FCC TEST REPORT

Report No: SSP24120233-2E

FCC ID: 2BFW2-F7

Report No. : SSP24120233-2E

Applicant: Shenzhen Xinlu Shang electronic Technology Co., LTD

Product Name: Dashcam

Model Name: F7

Test Standard: FCC Part 15.247

Date of Issue : 2025-01-09

Shenzhen CCUT Quality Technology Co., Ltd.

1F, Building 35, Changxing Technology Industrial Park, Yutang Street, Guangming District, Shenzhen, Guangdong, China; (Tel.:+86-755-23406590 website: www.ccuttest.com)

This test report is limited to the above client company and the product model only. It may not be duplicated without prior permitted by Shenzhen CCUT Quality Technology Co., Ltd.

FCC Test Report Page 1 of 50

Test Report Basic Information

Applicant..... Shenzhen Xinlu Shang electronic Technology Co., LTD 5F, Building B2, Jindi Science and Technology Park, Liu Wu Wei Road, Dalang Address of Applicant..... Street, Longhua New District, Shenzhen, China Manufacturer..... Shenzhen Xinlu Shang electronic Technology Co., LTD 5F, Building B2, Jindi Science and Technology Park, Liu Wu Wei Road, Dalang Address of Manufacturer.....: Street, Longhua New District, Shenzhen, China Product Name..... Dashcam Brand Name..... **Main Model.....** F7 **Series Models**...... F7-1, F7-2, F7-3 FCC Part 15 Subpart C KDB 558074 D01 15.247 Meas Guidance v05r02 ANSI C63.4-2014 Test Standard....: ANSI C63.10-2013 Date of Test 2024-12-20 to 2024-12-31 Test Result....: PASS Tested By (Walker Wu) **APPROVE** Reviewed By....: (Lieber Ouyang) (Lahm Peng) Authorized Signatory.....

Note: This test report is limited to the above client company and the product model only. It may not be duplicated without prior permitted by Shenzhen CCUT Quality Technology Co., Ltd.. All test data presented in this test report is only applicable to presented test sample.

FCC Test Report Page 2 of 50

CONTENTS

1. General Information	5
1.1 Product Information	5
1.2 Test Setup Information	6
1.3 Compliance Standards	
1.4 Test Facilities	
1.5 List of Measurement Instruments	
1.6 Measurement Uncertainty	
2. Summary of Test Results	
3. Antenna Requirement	
3.1 Standard and Limit	
3.2 Test Result	
4. Conducted Emissions	12
4.1 Standard and Limit	
4.2 Test Procedure	
4.3 Test Data and Results	_
5. Radiated Emissions	16
5.1 Standard and Limit	16
5.2 Test Procedure	16
5.3 Test Data and Results	
6. Band-edge Emissions(Radiated)	22
6.1 Standard and Limit	
6.2 Test Procedure	
6.3 Test Data and Results	
7. Maximum Conducted Output Power	24
7.1 Standard and Limit	24
7.2 Test Procedure	
7.3 Test Data and Results	
8. Occupied Bandwidth	31
8.1 Standard and Limit	
8.2 Test Procedure	
8.3 Test Data and Results	
9. Maximum Power Spectral Density	
9.1 Standard and Limit	37
9.2 Test Procedure	
9.3 Test Data and Results	
10. Band-edge Emission(Conducted)	
10.1 Standard and Limit	41
10.2 Test Procedure	
10.3 Test Data and Results	
11. Conducted RF Spurious Emissions	
11.1 Standard and Limit	
11.2 Test Procedure	_
11.3 Test Data and Results	46

Report No: SSP24120233-2E

Revision	Issue Date	Description	Revised By
V1.0	2025-01-09	Initial Release	Lahm Peng

FCC Test Report Page 4 of 50

1. General Information

1.1 Product Information

Product Name:	Dashcam
Trade Name:	-
Main Model:	F7
Series Models:	F7-1, F7-2, F7-3
Rated Voltage:	DC 5V/2A
Battery:	-
Test Sample No:	SSP2412023-1
Hardware Version:	V1.0
Software Version:	V1.0

Report No: SSP24120233-2E

Note 1: The test data is gathered from a production sample, provided by the manufacturer.

Note 2: The color of appearance and model name of series models listed are different from the main model, but the circuit and the electronic construction are the same, declared by the manufacturer.

Wireless Specification	
Wireless Standard:	802.11b/g/n
Operating Frequency	2412MHz ~ 2462MHz for 802.11b/g/n(HT20)
Operating Frequency:	2422MHz ~ 2452MHz for 802.11n(HT40)
RF Output Power:	10.33dBm
Number of Channel:	11/7
Channel Separation:	5MHz
Modulation:	CCK, OFDM, QPSK, BPSK, 16QAM, 64QAM
Antenna Gain:	0dBi
Type of Antenna:	PCB Antenna
Type of Device:	☐ Portable Device ☐ Modular Device

FCC Test Report Page 5 of 50

1.2 Test Setup Information

List of Test Mo	odes					
Test Mode	Description		Remark			
TM1	8	302.11b		2412MHz/2437MHz/2462MHz		
TM2	8	302.11g		2412MHz/2437MH	z/2462MHz	
TM3	802.	11n(HT20)		2412MHz/2437MH	z/2462MHz	
TM4	802.	11n(HT40)		2422MHz/2437MH	z/2452MHz	
-		-		-		
List and Details of Auxiliary Cable						
Descrij	ption	Length (cm)		Shielded/Unshielded	With/Without Ferrite	
USB C	able	100		Unshielded	Without Ferrite	
-		-		-	-	
List and Detai	ls of Auxiliary	Equipment				
Descrij	otion	Manufacture	r	Model	Serial Number	
Adap	ter	er Xiaomi		MDY-12-EF	HC78E2N6A23645	
-					-	
Test Software	& Power leve	l setup of EUT			•	
Test Software			Power level setup			
VanDyke Software				40		

Report No: SSP24120233-2E

Note: The DUT was installed in a test fixture and this test fixture is connected to a laptop computer. The laptop computer was used to configure the EUT to continuously transmit at a specified output power using all different modes and modulation schemes, using the proprietary tool VanDyke Software.

List of Chann	iels						
No. of	Frequency	No. of	Frequency	No. of	Frequency	No. of	Frequency
Channel	(MHz)	Channel	(MHz)	Channel	(MHz)	Channel	(MHz)
01	2412	05	2432	09	2452	13	
02	2417	06	2437	10	2457	14	
03	2422	07	2442	11	2462	15	
04	2427	08	2447	12		16	

FCC Test Report Page 6 of 50

1.3 Compliance Standards

Compliance Standards				
FCC Part 15 Subpart C	FEDERAL COMMUNICATIONS COMMISSION, RADIO FREQUENCY DEVICES,			
recrait 13 Subpart C	Intentional Radiators			
All measurements contained in this	report were conducted with all above standards			
According to standards for test n	nethodology			
ECC Part 15 Submort C	FEDERAL COMMUNICATIONS COMMISSION, RADIO FREQUENCY DEVICES,			
FCC Part 15 Subpart C	Intentional Radiators			
KDB 558074 D01 15.247 Meas	GUIDANCE FOR COMPLIANCE MEASUREMENTS ON DIGITAL TRANSMISSION			
Guidance v05r02	SYSTEM, FREQUENCY HOPPING SPREAD SPECTRUM SYSTEM, AND HYBRID SYSTEM			
Guidance vosioz	DEVICES OPERATING UNDER SECTION 15.247 OF THE FCC RULES			
ANSI C63.4-2014	American National Standard for Methods of Measurement of Radio-Noise Emissions			
ANSI C03.4-2014	from Low-Voltage Electrical and Electronic Equipment in the range of 9 kHz to 40 GHz.			
ANSI C63.10-2013	American National Standard of Procedures for Compliance Testing of Unlicensed			
ANSI C03.10-2013	Wireless Devices			
Maintenance of compliance is the responsibility of the manufacturer or applicant. Any modification of the product, which				
result is lowering the emission, should be checked to ensure compliance has been maintained.				

Report No: SSP24120233-2E

1.4 Test Facilities

Shenzhen CCUT Quality Technology Co., Ltd.				
Laboratory Name:	1F, Building 35, Changxing Technology Industrial Park, Yutang Stree			
	Guangming District, Shenzhen, Guangdong, China			
CNAS Laboratory No.:	L18863			
A2LA Certificate No.:	6893.01			
FCC Registration No:	583813			
ISED Registration No.:	CN0164			

All measurement facilities used to collect the measurement data are located at 1F, Building 35, Changxing Technology Industrial Park, Yutang Street, Guangming District, Shenzhen, Guangdong, China.

