

Low Band-edge

Lowest Channel & Modulation : GFSK

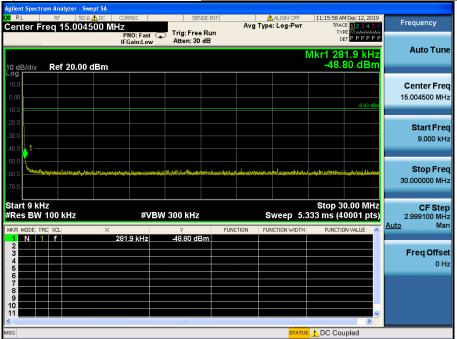
Low Band-edge

Hopping mode & Modulation : GFSK

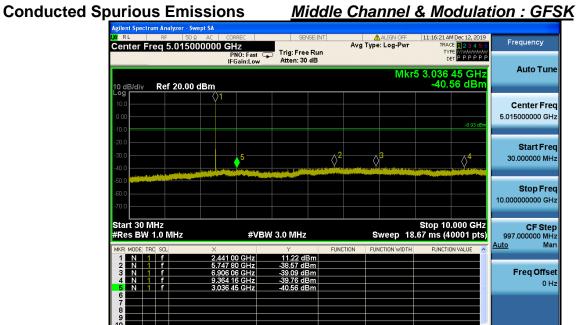
Lowest Channel & Modulation : GFSK

Agilent Spectr				_				_							
Center Fi	_{RF}	∣50 Ω .01500		COR			ENSE:IN		Avg		ALIGN OFF	TRA	M Dec 12, 2019 CE <mark>1 2 3 4 5</mark>	6	Frequency
				PI	10: Fast Sain:Low	Trig: Fre		ı				TY D	PE MWWWWW ET P P P P P	₩ P	
											Mkr	5 2.655	85 GH2		Auto Tune
10 dB/div	Ref	20.00 d	Bm										38 dBrr		
Log 10.0			$ \rangle$	1											Center Freq
0.00															5.015000000 GHz
-10.0													-10.01 dBr		
-20.0															Start Freq
-30.0				5-	4				2 ~3						30.000000 MHz
-40.0			Alteriate (and a strategy of the		. a repare		L <u>Y</u>	*****	المقسمة ورواسطوا ومراد	a territe di iniziation de	A STATE OF STATE OF STATE		
-50.0						State of the local division of the local div				1.000	and the little states of the second states of the second states of the second states of the second states of the				Oton From
-60.0															Stop Freq 10.00000000 GHz
-70.0			_												10.000000000 GHz
Start 30 M	/Hz											Stop 10	.000 GHz		CF Step
#Res BW		IHz			#VE	3W 3.0 MH	z			S	weep 18	.67 ms (4	0001 pts)	997.000000 MHz
MKR MODE TH			X			Y		FUNC	TION	FUN	CTION WIDTH	FUNCTI	DN VALUE	Ī	<u>Auto</u> Man
1 N 1 2 N 1	f		5.	867 1	1 GHz 9 GHz	<u>10.40 c</u> -38.19 c	Bm								
3 N 1 4 N 1	f		<u>6.</u> 3.	315 59 177 78	9 GHz 8 GHz	-38.92 c -39.05 c	IBm IBm								Freq Offset 0 Hz
5 N 1	f				5 GHz	-39.38 c									0 Hz
7															
8 9															
10															
<													>		
MSG											STATUS				

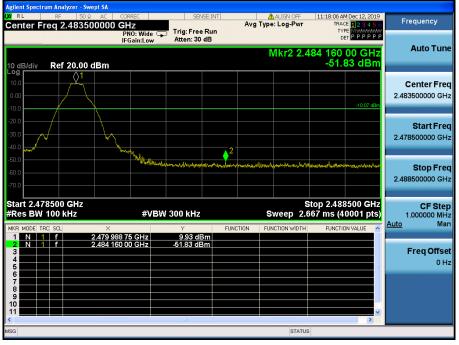
Lowest Channel & Modulation : GFSK



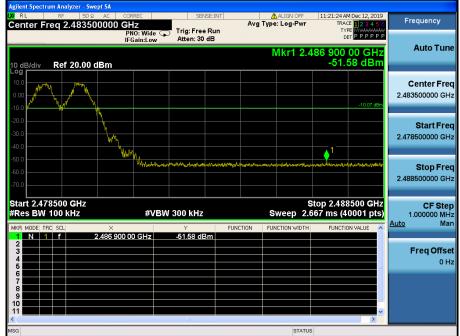
Reference for limit



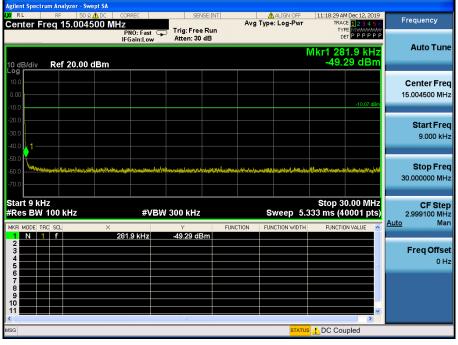
Conducted Spurious Emissions <u>Middle Channel & Modulation : GFSK</u>



