GHz (electric field)	18
6 USED TEST EQUIPMENT AND ACCESSORIES	20
7 DETAILED MEASUREMENT UNCERTAINTY	21
7.1 Overview	21
7.2 Definitions and symbols	21
7.3 Measurement uncertainty	21
-	

ATTACHMENTS A, B2 as separate supplements

TEST STANDARDS 1

The tests were performed according to following standards:

FCC Rules and Regulations Part 15 Subpart	B - Unintentional Radiators (Sept	tember 2022)		
Part 15, Subpart B, Section 15.107	AC Line conducted emission	Class B device		
Part 15, Subpart B, Section 15.109	Radiated emission, general require	ements X Class B device		
ANSI C63.4: 2014	Methods of Measurement of Ra Voltage Electrical and Electronic Eq 40 GHz.			
CISPR 16-4-2: 2011 + A1: 2014 EN 55016-4-2: 2011	Uncertainty in EMC measurement			
ISED Canada Rules and Regulations - Inform	nation Technology Equipment (In	cluding Digital Apparatus)		
ICES-003, Issue 7, October 15, 2020	AC Power Line Conducted Emissions			
ICES-003, Issue 7, October 15, 2020	Radiated emission			

Class A device

ICES-003, Issue 7, October 15, 2020

ANSI C63.4: 2014

Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40 GHz.

Class B device

2 TEST RESULT SUMMARY

FCC Rule Part	ISED Standard	Description
15.107	ICES-003/RSS-Gen	AC power line conducted emissions
15.109	ICES-003/RSS-Gen	Radiated Emissions

Type of test	Test result
Emission:	
A4 Conducted emission (AC mains power / DC power)	passed
A5 Radiated emission (< 1 GHz)	passed
SER 3 Radiated emission (> 1 GHz)	passed

2.1 Revision history of test report

Test report No	Rev.	Issue Date	Changes	
80125751-04	0	13 July 2022	Initial test report	
80125751-04	1	30 January 2023	Test mode changed	
80125751-04	2	08 February 2023	HVIN corrected, 3.9 AC adapter added	

The test report with the highest revision number replaces the previous test reports.

2.2 Final assessment

The equipment under test fulfils the requirements cited in clause 1 test standards.

Date of receipt of test sample

: acc. to storage records

Testing commenced on

: 10 January 2023

: 10 January 2023

Testing concluded on

Checked by:

Tested by:

Klaus Gegenfurtner Teamleader Radio Sabine Kugler Radio Team

CSA Group Bayern GmbH Ohmstrasse 1-4 · 94342 STRASSKIRCHEN · GERMANY Tel.:+49(0)9424-94810 · Fax:+49(0)9424-9481440 File No. 80125751-04 Rev_2, page 4 of 21

3 EQUIPMENT UNDER TEST

3.1 Information provided by the Client

Please note, we do not take any responsibility for information provided by the client or his representative which may have an influence on the validity of the test results.

3.2 Sampling

The customer is responsible for the choice of sample. Sample configuration, start-up and operation is carried out by the customer or according his/her instructions.

3.3 Photo documentation of the EUT – Detailed photos see ATTACHMENT A

3.4 General remarks

None

3.5 Power supply system utilised

Power supply voltage, V_{nom} : 3 VDC (battery)

3.6 Highest internal frequency

Highest internal frequency : 2483.5 MHz

3.7 Short description of the Equipment under Test (EUT)

The EUT is a blood glucose meter equipped with Bluetooth Low Energy. A single PCB antenna is used within the system. The EUT has only one integrated antenna, no temporary connector and no external antenna can be connected. The modulation used by the EUT is GFSK with a data rate of 1 Mbit/s.

Number of tested samples	:	1
Serial number	:	Z1QGJ073
Firmware number	:	1.9.2
Туре	:	OneTouch Verio Flex

3.8 EUT operation mode

The equipment under test was operated during the measurement under the following conditions:

- Data communication with notebook via USB

3.9 EUT configuration

The following peripheral devices and interface cables were connected during the measurements:

-	Lab notebook 'Mess_Funk_2'	
---	----------------------------	--

-	AC adapter	(lab notebook))
---	------------	----------------	---

Port Cable 1 USB

Screening shielded Model : Lifebook, Fujitsu Model : PJW1942NA, Fujitsu Limited

None

Screening

TransmissionStatusLengthdigitalactive1 m

Modifications during the EMC test:

CSA Group Bayern GmbH Ohmstrasse 1-4 · 94342 STRASSKIRCHEN · GERMANY Tel.:+49(0)9424-94810 · Fax:+49(0)9424-9481440 File No. 80125751-04 Rev_2, page 6 of 21

TEST ENVIRONMENT 4

4.1 Address of the test laboratory

CSA Group Bayern GmbH Ohmstrasse 1-4 94342 STRASSKIRCHEN GERMANY

4.2 **Environmental conditions**

During the measurement the environmental conditions were within the listed ranges:

Temperature:	<u>15 - 35 °C</u>
Humidity:	30 - 60 %
Atmospheric pressure:	86 - 106 kPa

Statement of the measurement uncertainty 4.3

The data and results referenced in this document are true and accurate. It is noted that the expanded measurement uncertainty corresponds to the measurement results from the standard measurement uncertainty multiplied by the coverage factor k = 2. The true value is located in the corresponding interval with a probability of 95 %. The measurement uncertainty was calculated for all measurements listed in this test report on basis of the ETSI Technical Report TR 100 028 Electromagnetic compatibility and Radio spectrum Matters (ERM); Uncertainties in the measurement of mobile radio equipment characteristics; Part 1 and Part 2. The results are documented in the quality system acc. to DIN EN ISO/IEC 17025. Furthermore, component and process variability of devices similar to that tested may result in additional deviation. The manufacturer has the sole responsibility of continued compliance of the device.

4.4 **Conformity Decision Rule**

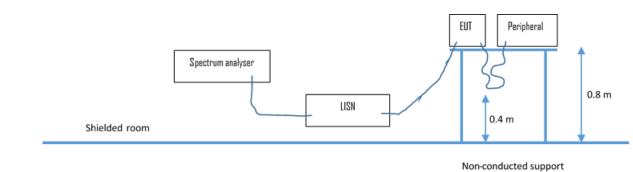
The applied conformity decision rule is based on ILAC G8:09/2019 clause 4.2.1 Binary Statement for Simple Acceptance Rule (w = 0).