FCC Test Report Page 7 of 50

1.5 List of Measurement Instruments

Description	Manufacturer	Model	Serial Number	Cal. Date	Due. Date
Conducted Emissions					
AMN	ROHDE&SCHWARZ	ENV216	101097	2024-08-07	2025-08-06
EMI Test Receiver	ROHDE&SCHWARZ	ESPI	100242	2024-08-07	2025-08-06
Test Cable	N/A	Cable 5	N/A	2024-08-07	2025-08-06
EMI Test Software	FARA	EZ-EMC	EMEC-3A1+	N/A	N/A
		Radiated Emission	is		
EMI Test Receiver	ROHDE&SCHWARZ	ESPI	100154	2024-08-07	2025-08-06
Spectrum Analyzer	KEYSIGHT	N9020A	MY48030972	2024-08-07	2025-08-06
Spectrum Analyzer	ROHDE&SCHWARZ	FSV40-N	101692	2024-08-07	2025-08-06
Amplifier	SCHWARZBECK	BBV 9743B	00251	2024-08-07	2025-08-06
Amplifier	HUABO	YXL0518-2.5-45		2024-08-07	2025-08-06
Amplifier	COM-MW	DLAN-18G-4G-02	10229104	2024-08-07	2025-08-06
Loop Antenna	DAZE	ZN30900C	21104	2024-08-03	2025-08-02
Broadband Antenna	SCHWARZBECK	VULB 9168	01320	2024-08-03	2025-08-02
Horn Antenna	SCHWARZBECK	BBHA 9120D	02553	2024-08-03	2025-08-02
Horn Antenna	COM-MW	ZLB7-18-40G-950	12221225	2024-08-03	2025-08-02
Attenuator	QUANJUDA	6dB	220731	2024-08-07	2025-08-06
Test Cable	N/A	Cable 1	N/A	2024-08-07	2025-08-06
Test Cable	N/A	Cable 2	N/A	2024-08-07	2025-08-06
Test Cable	N/A	Cable 3	N/A	2024-08-07	2025-08-06
Test Cable	N/A	Cable 4	N/A	2024-08-07	2025-08-06
Test Cable	N/A	Cable 8	N/A	2024-08-07	2025-08-06
Test Cable	N/A	Cable 9	N/A	2024-08-07	2025-08-06
EMI Test Software	FARA	EZ-EMC	FA-03A2 RE+	N/A	N/A
		Conducted RF Testi	ng		•
RF Test System	MWRFTest	MW100-RFCB	220418SQS-37	2024-08-07	2025-08-06
Spectrum Analyzer	KEYSIGHT	N9020A	ATO-90521	2024-08-07	2025-08-06
RF Test Software	MWRFTest	MTS 8310	N/A	N/A	N/A
Laptop	Lenovo	ThinkPad E15 Gen 3	SPPOZ22485	N/A	N/A

Report No: SSP24120233-2E

FCC Test Report Page 8 of 50

1.6 Measurement Uncertainty

Test Item	Conditions	Uncertainty
Conducted Emissions	9kHz ~ 30MHz	±1.64 dB
	9kHz ~ 30MHz	±2.88 dB
Dedicted Emissions	30MHz ~ 1GHz	±3.32 dB
Radiated Emissions	1GHz ~ 18GHz	±3.50 dB
	18GHz ~ 40GHz	±3.66 dB
Conducted Output Power	9kHz ~ 26GHz	±0.50 dB
Occupied Bandwidth	9kHz ~ 26GHz	±4.0 %
Conducted Spurious Emission	9kHz ~ 26GHz	±1.32 dB
Power Spectrum Density	9kHz ~ 26GHz	±0.62 dB

Report No: SSP24120233-2E

FCC Test Report Page 9 of 50

2. Summary of Test Results

FCC Rule	Description of Test Item	Result
FCC Part 15.203	Antenna Requirement	Passed
FCC Part 15.247(i)	RF Exposure(see the RF exposure report)	Passed
FCC Part 15.207	Conducted Emissions	Passed
FCC Part 15.209, 15.247(d)	Radiated Emissions	Passed
FCC Part 15.247(d)	Band-edge Emissions(Radiated)	Passed
FCC Part 15.247(b)(3)	Maximum Conducted Output Power	Passed
FCC Part 15.247(a)(2)	Occupied Bandwidth	Passed
FCC Part 15.247(e)	Maximum Power Spectral Density	Passed
FCC Part 15.247(d)	Band-edge Emissions(Conducted)	Passed
FCC Part 15.247(d)	Conducted RF Spurious Emissions	Passed

Report No: SSP24120233-2E

Passed: The EUT complies with the essential requirements in the standard

Failed: The EUT does not comply with the essential requirements in the standard

N/A: Not applicable

FCC Test Report Page 10 of 50

3. Antenna Requirement

3.1 Standard and Limit

According to FCC Part 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section.

Report No: SSP24120233-2E

3.2 Test Result

This product has an PCB antenna, fulfill the requirement of this section.

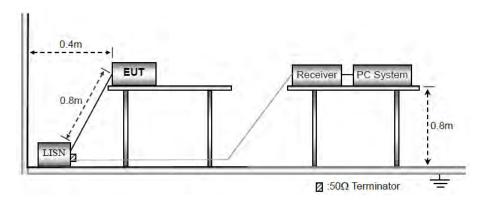
FCC Test Report Page 11 of 50

4. Conducted Emissions

4.1 Standard and Limit

According to the rule FCC Part 15.207, Conducted emissions limit, the limit for a wireless device as below:

Frequency of Emission	Conducted emissions (dBuV)		
(MHz)	Quasi-peak	Average	
0.15-0.5	66 to 56	56 to 46	
0.5-5	56	46	
5-30	60	50	


Report No: SSP24120233-2E

Note 1: Decreases with the logarithm of the frequency in the range 0.15 MHz to 0.5 MHz

Note 2: The lower limit applies at the band edges

4.2 Test Procedure

Test is conducting under the description of ANSI C63.10 - 2013 section 6.2.

Test Setup Block Diagram

- a) The EUT was configured for testing in a typical fashion (as a customer would normally use it). The EUT has been programmed to continuously transmit during test. This operating condition was tested and used to collect the included data.
- b) The following is the setting of the receiver

Attenuation: 10dB

Start Frequency: 0.15MHz Stop Frequency: 30MHz IF Bandwidth: 9kHz

c) The EUT was placed 0.8 meters from the horizontal ground plane with EUT being connected to the power mains through a line impedance stabilization network (LISN). All other support equipment powered from additional LISN(s). The LISN provide 50 Ohm/ 50uH of coupling impedance for the measuring instrument.

FCC Test Report Page 12 of 50

d) Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle 30 to 40 cm long.

Report No: SSP24120233-2E

- e) I/O cables that are not connected to a peripheral shall be bundled in the center. The end of the cable may be terminated, if required, using the correct terminating impedance. The overall length shall not exceed 1 m.
- f) LISN is at least 80 cm from nearest part of EUT chassis.
- g) For the actual test configuration, please refer to the related Item photographs of the test setup.

4.3 Test Data and Results

All of the 802.11b, 802.11g and 802.11n modes have been tested, the EUT complied with the FCC Part 15.207 standard limit for a wireless device, and with the worst case 802.11b_2412MHz as below:

Remark: Level = Reading + Factor, Margin = Level - Limit

FCC Test Report Page 13 of 50

Test P	lots and Data	of Conduct	ed Emissic	ons							
Teste	d Mode:	TM1	ΓM1								
Test V	oltage:	AC 1	C 120V/60Hz								
Test F	ower Line:	Neu	eutral								
Rema	rk:										
90.0	dBuV	,									
80											
70											
60									FCC Part15 CE-Class I	3_QP	
									FCC Part15 CE-Class I	B_AVe	
50											
40		1	3								
30	~~~		40444444	hallander of the state of the s		Pak Jed	7		9		
20	~~~~	~~~\\ !		North Marchester and	6 Xinddayd	Mr. Internal		A Marie	3 11 10 10 10 10 10 10 10 10 10 10 10 10	a hamak	
				Light	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	MANAGANAN.			WALL TO SERVE THE SERVE TH	peak	
10									1 1 1 7 7 7 7	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	
0											
-10	150									20.000	
U.	150	0.5	500		(MHz)		5.0	00		30.000	
No.	Frequency (MHz)	Reading (dBuV)	Factor (dB)	Level (dBuV)	Limit (dBuV)	Margin (dB)	Detector	P/F	Remark		
1	0.4290	23.79	9.38	33.17	57.27	-24.10	QP	Р			
2	0.4290	13.64	9.38	23.02	47.27	-24.25	AVG	Р			
3	0.8745	27.65	9.38	37.03	56.00	-18.97	QP	P P			
4 *	0.8745 1.9230	21.19	9.38 9.46	30.57 31.23	46.00 56.00	-15.43 -24.77	AVG QP	Р			
6	1.9230	12.44	9.46	21.90	46.00	-24.11	AVG	Р			
7	3.5970	20.80	9.52	30.32	56.00	-25.68	QP	P			
8	3.5970	13.78	9.52	23.30	46.00	-22.70	AVG	Р			
9	7.7190	15.84	9.57	25.41	60.00	-34.59	QP	Р			
10	7.7190	10.31	9.57	19.88	50.00	-30.12	AVG	Р			
11	11.6160	14.27	9.55	23.82	60.00	-36.18	QP	Р			
12	11.6160	4.20	9.55	13.75	50.00	-36.25	AVG	Р			