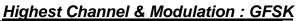
Agilent Spectrum Analyzer - Swept SA					
X RL RF 50 Ω AC CORR Center Freq 17.500000000 GH	7	Avg Type	ALIGN OFF	11:16:44 AM Dec 12, 2019 TRACE 12 3 4 5 6	Frequency
PNO	: Fast Trig: Free Ru in:Low Atten: 30 dB			TYPE MUMUMUM DET P P P P P	
			Mkr3 2	3.594 125 GHz	Auto Tune
10 dB/div Ref 20.00 dBm				-25.65 dBm	
10.0					Center Freq
0.00					17.500000000 GHz
-10.0				-8.93 dBm	
-20.0			\\ <mark>2</mark>	}³∕	Start Freq
-30.0	and the second	and the second state of th			10.00000000 GHz
-40.0					
-50.0					Stop Freq
-60.0					25.000000000 GHz
Start 10.000 GHz #Res BW 1.0 MHz	#VBW 3.0 MHz	8	ween 10	Stop 25.000 GHz 00 ms (40001 pts)	CF Step
MKR MODELTRC SCLI X	#ellee 5.0 terriz			FUNCTION VALUE	Auto Man
1 N 1 f 24.837 625	GHz -24.43 dBm		CTION WIDTH	FONCTION VALUE	
2 N 1 f 21.482 125 3 N 1 f 23.594 125	GHz -25.43 dBm GHz -25.65 dBm				Freq Offset
4				=	0 Hz
6					
8					
10					
<pre>11</pre>				> *	
MSG			STATUS		


High Band-edge

Highest Channel & Modulation : GFSK

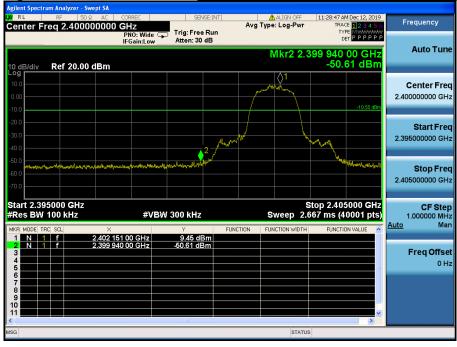

High Band-edge

Hopping mode & Modulation : GFSK



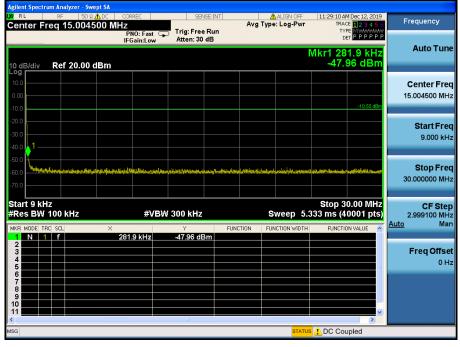
Highest Channel & Modulation : GFSK

Agilent Spectr																
Center F	RF req				REC			ISE:INT		Avg T		ALIGN OFF Log-Pwr	TRA	M Dec 12, 2019 CE <mark>1 2 3 4 5 (</mark>		Frequency
				PI	NO: Fast Sain:Low		ig: Free ten: 30					Mkr	5 9.261			Auto Tune
10 dB/div Log	Re	f 20.00 (-39.	70 dBm		
10.0 0.00				}1										-10.07 dBm		Center Freq 5.015000000 GHz
-20.0 -30.0 -40.0								12 (28) (4013) - 1112	⊘ ²		}	↓	e ja Shineberg (j. 1. Metury)	5		Start Freq 30.000000 MHz
-50.0													nan Kinifi ya mashi ka k		1	Stop Freq 0.000000000 GHz
Start 30 N #Res BW		MHz			#VE	SW 3.0	MHz				S١	veep 18		0.000 GHz 0001 pts)		CF Step 997.000000 MHz ito Man
MKR MODE TF	RC SCL		× 2		3 GHz		∀ 0.28 dE		FUNC	TION	FUN	CTION WIDTH	FUNCTI	ON VALUE	AL	<u>ito</u> Man
2 N 1 3 N 1 4 N 1 5 N 1 6	f f f		5. 6. 7.	764 2 474 3 705 6	5 GHz 6 GHz 5 GHz 2 GHz	-38 -38 -39	3.91 dE 3.91 dE 3.34 dE 3.70 dE	Sm Sm Sm								Freq Offset 0 Hz
7 8 9 10																
< MSG												STATUS		>		
					_		_	_	_	_	_	011103				