Details can be found in the procedure CSA_B_V50_29.

4.5 Measurement protocol for FCC and ISED

4.5.1 **General information**

CSA Group Bayern GmbH is recognized as wireless testing laboratory under the CAB identifier:

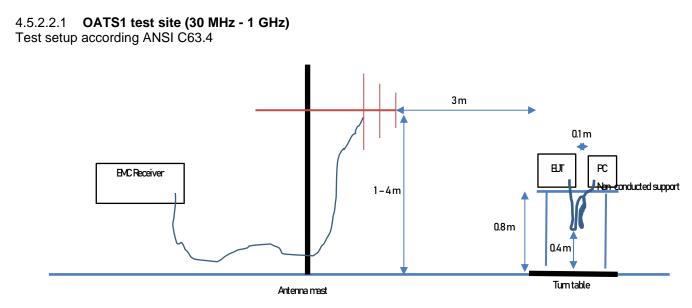

FCC: DE 0011 **ISED: DE0009**

4.5.2 Details of test procedures

4.5.2.1 Conducted emission

Description of measurement

The final level, expressed in $dB\mu V$, is arrived at by taking the reading directly from the Spectrum analyser. This level is compared to the limit.


To convert between $dB\mu V$ and μV , the following conversions apply:

 $\label{eq:masses} \begin{array}{l} dB\mu V = 20(log \; \mu V) \\ \mu V = Inverse \; log(dB\mu V/20) \end{array}$

Conducted emissions on the 50 Hz and/or 60 Hz power interface of the EUT are measured in the frequency range of 150 kHz to 30 MHz. The measurements are performed using a receiver, which has CISPR characteristic bandwidth and quasi-peak detection and a Line Impedance Stabilization Network (LISN) with 50 Ω / 50 μ H (CISPR 16) characteristics. The receiver is protected by means of an impedance matched pulse limiter connected directly to the RF input. Table top equipment is placed on a non-conducting table 80 centimetres above the floor and is positioned 40 centimetres from the vertical ground plane (wall) of the screen room. If the minimum limit margin appears to be less than 20 dB with a peak mode measurement, the emission is re-measured using a tuned receiver with quasi-peak and average detection and recorded on the data sheets.

4.5.2.2 Radiated emission

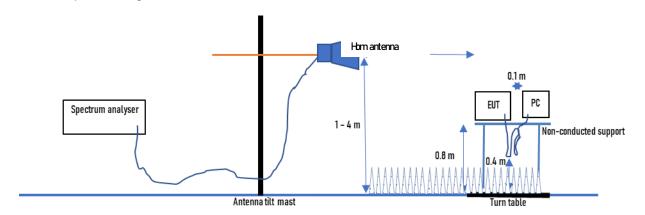
Description of measurement

Spurious emission from the EUT is measured in the frequency range of 30 MHz to 1000 MHz using a tuned receiver and appropriate broadband linearly polarized antennas. Measurements between 30 MHz and 1000 MHz are made with 120 kHz/6 dB bandwidth and quasi-peak detection. Table top equipment is placed on a 1.0 X 1.5 metre non-conducting table 80 centimetres above the ground plane. Floor standing equipment is placed directly on the turntable/ground plane. The setup of the equipment under test is established in accordance with ANSI C63.4. The interface cables that are closer than 40 centimetres to the ground plane are bundled in the centre in a serpentine fashion so that they are at least 40 centimetres from the ground plane. Cables to simulators/testers (if used in this test) are routed through the centre of the table and to a screened room located outside the test area.

The antenna is positioned 3 or 10 metres horizontally from the EUT. To locate maximum emissions from the test sample the antenna is varied in height from 1 to 4 metres, measurement scans are made with both horizontal and vertical antenna polarization planes and the EUT is rotated 360 degrees.

The final level is calculated in a calculation sheet by taking the reading from the EMI receiver (Level dB μ V) and adding the correction factors and cable loss factor (Factor dB) on to it. The limit is subtracted from this result in order to provide the limit margin listed in the measurement protocols.

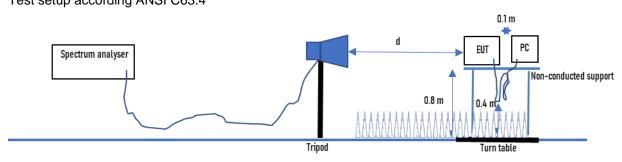
Example:


Frequency (MHz)	Reading (dBµV)	+	Correction* (dB/m)	=	Level (dBµV/m)	-	Limit (dBµV/m)	=	Dlimit (dB)
719.0	75.0	+	32.6	=	107.6	-	110.0	=	-2.4

*Correction Factor = Antenna Factor + Cable Attenuation = 30 dB/m + 2.6 dB = 32.6 dB/m

The resolution bandwidth during the measurement is as follows: 30 MHz – 1000 MHz: RBW: 120 kHz

4.5.2.2.2 Anechoic chamber 1, 1000 MHz – 18000 MHz Test setup according ANSI C63.4


Description of measurement

Radiated emission from the EUT are measured in the frequency range of 1 GHz to the maximum frequency as specified in 47 CFR Part 15 Subpart A section 15.33, using a tuned receiver (spectrum analyser) and appropriate linearly polarized antennas. Table top equipment is placed on a 0.65 X 1.0 metre non-conducting table 80 centimetres above the ground plane. The turntable is fully covered with the appropriate absorber (Type VHP-12).

The interface cables that are closer than 40 centimetres to the ground plane are bundled in the centre in a serpentine fashion, so they are at least 40 centimetres from the ground plane. Measurements are made in both the horizontal and vertical polarization planes in a fully anechoic room using a spectrum analyser set to a peak detector function and a RBW= 1 MHz and VBW = 3 MHz. All tests are performed at a test distance of 3 metres. Hand-held or bodyworn devices are rotated around three orthogonal axes in order to determine the position, angle and configuration having the maximum emission. The antenna height is then adjusted from 1 m to 4 m maximizing the measured value. The antenna is mounted to a boresight axis, so the antenna centre always points to the EUT. The turntable is rotated 360° until the spectrum analyser displays the maximum level at the observed frequency. The antenna height is then adjusted from 1 m to 4 m maximizing the measured value. The turntable is re-adjusted to re-affirm the maximum emission value which is then recorded. This procedure is repeated for all frequencies of interest.