FCC Test Report Page 14 of 50

Test F	Plots a	nd Data o	of Con	nducte	ed En	nissi	ons									
Teste	d Mod	d Mode: TM1														
Test V	oltag	e:		AC 1	C 120V/60Hz											
Test F	ower	Line:		Live	ve											
Remark:																
90.0	dBu	W														
80																
70																
60	_												FCC P	art15 CE-Clas	s B_QP	
				_									ECC P	aıt15 CE-Clas	o R AVa	
50				4									ruci	aiti 5 CE-Cias	s D_AVE	
40			_			Š										
30	~~\	~~\\	Min	MMM/	MANAY	wW	helmond	hu _{h tu}	5 	P4.	7 5	1				
	<i>ــ</i>		4			1	muranan	-111	1 1	Y YAYAN JON			~~~	11 Mythyrdamandam	war walka	
20				V 4 4 0 4	<i>er</i> puu vijs	DQV IV VV	1 hills 1 settler de de	L-ph	TO THE PARTY OF TH	Mar Mark Mark		Why Why	N. July	12	**************************************	peak
10										111 41	- W		· · · · ·	A. Oleoffere.		AVG
0																
-10																
0."	150			0.5	00				(MHz)		5.0	000			30.00	bo
No.		equency (MHz)		iding BuV)	Fad (d	ctor B)	Leve (dBu\		Limit (dBuV)	Margin (dB)	Detector	P/F	Ren	nark		
1		0.3525	<u> </u>	.85	9.		33.4	_	58.90	-25.47	QP	P				\neg
2	(0.3525	13	.17	9.	58	22.7	5	48.90	-26.15	AVG	Р				
3	(0.8745	28	.25	9.	57	37.8	-	56.00	-18.18	QP	Р				
4 *	_	0.8745	_	.43	9.		28.0	_	46.00	-18.00	AVG	Р				
5	_	2.0490	-	.59	9.6		32.2	-	56.00	-23.75		P				
6	_	2.0490		.34	9.6		20.0	-	46.00	-26.00		Р				
7 8	_	3.7725	_	.65 79	9.		31.3 19.5	-	56.00 46.00	-24.63 -26.49		P				-
9	_	3.7725 5.1945	_	.82	9.		29.5	-	60.00	-30.42	_	P				
10	_	5.1945 5.1945	-	.05	9.		19.8	-	50.00	-30.42	_	P				
11	_	0.2615	_	.16	9.		24.9	-	60.00	-35.09		P				
12		0.2615	_	33	9.		14.0	-	50.00	-35.92		P				$\neg \neg$
												-				

FCC Test Report Page 15 of 50

5. Radiated Emissions

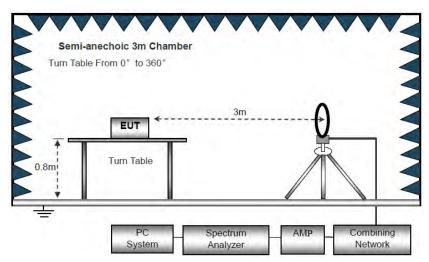
5.1 Standard and Limit

According to §15.247(d), In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in § 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in § 15.205(a), must also comply with the radiated emission limits specified in § 15.209(a) (see § 15.205(c)).

Report No: SSP24120233-2E

According to the rule FCC Part 15.209, Radiated emission limit for a wireless device as below:

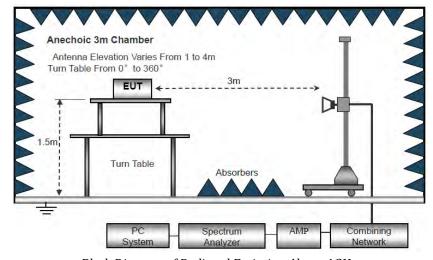
Frequency of Emission	Field Strength	Measurement Distance					
(MHz)	(micorvolts/meter)	(meters)					
0.009~0.490	2400/F(kHz)	300					
0.490~1.705	24000/F(kHz)	30					
1.705~30.0	30	30					
30~88	100	3					
88~216	150	3					
216~960	200	3					
Above 960	Above 960 500 3						
Note: The more stringent limit applies at transition frequencies.							


The emission limit in this paragraph is based on measurement instrumentation employing an average detector. The provisions in §15.35 for limiting peak emissions apply. Spurious Radiated Emissions measurements starting below or at the lowest crystal frequency.

Note: Spurious Radiated Emissions measurements starting below or at the lowest crystal frequency.

5.2 Test Procedure

Test is conducting under the description of ANSI C63.10 - 2013 section 6.3 to 6.6.


FCC Test Report Page 16 of 50

Block Diagram of Radiated Emission Below 30MHz

Block Diagram of Radiated Emission From 30MHz to 1GHz

Block Diagram of Radiated Emission Above 1GHz

FCC Test Report Page 17 of 50

a) The EUT is placed on a turntable, which is 0.8m above ground plane for test frequency range blew 1GHz, and 1.5m above ground plane for test frequency range above 1GHz.

Report No: SSP24120233-2E

- b) EUT is set 3m away from the receiving antenna, which is varied from 1m to 4m to find out the highest emissions.
- c) Use the following spectrum analyzer settings:

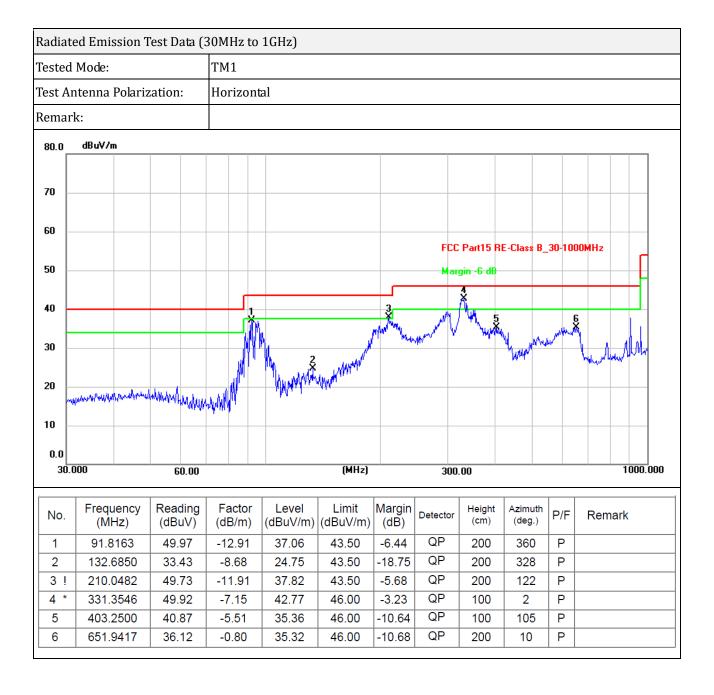
Span = wide enough to fully capture the emission being measured

RBW = 1 MHz for $f \ge 1$ GHz, 100 kHz for f < 1 GHz, 10kHz for f < 30MHz

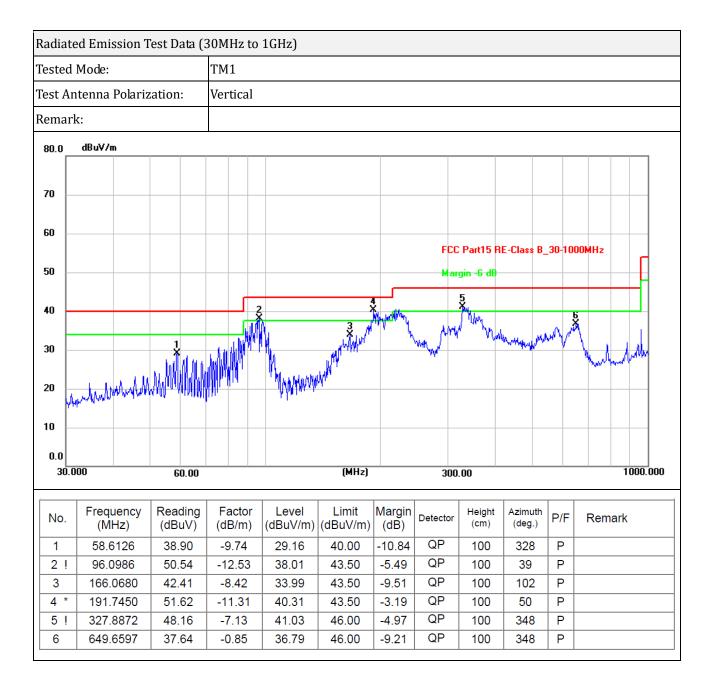
VBW ≥ RBW, Sweep = auto

Detector function = peak

Trace = max hold


- d) Follow the guidelines in ANSI C63.4-2014 with respect to maximizing the emission by rotating the EUT, adjusting the measurement antenna height and polarization, etc. The peak reading of the emission, after being corrected by the antenna factor, cable loss, pre-amp gain, etc., is the peak field strength, submit this data. Each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical.
- e) The peak level, once corrected, must comply with the limit specified in Section 15.209. Set the RBW = 1MHz, VBW = 10Hz, Detector = PK for AV value, while maintaining all of the other instrument settings.
- f) For the actual test configuration, please refer to the related item EUT test photos.

