

Page 1 of 53 Report No.: EED32N80457602

EST REPORT

reMarkable 2 **Product** reMarkable Trade mark

RM110, RM111, RM112, RM113 Model/Type reference

2c7ce3579f1 **Serial Number**

: EED32N80457602 **Report Number** 2AMK2-RM110B FCC ID

Aug. 24, 2021 Date of Issue

47 CFR Part 15 Subpart E **Test Standards**

Test result PASS

Prepared for:

reMarkable AS Biermanns gate 6, 0473 Oslo, Norway

Prepared by:

Centre Testing International Group Co., Ltd. Hongwei Industrial Zone, Bao'an 70 District, Shenzhen, Guangdong, China

> TEL: +86-755-3368 3668 FAX: +86-755-3368 3385

Report Seal

Tom Chen David Wang

David Wang

Reviewed by:

Date:

Aaron Ma

Aug. 24 2021

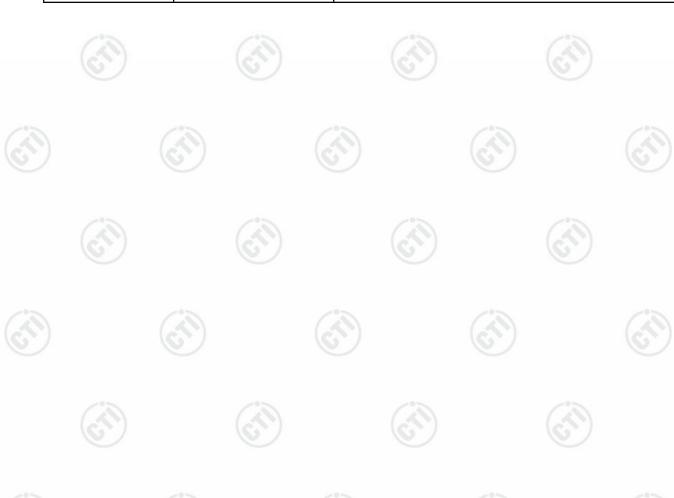
Acron

Check No.:1021080621

Page 2 of 53

2 Content

1 COVER PAGE				•••••	1
2 CONTENT					
3 VERSION				•••••	3
4 TEST SUMMARY				•••••	4
5 GENERAL INFORMA	TION			•••••	5
5.1 CLIENT INFORMATI 5.2 GENERAL DESCRIF 5.3 TEST CONFIGURAT 5.4 TEST ENVIRONMEN 5.5 DESCRIPTION OF S 5.6 TEST LOCATION 5.7 DEVIATION FROM S 5.8 ABNORMALITIES FF 5.9 OTHER INFORMATI 5.10 MEASUREMENT L	PTION OF EUT TION SUPPORT UNITS STANDARDS ROM STANDARD CONION REQUESTED BY T	DITIONS			
6 EQUIPMENT LIST				•••••	9
7 RADIO TECHNICAL	REQUIREMENTS S	PECIFICATION		•••••	11
7.1 ANTENNA REQUIRE 7.2 AC POWER LINE OF 7.3 MAXIMUM CONDUCT 7.4 6DB EMISSON BAY 7.5 26DB EMISSION BAY 7.6 MAXIMUM POWER 7.7 FREQUENCY STAB 7.8 RADIATED EMISSIO 7.9 RADIATED EMISSIO	CONDUCTED EMISSION CTED OUTPUT POWER NDWIDTH ANDWIDTH AND 99% SPECTRAL DENSITY ILITY	NS	н		
8 APPENDIX A				•••••	50
PHOTOGRAPHS OF T	EST SETUP				51
PHOTOGRAPHS OF E	UT CONSTRUCTIO	NAL DETAILS			53



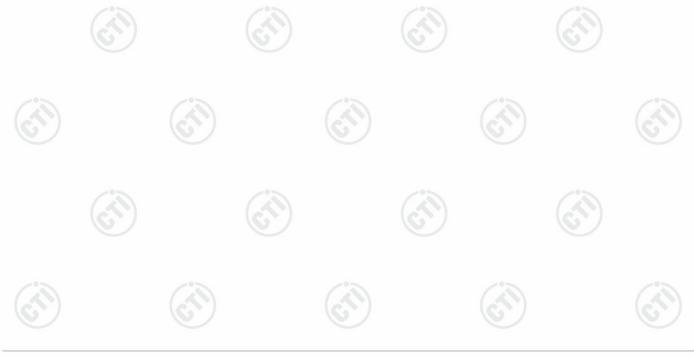
Report No.: EED32N80457602 Page 3 of 53

3 Version

Version No.	ersion No. Date		Description		
00	Aug. 24, 2021	Original			
6					
//				(6)	

Report No. : EED32N80457602 Page 4 of 53

4 Test Summary


1 1000 dillillary			
Test Item	Test Requirement	Result	
Antenna Requirement	47 CFR Part 15 Subpart C Section 15.203	PASS	
AC Power Line Conducted Emission	47 CFR Part 15 Subpart E Section 15.407 (b)(6)	PASS	
Duty Cycle	47 CFR Part 15 Subpart E Section 15.407	PASS	
Maximum Conducted Output Power	47 CFR Part 15 Subpart E Section 15.407 (a)	PASS	
26dB emission bandwidth	47 CFR Part 15 Subpart E Section 15.407 (a)	PASS	
99% Occupied bandwidth	(62)	PASS	
6dB emission bandwidth	47 CFR Part 15 Subpart E Section 15.407 (e)	PASS	
Maximum Power Spectral Density	47 CFR Part 15 Subpart E Section 15.407 (a)	PASS	
Frequency stability	47 CFR Part 15 Subpart E Section 15.407 (g)	PASS	
Radiated Emissions	47 CFR Part 15 Subpart E Section 15.407 (b)	PASS	
Radiated Emissions which fall in the restricted bands	47 CFR Part 15 Subpart E Section 15.407 (b)	PASS	

Remark:

Company Name and Address shown on Report, the sample(s) and sample Information were provided by the applicant who should be responsible for the authenticity which CTI hasn't verified.

Model No.: RM110, RM111, RM112, RM113

Only the model RM110 was tested, The added models and original model: The Electrical circuit design, Layout, components and internal wiring are identical. Only the model name and packaging contents are different.

Report No.: EED32N80457602 Page 5 of 53

5 General Information

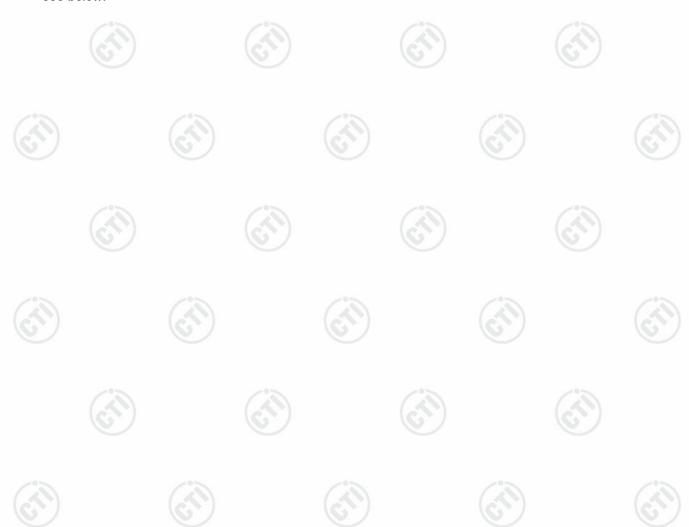
5.1 Client Information

Applicant:	reMarkable AS				
Address of Applicant:	Biermanns gate 6, 0473 Oslo, Norway	(3)			
Manufacturer:	reMarkable AS				
Address of Manufacturer:	Biermanns gate 6, 0473 Oslo, Norway				
Factory:	Dongguan Kaifa Technology Co., Ltd.				
Address of Factory:	No.2 Junma Road, Chigang Community, Humen Town, Dong Guangdong Province, 523921. P. R. China	gguan City,			

5.2 General Description of EUT

Product Name:	reMarkable 2	
Model No.(EUT):	RM110, RM1	11, RM112, RM113
Test Model No:	RM110	
Trade mark:	reMarkabl	e
Product Type:	☐ Mobile	
Type of Modulation:		a: OFDM (BPSK, QPSK, 16QAM, 64QAM) n(HT20): OFDM (BPSK, QPSK, 16QAM, 64QAM)
Operating Frequency	U-NII-1: 5180 U-NII-3: 574	
Operating Temperature:`	-0°C to +35°C	
Antenna Type:	PCB Antenna	a
Antenna Gain:	6.35dBi	
0	USB Port	DC 5V
Power Supply:	Battery:	Model: Fusion DC 3.85V 3000mAh 11.55Wh
Test voltage:	Battery 3.85\	V
Sample Received Date:	Jun. 11, 202	1
Sample tested Date:	Jun. 11, 202	1 to Aug. 12, 2021

Page 6 of 53


Operation Frequency each of channel

802.11a/802.11n Frequency/Channel Operations:

	U-NII-1	U-NII-3		
Channel Frequency(MHz)		Channel	Frequency(MHz)	
36			5745	
40 5200		153	5765	
44 5220		157	5785	
48 5240		161	5805	
- 6	S) -	165	5825	

Note

In section 15.31(m), regards to the operating frequency range over 10 MHz, the lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

Report No. : EED32N80457602 Page 7 of 53

5.3 Test Configuration

EUT Test Software Setting	js:	
Software:	PUTTY	
EUT Power Grade:	Default	
Use test software to set the transmitting of the EUT.	lowest frequency, the m	iddle frequency and the highest frequency keep
Test Mode:		
		ical operation. All the test modes were carried out with in this test report and defined as follows:
Per-scan all kind of data r	ate in lowest channel, a	and found the follow list which it
was worst case.		
Mod	le	Data rate
802.1	1a	6 Mbps
802.11n	HT20)	MCS0

5.4 Test Environment

Operating Environment:			
Radiated Spurious Emission	s:		
Temperature:	22~25.0 °C		
Humidity:	50~56 % RH		
Atmospheric Pressure:	1010mbar	- 11	- 15
Conducted Emissions:			
Temperature:	22~26.0 °C		
Humidity:	50~56 % RH		
Atmospheric Pressure:	1010mbar		
RF Conducted:			
Humidity:	50~55 % RH	37)	(0,)
Atmospheric Pressure:	1010mbar		
	NT (Normal Temperature)	22~25.0 °C	
Temperature:	LT (Low Temperature)	0 °C	
	HT (High Temperature)	35.0 °C	(6,1,)
	NV (Normal Voltage)	3.85V	
Working Voltage of the EUT:	LV (Low Voltage)	3.55V	
(3)	HV (High Voltage)	4.4 V	(2)

Report No. : EED32N80457602 Page 8 of 53

5.5 Description of Support Units

The EUT has been tested with associated equipment below.