4.5.2.2.3 Anechoic chamber 1, 18 GHz – 40 GHz Test setup according ANSI C63.4

Description of measurement

Radiated emission from the EUT are measured in the frequency range of 1 GHz to the maximum frequency as specified in 47 CFR Part 15 Subpart A section 15.33, using a tuned receiver (spectrum analyser) and appropriate linearly polarized antennas. Table top equipment is placed on a 0.65 X 1.0 metre non-conducting table 80 centimetres above the ground plane. The turntable is fully covered with the appropriate absorber (Type VHP-12).

The interface cables that are closer than 40 centimetres to the ground plane are bundled in the centre in a serpentine fashion, so they are at least 40 centimetres from the ground plane. Measurements are made in both the horizontal and vertical polarization planes in a fully anechoic room using a spectrum analyser set to a peak detector function and an RBW= 1 MHz and VBW = 3 MHz. All tests are performed at a test distance of 3 metres. Hand-held or body-worn devices are rotated around three orthogonal axes in order to determine the position, angle and configuration having the maximum emission. The turntable is rotated 360° until the spectrum analyser displays the maximum level at the observed frequency, the maximum emission value is then recorded. This procedure is repeated for all frequencies of interest.

Where appropriate in frequency range 18 GHz - 40 GHz, the test distance may be reduced to 1 m in order to reduce the noise level to hold a minimum distance between noise level and limit. The limit will be adopted to the measurement distance.

5 TEST CONDITIONS AND RESULTS

5.1 Conducted emission

For test instruments and accessories used see section 6 Part A 4.

5.1.1 Description of the test location

Test location: Shielded Room S2

5.1.2 Photo documentation of the test setup

See Attachment B2 for detailed photo documentation of the test set-up.

5.1.3 Test result

Frequency range: 0.15 MHz - 30 MHz

Min. limit margin -10.6 dB at 0.263 MHz

Limit according to FCC Part 15, Section 15.107(a):

Frequency of Emission	Conducted limit (dBµV)				
(MHz)	Quasi-peak	Average			
0.15-0.5	66 to 56 *	56 to 46 *			
0.5-5	56	46			
5-30	60	50			

* Decreases with the logarithm of the frequency

Limit according to ICES-003 3.2.1:

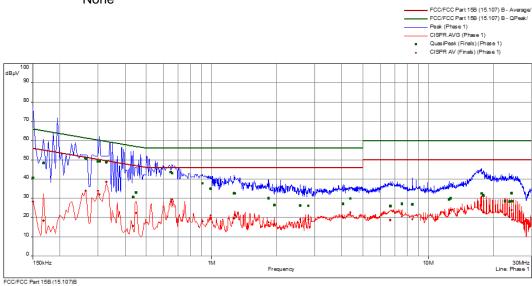
Frequency of Emission	Conducted limit (dBµV)					
(MHz)	Quasi-peak	Average				
0.15-0.5	66 to 56 *	56 to 46 *				
0.5-5	56	46				
5-30	60	50				

* Decreases linearly with the logarithm of frequency

The requirements are **FULFILLED**.

Remarks:

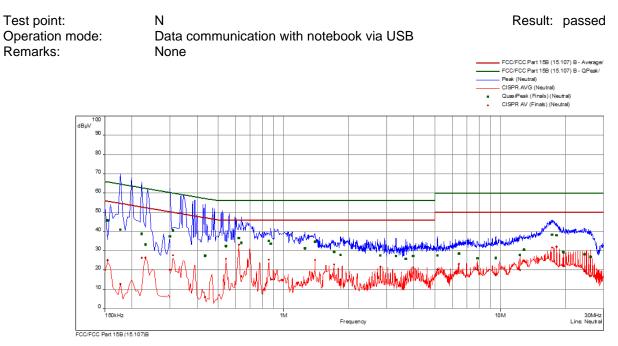
arks: For detailed results, please see the following page(s).


For description of the measurement see 4.5.2.

5.1.4 Test protocol

 Test point:
 L1
 Result:
 passed

 Operation mode:
 Data communication with notebook via USB
 Remarks:
 None



freq	SR	QP	margin	limit	AV	margin	limit	line	corr
MHz		dB(µV)	dB	dB	dB(µV)	dB	dB		dB
0.150	1	40.7	-25.3	66.0	28.4	-27.6	56.0	Phase 1	10.1
0.168	1	48.4	-16.7	65.1	18.4	-36.7	55.1	Phase 1	10.1
0.263	1	50.7	-10.6	61.4	33.9	-17.5	51.4	Phase 1	10.1
0.300	1	49.1	-11.1	60.2	33.8	-16.4	50.2	Phase 1	10.1
0.305	2	49.3	-10.8	60.1	32.0	-18.1	50.1	Phase 1	10.1
0.327	2	48.8	-10.8	59.5	38.6	-11.0	49.5	Phase 1	10.1
0.435	2	30.6	-26.6	57.2	15.7	-31.4	47.2	Phase 1	10.2
0.449	2	33.0	-23.9	56.9	22.4	-24.5	46.9	Phase 1	10.2
0.650	3	43.7	-12.3	56.0	28.2	-17.8	46.0	Phase 1	10.2
0.659	3	43.1	-12.9	56.0	29.4	-16.6	46.0	Phase 1	10.2
0.911	3	37.8	-18.3	56.0	18.1	-27.9	46.0	Phase 1	10.2
0.992	3	35.0	-21.0	56.0	21.1	-24.9	46.0	Phase 1	10.2
1.272	4	32.6	-23.4	56.0	19.5	-26.5	46.0	Phase 1	10.3
1.281	4	32.5	-23.5	56.0	21.4	-24.6	46.0	Phase 1	10.3
1.835	4	30.1	-25.9	56.0	17.5	-28.5	46.0	Phase 1	10.3
1.952	4	26.5	-29.6	56.0	16.6	-29.4	46.0	Phase 1	10.3
2.567	5	26.3	-29.7	56.0	19.1	-26.9	46.0	Phase 1	10.3
2.801	5	26.1	-29.9	56.0	19.2	-26.8	46.0	Phase 1	10.3
4.052	5	27.2	-28.8	56.0	20.0	-26.0	46.0	Phase 1	10.4
4.376	5	30.0	-26.0	56.0	22.8	-23.2	46.0	Phase 1	10.4
6.681	6	25.8	-34.2	60.0	18.6	-31.4	50.0	Phase 1	10.6
6.690	6	26.2	-33.8	60.0	18.9	-31.1	50.0	Phase 1	10.6
7.559	6	27.1	-33.0	60.0	20.8	-29.2	50.0	Phase 1	10.6
8.454	6	26.9	-33.1	60.0	19.1	-30.9	50.0	Phase 1	10.6
12.485	7	29.5	-30.5	60.0	22.2	-27.8	50.0	Phase 1	10.9
12.710	7	30.0	-30.0	60.0	24.0	-26.1	50.0	Phase 1	10.9
17.628	7	32.6	-27.4	60.0	23.8	-26.2	50.0	Phase 1	11.1
17.993	7	31.6	-28.5	60.0	22.7	-27.3	50.0	Phase 1	11.2
22.602	8	28.5	-31.5	60.0	21.3	-28.7	50.0	Phase 1	11.4
23.714	8	28.3	-31.7	60.0	20.2	-29.8	50.0	Phase 1	11.5
24.258	8	32.7	-27.3	60.0	23.8	-26.2	50.0	Phase 1	11.5
24.411	8	28.4	-31.6	60.0	19.0	-31.1	50.0	Phase 1	11.5

