RF TEST REPORT **Applicant** Huawei Technologies Co., Ltd. FCC ID QISAMN-LX3B **Product** Smart Phone Model AMN-LX3X **Report No.** R1904H0063-R6 Issue Date May 6, 2019 TA Technology (Shanghai) Co., Ltd. tested the above equipment in accordance with the requirements in **FCC CFR47 Part 15C (2018)**. The test results show that the equipment tested is capable of demonstrating compliance with the requirements as documented in this report. Performed by: Peng Tao Peng las Approved by: Kai Xu # TA Technology (Shanghai) Co., Ltd. No.145, Jintang Rd, Tangzhen Industry Park, Pudong Shanghai, China TEL: +86-021-50791141/2/3 FAX: +86-021-50791141/2/3-8000 # **TABLE OF CONTENT** | 1. | Test | t Laboratory | ∠ | |----|------|---|----| | • | l.1. | Notes of the test report | 4 | | | 1.2. | Test facility | 4 | | | 1.3. | Testing Location | 5 | | 2. | Gen | neral Description of Equipment under Test | 6 | | 3. | | olied Standards | | | 4. | Test | t Configuration | | | 5. | | t Case Results | | | į | 5.1. | Maximum output power | 10 | | į | | 6dB Bandwidth | | | į | | Band Edge | | | į | 5.4. | Power Spectral Density | 18 | | į | 5.5. | Spurious RF Conducted Emissions | 22 | | į | 5.6. | Unwanted Emission | | | į | 5.7. | Conducted Emission | 62 | | 6. | Mair | n Test Instruments | 65 | # **Summary of measurement results** | Number | Summary of measurements of results | Clause in FCC rules | Verdict | | |---|------------------------------------|-------------------------|---------|--| | 1 | Maximum conducted output power | 15.247(b)(3) | PASS | | | 2 | 6 dB bandwidth | 15.247(a)(2) | PASS | | | 3 | Power spectral density | 15.247(e) | PASS | | | 4 Band Edge | | 15.247(d) | PASS | | | 5 Spurious RF Conducted Emissions | | 15.247(d) | PASS | | | 6 | Unwanted Emissions | 15.247(d),15.205,15.209 | PASS | | | 7 | Conducted Emissions | 15.207 | PASS | | | Date of Testing: April 11, 2019~ April 24, 2019 | | | | | FCC RF Test Report 1. Test Laboratory 1.1. Notes of the test report This report shall not be reproduced in full or partial, without the written approval of **TA technology** (shanghai) co., Ltd. The results documented in this report apply only to the tested sample, under the conditions and modes of operation as described herein .Measurement Uncertainties were not taken into account and are published for informational purposes only. This report is written to support regulatory compliance of the applicable standards stated above. 1.2. Test facility CNAS (accreditation number: L2264) TA Technology (Shanghai) Co., Ltd. has obtained the accreditation of China National Accreditation Service for Conformity Assessment (CNAS). FCC (Designation number: CN1179, Test Firm Registration Number: 446626) TA Technology (Shanghai) Co., Ltd. has been listed on the US Federal Communications Commission list of test facilities recognized to perform electromagnetic emissions measurements. IC (recognition number is 8510A) TA Technology (Shanghai) Co., Ltd. has been listed by industry Canada to perform electromagnetic emission measurement. VCCI (recognition number is C-4595, T-2154, R-4113, G-10766) TA Technology (Shanghai) Co., Ltd. has been listed by industry Japan to perform electromagnetic emission measurement. A2LA (Certificate Number: 3857.01) TA Technology (Shanghai) Co., Ltd. has been listed by American Association for Laboratory Accreditation to perform electromagnetic emission measurement. # 1.3. Testing Location TA Technology (Shanghai) Co., Ltd. Company: Address: No.145, Jintang Rd, Tangzhen Industry Park, Pudong