1) support equipment

Description	Description Manufacturer		Certification	Supplied by
	Shenzhen GOOD-SHE	00 5540	500	Oli G
QUICK CHARGE	Technology Co., Ltd.	GS-551B	FCC	Client

2) cable

Cable No.	Description	Manufacturer	Cable Type/Length	Supplied by
	USB Cable	Dongguan Kaifa Technology Co., Ltd.	Shielded (100cm)	Client

5.6 Test Location

All tests were performed at:

Centre Testing International Group Co., Ltd

Building C, Hongwei Industrial Park Block 70, Bao'an District, Shenzhen, China

Telephone: +86 (0) 755 33683668 Fax:+86 (0) 755 33683385

No tests were sub-contracted.

FCC Designation No.: CN1164

5.7 Deviation from Standards

None

5.8 Abnormalities from Standard Conditions

None

5.9 Other Information Requested by the Customer

None.

5.10 Measurement Uncertainty (95% confidence levels, k=2)

No.	Item	Measurement Uncertainty	
1	Radio Frequency	7.9 x 10 ⁻⁸	
	DE navion conducted	0.46dB (30MHz-1GHz)	
2	RF power, conducted	0.55dB (1GHz-18GHz)	
		3.3dB (9kHz-30MHz)	
	Dadieted Courieus emission test	4.5dB (30MHz-1GHz)	
3	Radiated Spurious emission test	4.8dB (1GHz-18GHz)	
		3.4dB (18GHz-40GHz)	
	Conditation amaigning	3.5dB (9kHz to 150kHz)	
4	Conduction emission	3.1dB (150kHz to 30MHz)	
5	Temperature test	0.64°C	
6	Humidity test	3.8%	
7	DC power voltages	0.026%	

Report No. : EED32N80457602 Page 9 of 53

6 Equipment List

	2	• • • • • • •			27.7		
Conducted disturbance Test							
Equipment	Manufacturer	Model No.	Serial Number	Cal. date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)		
Receiver	R&S	ESCI	100435	04-27-2021	04-26-2022		
Temperature/ Humidity Indicator	Defu	TH128	/	(31)	(51)		
LISN	R&S	ENV216	100098	03-04-2021	03-03-2022		
Barometer	changchun	DYM3	1188				

	/				10.7	
		RF test s	ystem			
Equipment	Manufacturer	Mode No.	Mode No. Serial Number		Cal. Due date (mm-dd-yyyy)	
Spectrum Analyzer	Keysight	N9010A	MY54510339	12-28-2020	12-27-2021	
Signal Generator	Keysight	N5182B	MY53051549	12-28-2020	12-27-2021	
Signal Generator	Keysight	E8257D	MY53401106	12-28-2020	12-27-2021	
Temperature/ Humidity Indicator	biaozhi	HM10	1804186	06-29-2020 06-28-2021	06-28-2021 06-27-2022	
High-pass filter	Sinoscite	FL3CX03WG18 NM12-0398-002				
High-pass filter MICRO-TRONICS		SPA-F-63029-4		(3	<u> </u>	
DC Power	Keysight	E3642A	MY56376072	12-28-2020	12-27-2021	
Power unit	R&S	OSP120	101374	12-28-2020	12-27-2021	
RF control unit	JS Tonscend	JS0806-2	158060006	12-28-2020	12-27-2021	
BT&WI-FI Automatic test software	JS Tonscend	JS1120-3			(3)	

		3M Semi/full-aned	hoic Chamber			
Equipment	Manufacturer	Model No.	Serial Number	Cal. date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)	
3M Chamber & Accessory Equipment	TDK	SAC-3	(cir)	05-24-2019	05-23-2022	
TRILOG Broadband Antenna	Schwarzbeck	VULB9163	9163-618	05-16-2021	05-15-2022	
Loop Antenna	Schwarzbeck	FMZB 1519B	1519B-076	04-15-2021	04-14-2024	
Receiver	R&S	ESCI7	100938-003	10-16-2020	10-15-2021	
Multi device Controller	maturo	NCD/070/10711 112		(C.)	6.	
Temperature/ Humidity Indicator	Shanghai qixiang	HM10	1804298	06-29-2020 06-23-2021	06-28-2021 06-22-2022	
Communication test set	Agilent	E5515C	GB47050534	03-01-2019	02-28-2022	
Cable line	Fulai(7M)	SF106	5219/6A	(6	N")	
Cable line	Fulai(6M)	SF106	5220/6A		·	
Cable line	Fulai(3M)	SF106	5216/6A			
Cable line	Fulai(3M)	SF106	5217/6A			
band rejection filter	Sinoscite	FL5CX01CA08 CL12-0393-001			/ 3	

Hotline:400-6788-333 www.cti-cert.com E-mail:info@cti-cert.com Complaint call:0755-33681700 Complaint E-mail:complaint@cti-cert.com

Page 10 of 53

		3M full-anecho	ic Chamber			
Equipment	Manufacturer	Model No.	Serial Number	Cal. date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)	
RSE Automatic test software	JS Tonscend	JS36-RSE	10166			
Receiver	Keysight	N9038A	MY57290136	03-04-2021	03-03-2022	
Spectrum Analyzer	Keysight	N9020B	MY57111112	03-04-2021	03-03-2022	
Spectrum Analyzer	Keysight	N9030B	MY57140871	03-04-2021	03-03-2022	
TRILOG Broadband Antenna	Schwarzbeck	VULB 9163	9163-1148	04-28-2021	04-27-2024	
Horn Antenna	Schwarzbeck	BBHA 9170	9170-832	04-15-2021	04-14-2024	
Communication Antenna	Schwarzbeck	CLSA 0110L	1014			
Horn Antenna	ETS- LINDGREN	3117	57407	07-10-2018 07-04-2021	07-09-2021 07-03-2024	
Preamplifier	EMCI	EMC184055SE	980597	05-20-2021	05-19-2022	
Communication test set	R&S	CMW500	102898	12-31-2020	12-30-2021	
Preamplifier	EMCI	EMC001330	980563	04-15-2021	04-14-2022	
Preamplifier	JS Tonscend	980380	EMC051845 SE	12-31-2020	12-30-2021	
Temperature/ Humidity Indicator	biaozhi	GM1360	EE1186631	04-16-2021	04-15-2022	
Fully Anechoic Chamber	TDK	FAC-3		01-09-2021	01-08-2024	
Cable line	Times	SFT205-NMSM- 2.50M	394812-0001			
Cable line	Times	SFT205-NMSM- 2.50M	394812-0002	(c1)	(3	
Cable line	Times	SFT205-NMSM- 2.50M	394812-0003	<u> </u>		
Cable line	Times	SFT205-NMSM- 2.50M	393495-0001			
Cable line	Times	EMC104-NMNM- 1000	SN160710	(<u></u>	
Cable line	Times	SFT205-NMSM- 3.00M	394813-0001		·	
Cable line	Times	SFT205-NMNM- 1.50M	381964-0001			
Cable line	Times	SFT205-NMSM- 7.00M	394815-0001		(2	
Cable line	Times	HF160-KMKM- 3.00M	393493-0001	(C.)	(6)	

Report No. : EED32N80457602 Page 11 of 53

7 Radio Technical Requirements Specification

7.1 Antenna Requirement

Standard requirement:	47 CFR Part 15C Section 15.203
-----------------------	--------------------------------

15.203 requirement:

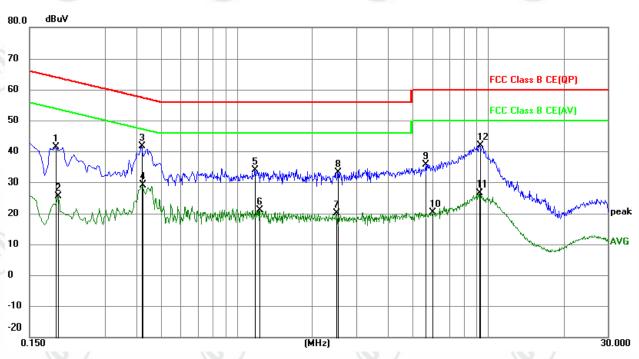
An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

EUT Antenna: Please see Internal photos

The antenna is PCB antenna. The best case gain of the antenna is 6.35dBi.

Report No. : EED32N80457602 Page 12 of 53

7.2 AC Power Line Conducted Emissions

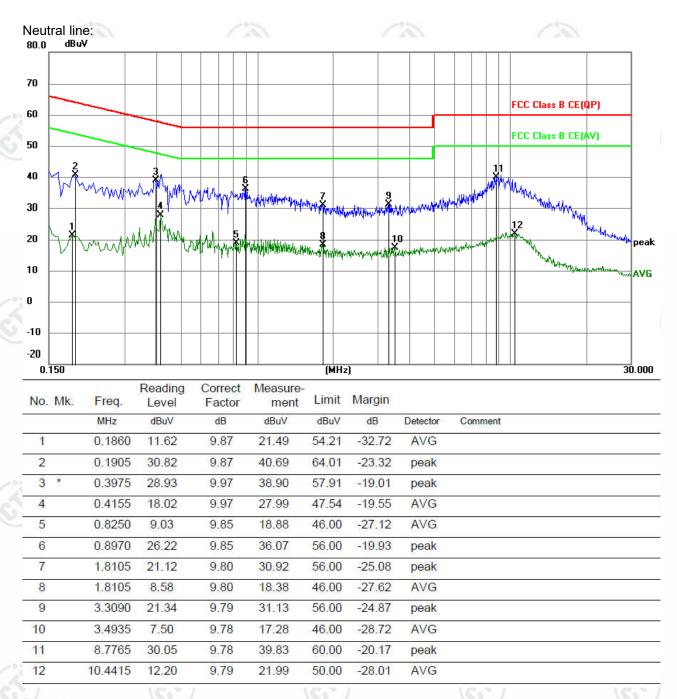

		C	16.4
Test Requirement:	47 CFR Part 15C Section 15.2	07	
Test Method:	ANSI C63.10: 2013		
Test Frequency Range			
Receiver setup:	RBW=9 kHz, VBW=30 kHz, Sv		-9.7
Limit:	Frequency range (MHz)	Limit (d Quasi-peak	BuV) Average
	0.15-0.5	66 to 56*	56 to 46*
	0.5-5	56	46
	5-30	60	50
	* Decreases with the logarithm	of the frequency.	70
Test Setup:	Shielding Room EUT AC Mains LISN1	AE LISN2 → AC Main Ground Reference Plane	Test Receiver
Test Procedure:	1) The mains terminal disturbation. 2) The EUT was connected Impedance Stabilization Neimpedance. The power of connected to a second LIS plane in the same way as multiple socket outlet strip single LISN provided the ra 3) The tabletop EUT was placed on the horizontal ground reference plane. An placed on the horizontal ground reference with the EUT shall be 0.4 m for vertical ground reference reference plane. The LISN unit under test and bond mounted on top of the ground the closest points of the Library and all of the interface cabe ANSI C63.10: 2013 on condete.	to AC power source etwork) which provides cables of all other N 2, which was bonde s the LISN 1 for the was used to connect rating of the LISN was need upon a non-metand for floor-standing around reference plane. In a vertical ground reference plane was bonded to a ground reference plane. The was at least 0.8 m from the teast 0.8 m from emission, the relativeles must be changed aducted measurement.	through a LISN 1 (Line is a $50\Omega/50\mu H + 5\Omega$ linear units of the EUT were d to the ground reference unit being measured. A multiple power cables to a not exceeded. Ilic table 0.8m above the trangement, the EUT was been also the horizontal ground from the boundary of the terence plane for LISNs his distance was between all other units of the EUT in the LISN 2. We positions of equipment according to
Test Mode:	All modes were tested, only the 802.11a was recorded in the re		armer of bivibps for
Test Results:	Pass		