CSA Group Bayern GmbH Ohmstrasse 1-4 · 94342 STRASSKIRCHEN · GERMANY Tel.:+49(0)9424-94810 · Fax:+49(0)9424-9481440

File No. 80125751-04 Rev_2, page 13 of 21

MHz dB(µV) dB dB dB(µV) dB dB dB 0.155 9 45.8 -19.9 65.8 25.1 -30.7 55.8 Neutral 0.177 9 41.0 -23.6 64.6 12.8 -41.8 54.6 Neutral 0.222 9 38.8 -24.0 62.7 26.4 -26.3 52.7 Neutral 0.231 9 33.3 -29.1 62.4 26.5 -25.9 52.4 Neutral 0.300 10 37.5 -22.7 60.2 20.1 -30.1 50.2 Neutral 0.309 10 40.6 -19.4 60.0 27.7 -22.3 50.0 Neutral 0.435 10 27.4 -29.7 57.2 6.0 -41.2 47.2 Neutral 0.623 11 36.6 -19.4 56.0 33.2 -12.8 46.0 Neutral 0.641 11 34.2 -21.8 </th <th></th>	
0.155 9 45.8 -19.9 65.8 25.1 -30.7 55.8 Neutral 0.177 9 41.0 -23.6 64.6 12.8 -41.8 54.6 Neutral 0.222 9 38.8 -24.0 62.7 26.4 -26.3 52.7 Neutral 0.231 9 33.3 -29.1 62.4 26.5 -25.9 52.4 Neutral 0.300 10 37.5 -22.7 60.2 20.1 -30.1 50.2 Neutral 0.309 10 40.6 -19.4 60.0 27.7 -22.3 50.0 Neutral 0.435 10 27.4 -29.7 57.2 6.0 -41.2 47.2 Neutral 0.623 11 36.6 -19.4 56.0 33.2 -12.8 46.0 Neutral 0.641 11 34.2 -21.8 56.0 15.3 -30.7 46.0 Neutral 0.857 11	corr dB
0.177 9 41.0 -23.6 64.6 12.8 -41.8 54.6 Neutral 0.222 9 38.8 -24.0 62.7 26.4 -26.3 52.7 Neutral 0.231 9 33.3 -29.1 62.4 26.5 -25.9 52.4 Neutral 0.300 10 37.5 -22.7 60.2 20.1 -30.1 50.2 Neutral 0.309 10 40.6 -19.4 60.0 27.7 -22.3 50.0 Neutral 0.435 10 27.4 -29.7 57.2 6.0 -41.2 47.2 Neutral 0.543 10 32.4 -23.6 56.0 25.8 -20.2 46.0 Neutral 0.623 11 36.6 -19.4 56.0 33.2 -12.8 46.0 Neutral 0.641 11 34.2 -21.8 56.0 25.4 -20.6 46.0 Neutral 0.857 11	
0.222 9 38.8 -24.0 62.7 26.4 -26.3 52.7 Neutral 0.231 9 33.3 -29.1 62.4 26.5 -25.9 52.4 Neutral 0.300 10 37.5 -22.7 60.2 20.1 -30.1 50.2 Neutral 0.309 10 40.6 -19.4 60.0 27.7 -22.3 50.0 Neutral 0.435 10 27.4 -29.7 57.2 6.0 -41.2 47.2 Neutral 0.543 10 32.4 -23.6 56.0 25.8 -20.2 46.0 Neutral 0.623 11 36.6 -19.4 56.0 33.2 -12.8 46.0 Neutral 0.641 11 34.2 -21.8 56.0 25.4 -20.6 46.0 Neutral 0.857 11 33.7 -22.3 56.0 15.3 -30.7 46.0 Neutral 1.254 12	10.1
0.231 9 33.3 -29.1 62.4 26.5 -25.9 52.4 Neutral 0.300 10 37.5 -22.7 60.2 20.1 -30.1 50.2 Neutral 0.309 10 40.6 -19.4 60.0 27.7 -22.3 50.0 Neutral 0.435 10 27.4 -29.7 57.2 6.0 -41.2 47.2 Neutral 0.543 10 32.4 -23.6 56.0 25.8 -20.2 46.0 Neutral 0.623 11 36.6 -19.4 56.0 33.2 -12.8 46.0 Neutral 0.641 11 34.2 -21.8 56.0 16.8 -29.2 46.0 Neutral 0.857 11 35.2 -20.8 56.0 25.4 -20.6 46.0 Neutral 1.254 12 31.3 -24.7 56.0 15.3 -30.7 46.0 Neutral 1.398 12	10.1
0.300 10 37.5 -22.7 60.2 20.1 -30.1 50.2 Neutral 0.309 10 40.6 -19.4 60.0 27.7 -22.3 50.0 Neutral 0.435 10 27.4 -29.7 57.2 6.0 -41.2 47.2 Neutral 0.543 10 32.4 -23.6 56.0 25.8 -20.2 46.0 Neutral 0.623 11 36.6 -19.4 56.0 33.2 -12.8 46.0 Neutral 0.641 11 34.2 -21.8 56.0 25.4 -20.6 46.0 Neutral 0.857 11 33.7 -22.3 56.0 15.3 -30.7 46.0 Neutral 1.875 12 31.3 -24.7 56.0 13.4 -32.6 46.0 Neutral 1.398 12 34.8 -21.2 56.0 25.3 -20.7 46.0 Neutral 1.835 12	10.1