City: Shanghai Post code: 201201 Country: P. R. China Contact: Xu Kai Telephone: +86-021-50791141/2/3 +86-021-50791141/2/3-8000 Fax: Website: http://www.ta-shanghai.com E-mail: xukai@ta-shanghai.com # 2. General Description of Equipment under Test ## **Client Information** | Applicant | Huawei Technologies Co., Ltd. | | | |----------------------|---|--|--| | Applicant address | Administration Building, Headquarters of Huawei Technologies Co., | | | | Applicant address | Ltd., Bantian, Longgang District, Shenzhen, 518129, P.R.China. | | | | Manufacturer | Huawei Technologies Co., Ltd. | | | | Manufacturer address | Administration Building, Headquarters of Huawei Technologies Co., | | | | Manufacturer address | Ltd., Bantian, Longgang District, Shenzhen, 518129, P.R.China. | | | # **General information** | EUT Description | | | | | |------------------------------|---|--|--|--| | Model | AMN-LX3X | | | | | SN: | BKLNU19330100307 | | | | | Hardware Version | HL1AMNMY | | | | | Software Version | 9.0.1.75(C900E31R1P2) | | | | | Power Supply | Battery/AC adapter | | | | | Antenna Type | Internal Antenna | | | | | Antenna Connector | A permanently attached antenna (meet with the standard FCC Part 15.203 requirement) | | | | | Antenna Gain | -1.00 dBi | | | | | additional beamforming gain | NA | | | | | Test Mode | 802.11b
802.11g, 802.11n(HT20/HT40); | | | | | Modulation Type | 802.11b: DSSS;
802.11g/n(HT20/HT40): OFDM | | | | | Max. Conducted Power | Wi-Fi 2.4G :17.24 dBm | | | | | Operating Frequency Range(s) | 802.11b/g/n(HT20): 2412 ~ 2462 MHz
802.11n(HT40): 2422 ~ 2452 MHz | | | | | | EUT Accessory | | | | | Adapter 1 | Manufacturer: Huawei Technologies Co., Ltd. (SHENZHEN HUNTKEY ELECTRIC CO., LTD.) Model: HW-050100U01 | | | | | Adapter 2 | Manufacturer: Huawei Technologies Co., Ltd. (HUIZHOU BYD ELECTRONIC CO., LTD.) Model: HW-050100U01 | | | | | Adapter 3 | Manufacturer: Huawei Technologies Co., Ltd. | | | | TA Technology (Shanghai) Co., Ltd. TA-MB-04-005R Page 6 of 65 FCC RF Test Report No: R1904H0063-R6 | | · | |-------------|---| | | (Dongguan Phitek Electronics Co., Ltd.) | | | Model: HW-050100U01 | | | Manufacturer: Huawei Technologies Co., Ltd. | | Battery 1 | (SCUD (Fujian) Electronics Co., LTD.) | | | Model: HB405979ECW | | | Manufacturer: Huawei Technologies Co., Ltd. | | Battery 2 | (Desay Battery Electronic Co.,LTD) | | | Model: HB405979ECW | | | Manufacturer: Huawei Technologies Co., Ltd. | | Battery 3 | (Sunwoda Electronic Co.,LTD) | | | Model: HB405979ECW | | Fornbone 1 | Manufacturer: Jiangxi Lianchuang Hongsheng Electronic Co. ,LTD. | | Earphone 1 | Model: MEND1532B528A02 | | Earphone 2 | Manufacturer: FOXCONN INTERCONNECT TECHNOLOGY LIMITED | | | Model: EPAB542-2WH05-DH | | Earphone 3 | Manufacturer: Boluo County Quancheng Electronic Co.,ltd. | | | Model: 1293-3283-3.5MM-322 | | USB Cable 1 | Manufacturer: HONGLIN TECHNOLOGY CO.,LTD. | | USB Cable 1 | Model: 130-26654 | | USB Cable 2 | Manufacturer: Dongguan Ming Ji Electronics Co.,Ltd. | | USB Cable 2 | Model: 203-0786-0 | | USB Cable 3 | Manufacturer: Luxshare Precision industry Co., Ltd. | | USB Cable 3 | Model: L99U2013-CS-H | | USB Cable 4 | Manufacturer: NingBo Broad Telecommunication Co., Ltd. | | USD Cable 4 | Model: WA0007 | | | | Note: The information of the EUT is declared by the manufacturer. ^{2.} There are more than one USB Cable, Battery, Earphone and Adapter, each one should be applied throughout the compliance test respectively, however, only the worst case (USB cable 1, Battery 1, Earphone3, Adapter 3) will be recorded in this report. 