Report No. : EED32N80457602 Page 13 of 53

Measurement Data

Live line:

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		
		MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment
1		0.1905	31.39	9.87	41.26	64.01	-22.75	peak	
2		0.1949	15.70	9.87	25.57	53.83	-28.26	AVG	
3	*	0.4200	31.71	9.97	41.68	57.45	-15.77	peak	
4		0.4245	19.28	9.97	29.25	47.36	-18.11	AVG	
5		1.1805	24.13	9.82	33.95	56.00	-22.05	peak	
6		1.2345	11.38	9.82	21.20	46.00	-24.80	AVG	
7		2.4945	10.29	9.79	20.08	46.00	-25.92	AVG	
8		2.5350	23.45	9.79	33.24	56.00	-22.76	peak	
9		5.6400	25.92	9.78	35.70	60.00	-24.30	peak	
10		6.0090	10.69	9.78	20.47	50.00	-29.53	AVG	
11		9.2084	16.84	9.78	26.62	50.00	-23.38	AVG	
12		9.2805	32.18	9.78	41.96	60.00	-18.04	peak	


Remark:

- 1. The following Quasi-Peak and Average measurements were performed on the EUT:
- 2. Final Test Level =Receiver Reading + LISN Factor + Cable Loss.
- 3. If the Peak value under Average limit, the Average value is not recorded in the report.

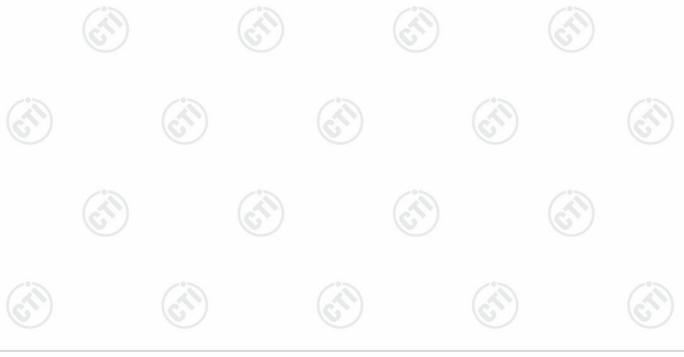
Remark:

- 1. The following Quasi-Peak and Average measurements were performed on the EUT:
- 2. Final Test Level = Receiver Reading + LISN Factor + Cable Loss.
- 3. If the Peak value under Average limit, the Average value is not recorded in the report.

Report No.: EED32N80457602 Page 15 of 53

7.3 Maximum Conducted Output Power

		155	10.5		16.4
	Test Requirement:	47 CFR Part 15C S	Section 15.407 (a)		
	Test Method:	KDB789033 D02 G E	General UNII Test	Procedures New	Rules v02r01 Section
	Test Setup:	7.	<i></i>		
		Control Computer Power Supply TEMPERATURE CABI	Attenuator	RF test System Instrument	
		(6)		(0,	(C)
	Test Procedure:	1. The testing follow General UNII Test I 2. The RF output of attenuator. The pat measurement. 3. Set to the maxim continuously. 4. Measure the con report.	Procedures New I FEUT was connect It loss was compe	Rules v02r01 Sect cted to the power rensated to the result and enable the E	ion E, 3, a meter by RF cable and ults for each UT transmit
3	Limit:				
		Frequency band (MHz)	Limit		
		5150-5250	≤1W(30dBm) fo	r master device	
			≤250mW(24dBn	n) for client device	
		5250-5350	≤250mW(24dBn	n) for client device	or 11dBm+10logB*
		5470-5725	≤250mW(24dBn	n) for client device	or 11dBm+10logB*
		5725-5850	≤1W(30dBm)		
		Remark:	The maximum of measured over	tation calibrated in	ower must be tinuous transmission
	Test Mode:	Transmitting mode	with modulation		400
	Test Results:	Refer to Appendix	4		



Report No. : EED32N80457602 Page 16 of 53

7.4 6dB Emisson Bandwidth

Test Requirement:	47 CFR Part 15C Section 15.407 (e)
Test Method:	KDB789033 D02 General UNII Test Procedures New Rules v02r01 Section C
Test Setup:	Control Congrules Power poof Power pof TEMPERATURE CABNET RF test System Instrument
Toot Procedure:	Remark: Offset=Cable loss+ attenuation factor. 1. KDB789033 D02 General UNII Test Procedures New Rules v02r01
Test Procedure:	Section C 2. Set to the maximum power setting and enable the EUT transmit continuously. 3. Make the measurement with the spectrum analyzer's resolution bandwidth (RBW) = 100 kHz. Set the Video bandwidth (VBW) = 300 kHz. In order to make an accurate measurement. The 6dB bandwidth must be greater than 500 kHz. 4. Measure and record the results in the test report.
Limit:	≥ 500 kHz
Test Mode:	Transmitting mode with modulation
Test Results:	Refer to Appendix A

Report No. : EED32N80457602 Page 17 of 53

7.5 26dB Emission Bandwidth and 99% Occupied Bandwidth

47 CFR Part 15C Section 15.407 (a)
KDB789033 D02 General UNII Test Procedures New Rules v02r01 Section D
(cit)
Control Control Consputer Power ports) Power port Attenuator Instrument Table RF test System System Instrument
Remark: Offset=Cable loss+ attenuation factor.
1. KDB789033 D02 General UNII Test Procedures New Rules v02r01 Section D 2. Set to the maximum power setting and enable the EUT transmit continuously. 3. Make the measurement with the spectrum analyzer's resolution bandwidth (RBW) = 100 kHz. Set the Video bandwidth (VBW) = 300 kHz. In order to make an accurate measurement. 4. Measure and record the results in the test report.
No restriction limits
Transmitting mode with modulation
Refer to Appendix A

Report No. : EED32N80457602 Page 18 of 53

7.6 Maximum Power Spectral Density

Test Requirement:	47 CFR Part 15C S	ection 15.407 (a))	
Test Method:	KDB789033 D02 G	eneral UNII Test	Procedures New	Rules v02r01 Section
Test Setup:	- 2			T GT
	Control Computer Power Supply Temperature Casi	Attenuator	RF test - System Instrument	
	Remark: Offset=Ca	7. "	7,77	
Test Procedure:	1. Set the spectrum bandwidth. 1. Set F			view the entire emiss
	Auto, Detector = RI 2. Allow the sweeps	MS. s to continue unti	I the trace stabilize	•
Limit:	Auto, Detector = RI 2. Allow the sweeps	MS. s to continue unti	I the trace stabilize	es.
Limit:	Auto, Detector = RI 2. Allow the sweeps	MS. s to continue unti	I the trace stabilize	es.
Limit:	Auto, Detector = RI 2. Allow the sweeps 3. Use the peak ma Frequency band	MS. s to continue unti irker function to c	I the trace stabilize	es. imum amplitude leve
Limit:	Auto, Detector = RI 2. Allow the sweeps 3. Use the peak ma Frequency band (MHz)	MS. s to continue unti irker function to c Limit ≤17dBm in 1MF	I the trace stabilize letermine the max	es. imum amplitude leve
Limit:	Auto, Detector = RI 2. Allow the sweeps 3. Use the peak ma Frequency band (MHz)	MS. s to continue unti irker function to c Limit ≤17dBm in 1MH ≤11dBm in 1MH	I the trace stabilized letermine the max	es. imum amplitude leve
Limit:	Auto, Detector = RI 2. Allow the sweeps 3. Use the peak ma Frequency band (MHz) 5150-5250	MS. s to continue untilitier function to continue Limit ≤17dBm in 1MH ≤11dBm in 1MH	I the trace stabilized letermine the max Hz for master deviced to the trace of the	es. imum amplitude leve
Limit:	Auto, Detector = RI 2. Allow the sweeps 3. Use the peak ma Frequency band (MHz) 5150-5250	MS. s to continue untilitier function to continue Limit ≤17dBm in 1MH ≤11dBm in 1MH	I the trace stabilized letermine the max Hz for master deviced Hz for client deviced Hz for client deviced Hz for client deviced Hz for client deviced	es. imum amplitude leve
Limit:	Auto, Detector = RI 2. Allow the sweeps 3. Use the peak ma Frequency band (MHz) 5150-5250 5250-5350 5470-5725	MS. s to continue untivirker function 1 MH ≤ 11 dBm in 1 MH ≤ 30 dBm in 500 The maximum particular conducted en	I the trace stabilized letermine the max letermine the letermi	es. imum amplitude leve
Limit:	Auto, Detector = RI 2. Allow the sweeps 3. Use the peak ma Frequency band (MHz) 5150-5250 5250-5350 5470-5725 5725-5850	MS. s to continue untilizate function functio	I the trace stabilized letermine the max letermine the letermi	ce ce nsity is measured as onnection of a

Hotline:400-6788-333 www.cti-cert.com E-mail:info@cti-cert.com Complaint call:0755-33681700 Complaint E-mail:complaint@cti-cert.com

Report No. : EED32N80457602 Page 19 of 53

7.7 Frequency Stability

Test Requirement:	47 CFR Part 15C Section 15.407 (g)
Test Method:	ANSI C63.10: 2013
Test Setup:	(cit)
	Control Control Computer Power Supply Power For Table RF test System System Instrument Table
	Remark: Offset=Cable loss+ attenuation factor.
Test Procedure:	 1.The EUT was placed inside the environmental test chamber and powered by nominal AC/DC voltage. 2. Turn the EUT on and couple its output to a spectrum analyzer. 3. Turn the EUT off and set the chamber to the highest temperature specified. d. Allow sufficient time (approximately 30 min) for the temperature of the chamber to stabilize. 4. Repeat step 2 and 3 with the temperature chamber set to the lowest temperature. 5. The test chamber was allowed to stabilize at +20 degree C for a minimum of 30 minutes. The supply voltage was then adjusted on the EUT from 85% to 115% and the frequency record.
Limit:	The frequency tolerance shall be maintained within the band of operation frequency over a temperature variation of 0 degrees to 45 degrees C a normal supply voltage, and for a variation in the primary supply voltage from 85% to 115% of the rated supply voltage at a temperature of 20 degrees C.
Test Mode:	Transmitting mode with modulation
Test Results:	Refer to Appendix A