0.309 10 40.6 -19.4 60.0 27.7 -22.3 50.0 Neutral 0.435 10 27.4 -29.7 57.2 6.0 -41.2 47.2 Neutral 0.543 10 32.4 -23.6 56.0 25.8 -20.2 46.0 Neutral 0.623 11 36.6 -19.4 56.0 33.2 -12.8 46.0 Neutral 0.641 11 34.2 -21.8 56.0 16.8 -29.2 46.0 Neutral 0.857 11 35.2 -20.8 56.0 25.4 -20.6 46.0 Neutral 0.875 11 33.7 -22.3 56.0 15.3 -30.7 46.0 Neutral 1.254 12 31.3 -24.7 56.0 13.4 -32.6 46.0 Neutral 1.398 12 34.8 -21.2 56.0 22.9 -23.1 46.0 Neutral 1.713 12	10.1
0.435 10 27.4 -29.7 57.2 6.0 -41.2 47.2 Neutral 0.543 10 32.4 -23.6 56.0 25.8 -20.2 46.0 Neutral 0.623 11 36.6 -19.4 56.0 33.2 -12.8 46.0 Neutral 0.641 11 34.2 -21.8 56.0 16.8 -29.2 46.0 Neutral 0.857 11 35.2 -20.8 56.0 25.4 -20.6 46.0 Neutral 0.857 11 33.7 -22.3 56.0 15.3 -30.7 46.0 Neutral 1.254 12 31.3 -24.7 56.0 13.4 -32.6 46.0 Neutral 1.398 12 34.8 -21.2 56.0 25.3 -20.7 46.0 Neutral 1.713 12 29.4 -26.6 56.0 22.9 -23.1 46.0 Neutral 1.835 12	10.2
0.543 10 32.4 -23.6 56.0 25.8 -20.2 46.0 Neutral 0.623 11 36.6 -19.4 56.0 33.2 -12.8 46.0 Neutral 0.641 11 34.2 -21.8 56.0 16.8 -29.2 46.0 Neutral 0.857 11 35.2 -20.8 56.0 25.4 -20.6 46.0 Neutral 0.875 11 33.7 -22.3 56.0 15.3 -30.7 46.0 Neutral 1.254 12 31.3 -24.7 56.0 13.4 -32.6 46.0 Neutral 1.398 12 34.8 -21.2 56.0 25.3 -20.7 46.0 Neutral 1.713 12 29.4 -26.6 56.0 22.9 -23.1 46.0 Neutral 1.835 12 28.0 -28.1 56.0 21.7 -24.3 46.0 Neutral 3.305 13 27.3 -28.7 56.0 15.0 -31.0 46.0 Neutral	10.2
0.623 11 36.6 -19.4 56.0 33.2 -12.8 46.0 Neutral 0.641 11 34.2 -21.8 56.0 16.8 -29.2 46.0 Neutral 0.857 11 35.2 -20.8 56.0 25.4 -20.6 46.0 Neutral 0.875 11 33.7 -22.3 56.0 15.3 -30.7 46.0 Neutral 1.254 12 31.3 -24.7 56.0 13.4 -32.6 46.0 Neutral 1.398 12 34.8 -21.2 56.0 25.3 -20.7 46.0 Neutral 1.713 12 29.4 -26.6 56.0 22.9 -23.1 46.0 Neutral 1.835 12 28.0 -28.1 56.0 21.7 -24.3 46.0 Neutral 2.801 13 27.6 -28.4 56.0 21.7 -24.3 46.0 Neutral 3.305 13	10.2
0.641 11 34.2 -21.8 56.0 16.8 -29.2 46.0 Neutral 0.857 11 35.2 -20.8 56.0 25.4 -20.6 46.0 Neutral 0.875 11 33.7 -22.3 56.0 15.3 -30.7 46.0 Neutral 1.254 12 31.3 -24.7 56.0 13.4 -32.6 46.0 Neutral 1.398 12 34.8 -21.2 56.0 25.3 -20.7 46.0 Neutral 1.713 12 29.4 -26.6 56.0 22.9 -23.1 46.0 Neutral 1.835 12 28.0 -28.1 56.0 15.2 -30.8 46.0 Neutral 2.801 13 27.6 -28.4 56.0 21.7 -24.3 46.0 Neutral 3.305 13 27.3 -28.7 56.0 15.0 -31.0 46.0 Neutral 3.669 13	10.2
0.857 11 35.2 -20.8 56.0 25.4 -20.6 46.0 Neutral 0.875 11 33.7 -22.3 56.0 15.3 -30.7 46.0 Neutral 1.254 12 31.3 -24.7 56.0 13.4 -32.6 46.0 Neutral 1.398 12 34.8 -21.2 56.0 25.3 -20.7 46.0 Neutral 1.713 12 29.4 -26.6 56.0 22.9 -23.1 46.0 Neutral 1.835 12 28.0 -28.1 56.0 21.7 -24.3 46.0 Neutral 2.801 13 27.6 -28.4 56.0 21.7 -24.3 46.0 Neutral 3.305 13 27.3 -28.7 56.0 15.0 -31.0 46.0 Neutral 3.669 13 25.9 -30.1 56.0 15.2 -30.8 46.0 Neutral 3.962 13	10.2
0.875 11 33.7 -22.3 56.0 15.3 -30.7 46.0 Neutral 1.254 12 31.3 -24.7 56.0 13.4 -32.6 46.0 Neutral 1.398 12 34.8 -21.2 56.0 25.3 -20.7 46.0 Neutral 1.713 12 29.4 -26.6 56.0 22.9 -23.1 46.0 Neutral 1.835 12 28.0 -28.1 56.0 15.2 -30.8 46.0 Neutral 2.801 13 27.6 -28.4 56.0 21.7 -24.3 46.0 Neutral 3.305 13 27.3 -28.7 56.0 15.0 -31.0 46.0 Neutral 3.669 13 25.9 -30.1 56.0 15.2 -30.8 46.0 Neutral 3.962 13 27.4 -28.7 56.0 21.1 -24.9 46.0 Neutral 5.138 14	10.2