5.3 Test Data and Results


All of the 802.11b, 802.11g and 802.11n modes have been tested, the EUT complied with the FCC Part 15.247 standard limit for a wireless device, and with the worst case 802.11b_2412MHz as below:

Remark: Level = Reading + Factor, Margin = Level - Limit

FCC Test Report Page 18 of 50

FCC Test Report Page 19 of 50

FCC Test Report Page 20 of 50

		a (Above 1GH:		Limaik	Manain	Dolow	Datast
Frequency	Reading	Correct	Result	Limit	Margin	Polar	Detector
MHz	dBuV/m	dB/m	dBuV/m	dBuV/m	dB	H/V	PK/AV
Т			est Channel (8	02.11b_2412N			1
4824	78.06	-14.72	63.34	74	-10.66	Н	PK
4824	60.15	-14.72	45.43	54	-8.57	Н	AV
7236	63.51	-8.41	55.1	74	-18.9	Н	PK
7236	49.25	-8.41	40.84	54	-13.16	Н	AV
4824	75.92	-14.72	61.2	74	-12.8	V	PK
4824	60.67	-14.72	45.95	54	-8.05	V	AV
7236	62.78	-8.41	54.37	74	-19.63	V	PK
7236	45.23	-8.41	36.82	54	-17.18	V	AV
		Mid	dle Channel (8	02.11b_2437M	(Hz)		
4874	76.46	-14.64	61.82	74	-12.18	Н	PK
4874	61.72	-14.64	47.08	54	-6.92	Н	AV
7311	63.12	-8.28	54.84	74	-19.16	Н	PK
7311	49.26	-8.28	40.98	54	-13.02	Н	AV
4874	76.11	-14.64	61.47	74	-12.53	V	PK
4874	57	-14.64	42.36	54	-11.64	V	AV
7311	65.92	-8.28	57.64	74	-16.36	V	PK
7311	46.85	-8.28	38.57	54	-15.43	V	AV
		High	est Channel (8	302.11b_24621	MHz)		•
4924	74.62	-14.53	60.09	74	-13.91	Н	PK
4924	59.87	-14.53	45.34	54	-8.66	Н	AV
7386	62.88	-8.13	54.75	74	-19.25	Н	PK
7386	45.38	-8.13	37.25	54	-16.75	Н	AV
4924	77.93	-14.53	63.4	74	-10.6	V	PK
4924	58.66	-14.53	44.13	54	-9.87	V	AV
7386	63.95	-8.13	55.82	74	-18.18	V	PK
7386	50.85	-8.13	42.72	54	-11.28	V	AV

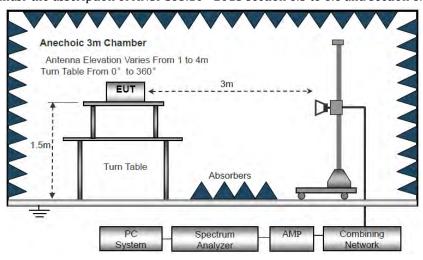
Note 1: this EUT was tested in 3 orthogonal positions and the worst case position data was reported.

Note 2: Testing is carried out with frequency rang 9kHz to the tenth harmonics. The measurements greater than 20dB below the limit from 9kHz to 30MHz.

Note 3: Other emissions are attenuated 20dB below the limits from 9kHz to 30MHz, so it does not recorded report, 18GHz-26GHz not recorded for no spurious point have a margin of less than 6 dB with respect to the limits.

FCC Test Report Page 21 of 50

6. Band-edge Emissions (Radiated)


6.1 Standard and Limit

According to §15.247(d), In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in § 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in § 15.205(a), must also comply with the radiated emission limits specified in § 15.209(a) (see § 15.205(c)).

Report No: SSP24120233-2E

6.2 Test Procedure

Test is conducting under the description of ANSI C63.10 - 2013 section 6.3 to 6.6 and section 6.10.

Test Setup Block Diagram

As the radiated emissions testing, set the Lowest and Highest Transmitting Channel, observed the outside band of 2310MHz to 2400MHz and 2483.5MHz to 2500MHz, than mark the higher-level emission for comparing with the FCC rules.

6.3 Test Data and Results

All of the 802.11b, 802.11g and 802.11n modes have been tested, the EUT complied with the FCC Part 15.247 standard limit, and with the worst case 802.11b as below:

FCC Test Report Page 22 of 50

Test Mode	Frequency	Limit	Result	
rest Mode	MHz	dBuV/dBc	nesuit	
Lovvoot	2310.00	<54 dBuV	Pass	
Lowest	2390.00	<54 dBuV	Pass	
Highogt	2483.50	<54 dBuV	Pass	
Highest	2500.00	<54 dBuV	Pass	

Radiated Em	ission Test Dat	ta (Band edge e	emissions)								
Frequency	Reading	Correct	Result	Limit	Margin	Polar	Detector				
MHz	dBuV/m	dB/m	dBuV/m	dBuV/m	dB	H/V	PK/AV				
	Lowest Channel (802.11b_2412MHz)										
2310	69.5	-21.34	48.16	74	-25.84	Н	PK				
2310	49.94	-21.34	28.6	54	-25.4	Н	AV				
2390	65.71	-20.96	44.75	74	-29.25	Н	PK				
2390	51.9	-20.96	30.94	54	-23.06	Н	AV				
2400	73.17	-20.91	52.26	74	-21.74	Н	PK				
2400	52.05	-20.91	31.14	54	-22.86	Н	AV				
2310	64.39	-21.34	43.05	74	-30.95	V	PK				
2310	49.89	-21.34	28.55	54	-25.45	V	AV				
2390	66.83	-20.96	45.87	74	-28.13	V	PK				
2390	50.59	-20.96	29.63	54	-24.37	V	AV				
2400	72.93	-20.91	52.02	74	-21.98	V	PK				
2400	53.87	-20.91	32.96	54	-21.04	V	AV				
		High	est Channel (8	302.11b_24621	MHz)						
2483.50	69.12	-20.51	48.61	74	-25.39	Н	PK				
2483.50	54.76	-20.51	34.25	54	-19.75	Н	AV				
2500	67.2	-20.43	46.77	74	-27.23	Н	PK				
2500	50.14	-20.43	29.71	54	-24.29	Н	AV				
2483.50	71.38	-20.51	50.87	74	-23.13	V	PK				
2483.50	53.59	-20.51	33.08	54	-20.92	V	AV				
2500	69.99	-20.43	49.56	74	-24.44	V	PK				
2500	50.43	-20.43	30	54	-24	V	AV				

Remark: Level = Reading + Factor, Margin = Level - Limit

FCC Test Report Page 23 of 50

7. Maximum Conducted Output Power

7.1 Standard and Limit

According to 15.247(b)(3). For systems using digital modulation in the 902–928 MHz, 2400–2483.5 MHz, and 5725–5850 MHz bands: 1 Watt. As an alternative to a peak power measurement, compliance with the one Watt limit can be based on a measurement of the maximum conducted output power. Maximum Conducted Output Power is defined as the total transmit power delivered to all antennas and antenna elements averaged across all symbols in the signaling alphabet when the transmitter is operating at its maximum power control level. Power must be summed across all antennas and antenna elements. The average must not include any time intervals during which the transmitter is off or is transmitting at a reduced power level. If multiple modes of operation are possible (e.g., alternative modulation methods), the *maximum conducted output power* is the highest total transmit power occurring in any mode.

Report No: SSP24120233-2E

7.2 Test Procedure

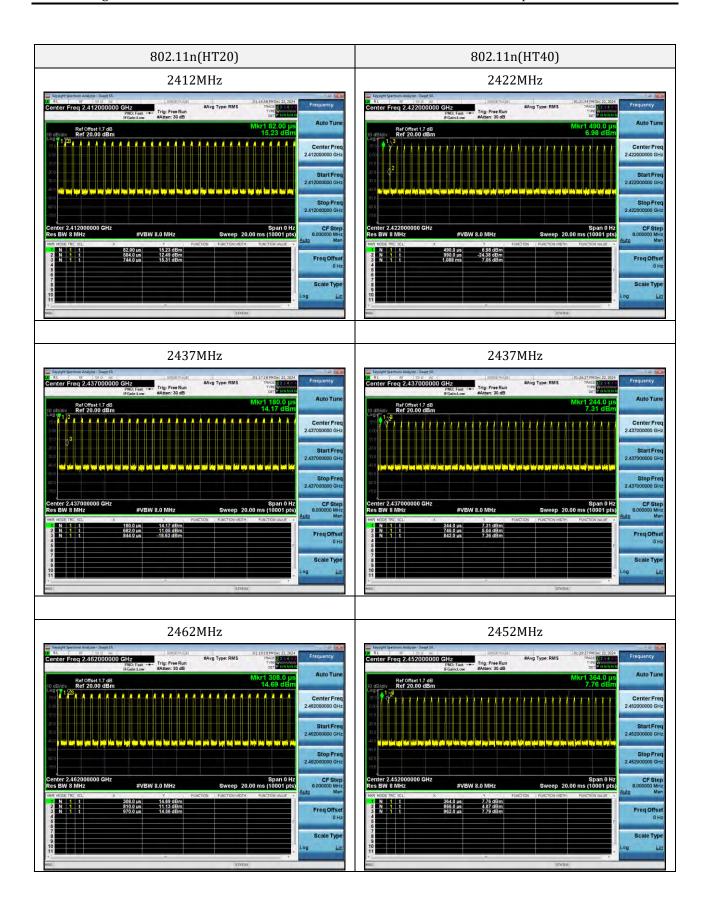
A spectrum analyzer or similar device shall be used to observe a sample of the modulated transmitter's radio frequency power output.