Report No. : EED32N80457602 Page 20 of 53

7.8 Radiated Emission

Test Requirement:	47 CFR Part 15C Section	on 1	5.209 and 1	5.407 (b)		100	
Test Method:	ANSI C63.10 2013		<i>'</i> 2			,	
Test Site:	Measurement Distance:	: 3m	`				
Receiver Setup:	Frequency		Detector			VBW	Remark
	0.009MHz-0.090MHz		Peak	10kH		30kHz	Peak
	0.009MHz-0.090MHz	_	Average	10kH		30kHz	Average
	0.090MHz-0.110MHz		Quasi-pea			30kHz	Quasi-peak
	0.110MHz-0.490MHz		Peak	10kH		30kHz	Peak
	0.110MHz-0.490MHz		Average	10kF		30kHz	Average
	0.490MHz -30MHz		Quasi-pea			30kHz	Quasi-peak
	30MHz-1GHz		Quasi-pea			300kHz	Quasi-peak
	Above 1GHz		Peak	1MF		3MHz	Peak
1.226			Peak	1MF	lZ	10kHz	Average
Limit:			d strength ovolt/meter)	Limit (dBuV/m)	R	temark	Measureme distance (n
	0.009MHz-0.490MHz	240	00/F(kHz)	10,	フ	-	300
	0.490MHz-1.705MHz	240	00/F(kHz)	-		-	30
	1.705MHz-30MHz		30	-		-	30
	30MHz-88MHz		100	40.0	Qu	asi-peak	3
	88MHz-216MHz		150	43.5	Quasi-peak		3
	216MHz-960MHz		200	46.0	Qu	asi-peak	3
	960MHz-1GHz		500	54.0	Quasi-peak		3
	Above 1GHz		500	54.0	A	verage	3
	outside of the 5.15-5. dBm/MHz. (2) For transmitters ope of the 5.15-5.35 GHz ba (3) For transmitters ope outside of the 5.47-5.	eratin and s pera	ig in the 5.2s shall not exc ting in the	5-5.35 GH seed an e.i 5.47-5.72	lz ba i.r.p. 25 G	and: All em of -27 dB GHz band:	nissions outsi 3m/MHz. All emissio
	dBm/MHz. (4) For transmitters ope (i) All emissions shall be above or below the bar above or below the bar above or below the bar edge increasing linearly the band edge, and fro linearly to a level of 27 of Remark: The emission measurements employ frequency bands 9-90 emission limits in these an average detector, the the maximum permitted under any condition of re	e lim nd e nd e y to a om t dBm n lir ying 0kHz e thre ne pe d av	ited to a level dge increasedge, and fra level of 155 MHz above //MHz at the mits shown a CISPR at 110-490klee bands areak field streerage limits	rel of -27 ing linearl rom 25 M 5.6 dBm/M re or belo band edg in the quasi-pea re based ength of a	dBm y to Hz a IHz a w th e. abov ak o n r ny e	n/MHz at 7 10 dBm/N above or b at 5 MHz ne band e ve table detector e e 1000 I measurem emission s	MHz at 25 M below the ba above or beledge increasi are based except for to MHz. Radiat ents employities
	Note: (i) EIRP = ((E*d)^2) / 30						

Report No.: EED32N80457602 Page 21 of 53

where: • E is the field strength in V/m; · d is the measurement distance in meters; • EIRP is the equivalent isotropically radiated power in watts. (ii) Working in dB units, the above equation is equivalent to: $EIRP[dBm] = E[dB\mu V/m] + 20 log(d[meters]) - 104.77$ (iii) Or, if d is 3 meters: $EIRP[dBm] = E[dB\mu V/m] - 95.2$ Test Setup: **RX Antenna** EUT 0.8 m **Ground Plane** Receiver Figure 1. Below 30MHz

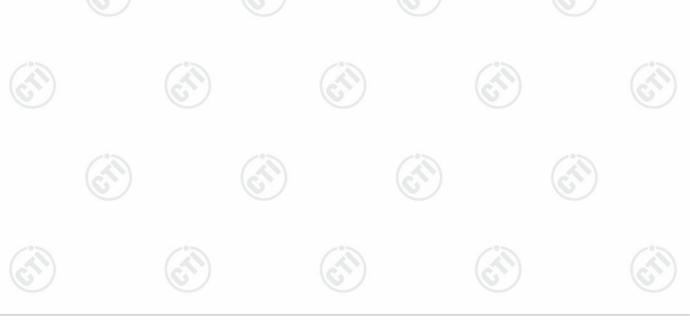
Figure 2. 30MHz to 1GHz

Test Procedure:

Figure 3. Above 1 GHz

1) Below 1G: The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation.

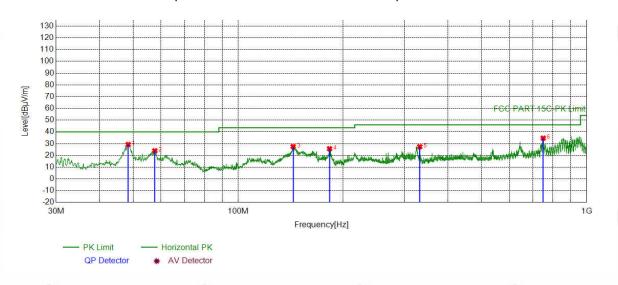
2) Above 1G: The EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation.

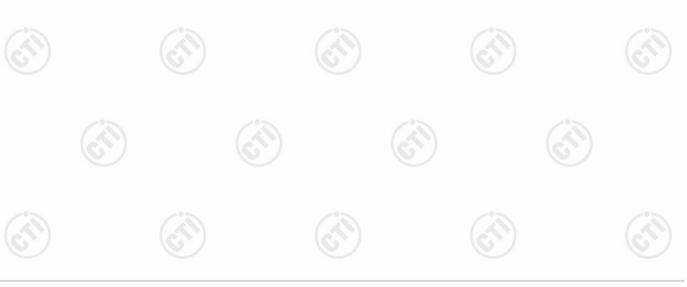

Note: For the radiated emission test above 1GHz:

Place the measurement antenna away from each area of the EUT determined to be a source of emissions at the specified measurement

Report No. : EED32N80457602 Page 22 of 53

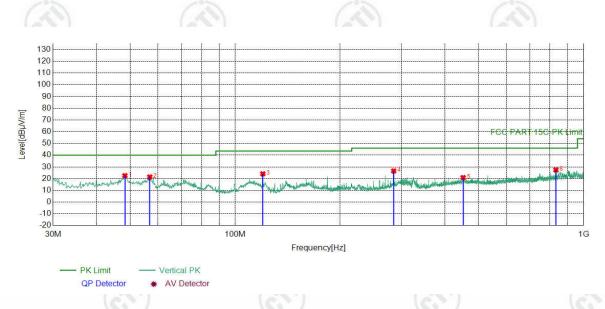
of emissions at each frequency of significant emissions, with polarization oriented for maximum response. The measurement antenna may have to be higher or lower than the EUT, depending on the radiation pattern of the emission and staying aimed at the emission source for receiving the maximum signal. The final measurement antenna elevation shall be that which maximizes the emissions. The measurement antenna elevation for maximum emissions shall be restricted to a range of heights of from 1 m to 4 m above the ground or reference ground plane. b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower. c. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement. d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading. e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode. f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet. g. Test the EUT in the lowest channel, the middle channel and the highest channel h. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is the		
 c. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement. d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading. e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode. f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet. g. Test the EUT in the lowest channel, the middle channel and the highest channel h. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is the 		b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna
and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading. e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode. f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet. g. Test the EUT in the lowest channel, the middle channel and the highest channel h. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is the		c. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the
Bandwidth with Maximum Hold Mode. f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet. g. Test the EUT in the lowest channel, the middle channel and the highest channel h. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is the		and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360
channel h. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is the		f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or
worst case		channel
i. Repeat above procedures until all frequencies measured was complete.		
Test Mode: Transmitting mode with modulation	Test Mode:	
Test Results: Pass	Test Results:	Pass




Report No. : EED32N80457602 Page 23 of 53

Radiated Spurious Emissions test Data: Radiated Emission below 1GHz

Remark: During the test, the Radiates Emission from 30MHz to 1GHz was performed in all modes, only the worst case lower channel of 6Mbps for 802.11a was recorded in the report.



	Suspected List												
	NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark			
	1	48.3348	-17.17	46.44	29.27	40.00	10.73	PASS	Horizontal	PK			
49	2	57.6478	-18.18	42.13	23.95	40.00	16.05	PASS	Horizontal	PK			
j	3	143.7924	-21.88	49.41	27.53	43.50	15.97	PASS	Horizontal	PK			
	4	182.8873	-19.51	45.19	25.68	43.50	17.82	PASS	Horizontal	PK			
	5	331.8942	-14.66	42.03	27.37	46.00	18.63	PASS	Horizontal	PK			
	6	750.5881	-6.99	41.70	34.71	46.00	11.29	PASS	Horizontal	PK			

Suspe	Suspected List												
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark				
1	48.2378	-17.17	39.71	22.54	40.00	17.46	PASS	Vertical	PK				
2	56.8717	-18.08	39.52	21.44	40.00	18.56	PASS	Vertical	PK				
3	120.0250	-20.08	44.18	24.10	43.50	19.40	PASS	Vertical	PK				
4	285.0385	-15.83	42.41	26.58	46.00	19.42	PASS	Vertical	PK				
5	451.1191	-11.71	32.61	20.90	46.00	25.10	PASS	Vertical	PK				
6	832.6583	-6.02	33.43	27.41	46.00	18.59	PASS	Vertical	PK				

Report No.: EED32N80457602 Page 25 of 53

Transmitter Emission above 1GHz

Remark: Through Pre-scan, for 20MHz Occupied Bandwidth, 802.11 a mode was the worst case; for 40MHz Occupied Bandwidth, 802.11 n(HT40) mode was the worst case; for 80MHz Occupied Bandwidth, 802.11 ac(VHT80) mode was the worst case; only the worst case was in the report.