3. Applied Standards According to the specifications of the manufacturer, it must comply with the requirements of the following standards: ## **Test standards** - FCC CFR47 Part 15C (2018) Radio Frequency Devices - · ANSI C63.10 (2013) - KDB 558074 D01 15.247 Meas Guidance v05r02 # 4. Test Configuration #### **Test Mode** The EUT has been associated with peripherals and configuration operated in a manner tended to maximize its emission characteristics in a typical application. The radiated emission was measured in the following position: EUT stand-up position (Z axis), lie-down position (X, Y axis). The worst emission was found in lie-down position (X axis) and the loop antenna is vertical, the others are vertical and horizontal. and the worst case was recorded. In order to find the worst case condition, Pre-tests are needed at the presence of different data rate. Preliminary tests have been done on all the configuration for confirming worst case. Data rate below means worst-case rate of each test item. Worst-case data rates are shown as following table. | Band | Data Rate | |--------------|-----------| | 802.11b | 1 Mbps | | 802.11g | 6 Mbps | | 802.11n HT20 | MCS0 | | 802.11n HT40 | MCS0 | 5. Test Case Results # 5.1. Maximum output power #### Ambient condition | Temperature Relative humidity | | Pressure | | |-------------------------------|---------|----------|--| | 23°C ~25°C | 45%~50% | 101.5kPa | | #### **Methods of Measurement** During the process of the testing, The EUT was connected to Average Power meter with a known loss. The EUT is max power transmission with proper modulation. The signal transmission is continuous. #### Limits Rule Part 15.247 (b) (3) specifies that "For systems using digital modulation in the 902–928 MHz, 2400–2483.5 MHz: 1 Watt." | Average Output Power | ≤ 1W (30dBm) | |----------------------|--------------| |----------------------|--------------| # **Measurement Uncertainty** The assessed measurement uncertainty to ensure 95% confidence level for the normal distribution is with the coverage factor k = 2, U = 0.44 dB. **Test Results** | Single Antenna Power Index | | | | | | |----------------------------|-----|------|------|--|--| | Packet Type | CH1 | CH6 | CH11 | | | | 802.11b | 18 | 18 | 18 | | | | 802.11g | 13 | 17 | 13 | | | | 802.11n HT20 | 13 | 16.5 | 13 | | | | Packet Type | СНЗ | CH6 | CH9 | | | | 802.11n HT40 | 14 | 14 | 11 | | | | Band | T _{on} (ms) | T _(on+off) (ms) | Duty cycle | Duty cycle correction
Factor(dB) | |
--|----------------------|----------------------------|------------|-------------------------------------|--| | 802.11b | 8.38 | 8.42 | 1.00 | 0.00 | | | 802.11g | 1.39 | 1.43 | 0.97 | 0.13 | | | 802.11n HT20 | 1.30 | 1.34 | 0.97 | 0.14 | | | 802.11n HT40 | 2.44 | 4.14 | 0.59 | 2.30 | | | Note: when Duty cycle>0.98, Duty cycle correction Factor not required. | | | | | | | Network
Standards | Carrier frequency
(MHz) | Average Power
Measured
(dBm) | Average Power with duty factor (dBm) | Limit
(dBm) | Conclusion | |----------------------|----------------------------|------------------------------------|--------------------------------------|----------------|------------| | | 2412 | 17.24 | 17.24 | 30 | PASS | | 802.11b | 2437 | 17.21 | 17.21 | 30 | PASS | | | 2462 | 17.22 | 17.22 | 30 | PASS | | | 2412 | 12.03 | 12.16 | 30 | PASS | | 802.11g | 2437 | 15.86 | 15.99 | 30 | PASS | | | 2462 | 12.11 | 12.24 | 30 | PASS | | | 2412 | 12.07 | 12.21 | 30 | PASS | | 802.11n