1.254 12 31.3 -24.7 56.0 13.4 -32.6 46.0 Neutral 1.398 12 34.8 -21.2 56.0 25.3 -20.7 46.0 Neutral 1.713 12 29.4 -26.6 56.0 22.9 -23.1 46.0 Neutral 1.835 12 28.0 -28.1 56.0 21.7 -30.8 46.0 Neutral 2.801 13 27.6 -28.4 56.0 21.7 -24.3 46.0 Neutral 3.305 13 27.3 -28.7 56.0 15.0 -31.0 46.0 Neutral 3.669 13 25.9 -30.1 56.0 15.2 -30.8 46.0 Neutral 3.962 13 27.4 -28.7 56.0 15.2 -30.8 46.0 Neutral 3.962 13 27.4 -28.7 56.0 21.1 -24.9 46.0 Neutral 5.138 14 27.6 -32.4 60.0 20.3 -29.7 50.0 Neutral	10.2
1.398 12 34.8 -21.2 56.0 25.3 -20.7 46.0 Neutral 1.713 12 29.4 -26.6 56.0 22.9 -23.1 46.0 Neutral 1.835 12 28.0 -28.1 56.0 15.2 -30.8 46.0 Neutral 2.801 13 27.6 -28.4 56.0 21.7 -24.3 46.0 Neutral 3.305 13 27.3 -28.7 56.0 15.0 -31.0 46.0 Neutral 3.669 13 25.9 -30.1 56.0 15.2 -30.8 46.0 Neutral 3.962 13 27.4 -28.7 56.0 15.2 -30.8 46.0 Neutral 5.138 14 27.6 -32.7 56.0 21.1 -24.9 46.0 Neutral 5.138 14 27.6 -32.4 60.0 20.3 -29.7 50.0 Neutral 6.447 14 28.6 -31.4 60.0 23.1 -26.9 50.0 Neutral </td <td>10.2</td>	10.2
1.7131229.4-26.656.022.9-23.146.0Neutral1.8351228.0-28.156.015.2-30.846.0Neutral2.8011327.6-28.456.021.7-24.346.0Neutral3.3051327.3-28.756.015.0-31.046.0Neutral3.6691325.9-30.156.015.2-30.846.0Neutral3.9621327.4-28.756.021.1-24.946.0Neutral5.1381427.6-32.460.020.3-29.750.0Neutral6.4471428.6-31.460.023.1-26.950.0Neutral	10.3
1.8351228.0-28.156.015.2-30.846.0Neutral2.8011327.6-28.456.021.7-24.346.0Neutral3.3051327.3-28.756.015.0-31.046.0Neutral3.6691325.9-30.156.015.2-30.846.0Neutral3.9621327.4-28.756.021.1-24.946.0Neutral5.1381427.6-32.460.020.3-29.750.0Neutral6.4471428.6-31.460.023.1-26.950.0Neutral	10.3
2.8011327.6-28.456.021.7-24.346.0Neutral3.3051327.3-28.756.015.0-31.046.0Neutral3.6691325.9-30.156.015.2-30.846.0Neutral3.9621327.4-28.756.021.1-24.946.0Neutral5.1381427.6-32.460.020.3-29.750.0Neutral6.4471428.6-31.460.023.1-26.950.0Neutral	10.3
3.305 13 27.3 -28.7 56.0 15.0 -31.0 46.0 Neutral 3.669 13 25.9 -30.1 56.0 15.2 -30.8 46.0 Neutral 3.962 13 27.4 -28.7 56.0 21.1 -24.9 46.0 Neutral 5.138 14 27.6 -32.4 60.0 20.3 -29.7 50.0 Neutral 6.447 14 28.6 -31.4 60.0 23.1 -26.9 50.0 Neutral	10.3
3.669 13 25.9 -30.1 56.0 15.2 -30.8 46.0 Neutral 3.962 13 27.4 -28.7 56.0 21.1 -24.9 46.0 Neutral 5.138 14 27.6 -32.4 60.0 20.3 -29.7 50.0 Neutral 6.447 14 28.6 -31.4 60.0 23.1 -26.9 50.0 Neutral	10.4
3.962 13 27.4 -28.7 56.0 21.1 -24.9 46.0 Neutral 5.138 14 27.6 -32.4 60.0 20.3 -29.7 50.0 Neutral 6.447 14 28.6 -31.4 60.0 23.1 -26.9 50.0 Neutral	10.4
5.138 14 27.6 -32.4 60.0 20.3 -29.7 50.0 Neutral 6.447 14 28.6 -31.4 60.0 23.1 -26.9 50.0 Neutral	10.4
6.447 14 28.6 -31.4 60.0 23.1 -26.9 50.0 Neutral	10.4
	10.5
	10.6
1 1.001 17 20.2 -00.0 00.0 20.0 -20.1 00.0 Neulial	10.6
9.543 14 26.3 -33.7 60.0 17.4 -32.6 50.0 Neutral	10.6
	10.8
	10.8
	11.0
	11.0
	11.1
	11.1
	11.1
	11.1