- 1) A measurement instrument with an integrated channel bandwidth function may be used to automate the test process.
- 2) Set center of frequency = operating frequency.
- 3) Connect the EUT to the RF input of the spectrum analyzer via a low loss RF cable
- 4) Set the RBW = 1MHz, VBW = 3MHz, Detector = RMS, Sweep = Auto.
- 5) Set the SPAN to 40MHz/80MHz for 20MHz/40MHz emission bandwidth mode.
- 6) Measure the highest amplitude appearing on spectral display and mark the value.
- 7) Repeat the above procedures until all frequency measured was complete.

Test Setup Block Diagram

7.3 Test Data and Results

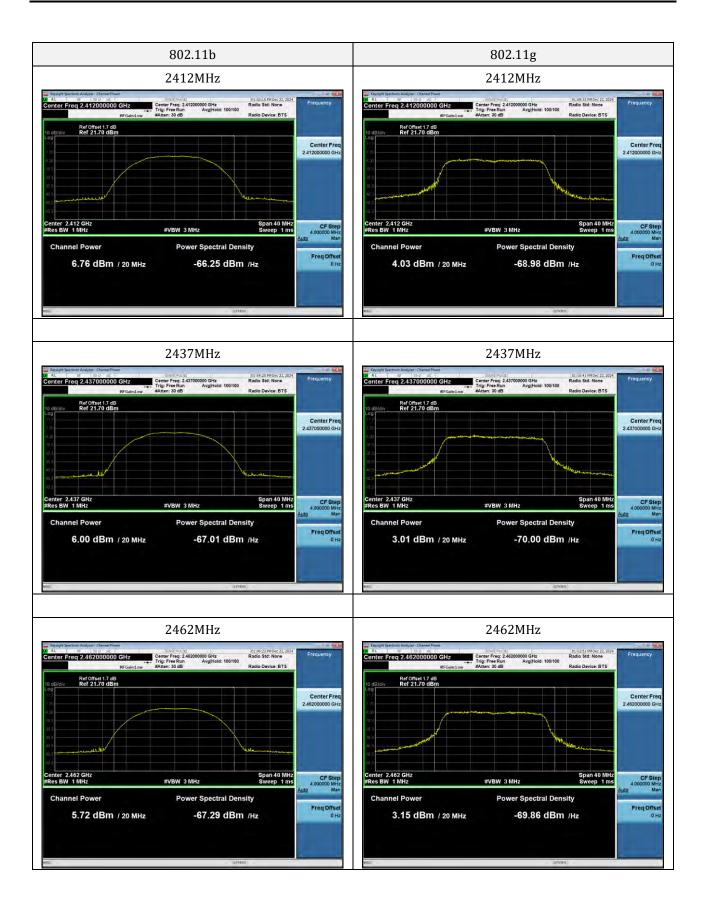
FCC Test Report Page 24 of 50


Duty Cycle

Test Mode	Test Channel MHz	Duty Cycle (%)	Correction Factor (dBm)	1/T (kHz)
	2412	64.89	1.88	1.07
802.11b	2437	64.89	1.88	1.07
	2462	64.89	1.88	1.07
	2412	25.82	5.88	5.68
802.11g	2437	25.82	5.88	5.62
	2462	25.82	5.88	2.79
	2412	24.17	6.17	6.1
802.11n(HT20)	2437	24.4	6.13	6.02
	2462	24.17	6.17	6.02
	2422	16.39	7.85	4.85
802.11n(HT40)	2437	16.05	7.95	10
	2452	16.05	7.95	10

FCC Test Report Page 25 of 50

FCC Test Report Page 26 of 50



FCC Test Report Page 27 of 50

Test Mode	Test Channel (MHz)	Conducted Power (dBm)	Duty Factor (dB)	Total Power (dBm)	Limit (dBm)	Test Result
	2412	6.76	1.88	8.64	30	Pass
802.11b	2437	6	1.88	7.88	30	Pass
	2462	5.72	1.88	7.6	30	Pass
	2412	4.03	5.88	9.91	30	Pass
802.11g	2437	3.01	5.88	8.89	30	Pass
	2462	3.15	5.88	9.03	30	Pass
	2412	4.16	6.17	10.33	30	Pass
802.11n(HT20)	2437	2.9	6.13	9.03	30	Pass
	2462	3.13	6.17	9.3	30	Pass
	2422	1.77	7.85	9.62	30	Pass
802.11n(HT40)	2437	1.76	7.95	9.71	30	Pass
	2452	1.56	7.95	9.51	30	Pass

Note: Total Power = Conducted Power + Duty Factor

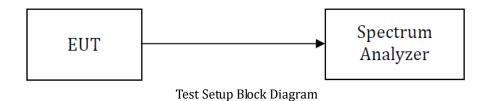
FCC Test Report Page 28 of 50

FCC Test Report Page 29 of 50

FCC Test Report Page 30 of 50

8. Occupied Bandwidth

8.1 Standard and Limit


According to 15.247(a)(2), Systems using digital modulation techniques may operate in the 902–928 MHz, 2400–2483.5 MHz, and 5725–5850 MHz bands. The minimum 6 dB bandwidth shall be at least 500 kHz.

Report No: SSP24120233-2E

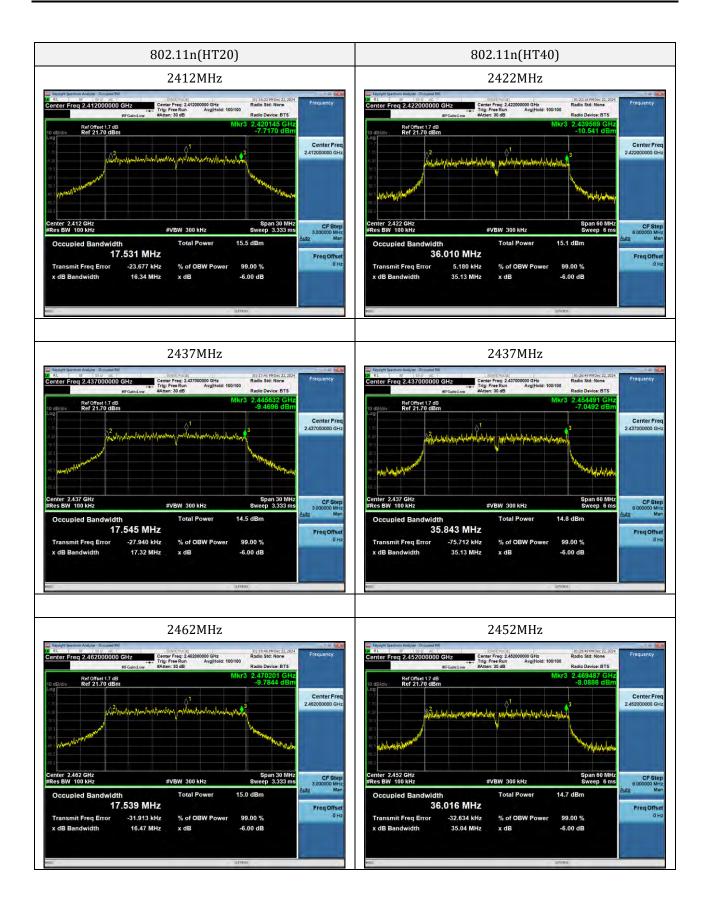
8.2 Test Procedure

According to the ANSI 63.10-2013, section 6.9, the emission bandwidth test method as follows.

- 1) Remove the antenna from the EUT and connect to the spectrum analyzer via a low loss RF cable.
- 2) Set the spectrum analyzer to any one measured frequency within its operating range.
- 3) Set RBW = 100kHz, VBW = 300kHz, Sweep = Auto.
- 4) Set a reference level on the measuring instrument equal to the highest peak value.
- 5) Measure the frequency difference of two frequencies that were attenuated 6dB from the reference level. Record the frequency difference as the emission bandwidth.
- 6) Repeat the above procedures until all frequencies measured were complete.