Low Band-edge

Lowest Channel & Modulation : π/4DQPSK

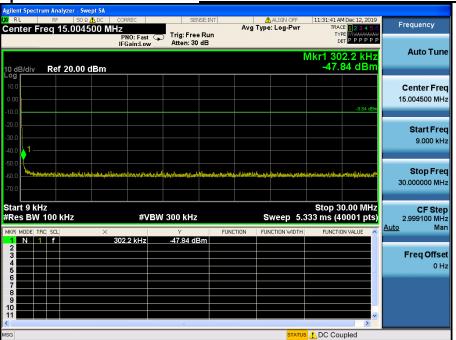

Low Band-edge

Hopping mode & Modulation : π/4DQPSK

Lowest Channel & Modulation : π/4DQPSK

Agilent S	Spec	trum		lyzer -	Swep	ot SA																						
LXI RL			RF		0Ω			DRRE	C				SENS	SE:INT	-	Δυ			ign of og-Pv		11:2			c 12, 20 <mark>2 3</mark> 4			Freque	ncy
Cente	er	-re	qs	.015	000	500	1	PNO:	: Fast			rig: F				~*	9 ' 9 P	.e. L.	vg-1 v	*1		Th	PE	PPP				_
		_					IF	Gai	n:Low	_	Α	tten:	30 (dB									_		_		A	Tune
																			Μ	krŧ				G			Auto	Jiune
10 dB/	div		Ref	20.0	0 d											_						-39.	50	dB	m			
						_ <	⟩1																				Cont	
																												er Freq
0.00																								-10.55 c			5.0150000	00 GHz
-10.0								╈					+					+					+	-10.55 c	191M			
-20.0 —																											Sta	rt Freq
-30.0						_					-			⊨ _5	-12		3										30.0000	
-40.0							and the second		ather party				Д	Item teres	<u> </u>	. per				TT-LINE TO	. بعدار م	. t. antralli	la selate	المستعد الطا			00.0000	
-50.0	u brau		- 10 jan - 10	Andreas and a		-	1	au init			dina di		outro I	a de la compañía de l	-						o tallen a			ann an baile air				
-60.0																											Sto	p Freq
																											10.0000000	00 GHz
-70.0 —																												
Start	30	MI	7													1					Sto	p 10	0.00	0 GI	47		C	F Step
#Res				Ήz					#VI	BW	3.0	0 Mł	z				ş	Swe	ep	18.	67 n	is (4	00	01 pi	ts)		997.0000	
MKB MC		TBC	SCI			×	(Y			ELIN	CTION	FI	INCTI	DN WID	TH	F	UNCTI	ON V	ALLIE.	~	A	uto	Man
1	V	1	f				.402					10.96													Ĭ			
2	4	1	f				.783					38.88 39.07					_										Freq	Offset
4	i I	1	f			4	.918	04 (GHz		-3	39.39	dB	m														0 Hz
5 N	4	1	f			5	.285	69 (GHz		-3	39.50	dB	m			_								=			0112
7																												
8																												
10																									۲			
11							_																	>	~			
MSG	-	_	-		_	_	_	-		-	_		_	_		_	_	_	ST/	ATUS		_	_		9	-		
														_					51/	103								

Lowest Channel & Modulation : π/4DQPSK



Reference for limit

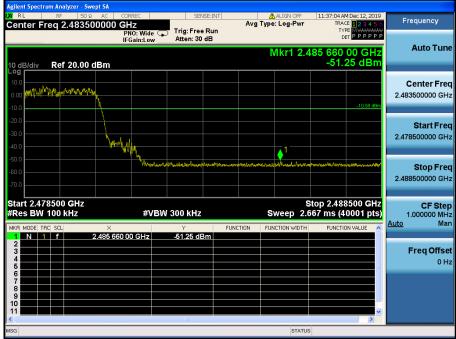
Middle Channel & Modulation : π/4DQPSK



Conducted Spurious Emissions <u>Middle Channel & Modulation : π/4DQPSK</u>

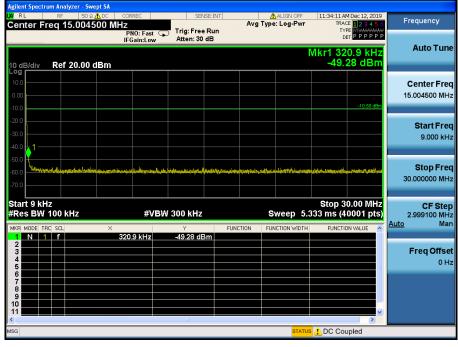
Middle Channel & Modulation : π/4DQPSK

Agilent Spectr										
		50 Ω AC COR 000000000 G			BE:INT		ALIGN OFF	TRAC	M Dec 12, 2019 26 1 2 3 4 5 6 PE M WWWWWW T P P P P P P P	Frequency
			io: Fast G Gain:Low	Atten: 30						Auto Tune
10 dB/div	Ref 20.0	00 dBm					Mkr3 2		25 GHz 33 dBm	Auto Tune
10.0 0.00									-9.84 dBm	Center Freq 17.50000000 GHz
-20.0 -30.0 -40.0			estre a childre de			and a second			³ 2_}	Start Freq 10.000000000 GHz
-50.0 -60.0 -70.0										Stop Freq 25.00000000 GHz
Start 10.0 #Res BW			#VBV	V 3.0 MHz			Sweep 40	Stop 25 .00 ms (4	.000 GHz 0001 pts)	CF Step 1.50000000 GHz
MKR MODE TH	RC SCL	× 24.826 37	5 GHz	۲ -24.10 dB		CTION F	JNCTION WIDTH	FUNCTIO	IN VALUE	<u>Auto</u> Man
2 N 1 3 N 1 4	f	24.133 379 23.348 129	5 GHz	-26.23 dB -26.33 dB	m				=	Freq Offset 0 Hz
6 7 8 9 10										
11 <u> </u>				m					>	
MSG							STATUS	5		