HT20 | 2437 | 15.48 | 15.62 | 30 | PASS | | 11120 | 2462 | 12.01 | 12.15 | 30 | PASS | | | 2422 | 10.81 | 13.11 | 30 | PASS | | 802.11n
HT40 | 2437 | 10.62 | 12.92 | 30 | PASS | | 11140 | 2452 | 7.83 | 10.13 | 30 | PASS | Note: Average Power with duty factor = Average Power Measured +Duty cycle correction factor 5.2. 6dB Bandwidth #### **Ambient condition** | Temperature | Relative humidity | Pressure | | |-------------|-------------------|----------|--| | 23°C ~25°C | 45%~50% | 101.5kPa | | ### **Method of Measurement** The EUT was connected to the spectrum analyzer through an external attenuator (20dB) and a known loss cable. RBW is set to 100 kHz; VBW is set to 300 kHz on spectrum analyzer. Dector=Peak, Trace mode=max hold. ## **Test Setup** #### Limits Rule Part 15.247 (a) (2) specifies that "Systems using digital modulation techniques may operate in the 902–928 MHz, 2400–2483.5 MHz bands. The minimum 6 dB bandwidth shall be at least 500 kHz." | minimum 6 dB bandwidth | ≥ 500 kHz | |----------------------------|-----------| | Tillillinani o ab banawati | = 500 KHZ | # **Measurement Uncertainty** The assessed measurement uncertainty to ensure 95% confidence level for the normal distribution is with the coverage factor k = 2, U = 936 Hz. **Test Results:** | Network
Standards | Carrier frequency
(MHz) | 99%
bandwidth
(MHz) | Minimum 6 dB
bandwidth
(MHz) | Limit
(kHz) | Conclusion | |----------------------|----------------------------|---------------------------|------------------------------------|----------------|------------| | | 2412 | 12.687 | 8.086 | 500 | PASS | | 802.11b | 2437 | 13.093 | 8.064 | 500 | PASS | | | 2462 | 12.715 | 8.564 | 500 | PASS | | | 2412 | 16.452 | 15.78 | 500 | PASS | | 802.11g | 2437 | 16.543 | 16.36 | 500 | PASS | | | 2462 | 16.417 | 15.72 | 500 | PASS | | | 2412 | 17.615 | 16.38 | 500 | PASS | | 802.11n
HT20 | 2437 | 17.739 | 17.62 | 500 | PASS | | 11120 | 2462 | 17.591 | 16.37 | 500 | PASS | | | 2422 | 35.869 | 33.91 | 500 | PASS | | 802.11n
HT40 | 2437 | 36.269 | 35.73 | 500 | PASS | | | 2452 | 36.155 | 35.67 | 500 | PASS | 5.3. Band Edge #### **Ambient condition** | Temperature | Relative humidity | Pressure | |-------------|-------------------|----------| | 23°C ~25°C | 45%~50% | 101.5kPa | Report No: R1904H0063-R6 #### **Method of Measurement** The EUT was connected to the spectrum analyzer through an external attenuator (20dB) and a known loss cable the band edge of the lowest and highest channels were measured. The peak detector is used and RBW is set to 100 kHz and VBW is set to 300 kHz on spectrum analyzer. Spectrum analyzer plots are included on the following pages. ## **Test Setup** #### Limits Rule Part 15.247(d) specifies that "In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits." If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB." ## **Measurement Uncertainty** The assessed measurement uncertainty to ensure 95% confidence level for the normal distribution is with the coverage factor k = 1.96. | Frequency | Uncertainty | |-----------|-------------| | 2GHz-3GHz | 1.407 dB | TA Technology (Shanghai) Co., Ltd. FCC RF Test Report No: R1904H0063-R6 # 5.4. Power Spectral Density #### Ambient condition | Temperature | Relative humidity | Pressure | |-------------|-------------------|----------| | 23°C ~25°C | 45%~50% | 101.5kPa | Report No: R1904H0063-R6 ## **Method of Measurement** During the process of the testing, The EUT was connected to Spectrum Analyzer with a known loss. The EUT is max power transmission with proper modulation. Method AVGPSD-2 in KDB558074 D01 was used for this test. ## **Test setup** #### Limits Rule Part 15.247(e) specifies that" For digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission. " | Limits | ≤ 8 dBm / 3kHz | |--------|----------------| |--------|----------------| # **Measurement Uncertainty** The assessed measurement uncertainty to ensure 95% confidence level for the normal distribution is with the coverage factor k = 2, U = 0.75dB. # **Test Results:** | Network