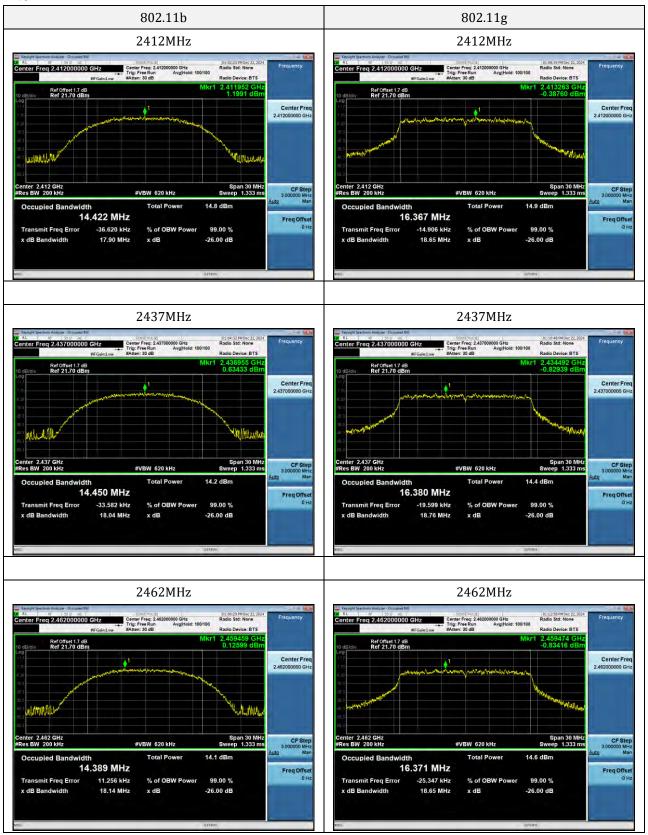
8.3 Test Data and Results

FCC Test Report Page 31 of 50

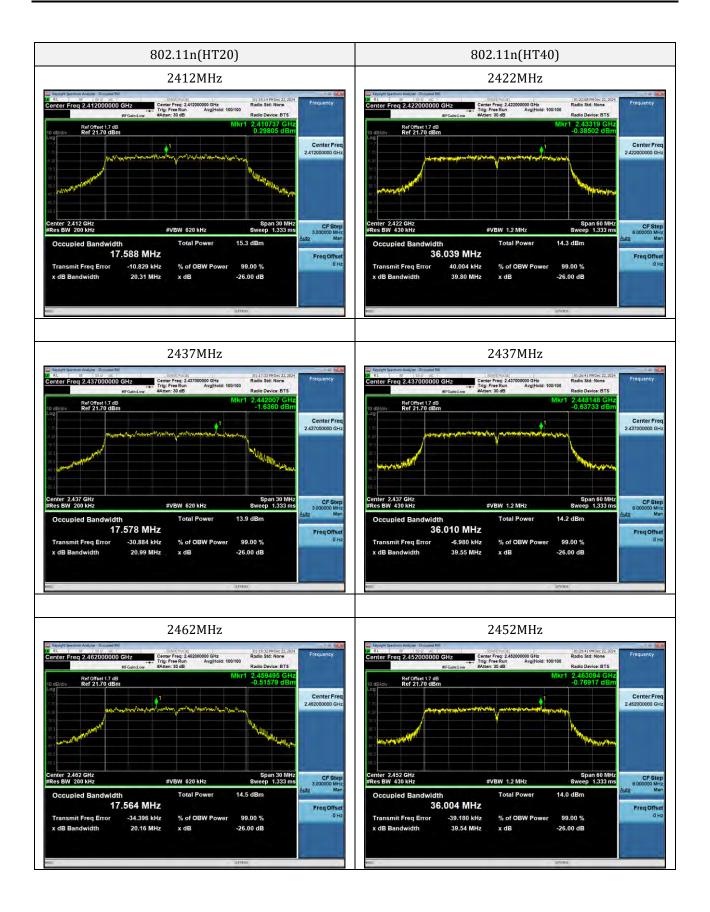

Test Mode	Test Channel (MHz)	6dB Bandwidth (MHz)	99% Bandwidth (MHz)	6dB BW Limit (MHz)	Test Result
	2412	10.481	14.422	0.5	Pass
802.11b	2437	10.739	14.45	0.5	Pass
	2462	10.358	14.389	0.5	Pass
	2412	15.573	16.367	0.5	Pass
802.11g	2437	15.576	16.38	0.5	Pass
	2462	15.292	16.371	0.5	Pass
	2412	16.337	17.588	0.5	Pass
802.11n(HT20)	2437	17.321	17.578	0.5	Pass
	2462	16.466	17.564	0.5	Pass
	2422	35.127	36.039	0.5	Pass
802.11n(HT40)	2437	35.134	36.01	0.5	Pass
	2452	35.039	36.004	0.5	Pass

FCC Test Report Page 32 of 50

6dB Bandwidth:



FCC Test Report Page 33 of 50



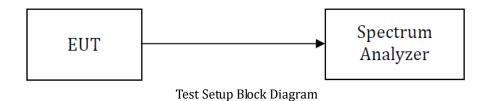
FCC Test Report Page 34 of 50

99% Bandwidth:

FCC Test Report Page 35 of 50

FCC Test Report Page 36 of 50

9. Maximum Power Spectral Density

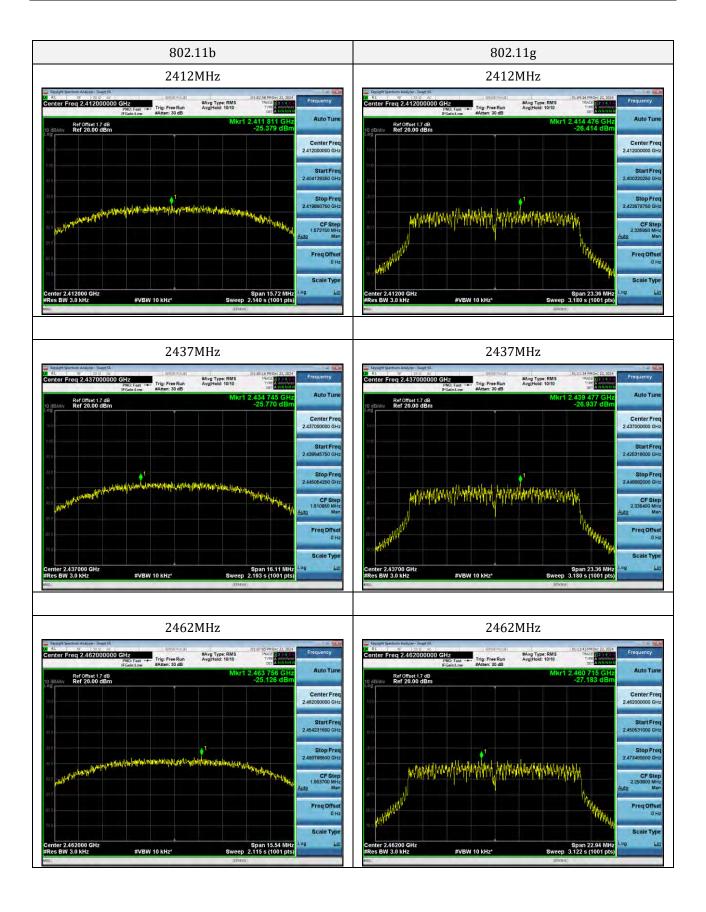

9.1 Standard and Limit

According to FCC 15.247(e), For digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8dBm in any 3 kHz band during any time interval of continuous transmission. This power spectral density shall be determined in accordance with the provisions of paragraph (b) of this section. The same method of determining the conducted output power shall be used to determine the power spectral density.

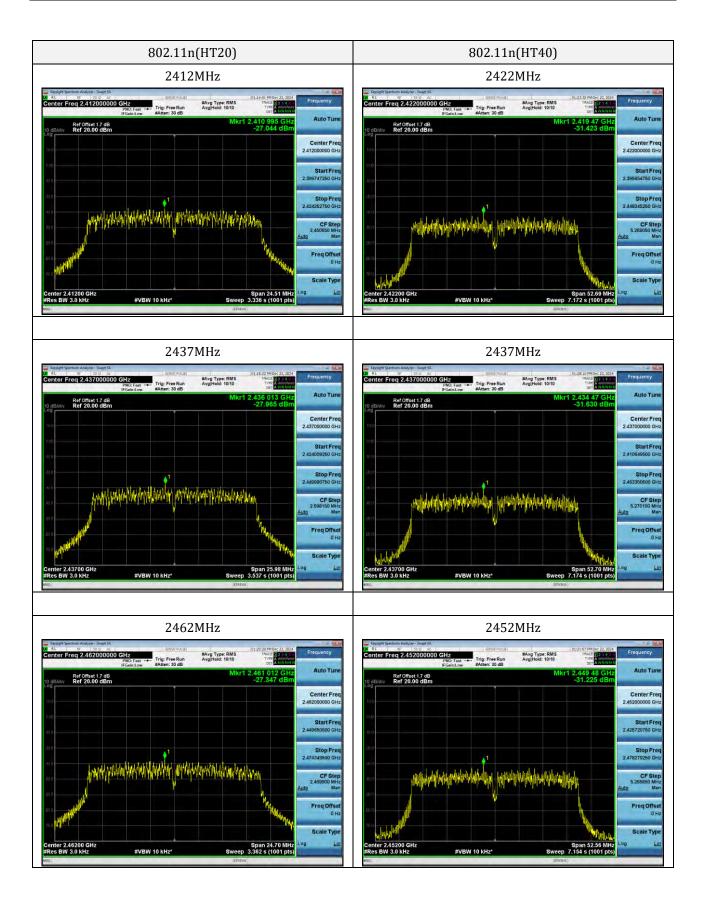
Report No: SSP24120233-2E

9.2 Test Procedure

- 1) Remove the antenna from the EUT and connect to the spectrum analyzer via a low loss RF cable.
- 2) Set the spectrum analyzer to any one measured frequency within its operating range.
- 3) Set RBW = 3kHz, VBW = 10kHz, Sweep = Auto, Detector = RMS.
- 4) Measure the highest amplitude appearing on spectral display and mark the value.
- 5) Repeat above procedures until all frequencies measured were complete.