High Band-edge

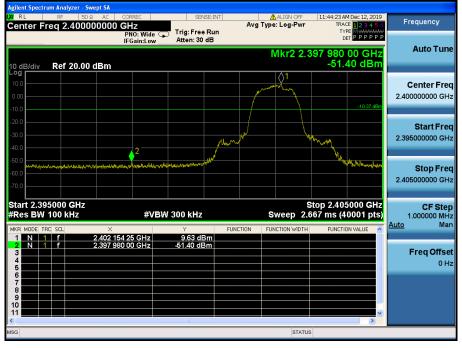
Highest Channel & Modulation : π/4DQPSK

High Band-edge


Hopping mode & Modulation : π/4DQPSK

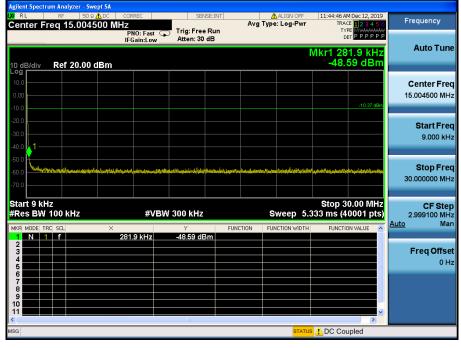
Highest Channel & Modulation : π/4DQPSK

Agilent Spectr															
Center Fr	RF	50 Ω 015000		CORREC		SEI	VSE:INT		Avg T	ALIGN			M Dec 12, 2014		Frequency
Genter II	oq o.	01000			ast 🖵	Trig: Free Atten: 30			• •			TY	PE MWWWWW	Ał -	
				IFGain:	Low	Atten: 50					Milani	5 4 050	67 CH		Auto Tune
10 dB/div	Ref 2	20.00 d									WIKI	5 4.958 -39.	59 dBn		
Log 10.0			()1												Center Freq
0.00															5.015000000 GHz
-10.0													-10.58 dBr		
-20.0															
-30.0							5	<u>^2</u>				- 4			Start Freq 30.000000 MHz
-40.0			1	in the second second second		a handar biri		<u> </u>	and the second second second			<u> </u>			30.000000 MHz
-50.0 mft mitte									and the Party of the second						
-60.0															Stop Freq
-70.0															10.00000000 GHz
Start 30 N #Res BW		Hz			#VBW	3.0 MHz				Sweep	o 18.	Stop 10 .67 ms (4	.000 GHz 0001 pts	2	CF Step 997.000000 MHz
MKR MODE TH	C SCL		×			Y		FUNC	TION	FUNCTION	WIDTH	FUNCTIO	ON VALUE		<u>Auto</u> Man
1 N 1 2 N 1	f			0 38 GH 2 46 GH		10.75 dl -38.55 dl									
3 N 1 4 N 1	f		9.73	3 30 GH 2 42 GH	1z	-38.85 dl	3m								Freq Offset
5 N 1	f			8 67 GH		-39.59 di									0 Hz
6 7															
8													_		
10															
<															
MSG										:	STATUS				


Highest Channel & Modulation : π/4DQPSK

Low Band-edge

Lowest Channel & Modulation : 8DPSK

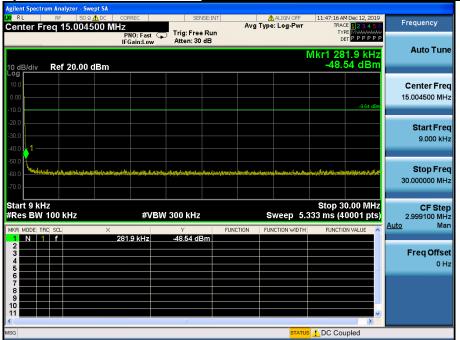

Low Band-edge

Hopping mode & Modulation : 8DPSK

Lowest Channel & Modulation : 8DPSK

Agilent Spectrum Analyzer - Swep					
Center Freq 5.01500		SENSE:INT	ALIGN OFF Avg Type: Log-Pwr	11:45:10 AM Dec 12, 2019 TRACE 123456	Frequency
	PNO: Fast IFGain:Low	Trig: Free Run Atten: 30 dB			
10 dB/div Ref 20.00 dl	Bm		Mkr	5 7.777 19 GHz -39.21 dBm	Auto Tune
Log 10.0 0.00 -10.0				-10.37 dBm	Center Freq 5.015000000 GHz
-20.0 -30.0 -40.0	and the second	4			Start Freq 30.000000 MHz
-50.0 -60.0 -70.0					Stop Freq 10.000000000 GHz
Start 30 MHz #Res BW 1.0 MHz	#VB	W 3.0 MHz	Sweep 18	Stop 10.000 GHz 3.67 ms (40001 pts)	CF Step 997.000000 MHz
MKR MODE TRC SCL	× 2.402 11 GHz	۲ F 11.29 dBm	UNCTION FUNCTION WIDTH	FUNCTION VALUE	<u>Auto</u> Man
2 N 1 f 3 N 1 f 4 N 1 f 5 N 1 f	7.481 33 GHz 7.881 87 GHz 5.342 27 GHz 7.777 19 GHz	-38.61 dBm -38.92 dBm -39.06 dBm -39.21 dBm			Freq Offset 0 Hz
6 7 8 9 10					
				~	
MSG			STATU	5	