Standards | Channel
Number | Read Value
(dBm /
3kHz) | Power Spectral
Density
(dBm / 3kHz) | Limit
(dBm / 3kHz) | Conclusion | |----------------------|-------------------|-------------------------------|---|-----------------------|------------| | | 1 | -14.89 | -14.89 | 8 | PASS | | 802.11b | 6 | -14.71 | -14.71 | 8 | PASS | | | 11 | -14.81 | -14.81 | 8 | PASS | | | 1 | -22.00 | -21.87 | 8 | PASS | | 802.11g | 6 | -19.03 | -18.90 | 8 | PASS | | | 11 | -22.73 | -22.60 | 8 | PASS | | | 1 | -22.08 | -21.94 | 8 | PASS | | 802.11n
HT20 | 6 | -19.52 | -19.39 | 8 | PASS | | | 11 | -22.86 | -22.72 | 8 | PASS | | | 3 | -25.89 | -23.60 | 8 | PASS | | 802.11n
HT40 | 6 | -26.37 | -24.07 | 8 | PASS | | | 9 | -29.33 | -27.03 | 8 | PASS | Note: Power Spectral Density =Read Value+Duty cycle correction factor 5.5. Spurious RF Conducted Emissions #### **Ambient condition** | Temperature | Relative humidity | Pressure | |-------------|-------------------|----------| | 23°C ~25°C | 45%~50% | 101.5kPa | Report No: R1904H0063-R6 #### **Method of Measurement** The EUT was connected to the spectrum analyzer with a known loss. The spectrum analyzer scans from 30MHz to the 10th harmonic of the carrier. The peak detector is used. Set RBW to 100 kHz and VBW to 300 kHz, Sweep is set to ATUO. The test is in transmitting mode. ## **Test setup** #### Limits Rule Part 15.247(d) pacifies that "In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB." | Network Standards | Carrier frequency (MHz) | Reference value (dBm) | Limit | |-------------------|-------------------------|-----------------------|--------| | | 2412 | 8.74 | -21.26 | | 802.11b | 2437 | 9.02 | -20.98 | | | 2462 | 8.91 | -21.09 | | | 2412 | 1.75 | -28.26 | | 802.11g | 2437 | 4.56 | -25.44 | | | 2462 | 1.51 | -28.49 | | 000 44 = | 2412 | 2.19 | -27.81 | | 802.11n
HT20 | 2437 | 4.03 | -25.97 | | П120 | 2462 | 1.76 | -28.24 | | 000 44 = | 2422 | 1.15 | -28.85 | | 802.11n
HT40 | 2437 | 0.19 | -29.81 | | 11140 | 2452 | -2.87 | -32.87 | TA Technology (Shanghai) Co., Ltd. TA-MB-04-005R Page 22 of 65 C RF Test Report No: R1904H0063-R6 # **Measurement Uncertainty** The assessed measurement uncertainty to ensure 95% confidence level for the normal distribution is with the coverage factor k = 1.96. | Frequency | Uncertainty | |-------------|-------------| | 100kHz-2GHz | 0.684 dB | | 2GHz-26GHz | 1.407 dB | FCC RF Test Report No: R1904H0063-R6 ## **Test Results:** FCC RF Test Report ## 5.6. Unwanted Emission ### **Ambient condition** | Temperature | Relative humidity | Pressure | |-------------|-------------------|----------| | 23°C ~25°C | 45%~50% | 102.5kPa | #### **Method of Measurement** The test set-up was made in accordance to the general provisions of ANSI C63.10-2013. The Equipment Under Test (EUT) was set up on a non-conductive table in the semi-anechoic chamber. The test was performed at the distance of 3 m between the EUT and the receiving antenna. The turntable shall be rotated from 0 to 360 degrees for detecting the maximum of radiated spurious signal level. The measurements shall be repeated with orthogonal polarization of the test antenna. The data of cable loss and antenna factor has been calibrated in full testing frequency range before the testing. Sweep the Restricted Band and the emissions less than 20 dB below the permissible value are reported. The