9.3 Test Data and Results

FCC Test Report Page 37 of 50


Test Mode	Test Channel (MHz)	Conducted PSD (dBm/3kHz)	Duty Factor (dB)	Total PSD (dBm/3kHz)	Limit (dBm/3kHz)	Test Result
802.11b	2412	-25.38	1.88	-23.5	8	Pass
	2437	-25.77	1.88	-23.89	8	Pass
	2462	-25.13	1.88	-23.25	8	Pass
802.11g	2412	-26.41	5.88	-20.53	8	Pass
	2437	-26.94	5.88	-21.06	8	Pass
	2462	-27.18	5.88	-21.3	8	Pass
802.11n(HT20)	2412	-27.04	6.17	-20.87	8	Pass
	2437	-27.97	6.13	-21.84	8	Pass
	2462	-27.35	6.17	-21.18	8	Pass
802.11n(HT40)	2422	-31.42	7.85	-23.57	8	Pass
	2437	-31.63	7.95	-23.68	8	Pass
	2452	-31.23	7.95	-23.28	8	Pass

Note: Total PSD = Conducted PSD + Duty Factor

FCC Test Report Page 38 of 50

FCC Test Report Page 39 of 50

FCC Test Report Page 40 of 50

10. Band-edge Emission(Conducted)

10.1 Standard and Limit

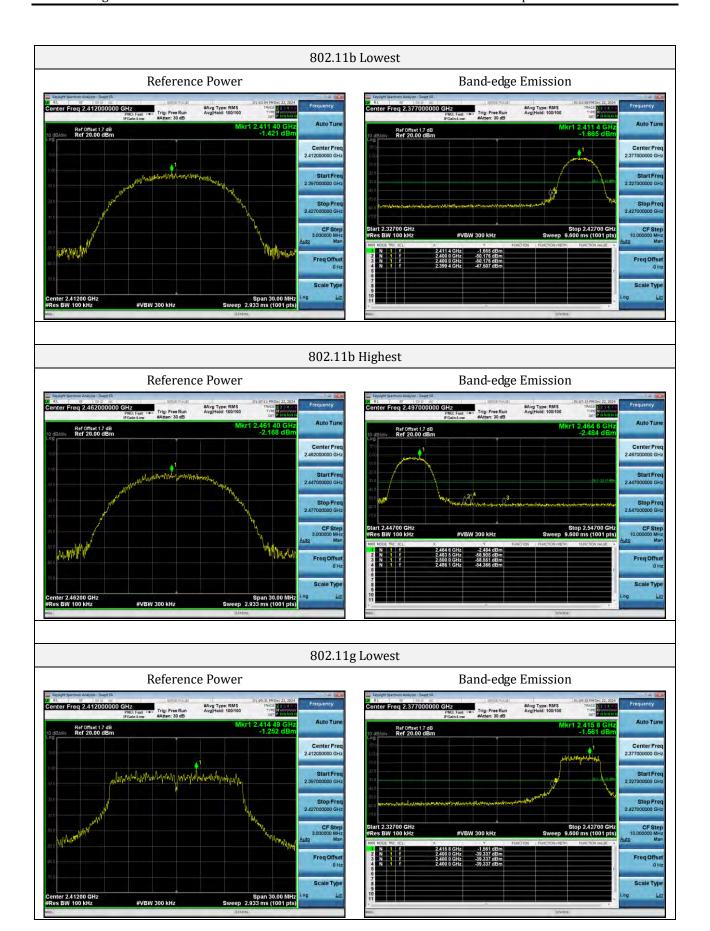
According to §15.247(d), In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in § 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in § 15.205(a), must also comply with the radiated emission limits specified in § 15.209(a) (see § 15.205(c)).

Report No: SSP24120233-2E

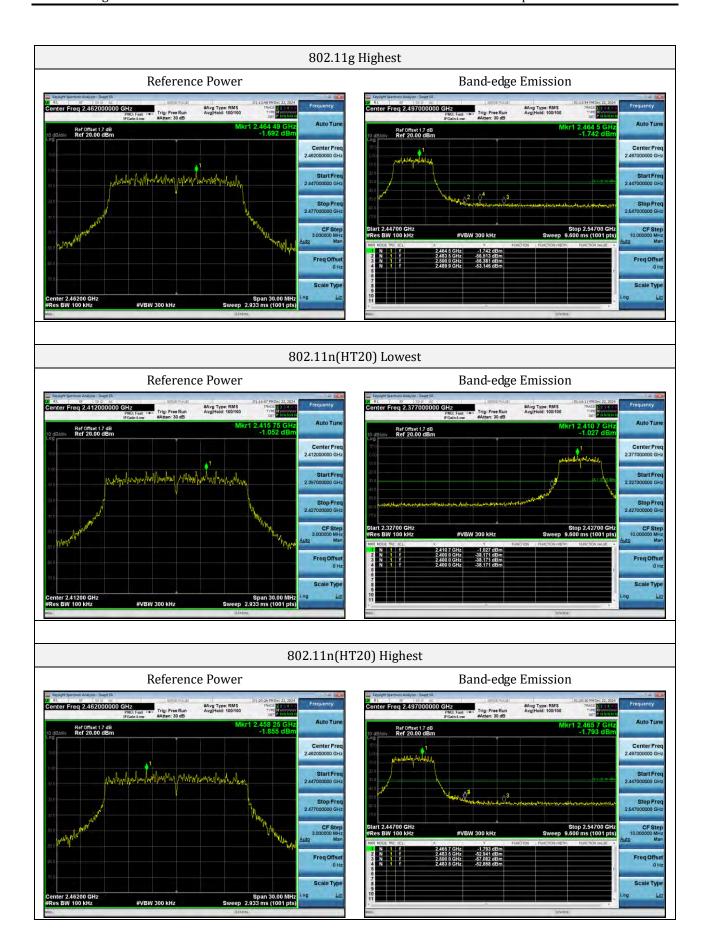
10.2 Test Procedure

Test is conducting under the description of ANSI C63.10 - 2013 section 6.10.

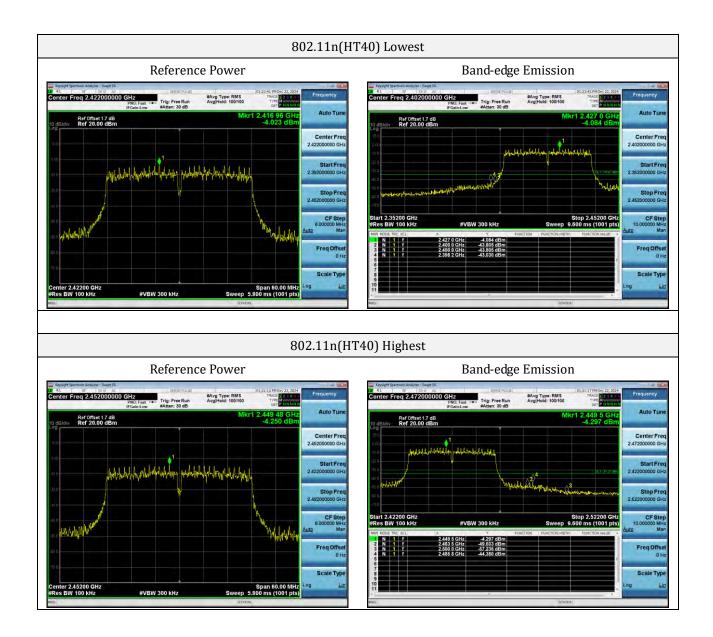
- 1) Remove the antenna from the EUT and connect to the spectrum analyzer via a low loss RF cable.
- 2) Set the spectrum analyzer to any one measured frequency within its operating range.
- 3) Set RBW = 100kHz, VBW = 300kHz, Sweep = Auto, Detector = Peak.
- 4) Measure the highest amplitude appearing on spectral display and set it as a reference level.
- 5) Set a convenient frequency span including 100 kHz bandwidth from band edge.
- 6) Measure the emission and marking the edge frequency.
- 7) Repeat above procedures until all frequencies measured were complete.



10.3 Test Data and Results


FCC Test Report Page 41 of 50

Test Mode	Band-edge	Test Channel (MHz)	Max. Value (dBc)	Limit (dBc)	Test Result
802.11b	Lowest	2412	-46.08	-30	Pass
	Highest	2462	-52.19	-30	Pass
802.11g	Lowest	2412	-38.08	-30	Pass
	Highest	2462	-51.45	-30	Pass
802.11n(HT20)	Lowest	2412	-37.12	-30	Pass
	Highest	2462	-51.01	-30	Pass
802.11n(HT40)	Lowest	2422	-39.01	-30	Pass
	Highest	2452	-40.12	-30	Pass