Lowest Channel & Modulation : 8DPSK

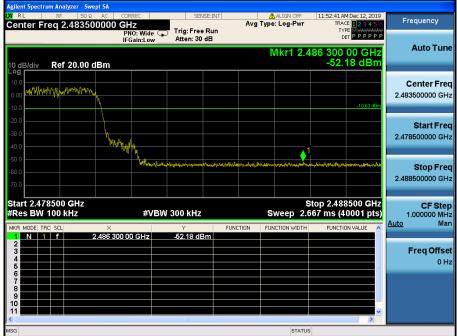


Reference for limit

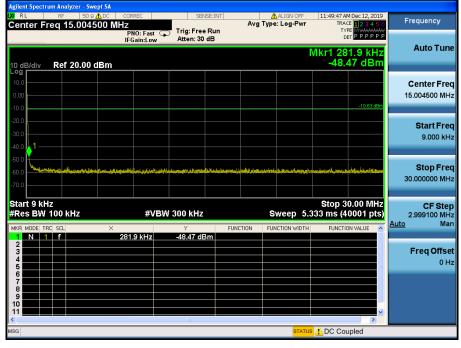
Middle Channel & Modulation : 8DPSK

Conducted Spurious Emissions <u>Middle Channel & Modulation : 8DPSK</u>

Agilent Spectrum Analyzer - Swept SA	CORREC SENS	E:INT ALIGN OFF	11:48:03 AM Dec 12, 2019	_
Center Freq 17.5000000	PNO: Fast Trig: Free	Avg Type: Log-Pw Run		Frequency
	IFGain:Low Atten: 30 o		23.434 000 GHz	Auto Tune
10 dB/div Ref 20.00 dBm			-25.70 dBm	
10.0				Center Freq
-10.0			-9.64 dBm	17.50000000 GHz
-20.0			$3 - \sqrt{2}$	Start Freq
-30.0				10.000000000 GHz
-40.0 Investigation of the state of the stat				
-50.0				Stop Freq
-70.0				25.00000000 GHz
Start 10.000 GHz			Stop 25.000 GHz	CF Step
#Res BW 1.0 MHz	#VBW 3.0 MHz	-	0.00 ms (40001 pts)	1.50000000 GHz Auto Man
	321 125 GHz -25.08 dBi		H FUNCTION VALUE	
	056 875 GHz -25.28 dBi 134 000 GHz -25.70 dBi			Freq Offset
5				0 Hz
7				
9				
<pre>11 </pre>			✓	
MSG		STAT	us	


High Band-edge

Highest Channel & Modulation : 8DPSK


High Band-edge

Hopping mode & Modulation : 8DPSK

Highest Channel & Modulation : 8DPSK

LXI RL	um Analyzer - Sw RF 50 Ω req 5.01500	AC CORREC DOOOO GHz PNO: Fast	SENSE:INT	ALIGN OFF Avg Type: Log-Pwr	11:50:10 AM Dec 12, 2019 TRACE 1 2 3 4 5 6 TYPE MWWWAWW DET P P P P P P	Frequency
10 dB/div	Ref 20.00	IFGain:Low	Atten: 30 dB	Mkr	5 5.387 63 GHz -39.36 dBm	Auto Tune
Log 10.0 0.00 -10.0					-10.63 dBm	Center Freq 5.015000000 GHz
-20.0 -30.0 -40.0	ور من چراوران م		¢ ⁴ • ⁵	32	en den stategen sons film for an all for the second stategen	Start Freq 30.000000 MHz
-50.0 -60.0 -70.0						Stop Freq 10.000000000 GHz
Start 30 N #Res BW	1.0 MHz	#VE	W 3.0 MHz	Sweep 18	Stop 10.000 GHz .67 ms (40001 pts)	CF Step 997.000000 MHz <u>Auto</u> Man
1 N 1 2 N 1 3 N 1 4 N 1 5 N 1 6	f	2.480 13 GHz 6.992 30 GHz 6.418 03 GHz 4.879 66 GHz 5.387 63 GHz	10.94 dBm -38.48 dBm -38.54 dBm -39.29 dBm -39.36 dBm	Porchor wom		Freq Offset 0 Hz
7 8 9 10 11					~	
MSG				STATUS		

8. Transmitter AC Power Line Conducted Emission

8.1 Test Setup

See test photographs for the actual connections between EUT and support equipment.

8.2 Limit

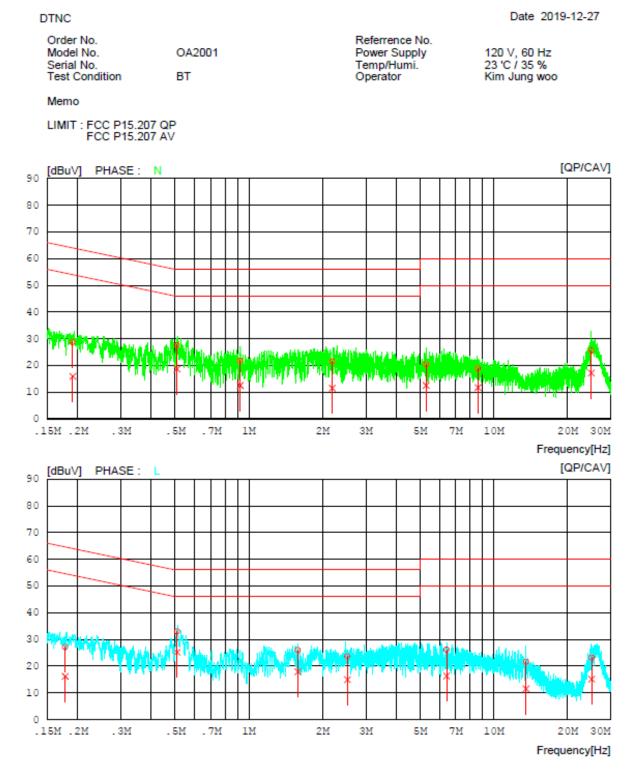
According to §15.207(a) for an intentional radiator that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies, within the band 150 kHz to 30 MHz, shall not exceed the limits in the following table, as measured using a 50 uH/50 ohm line impedance stabilization network (LISN).

Compliance with the provision of this paragraph shall on the measurement of the radio frequency voltage between each power line and ground at the power terminal. The lower applies at the boundary between the frequency ranges.

	Conducted I	Limit (dBuV)
Frequency Range (MHz)	Quasi-Peak	Average
0.15 ~ 0.5	66 to 56 *	56 to 46 *
0.5 ~ 5	56	46
5 ~ 30	60	50

* Decreases with the logarithm of the frequency

8.3 Test Procedures


Conducted emissions from the EUT were measured according to the ANSI C63.10.