Mode	:		802.11 a Tran	smitting		Channel:		5180 MH	z
NO	Freq. [MHz]	Factor	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	1278.3278	1.08	41.37	42.45	68.20	25.75	PASS	Н	PK
2	2999.4499	6.54	40.00	46.54	68.20	21.66	PASS	Н	PK
3	4099.0099	9.59	38.58	48.17	68.20	20.03	PASS	Н	PK
4	7834.6417	-11.31	53.42	42.11	68.20	26.09	PASS	Н	PK
5	10570.0535	-6.46	52.34	45.88	68.20	22.32	PASS	Н	PK
6	14364.0932	0.25	50.68	50.93	68.20	17.27	PASS	Н	PK
7	1663.3663	2.81	41.43	44.24	68.20	23.96	PASS	V	PK
8	2251.3751	3.99	41.13	45.12	68.20	23.08	PASS	V	PK
9	3084.1584	6.78	41.46	48.24	68.20	19.96	PASS	V	PK
10	7440.7470	-11.40	57.05	45.65	68.20	22.55	PASS	V	PK
11	9662.0831	-7.48	55.03	47.55	68.20	20.65	PASS	V	PK
12	13672.3336	-1.71	50.93	49.22	68.20	18.98	PASS	V	PK

Mode	:		802.11 a Tran	smitting		Channel:		5200 MH	lz
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	2038.5039	4.79	41.30	46.09	68.20	22.11	PASS	Н	PK
2	2654.0154	5.36	42.70	48.06	68.20	20.14	PASS	Н	PK
3	3811.8812	8.59	39.54	48.13	68.20	20.07	PASS	Н	PK
4	7653.5077	-10.88	54.51	43.63	68.20	24.57	PASS	Н	PK
5	9669.5585	-7.50	53.99	46.49	68.20	21.71	PASS	Н	PK
6	13675.2088	-1.71	51.81	50.10	68.20	18.10	PASS	Н	PK
7	1661.1661	2.80	41.96	44.76	68.20	23.44	PASS	V	PK
8	2513.7514	5.17	40.15	45.32	68.20	22.88	PASS	V	PK
9	3378.9879	7.53	39.16	46.69	68.20	21.51	PASS	V	PK
10	7603.4802	-10.55	55.61	45.06	68.20	23.14	PASS	V	PK
11	10395.8198	-6.27	53.43	47.16	68.20	21.04	PASS	V	PK
12	14318.6659	-0.24	51.67	51.43	68.20	16.77	PASS	V	PK

Page	\sim		$\Gamma \cap$
Page	7h	\cap T	'nΚ
ı auc	~~	O.	ω

	Mode	:		802.11 a Tran	smitting		Channel:		5240 MH	lz
	NO	Freq. [MHz]	Factor	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
0	1	1651.8152	2.75	41.98	44.73	68.20	23.47	PASS	Н	PK
Ś	2	2330.0330	4.15	41.42	45.57	68.20	22.63	PASS	Н	PK
2	3	3527.5028	7.45	39.08	46.53	68.20	21.67	PASS	Н	PK
	4	7564.3782	-10.80	54.52	43.72	68.20	24.48	PASS	Н	PK
	5	10239.4120	-6.72	53.89	47.17	68.20	21.03	PASS	Н	PK
	6	14299.6900	-0.44	51.61	51.17	68.20	17.03	PASS	Н	PK
	7	1710.1210	3.06	41.69	44.75	68.20	23.45	PASS	V	PK
	8	2440.0440	4.69	41.18	45.87	68.20	22.33	PASS	V	PK
	9	3389.4389	7.55	39.03	46.58	68.20	21.62	PASS	V	PK
4.01	10	7639.7070	-10.79	54.72	43.93	68.20	24.27	PASS	V	PK
Á	11	11208.9104	-5.80	53.24	47.44	68.20	20.76	PASS	V	PK
و	12	14373.8687	0.36	50.46	50.82	68.20	17.38	PASS	V	PK

Mod	e:		802.11 n(HT2	802.11 n(HT20) Transmitting				5180 MHz	
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	1661.1661	2.80	41.61	44.41	68.20	23.79	PASS	Н	PK
2	2533.5534	5.17	40.89	46.06	68.20	22.14	PASS	Н	PK
3	3486.2486	7.61	39.15	46.76	68.20	21.44	PASS	Н	PK
4	7412.5706	-11.46	55.38	43.92	68.20	24.28	PASS	Н	PK
5	9663.8082	-7.48	54.04	46.56	68.20	21.64	PASS	Н	PK
6	14321.5411	-0.21	51.23	51.02	68.20	17.18	PASS	Н	PK
7	1660.0660	2.79	41.97	44.76	68.20	23.44	PASS	V	PK
8	2426.2926	4.58	40.06	44.64	68.20	23.56	PASS	V	PK
9	3352.5853	7.48	39.52	47.00	68.20	21.20	PASS	V	PK
10	7621.8811	-10.67	54.25	43.58	68.20	24.62	PASS	V	PK
11	9630.4565	-7.40	53.40	46.00	68.20	22.20	PASS	V	PK
12	14401.4701	0.62	50.78	51.40	68.20	16.80	PASS	V	PK

D	27	~ £	EΩ
Page	77	OI	7 1

	1 00		100		F4 1			1.11	
Mode):		802.11 n(HT2	0) Transmitti	ng	Channel:		5200 MH	z
NO	Freq. [MHz]	Factor	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	1774.4774	3.30	41.28	44.58	68.20	23.62	PASS	Н	PK
2	2704.6205	5.57	40.11	45.68	68.20	22.52	PASS	Н	PK
3	3953.7954	9.19	39.51	48.70	68.20	19.50	PASS	Н	PK
4	7600.0300	-10.53	54.03	43.50	68.20	24.70	PASS	Н	PK
5	10255.5128	-6.60	53.36	46.76	68.20	21.44	PASS	Н	PK
6	14399.7450	0.64	51.24	51.88	68.20	16.32	PASS	Н	PK
7	1693.0693	2.98	41.28	44.26	68.20	23.94	PASS	V	PK
8	2344.8845	4.19	40.67	44.86	68.20	23.34	PASS	V	PK
9	3442.2442	7.59	39.14	46.73	68.20	21.47	PASS	V	PK
10	8728.8114	-9.82	53.55	43.73	68.20	24.47	PASS	V	PK
11	12426.8213	-4.08	53.33	49.25	68.20	18.95	PASS	V	PK
12	15893.0947	0.02	51.50	51.52	68.20	16.68	PASS	V	PK

Mode	:		802.11 n(HT2	0) Transmitti	ng	Channel:		5240 MH	lz
NO	Freq. [MHz]	Facto	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	1995.5996	4.60	44.44	49.04	68.20	19.16	PASS	Н	PK
2	2664.4664	5.40	42.12	47.52	68.20	20.68	PASS	Н	PK
3	3962.0462	9.24	38.35	47.59	68.20	20.61	PASS	Н	PK
4	7517.8009	-11.15	54.90	43.75	68.20	24.45	PASS	Н	PK
5	10812.1406	-6.21	53.10	46.89	68.20	21.31	PASS	Н	PK
6	14391.6946	0.55	49.88	50.43	68.20	17.77	PASS	Н	PK
7	1633.1133	2.64	41.04	43.68	68.20	24.52	PASS	V	PK
8	2673.8174	5.44	41.41	46.85	68.20	21.35	PASS	V	PK
9	3954.8955	9.20	38.91	48.11	68.20	20.09	PASS	V	PK
10	9083.6042	-8.62	53.15	44.53	68.20	23.67	PASS	V	PK
11	11981.7491	-4.94	52.83	47.89	68.20	20.31	PASS	V	PK
12	15904.0202	0.12	52.34	52.46	68.20	15.74	PASS	V	PK

Page 28 of 53

Mode	:		802.11 a Tran	smitting		Channel:		5745 MH	z
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	1312.4312	1.66	42.13	43.79	68.20	24.41	PASS	Н	PK
2	1992.2992	5.05	42.19	47.24	68.20	20.96	PASS	Н	PK
3	3200.2200	7.82	40.38	48.20	68.20	20.00	PASS	Н	PK
4	7561.9041	-10.82	54.42	43.60	68.20	24.60	PASS	Н	PK
5	11783.4522	-6.13	54.73	48.60	68.20	19.60	PASS	Н	PK
6	14312.0875	-0.31	51.28	50.97	68.20	17.23	PASS	Н	PK
7	1466.4466	1.89	41.63	43.52	68.20	24.68	PASS	V	PK
8	2419.1419	4.97	40.48	45.45	68.20	22.75	PASS	V	PK
9	3762.9263	8.96	38.92	47.88	68.20	20.32	PASS	V	PK
10	7995.0997	-11.48	56.03	44.55	68.20	23.65	PASS	V	PK
11	10286.0524	-6.36	52.99	46.63	68.20	21.57	PASS	V	PK
12	13675.7117	-1.71	52.92	51.21	68.20	16.99	PASS	V	PK

	Mode:			802.11 a Transmitting			Channel:		5785 MHz	
	NO	Freq. [MHz]	Factor	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
0	1	1446.0946	1.87	40.87	42.74	68.20	25.46	PASS	Н	PK
3	2	2539.6040	5.54	40.79	46.33	68.20	21.87	PASS	Н	PK
	3	3954.8955	10.07	38.64	48.71	68.20	19.49	PASS	Н	PK
	4	7529.7020	-11.06	55.21	44.15	68.20	24.05	PASS	Н	PK
	5	9788.4526	-7.22	54.00	46.78	68.20	21.42	PASS	Н	PK
	6	14394.1263	0.58	50.40	50.98	68.20	17.22	PASS	Н	PK
	7	1435.0935	1.86	41.40	43.26	68.20	24.94	PASS	V	PK
ſ	8	2333.8834	4.69	40.80	45.49	68.20	22.71	PASS	V	PK
Ī	9	3599.5600	7.67	39.85	47.52	68.20	20.68	PASS	V	PK
0	10	7655.4437	-10.90	54.85	43.95	68.20	24.25	PASS	V	PK
4	11	10416.3944	-6.31	53.22	46.91	68.20	21.29	PASS	V	PK
2	12	14410.9941	0.48	49.86	50.34	68.20	17.86	PASS	V	PK

Page	$- \alpha \alpha$		$\Gamma \cap$
Pane	טע	\cap T	'nΚ
ı auc	,	O.	ω

-				/ / /							
	Mode:			802.11 a Transmitting			Channel:		5825 MH	lz	
	NO	Freq. [MHz]	Factor [dB]	r	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
00	1	1601.7602	2.72		41.89	44.61	68.20	23.59	PASS	Н	PK
9	2	2326.1826	4.68		40.60	45.28	68.20	22.92	PASS	Н	PK
9	3	3205.1705	7.85		39.84	47.69	68.20	20.51	PASS	Н	PK
	4	9078.4719	-8.60		53.39	44.79	68.20	23.41	PASS	Н	PK
	5	11860.1240	-5.74		54.28	48.54	68.20	19.66	PASS	Н	PK
	6	14313.6209	-0.29		51.71	51.42	68.20	16.78	PASS	Н	PK
ſ	7	1542.3542	2.25		41.06	43.31	68.20	24.89	PASS	V	PK
Ī	8	2434.5435	5.06		40.80	45.86	68.20	22.34	PASS	V	PK
	9	3290.9791	8.27		39.82	48.09	68.20	20.11	PASS	V	PK
	10	7982.0655	-11.45	,	55.58	44.13	68.20	24.07	PASS	V	PK
<	11	11348.7232	-6.40		54.16	47.76	68.20	20.44	PASS	V	PK
2	12	14302.8869	-0.41		51.20	50.79	68.20	17.41	PASS	V	PK