radiated emissions measurements were made in a typical installation configuration. Sweep the whole frequency band through the range from 9 kHz to the 10th harmonic of the carrier, and the emissions less than 20 dB below the permissible value are reported. This method refer to ANSI C63.10-2013. The procedure for peak unwanted emissions measurements above 1000 MHz is as follows: - I) Peak emission levels are measured by setting the instrument as follows: - 1) RBW = 1 MHz. - 2) VBW ≥ [3 × RBW] - 3) Detector = peak. - 4) Sweep time = auto. - 5) Trace mode = max hold. - 6) Allow sweeps to continue until the trace stabilizes. Note that if the transmission is not continuous, then the time required for the trace to stabilize will increase by a factor of approximately 1 / D, where D is the duty cycle. - II) Average emission levels are measured by setting the instrument as follows: - a) RBW = 1 MHz. - b) $VBW \ge [3 \times RBW]$. - c) Detector = RMS (power averaging), if [span / (# of points in sweeps]RBW / 2. Satisfying this condition can require increasing the number of points in the sweep or reducing the span. If the condition is not satisfied, then the detector mode shall be set to peak. - d) Averaging type = power (i.e., rms) (As an alternative, the detector and averaging type may be set for linear voltage averaging. Some instruments require linear display mode to use linear voltage FCC RF Test Report No: R1904H0063-R6 averaging. Log or dB averaging shall not be used.) - e) Sweep time = auto. - f) Perform a trace average of at least 100 traces if the transmission is continuous. If the transmission is not continuous, then the number of traces shall be increased by a factor of 1 / D, where D is the duty cycle. For example, with 50% duty cycle, at least 200 traces shall be averaged. (If a specific emission is demonstrated to be continuous—i.e., 100% duty cycle—then rather than turning ON and OFF with the transmit cycle, at least 100 traces shall be averaged.) - g) If tests are performed with the EUT transmitting at a duty cycle less than 98%, then a correction factor shall be added to the measurement results prior to comparing with the emission limit, to compute the emission level that would have been measured had the test been performed at 100% duty cycle. The correction factor is computed as follows: - 1) If power averaging (rms) mode was used in the preceding step e), then the correction factor is [10 log (1 / D)], where D is the duty cycle. For example, if the transmit duty cycle was 50%, then 3 dB shall be added to the measured emission levels. - 2) If linear voltage averaging mode was used in the preceding step e), then the correction factor is [20 log (1 / D)], where D is the duty cycle. For example, if the transmit duty cycle was 50%, then 6 dB shall be added to the measured emission levels. - 3) If a specific emission is demonstrated to be continuous (100% duty cycle) rather than turning ON and OFF with the transmit cycle, then no duty cycle correction is required for that emission. The test is in transmitting mode. **Test setup** ## 9KHz ~ 30MHz ## 30MHz ~ 1GHz # **Above 1GHz** Note: Area side:2.4mX3.6m #### Limits Rule Part 15.247(d) specifies that "In addition, radiated emissions which fall in the restricted bands, as defined in § 