- The test procedure is performed in a 6.5 m × 3.5 m × 3.5 m (L × W × H) shielded room. The EUT along with its peripherals were placed on a 1.0 m (W) × 1.5 m (L) and 0.8 m in height wooden table and the EUT was adjusted to maintain a 0.4 meter space from a vertical reference plane.
- 2. The EUT was connected to power mains through a line impedance stabilization network (LISN) which provides 50 ohm coupling impedance for measuring instrument and the chassis ground was bounded to the horizontal ground plane of shielded room.
- 3. All peripherals were connected to the second LISN and the chassis ground also bounded to the horizontal ground plane of shielded room.
- 4. The excess power cable between the EUT and the LISN was bundled. The power cables of peripherals were unbundled. All connecting cables of EUT and peripherals were moved to find the maximum emission.

8.4 Test Results

AC Line Conducted Emissions (Graph) = Modulation : <u>8DPSK</u>

Results of Conducted Emission

AC Line Conducted Emissions (List) = Modulation : <u>8DPSK</u>

Results of Conducted Emission

Date 2019-12-27

Order No. Model No. OA2001 Serial No. Test Condition BT	Temp/Humi. 23) V, 60 Hz 'C / 35 % 1 Jung woo
--	---------------	---------------------------------------

Memo

DTNC

LIMIT : FCC P15.207 QP FCC P15.207 AV

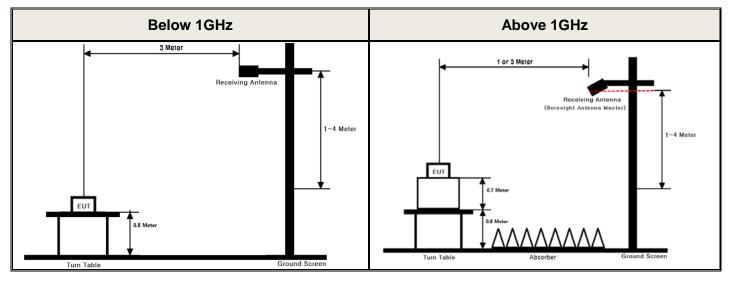
NO	FREQ	READING QP CAV [dBuV][dBuV	C.FACTOR] [dB]	RESULT QP CAV [dBuV][dBuV	LIMIT QP CAV] [dBuV][dBuV	MARGIN QP CAV] [dBuV][dBuV]	PHASE 7]
1 2		18.79 6.06 17.72 8.79	9.94 9.95	28.7316.00 27.6718.74	64.00 54.00 56.00 46.00	35.2738.00 28.3327.26	N N
3	2.18896	11.85 2.59 11.40 1.51			56.00 46.00 56.00 46.00	34.18 33.44 34.57 34.46	N N
5	8.61663	10.29 2.40 8.54 1.47 14.87 6.54	10.29	20.4512.56 18.8311.76 25.5317.20	60.00 50.00 60.00 50.00 60.00 50.00	39.5537.44 41.1738.24 34.4732.80	N N N
8 9	0.17772	17.18 6.16 23.0115.23	9.94	27.1216.10	64.59 54.59	37.4738.49 23.0420.82	L
10 11	2.52415		10.04	25.9317.80 23.5414.89	56.00 46.00 56.00 46.00	30.0728.20 32.4631.11	L L
	6.41672 13.55013 25.09394		10.20 10.42 10.63	26.1116.28 21.5011.43 23.1615.08	60.00 50.00 60.00 50.00 60.00 50.00	33.8933.72 38.5038.57 36.8434.92	L L L

9. Antenna Requirement

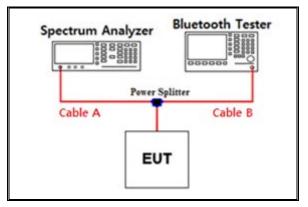
Describe how the EUT complies with the requirement that either its antenna is permanently attached, or that it employs a unique antenna connector, for every antenna proposed for use with the EUT.

Conclusion: Comply

The antenna is attached on the device by means of unique coupling method (Spring Tension). Therefore this E.U.T Complies with the requirement of §15.203


- Minimum Standard :

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions.


APPENDIX I

Test set up diagrams

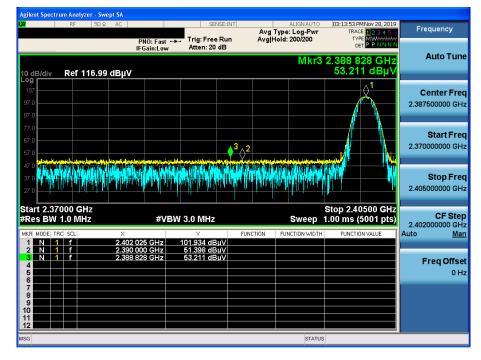
Radiated Measurement

Conducted Measurement

Path loss information

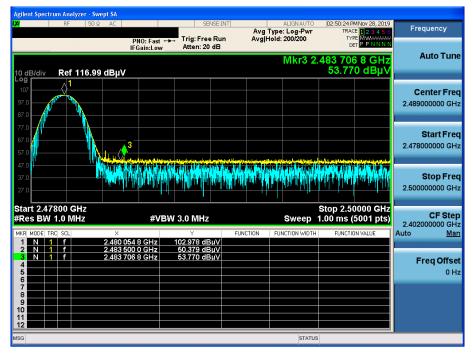
Frequency (GHz)	Path Loss (dB)	Frequency (GHz)	Path Loss (dB)
0.03	6.09	15	9.42
1	6.52	20	13.70
2.402 & 2.440 & 2.480	7.19	25	17.40
5	7.87	-	-
10	9.00	-	-