CSA Group Bayern GmbH Ohmstrasse 1-4 · 94342 STRASSKIRCHEN · GERMANY Tel.:+49(0)9424-94810 · Fax:+49(0)9424-9481440

File No. 80125751-04 Rev_2, page 14 of 21

5.2 Radiated emission < 1 GHz (electric field)

For test instruments and accessories used see section 6 Part A 5.

5.2.1 Description of the test location

Test location:OATS 1Test distance:10 m

5.2.2 Photo documentation of the test setup

See Attachment B2 for detailed photo documentation of the test set-up.

5.2.3 Test result

Frequency range:	30 MHz - 1000 MHz
Min. limit margin	-13.1 dB at 720.0 MHz

Limit according to FCC Part 15, Section 15.109(a):

Frequency of emission (MHz)	Field strength @3m (µV/m)
30 - 88	100
88 - 216	150
216 - 960	200
Above 960	500

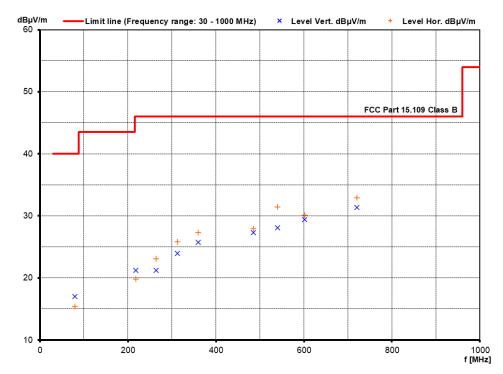
Limit according to ICES-003 3.2.2:

Frequency range (MHz)	Quasi-peak @3m (dB µV/m)
30 - 88	40
88 - 216	43.5
216 - 230	46
230 - 960	47
960 - 1000	54

The requirements are **FULFILLED**.

Remarks: For detailed results, please see the following page(s).

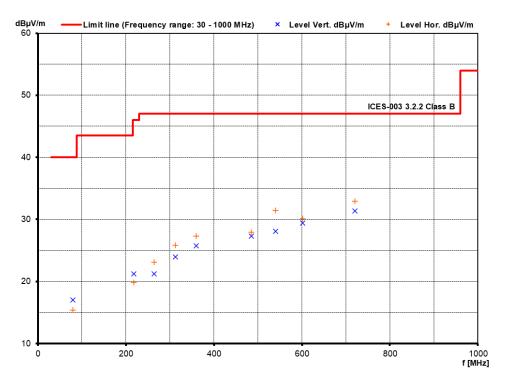
For description of the measurement see 4.5.2.


5.2.4 Test protocol

Operation mode:Data communication with notebook via USBRemarks:None

Result: passed

According to FCC Part 15, Section 15.109:


Frequency (MHz)	Reading Vert. (dBµV)	Reading Hor. (dBµV)	Correct. Vert. (dB)	Correct. Hor. (dB)	Level Vert. (dBµV/m)	Level Hor. (dBµV/m)	Limit (dBµV/m)	Dlimit (dB)
79.40	2.7	0.7	14.3	14.7	17.0	15.4	40.0	-23.0
218.00	3.6	2.7	17.6	17.2	21.2	19.9	46.0	-24.8
264.00	2.1	3.8	19.1	19.3	21.2	23.1	46.0	-22.9
312.00	3.4	4.8	20.5	21.0	23.9	25.8	46.0	-20.2
360.00	3.8	4.9	21.9	22.4	25.7	27.3	46.0	-18.7
485.00	2.0	2.3	25.3	25.6	27.3	27.9	46.0	-18.1
540.00	1.5	4.5	26.6	27.0	28.1	31.5	46.0	-14.5
602.00	1.4	1.7	28.0	28.4	29.4	30.1	46.0	-15.9
720.00	1.5	2.5	29.9	30.4	31.4	32.9	46.0	-13.1

According to ICES-003 3.2.2:

Frequency (MHz)	Reading Vert. (dBµV)	Reading Hor. (dBµV)	Correct. Vert. (dB)	Correct. Hor. (dB)	Level Vert. (dBµV/m)	Level Hor. (dBµV/m)	Limit (dBµV/m)	Dlimit (dB)
79.40	2.7	0.7	14.3	14.7	17.0	15.4	40.0	-23.0
218.00	3.6	2.7	17.6	17.2	21.2	19.9	46.0	-24.8
264.00	2.1	3.8	19.1	19.3	21.2	23.1	47.0	-23.9
312.00	3.4	4.8	20.5	21.0	23.9	25.8	47.0	-21.2
360.00	3.8	4.9	21.9	22.4	25.7	27.3	47.0	-19.7
485.00	2.0	2.3	25.3	25.6	27.3	27.9	47.0	-19.1
540.00	1.5	4.5	26.6	27.0	28.1	31.5	47.0	-15.5
602.00	1.4	1.7	28.0	28.4	29.4	30.1	47.0	-16.9
720.00	1.5	2.5	29.9	30.4	31.4	32.9	47.0	-14.1

CSA Group Bayern GmbH Ohmstrasse 1-4 · 94342 STRASSKIRCHEN · GERMANY Tel.:+49(0)9424-94810 · Fax:+49(0)9424-9481440

File No. 80125751-04 Rev_2, page 17 of 21

Rev. No. 9.9 2021-04-26

5.3 Radiated emission > 1 GHz (electric field)

For test instruments and accessories used see section 6 Part SER 3.

5.3.1 Description of the test location

Test location:Anechoic chamber 1Test distance:3 m

5.3.2 Photo documentation of the test setup

See Attachment B2 for detailed photo documentation of the test set-up.

5.3.3 Test result

Frequency range:	1 GHz - 13 GHz
Min. limit margin	-3.4 dB at 12.849 GHz

Limit according to FCC Part 15, Section 15.109(a):

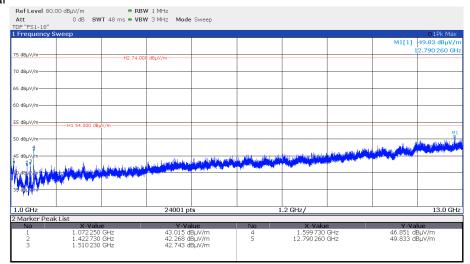
Frequency of emission	Field strength @3m
(MHz)	(µV/m)
Above 960	500

Limit according to ICES-003 3.2.2:

Frequency range	Average @3m	Peak @3m
(GHz)	(dB µV/m)	(dB µV/m)
1 - 40	54	74

The requirements are **FULFILLED**.

Remarks: For detailed results, please see the following page(s).


For description of the measurement see 4.5.2.