Mode	Mode:		802.11 n(HT20) Transmitting			Channel:		5745 MHz	
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	1995.0495	5.06	42.49	47.55	68.20	20.65	PASS	Н	PK
2	2664.4664	5.97	42.91	48.88	68.20	19.32	PASS	Н	PK
3	4268.4268	11.50	37.43	48.93	68.20	19.27	PASS	Н	PK
4	9165.1110	-8.05	54.12	46.07	68.20	22.13	PASS	Н	PK
5	11779.6186	-6.11	54.21	48.10	68.20	20.10	PASS	Н	PK
6	13673.4116	-1.71	52.85	51.14	68.20	17.06	PASS	Н	PK
7	1277.7778	1.52	42.82	44.34	68.20	23.86	PASS	V	PK
8	2038.5039	5.29	41.85	47.14	68.20	21.06	PASS	V	PK
9	3343.2343	8.25	39.87	48.12	68.20	20.08	PASS	V	PK
10	8514.9343	-10.58	55.93	45.35	68.20	22.85	PASS	V	PK
11	12476.5651	-4.21	53.41	49.20	68.20	19.00	PASS	V	PK
12	15891.5261	0.00	51.63	51.63	68.20	16.57	PASS	V	PK

Report No.: EED32N80457602 Page 30 of 53

	100				1000		100		
Mode	:		802.11 n(HT2	0) Transmitti	ing	Channel:		5785 MH	lz
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	2124.3124	5.32	44.57	49.89	68.20	18.31	PASS	Н	PK
2	3053.3553	7.41	40.71	48.12	68.20	20.08	PASS	Н	PK
3	4878.9879	13.35	37.06	50.41	68.20	17.79	PASS	Н	PK
4	8364.6576	-10.79	54.26	43.47	68.20	24.73	PASS	Н	PK
5	11236.7825	-6.03	53.78	47.75	68.20	20.45	PASS	Н	PK
6	14407.1605	0.54	51.13	51.67	68.20	16.53	PASS	Н	PK
7	1597.9098	2.68	44.37	47.05	68.20	21.15	PASS	V	PK
8	2131.4631	5.23	41.79	47.02	68.20	21.18	PASS	V	PK
9	3402.0902	8.15	39.65	47.80	68.20	20.40	PASS	V	PK
10	7640.8761	-10.80	55.34	44.54	68.20	23.66	PASS	V	PK
11	11265.9177	-6.28	53.49	47.21	68.20	20.99	PASS	V	PK
12	14328.1885	-0.14	50.75	50.61	68.20	17.59	PASS	V	PK

N	Mode:			802.11 n(HT20) Transmitting			Channel:		5825 MHz	
١	10	Freq. [MHz]	Facto [dB]	r Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
	1	1281.6282	1.54	41.77	43.31	68.20	24.89	PASS	Н	PK
0	2	1918.5919	4.79	41.14	45.93	68.20	22.27	PASS	Н	PK
9	3	3739.8240	8.71	38.83	47.54	68.20	20.66	PASS	Н	PK
2	4	8359.2906	-10.81	53.70	42.89	68.20	25.31	PASS	Н	PK
	5	11755.8504	-6.01	53.77	47.76	68.20	20.44	PASS	Н	PK
	6	14419.4280	0.36	51.63	51.99	68.20	16.21	PASS	Н	PK
	7	1772.2772	3.71	40.69	44.40	68.20	23.80	PASS	V	PK
	8	2541.8042	5.55	40.61	46.16	68.20	22.04	PASS	V	PK
	9	3986.7987	10.29	40.66	50.95	68.20	17.25	PASS	V	PK
	10	8527.9685	-10.57	55.59	45.02	68.20	23.18	PASS	V	PK
	11	11219.1479	-5.88	53.37	47.49	68.20	20.71	PASS	V	PK
<u> </u>	12	14405.6270	0.56	49.60	50.16	68.20	18.04	PASS	V	PK

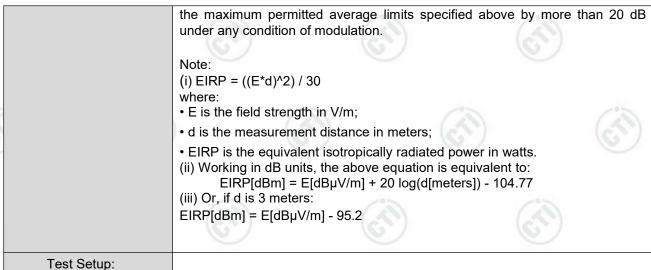
Note

1) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level =Receiver Reading - Correct Factor

Correct Factor = Preamplifier Factor - Antenna Factor - Cable Factor

2) Scan from 9kHz to 40GHz, the disturbance above 18GHz and below 30MHz was very low, and the above harmonics were the highest point could be found when testing, so only the above harmonics had been displayed. The amplitude of spurious emissions from the radiator which are attenuated more than 20dB below the limit need not be reported.


Report No. : EED32N80457602 Page 31 of 53

7.9 Radiated Emission which fall in the restricted bands

1.35.35.	15.5		10.0			10.4	4
Test Requirement:	47 CFR Part 15C Sect	ion 1	5.209 and 1	5.407 (b)			
Test Method:	ANSI C63.10 2013						
Test Site:	Measurement Distance	e: 3m	n (Semi-Aned	choic Chai	nbe	r)	-5%
Receiver Setup:	Frequency		Detector	RBV	V	VBW	Remark
	0.009MHz-0.090MHz		Peak	10kl	Hz 30kHz		Peak
	0.009MHz-0.090MH	łz	Average	10kH	Ηz	30kHz	Average
	0.090MHz-0.110MH	Ηz	Quasi-pea	k 10kH	Ηz	30kHz	Quasi-peak
	0.110MHz-0.490MH	Ιz	Peak	10kH	Ηz	30kHz	Peak
	0.110MHz-0.490MH	łz	Average	10kH	Ηz	30kHz	Average
	0.490MHz -30MHz	<u>z</u>	Quasi-pea	k 10kH	Ηz	30kHz	Quasi-peak
	30MHz-1GHz		Quasi-pea	k 100 k	Hz	300kHz	Quasi-peak
	Above 1GHz		Peak	1MF	lz	3MHz	Peak
	Above 1G112	<u> </u>	Peak	1MH	lz	10kHz	Average
Limit:	Frequency		ld strength	Limit (dBuV/m)	R	Remark	Measurement distance (m)
	0.009MHz-0.490MHz	24	00/F(kHz)	-		-(65)	300
	0.490MHz-1.705MHz	240	000/F(kHz)	-		-	30
	1.705MHz-30MHz		30	-		-	30
	30MHz-88MHz		100	40.0	Qu	asi-peak	3
	88MHz-216MHz	(°)	150	43.5	Qu	asi-peak	3
	216MHz-960MHz		200	46.0	Qu	asi-peak	3
	960MHz-1GHz		500	54.0	Qu	asi-peak	3
	Above 1GHz		500	54.0	Α	verage	3
	*(1) For transmitters outside of the 5.15-5 dBm/MHz. (2) For transmitters op of the 5.15-5.35 GHz b (3) For transmitters of outside of the 5.47-5 dBm/MHz. (4) For transmitters op (i) All emissions shall be above or below the beabove or belo	eratiioand ppera 5.725 eratiio end for some lire de li	GHz band ng in the 5.2 shall not excepting in the 5.7 mited to a level of 18 5 MHz about a level of 18 5 MHz at the simits shown a CISPR z, 110-490k ree bands a	shall not 5-5.35 GH seed an e. 5.47-5.72 I shall not 25-5.85 G/el of -27 sing linearly from 25 M 5.6 dBm/N ve or belowed band edger in the quasi-per Hz and a re based	t ex Iz ba Iz ba I.r.p. Iz control Iz	and: All em of -27 dB GHz band: aceed an oand: n/MHz at 7 10 dBm/N above or b at 5 MHz ne band e ve table detector e ve 1000 I measurem	e.i.r.p. of -27 hissions outside m/MHz. All emissions e.i.r.p. of -27 hissions outside m/MHz. All emissions e.i.r.p. of -27 hissions outside m/MHz or more mediate to more med

Report No.: EED32N80457602 Page 32 of 53

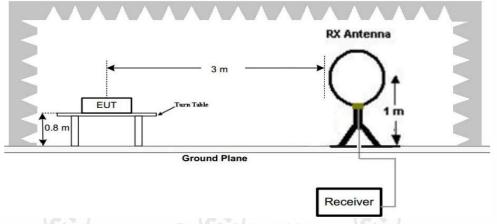
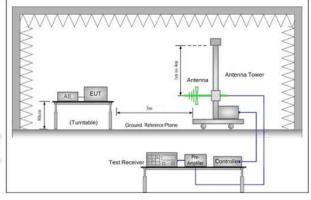



Figure 1. Below 30MHz

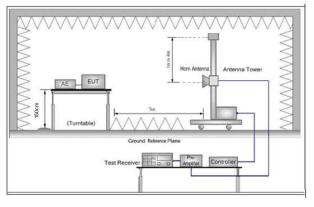
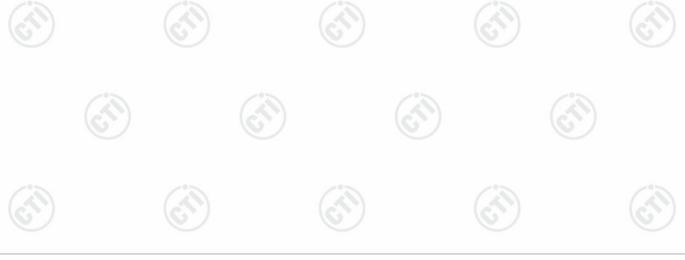


Figure 2. 30MHz to 1GHz

Figure 3. Above 1 GHz

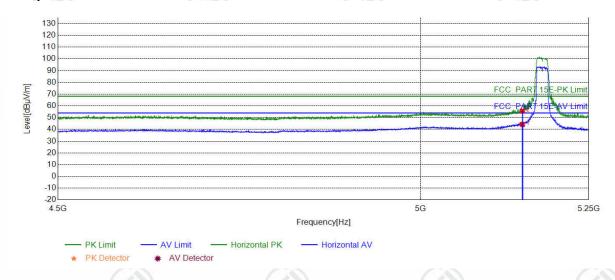
Test Procedure:


- 1) Below 1G: The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation.
 - 2) Above 1G: The EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation.