Note 1 : The path loss from EUT to Spectrum analyzer were measured and used for test. Path loss (S/A's Correction factor) = Cable A + Power splitter



APPENDIX II

Unwanted Emissions (Radiated) Test Plot

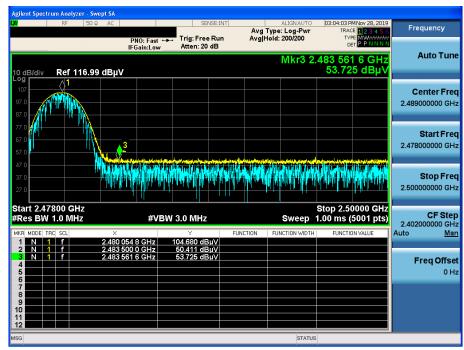

GFSK & Lowest & Z & Hor

Detector Mode : PK

Detector Mode : PK

GFSK & Highest & Z & Hor

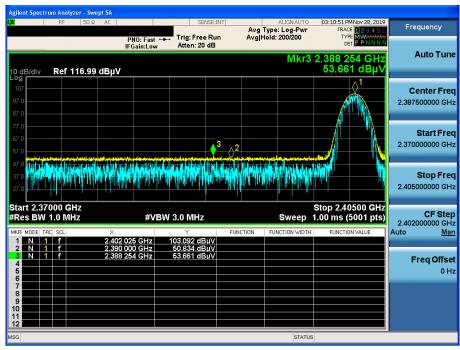
Detector Mode : PK

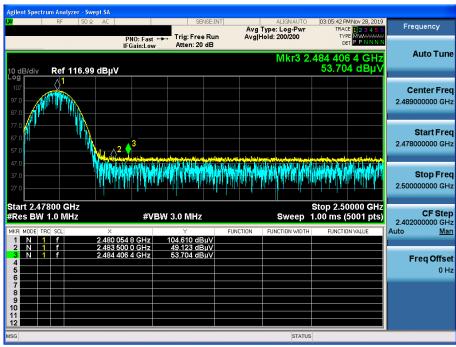


π /4DQPSK & Lowest & Z & Hor

n Analyzer - Swept SA Frequency Avg Type: Log-Pwr Avg|Hold: 200/200 Trig: Free Run Atten: 20 dB PNO: Fast IFGain:Low Auto Tune Mkr3 52.691 dBµ\ Ref 116.99 dBµV Δ **Center Freq** 2.387500000 GHz Start Freq 2.370000000 GHz Stop Freq 2.405000000 GHz Start 2.37000 GHz #Res BW 1.0 MHz Stop 2.40500 GHz 1.00 ms (5001 pts) **CF Step** 2.402000000 GHz Auto <u>Man</u> #VBW 3.0 MHz Sweep 50.323 52.691 Freq Offset 0 Hz STATUS