5.3.4 Test protocol

Operation mode:Data communication with notebook via USBResult: passedRemarks:None

Antenna horizontal

Antenna vertical

Att	0 dB SW	/T 48 ms 🖷 VBW	/ 3 MHz Mode	sweep					
TDF "FS1-18"									
l Frequency Sv	weep					_			O1Pk Ma:
								M1[1]	50.59 dBµV,
75 dBµV/m								1	2.849 760 0
75 dBµv/m		H2 74.000	I dBµV/m						
70 dBµ∀/m									
65 dBµV/m									
60 d8µ∀/m									
55 dBµV/m									
	H1 54.000 dBµ	V/m							
50 dBuV/m									
5								an alkin and	موالله خاروي ورواريا ال
15010-111	9					Le million des des	allowed and a standard	And the second second	all and a starting
452lBμy/m		1.1	L. Latter at the	والمستشفية فتستعمل ويناعهما	And Weiterships	A MARKET AND A MARKET A	Allow banks in the	100 B	
and a second	المناطر مترمز للألبان	معتريطي التوريت فالألم وليها	A DESCRIPTION OF THE OWNER OF THE	and a share to share the	11				
40 (dB)JV/m+m-m-+	The set of the	purchase and provide pro-	i liptori i liptori i						
C THE PARTY	· · ·								
35 dBµV/m									
1.0 GHz			24001 p	to	L1	.2 GHz/			13.0 G
	1.544		24001 p	13	1				15.0 0
2 Marker Peak	List X-Valu	0	Y-Va	luo	No	X-Value		Y-Va	luo.
1	1.107750		43.529 c		6	1.599 230		46.737 df	
2	1.255 240		44.332 c		7	1.622720		42.575 dt	
3	1.497 230 1.547 230		43.434 c 42.603 c		8	1.636220 2.665680		43.975 df 45.254 df	3µV/m

File No. 80125751-04 Rev_2, page 19 of 21

Rev. No. 9.9 2021-04-26

6 USED TEST EQUIPMENT AND ACCESSORIES

All test instruments used, in addition to the test accessories, are calibrated and verified regularly.

-	Test ID	Model Type	Kind of Equipment	Manufacturer	Equipment No.	Next Calib.	Last Calib.	Next Verif.	Last Verif.
1	A 4	BAT-EMC 2022.0.21.0 ESCI	Nexio Software EMI Test Receiver	EMCO Elektronik GmbH Rohde & Schwarz München	01-02/68-13-001 02-02/03-15-001	17/06/2023	17/06/2022		
		ESH 2 - Z 5 N-4000-BNC	LISN RF Cable	Rohde & Schwarz München CSA Group Bayern GmbH	02-02/20-05-004 02-02/50-05-138	13/10/2025	13/10/2022	13/04/2023	13/10/2022
		ESH 3 - Z 2	Pulse Limiter	Rohde & Schwarz München	02-02/50-05-155	09/11/2025	09/11/2022	09/05/2023	09/11/2022
÷	SER 2	ESR 7 VULB 9168 NW-2000-NB KK-EF393/U-16N-21N20 m KK-SD_7/8-2X21N-33,0M 50F-003 N 3 dB	EMI Test Receiver Trilog Broadband Antenn RF Cable RF Cable 20m RF Cable 33 m Dämpfungsglied 3dB_5	Rohde & Schwarz München Schwarzbeck Mess-Elektron Huber + Suhner Huber + Suhner Huber + Suhner AG Tactron Elektronik	02-02/03-17-001 01-02/24-14-007 02-02/50-05-113 02-02/50-12-018 02-02/50-15-028 02-02/50-21-010	05/08/2023 04/04/2023	05/08/2022 04/04/2022		
;	SER 3	FSW43 AMF-6D-01002000-22-10P 3117 BAM 4.5-P NCD KK-SF106-2X11N-6,5M	Spectrum Analyser RF Amplifier Horn Antenna 1 - 18 GH Antenna Mast Controller for Antenna M RF Cable	Rohde & Schwarz München MITEQ, Inc. EMCO Elektronik GmbH maturo GmbH maturo GmbH Huber + Suhner	02-02/11-21-001 02-02/17-15-004 02-02/24-05-009 02-02/50-17-024 02-02/50-17-025 02-02/50-18-016	16/05/2023 23/06/2023			

the test sample. It is not permitted to copy extracts of these test results without the written permission of the test laboratory

File No. 80125751-04 Rev_2, page 20 of 21

7 Detailed measurement uncertainty

7.1 Overview

Measurement instrumentation uncertainty shall be taken into account when determining compliance or non-compliance with a disturbance limit.

The measurement instrumentation uncertainty for a test laboratory shall be evaluated. The standard uncertainty $u(x_i)$ in decibels and the sensitivity coefficient *ci* shall be evaluated for the estimate *xi* of each quantity. The combined standard uncertainty $u(x_i)$ of the estimate *y* of the measurand shall be calculated as

$$u_{\rm c}(y) = \sqrt{\sum_i c_i^2 \ u^2(x_i)}$$

The expanded measurement instrumentation uncertainty U_{lab} for a test laboratory shall be calculated as $U_{lab} = 2 u_c(y)$

$$U_{\text{lab}} = 2 u_{\text{c}}(y)$$

Compliance or non-compliance with a disturbance limit shall be determined in the following manner:

If Ulab is less than or equal to Ucispr in the table below, then:

- compliance is deemed to occur if no measured disturbance exceeds the disturbance limit;
- non-compliance is deemed to occur if any measured disturbance exceeds the disturbance limit.

If Ulab is greater than Ucispr in the table below, then:

- compliance is deemed to occur if no measured disturbance, increased by (Ulab Ucispr), exceeds the disturbance limit.
- non-compliance is deemed to occur if any measured disturbance, increased by (Ulab Ucispr), exceeds the disturbance limit.

7.2 Definitions and symbols

- Xi Input quantity
- xi estimate of Xi
- *u(xi)* standard uncertainty of *xi*
- *ci* sensitivity coefficient
- $u_{c}(y)$ (combined) standard uncertainty of y
- Y result of a measurement, (the estimate of the measured), corrected for all recognised significant systematic effects
- U expanded uncertainty of y

7.3 Measurement uncertainty

Measurement	<i>U</i> _{lab} [dB]					
Conducted disturbance	+ 2.53 / - 2.77					
Radiated disturbance (electric field)						
 10 m test distance 	+ 3.16 / - 3.22					
- 3 m test distance	+ 3.16 / - 3.22					
 Frequency range: 30 MHz – 200 MHz 						
Radiated disturbance (electric field)						
- 10 m test distance	+ 4.51 / - 4.51					
 3 m test distance 	+ 4.51 / - 4.51					
 Frequency range: 200 MHz – 1000 MHz 						
Radiated disturbance (electric field)						
- 3 m test distance	+ 5.07 / -3.70					
 Frequency range: 1 GHz – 30 GHz 						

File No. 80125751-04 Rev_2, page 21 of 21