Note: For the radiated emission test above 1GHz:

Report No.: EED32N80457602 Page 33 of 53

Г		
- N.		Place the measurement antenna away from each area of the EUT determined to be a source of emissions at the specified measurement distance, while keeping the measurement antenna aimed at the source of emissions at each frequency of significant emissions, with polarization oriented for maximum response. The measurement antenna may have to be higher or lower than the EUT, depending on the radiation pattern of the emission and staying aimed at the emission source for receiving the maximum signal. The final measurement antenna elevation shall be that which maximizes the emissions. The measurement antenna elevation for maximum emissions shall be restricted to a range of heights of from 1 m to 4 m above the ground or reference ground plane.
		k. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
2.4		I. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
		m. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
		n. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
		o. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.
		p. Test the EUT in the lowest channel, the Highest channel
		q. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is the worst case.
		r. Repeat above procedures until all frequencies measured was complete.
	Test Mode:	Transmitting mode with modulation
	Test Results:	Pass


Report No. : EED32N80457602 Page 34 of 53

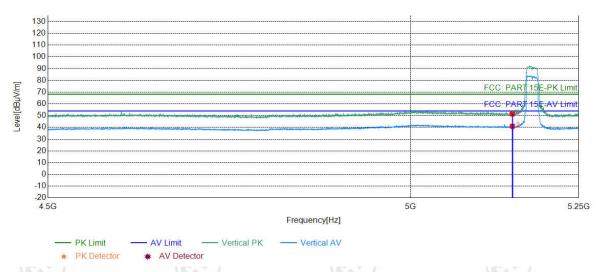
Remark: During the test, the Radiates Emission from 1GHz to 40GHz was performed in all modes, only the worst case was in the report.

Test Data:

Mode:	802.11 a Transmitting	Channel:	5180MHz
Remark:			

Test Graph

S	uspec	uspected List											
	NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark			
	1	5150.0000	12.36	31.84	44.20	54.00	9.80	PASS	Horizontal	AV			
	2	5150.0000	12.36	43.43	55.79	68.20	12.41	PASS	Horizontal	PK			

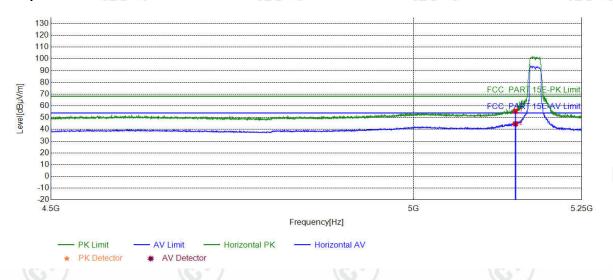


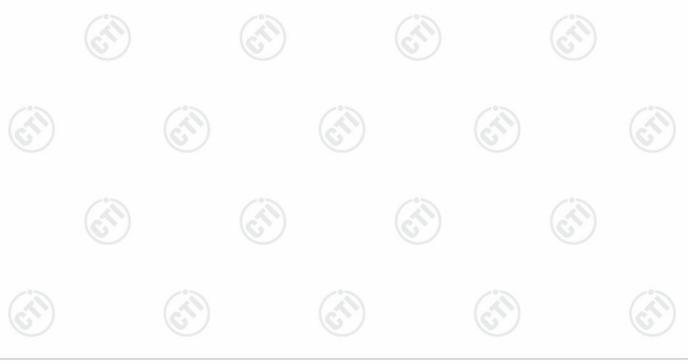
D	$^{\circ}$		$\Gamma \cap$
Page	~~	α	7 1
I auc	\mathbf{u}	O.	ω

Mode: 802.11 a Transmitting		Channel:	5180MHz
Remark:			

Test Graph

Suspec	Suspected List								
 NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	5150.0000	12.36	39.09	51.45	68.20	16.75	PASS	Vertical	PK
2	5150.0000	12.36	28.61	40.97	54.00	13.03	PASS	Vertical	AV

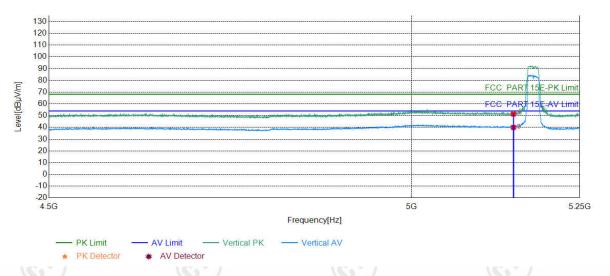


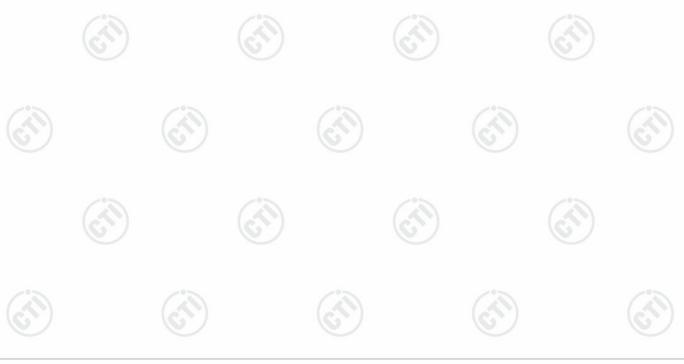

Report No.: EED32N80457602 Page 36 of 53

Mode:	802.11 n(HT20) Transmitting	Channel:	5180MHz
Remark:			

Test Graph

Suspe	cted List								
 NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	5150.0000	12.36	43.15	55.51	68.20	12.69	PASS	Horizontal	PK
2	5150.0000	12.36	32.33	44.69	54.00	9.31	PASS	Horizontal	AV

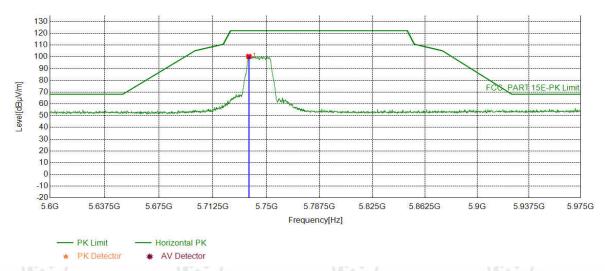


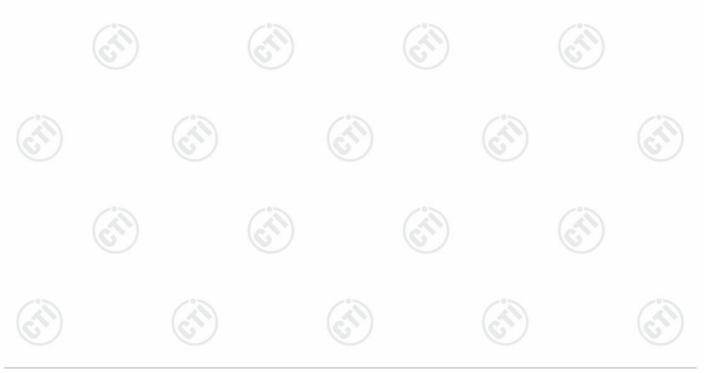

Report No.: EED32N80457602

D	\sim		$\Gamma \cap$
Page	٦,	α	つく

Mode:	802.11 n(HT20) Transmitting	Channel:	5180MHz
Remark:			

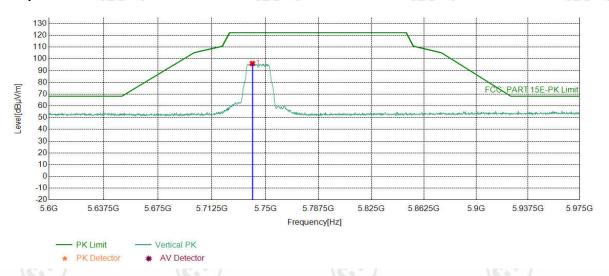
Suspe	cted List								
 NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	5150.0000	12.36	39.01	51.37	68.20	16.83	PASS	Vertical	PK
2	5150.0000	12.36	27.63	39.99	54.00	14.01	PASS	Vertical	AV

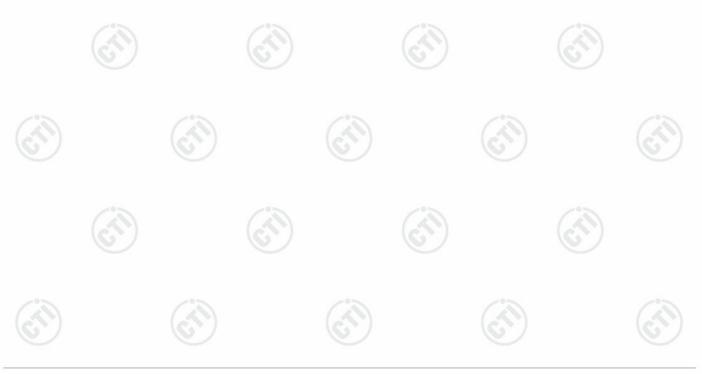



Report No.: EED32N80457602

Page 38 of 53

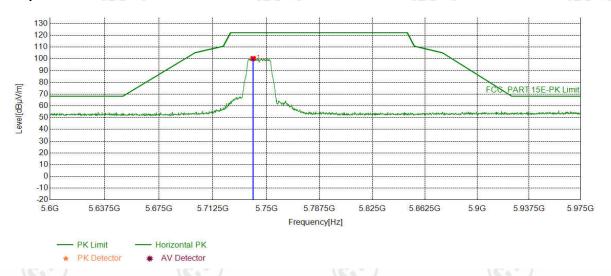
Mode:	802.11 a Transmitting	Channel:	5745MHz
Remark:			

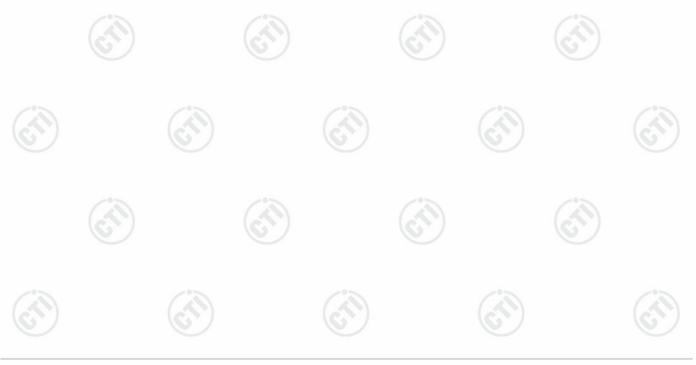

	Suspected List									
2.0	NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
9	1	5737.6938	13.83	86.52	100.35	122.20	21.85	PASS	Horizontal	PK



Report No. : EED32N80457602 Page 39 of 53

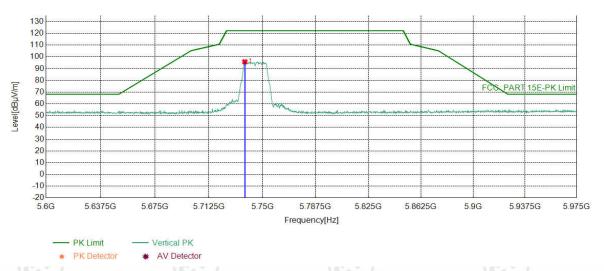
Mode:	802.11 a Transmitting	Channel:	5745MHz
Remark:			