FCC Test Report Page 42 of 50

FCC Test Report Page 43 of 50

FCC Test Report Page 44 of 50

FCC Test Report Page 45 of 50

11. Conducted RF Spurious Emissions

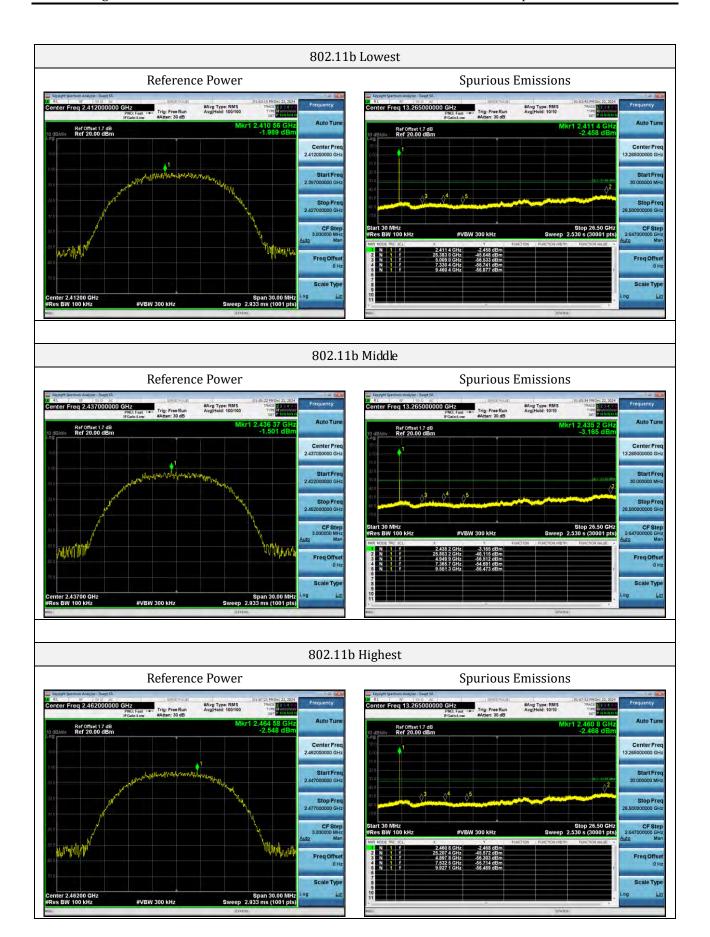
11.1 Standard and Limit

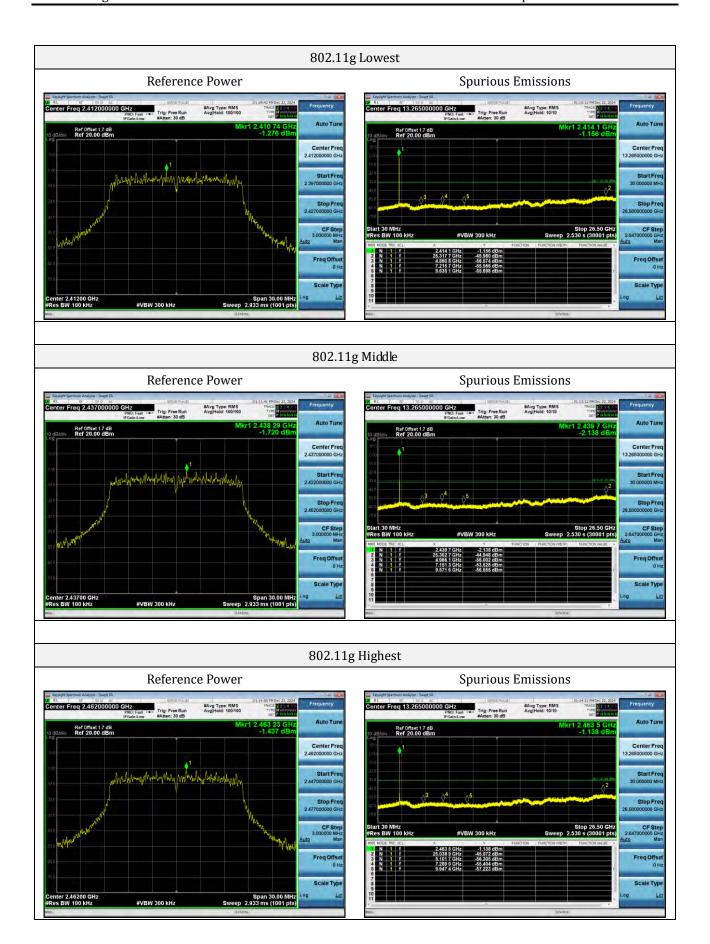
According to §15.247(d), In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in § 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in § 15.205(a), must also comply with the radiated emission limits specified in § 15.209(a) (see § 15.205(c)).

Report No: SSP24120233-2E

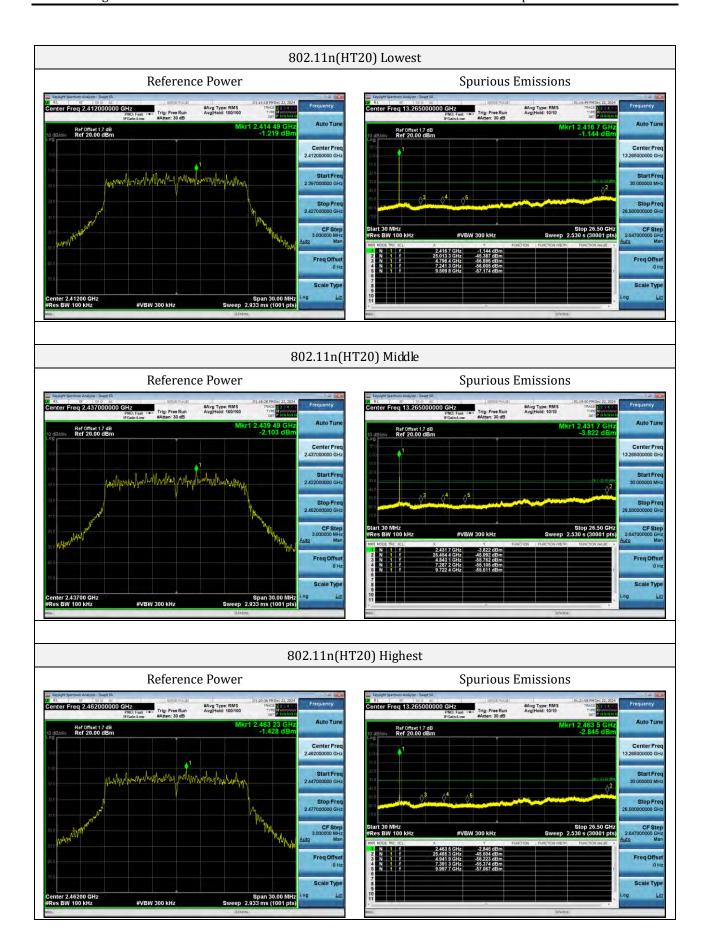
11.2 Test Procedure

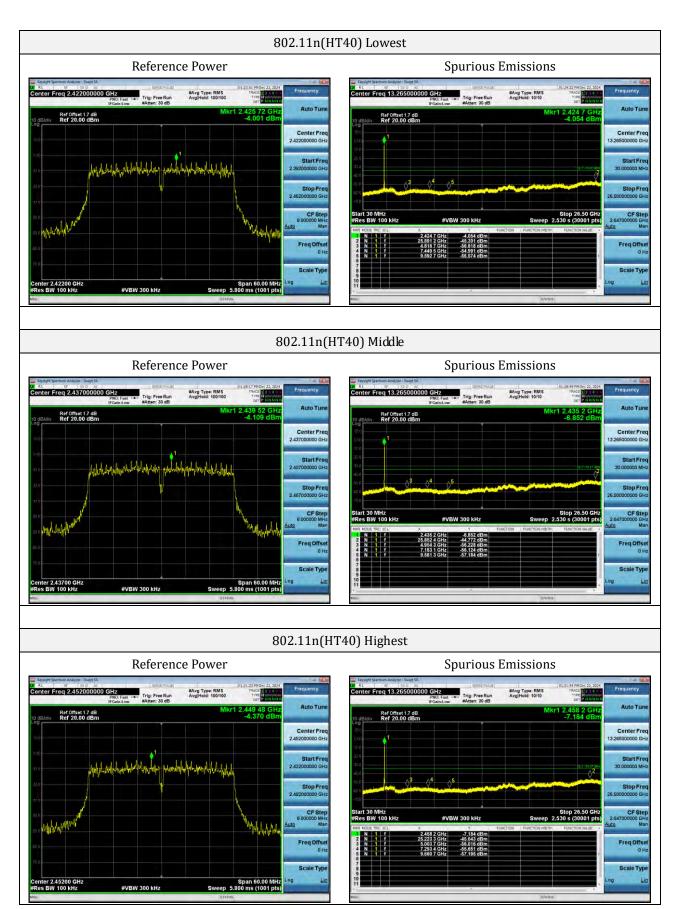
Test is conducting under the description of ANSI C63.10 - 2013 section 6.7.


- 1) Remove the antenna from the EUT and connect to the spectrum analyzer via a low loss RF cable.
- 2) Set the spectrum analyzer to any one measured frequency within its operating range.
- 3) Set RBW = 100kHz, VBW = 300kHz, Sweep = Auto, Detector = Peak.
- 4) Measure the highest amplitude appearing on spectral display and set it as a reference level.
- 5) Measure the spurious emissions with frequency range from 9kHz to 26.5GHz.
- 6) Repeat above procedures until all measured frequencies were complete.


11.3 Test Data and Results

Note: The measurement frequency range is from 9kHz to the 10th harmonic of the fundamental frequency. The lowest, middle and highest channels are tested to verify the spurious emissions measurement data.


FCC Test Report Page 46 of 50


FCC Test Report Page 47 of 50

FCC Test Report Page 48 of 50

FCC Test Report Page 49 of 50

***** END OF REPORT *****

FCC Test Report Page 50 of 50