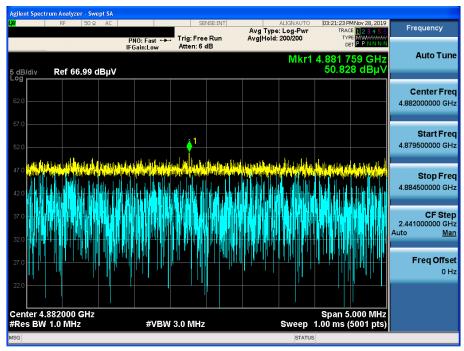
Detector Mode : PK

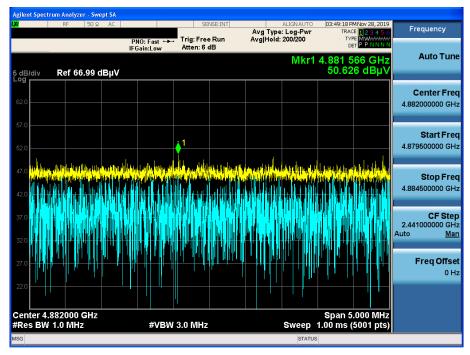

$\pi/4DQPSK$ & Highest & Z & Hor


8DPSK & Lowest & Z & Hor

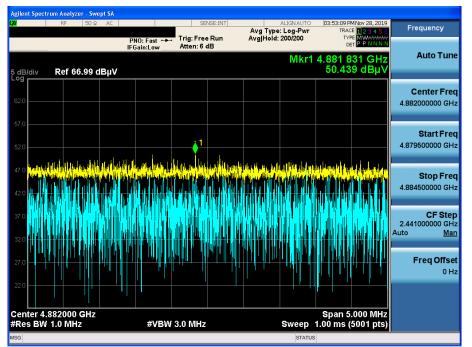
Detector Mode : PK

Detector Mode : PK

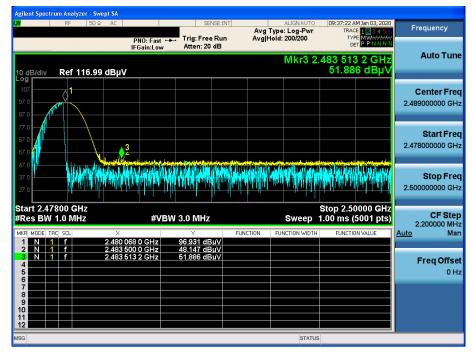

8DPSK & Highest & X & Hor



GFSK & Middle & X & Ver



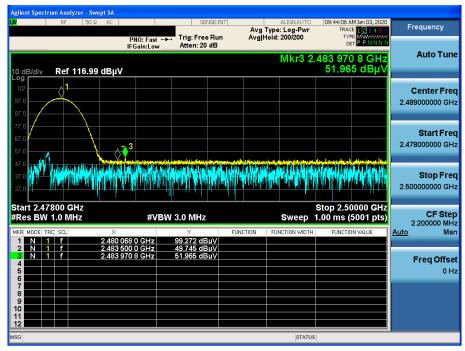
$\pi/4DQPSK$ & Middle & X & Ver


8DPSK & Middle & X & Ver

Unwanted Emissions (Radiated) Test Plot _ Wireless Charging

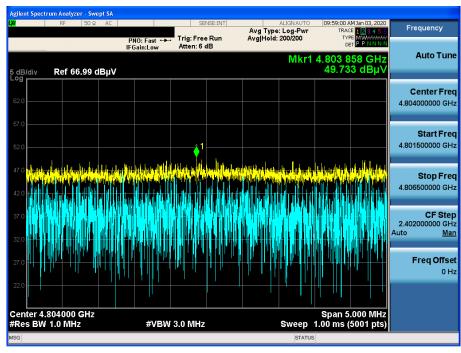
GFSK & Highest & X & Ver

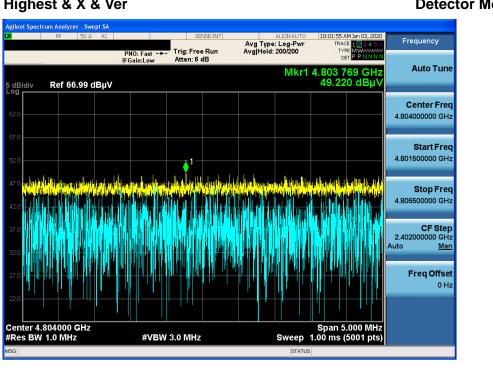
Detector Mode : PK


π /4DQPSK & Highest & X & Ver

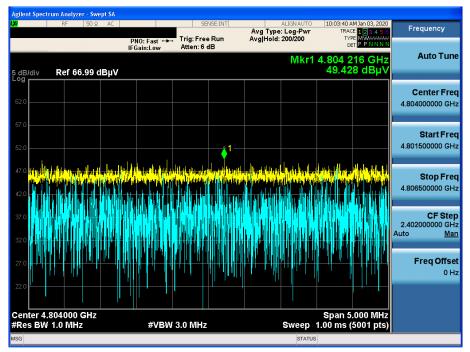
gilent Spectrum Analyzer - Swept SA Frequency Avg Type: Log-Pwr Avg|Hold: 200/200 Trig: Free Run Atten: 20 dB PNO: Fast + IFGain:Low Auto Tune Mkr3 2.484 595 6 GH: 51.911 dBµ\ Ref 116.99 dBµV **Center Freq** 2.489000000 GHz Start Fred 2.478000000 GHz hidi da nya katalahan da NATER OF CALLS AND A DESCRIPTION OF The la an fa Mh Stop Freq 2.50000000 GHz rt 2.47800 GHz s BW 1.0 MHz Stop 2.50000 GH Sta CF Step 2.200000 MHz Man #VBW 3.0 MHz i pts) Auto Freq Offset 0 Hz STATUS

Detector Mode : PK


8DPSK & Highest & X & Ver

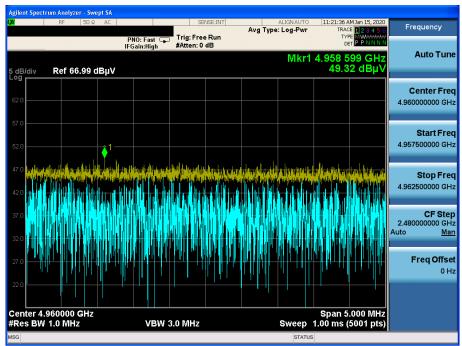


GFSK & Highest & X & Ver



π /4DQPSK & Highest & X & Ver

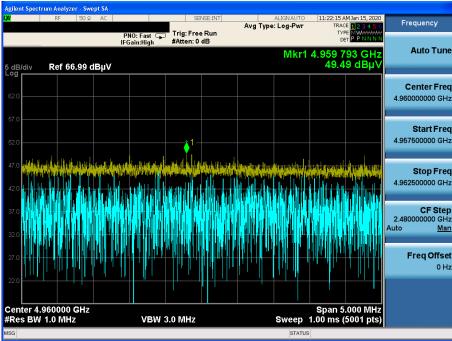
8DPSK & Highest & X & Ver


Unwanted Emissions (Radiated) Test Plot _ With Dual Display

GFSK & Highest & X & Hor

Detector Mode : PK

GFSK & Highest & X & Ver


GFSK & Highest & X & Hor

Detector Mode : PK

Unwanted Emissions (Radiated) Test Plot _ With Dual Display+WPC

M Jan 15, Frequency Avg Type: Log-Pwr TRACE PNO: Fast 😱 Trig: Free Run IFGain:Low Atten: 16 dB TYF Auto Tune Mkr3 2.484 019 2 GHz 51.63 dBµV Ref 112.99 dBµV 0 dB/div **Center Freq** 2.489000000 GHz Start Freq 2.478000000 GHz Stop Freq \Diamond 2.50000000 GHz CF Step 2.200000 MHz Man Auto Start 2.47800 GHz #Res BW 1.0 MHz Stop 2.50000 GHz 1.00 ms (5001 pts) **Freq Offset** VBW 3.0 MHz Sweep 0 Hz 2.479 839 2 GHz 2.483 500 0 GHz 2.484 019 2 GHz 49.96 dBµ 51.63 dBµ

GFSK & Highest & X & Hor