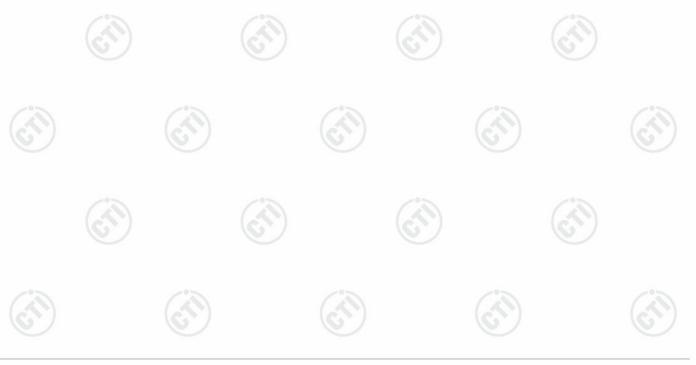

Suspe	Suspected List								
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	5740.8829	13.84	82.24	96.08	122.20	26.12	PASS	Vertical	PK



Report No.: EED32N80457602 Page 40 of 53

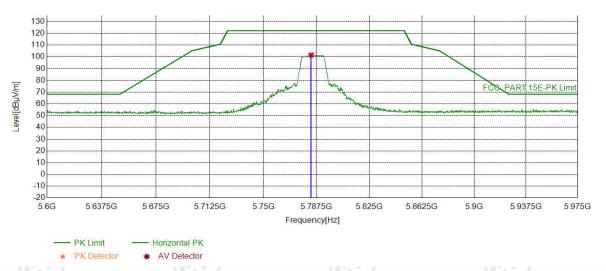
Mode:	802.11 n(HT20) Transmitting	Channel:	5745MHz
Remark:			


	Suspected List									
2.0	NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
•	1	5740.6953	13.84	86.47	100.31	122.20	21.89	PASS	Horizontal	PK



Report No. : EED32N80457602 Page 41 of 53

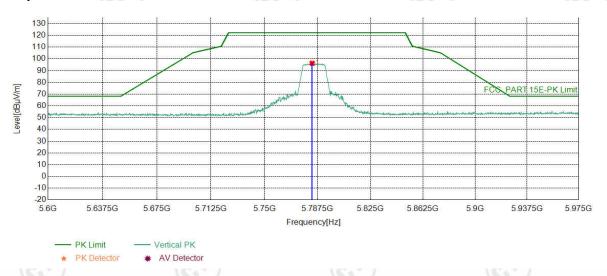
Mode:	802.11 n(HT20) Transmitting	Channel:	5745MHz
Remark:			

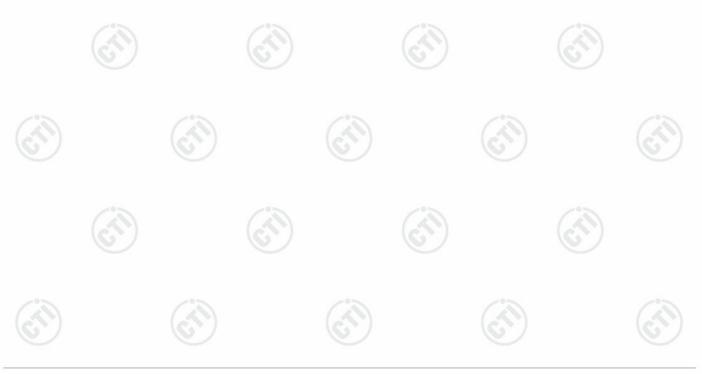

Suspe	Suspected List								
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	5737.6938	13.83	81.97	95.80	122.20	26.40	PASS	Vertical	PK



Report No. : EED32N80457602 Page 42 of 53

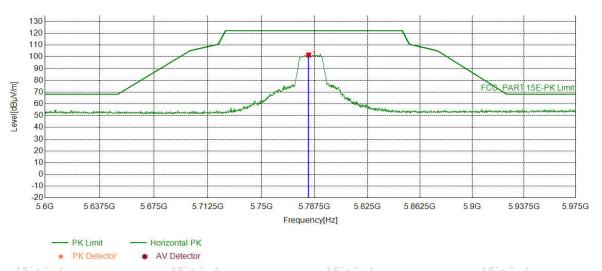
Mode:	802.11 a Transmitting	Channel:	5785MHz
Remark:			


	Suspected List									
	NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
•	1	5783.6543	13.91	87.67	101.58	122.20	20.62	PASS	Horizontal	PK



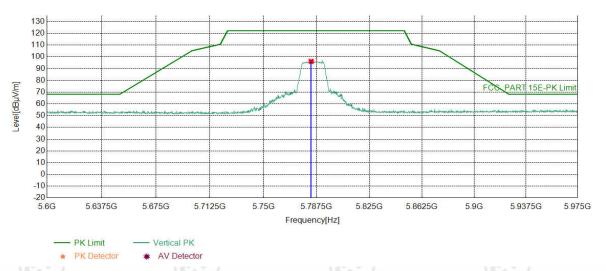
Report No. : EED32N80457602 Page 43 of 53

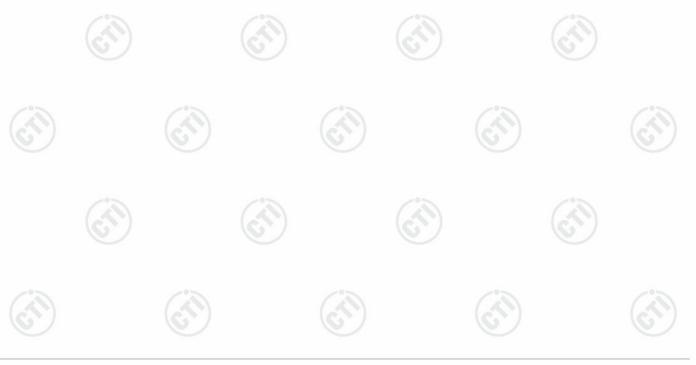
Mode: 802.11 a Transmitting		Channel:	5785MHz
Remark:			


S	Suspected List									
1	ОИ	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
	1	5783.6543	13.91	82.37	96.28	122.20	25.92	PASS	Vertical	PK

Report No.: EED32N80457602 Page 44 of 53

Mode:	802.11 n(HT20) Transmitting	Channel:	5785MHz
Remark:			

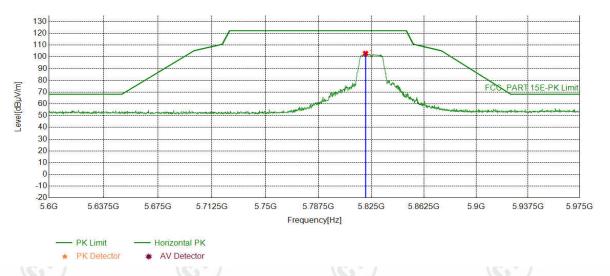

Suspe	Suspected List									
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark	
1	5783.2791	13.91	87.77	101.68	122.20	20.52	PASS	Horizontal	PK	



Report No.: EED32N80457602 Page 45 of 53

Mode:	802.11 n(HT20) Transmitting	Channel:	5785MHz
Remark:			

	Suspe	Suspected List									
	NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark	
9	1	5783.6543	13.91	82.26	96.17	122.20	26.03	PASS	Vertical	PK	

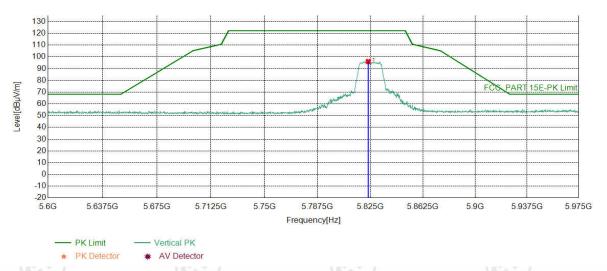



Report No.: EED32N80457602

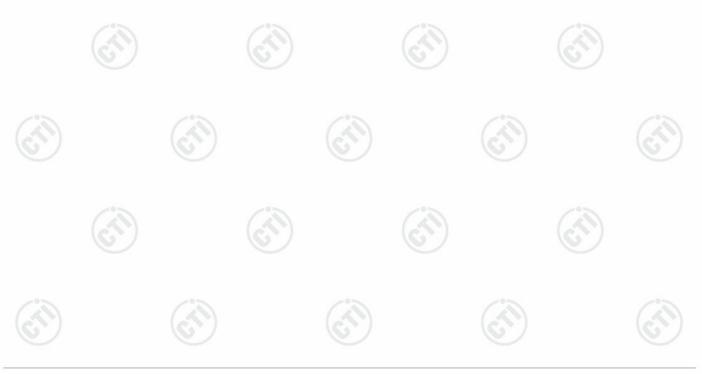
Mode:	802.11 a Transmitting	Channel:	5825MHz
Remark:			

Test Graph

	Suspec	ted List								
	NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
9	1	5820.7979	14.02	88.92	102.94	122.20	19.26	PASS	Horizontal	PK

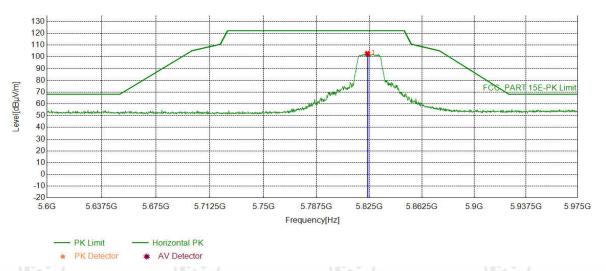


Page 46 of 53



Report No.: EED32N80457602 Page 47 of 53

Mode:	802.11 a Transmitting	Channel:	5825MHz
Remark:			

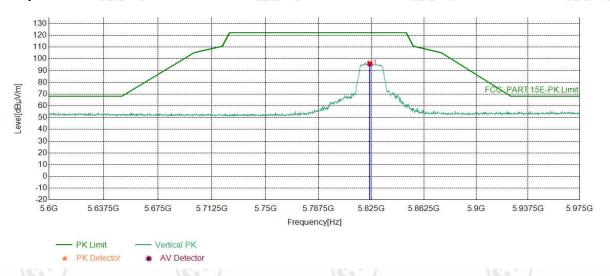

	Suspected List									
	NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
)	1	5823.4242	14.03	82.03	96.06	122.20	26.14	PASS	Vertical	PK



Report No. : EED32N80457602 Page 48 of 53

Mode:	802.11 n(HT20) Transmitting	Channel:	5825MHz
Remark:			

Suspected List									
 NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	5823.6118	14.03	88.73	102.76	122.20	19.44	PASS	Horizontal	PK



Report No. : EED32N80457602 Page 49 of 53

Mode:	802.11 n(HT20) Transmitting	Channel:	5825MHz
Remark:			

Test Graph

S	Suspected List									
1	NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
	1	5823.7994	14.03	81.86	95.89	122.20	26.31	PASS	Vertical	PK

Note:

1) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level =Receiver Reading - Correct Factor

Correct Factor = Preamplifier Factor - Antenna Factor - Cable Factor

2) Scan from 1GHz to 25GHz, the disturbance above 13GHz was very low, and the above harmonics were the highest point could be found when testing, so only the above harmonics had been displayed. The amplitude of spurious emissions from the radiator which are attenuated more than 20dB below the limit need not be reported.

8 Appendix A

Refer to Appendix: 5G WIFI of EED32N80457602.