15.205(a), must also comply with the radiated emission limits specified in § 15.209(a) (see § 15.205(c))." Report No: R1904H0063-R6 Limit in restricted band | Frequency of emission (MHz) | Field strength(uV/m) | Field strength(dBuV/m) | |-----------------------------|----------------------|------------------------| | 0.009-0.490 | 2400/F(kHz) | 1 | | 0.490-1.705 | 24000/F(kHz) | 1 | | 1.705–30.0 | 30 | 1 | | 30-88 | 100 | 40 | | 88-216 | 150 | 43.5 | | 216-960 | 200 | 46 | | Above960 | 500 | 54 | §15.35(b) There is also a limit on the radio frequency emissions, as measured using instrumentation with a peak detector function, corresponding to 20 dB above the maximum permitted average limit. Peak Limit=74 dBuV/m Average Limit=54 dBuV/m Spurious Radiated Emissions are permitted in any of the frequency bands listed below: | MHz | MHz | MHz | GHz | | |---------------------|-----------------------|-----------------|------------------|--| | 0.090 - 0.110 | 16.42 - 16.423 | 399.9 - 410 | 4.5 - 5.15 | | | 10.495 - 0.505 | 16.69475 - 16.69525 | 608 - 614 | 5.35 - 5.46 | | | 2.1735 - 2.1905 | 16.80425 - 16.80475 | 960 - 1240 | 7.25 - 7.75 | | | 4.125 - 4.128 | 25.5 - 25.67 | 1300 - 1427 | 8.025 - 8.5 | | | 4.17725 - 4.17775 | 37.5 - 38.25 | 1435 - 1626.5 | 9.0 - 9.2 | | | 4.20725 - 4.20775 | 73 - 74.6 | 1645.5 - 1646.5 | 9.3 - 9.5 | | | 6.215 - 6.218 | 74.8 - 75.2 | 1660 - 1710 | 10.6 - 12.7 | | | 6.26775 - 6.26825 | 108 - 121.94 | 1718.8 - 1722.2 | 13.25 - 13.4 | | | 6.31175 - 6.31225 | 123 - 138 | 2200 - 2300 | 14.47 - 14.5 | | | 8.291 - 8.294 | 149.9 - 150.05 | 2310 - 2390 | 15.35 - 16.2 | | | 8.362 - 8.366 | 156.52475 - 156.52525 | 2483.5 - 2500 | 17.7 - 21.4 | | | 8.37625 - 8.38675 | 156.7 - 156.9 | 2690 - 2900 | 22.01 - 23.12 | | | 8.41425 - 8.41475 | 162.0125 - 167.17 | 3260 - 3267 | 23.6 - 24.0 | | | 12.29 - 12.293 | 167.72 - 173.2 | 3332 - 3339 | 31.2 - 31.8 | | | 12.51975 - 12.52025 | 240 - 285 | 3345.8 - 3358 | 36.43 - 36.5 | | | 12.57675 - 12.57725 | 322 - 335.4 | 3600 - 4400 | (²) | | | 13.36 - 13.41 | | | | | FCC RF Test Report No: R1904H0063-R6 # **Measurement Uncertainty** The assessed measurement uncertainty to ensure 95% confidence level for the normal distribution is with the coverage factor k = 1.96. | Frequency | Uncertainty | | | |--------------|-------------|--|--| | 9KHz-30MHz | 3.55 dB | | | | 30MHz-200MHz | 4.02 dB | | | | 200MHz-1GHz | 3.28 dB | | | | 1-18GHz | 3.70 dB | | | | 18-26.5GHz | 5.78 dB | | | ## **FCC RF Test Report** Report No: R1904H0063-R6 802.11n HT20 -Channel 1 Average # 802.11n HT20 -Channel 11 Peak 802.11n HT20 -Channel 11 Average 802.11n HT40 - Channel 3 Peak 802.11n HT40 -Channel 3 Average #### Result of RE #### **Test result** The following graphs display the maximum values of horizontal and vertical by software. For above 1GHz, Blue trace uses the peak detection, Green trace uses the average detection. During the test, the Radiates Emission from 30MHz to 1GHz was performed in all modes with all channels, 802.11b CH1 are selected as the worst condition. The test data of the worst-case condition was recorded in this report. ## Continuous TX mode: FCC RE 9K-90KHz AV ### Radiates Emission from 9KHz to 90KHz FCC RE 90K-110KHz QP Radiates Emission from 90KHz to 110KHz Radiates Emission from 110KHz to 490KHz FCC RE 490K-30MHz QP Radiates Emission from 490KHz to 30MHz ## RE 30M-1GHz QP Radiates Emission from 30MHz to 1GHz | Frequency
(MHz) | Quasi-Peak
(dBuV/m) | Height (cm) | Polarization | Azimuth (deg) | Correct
Factor (dB) | Margin
(dB) | Limit
(dBuV/m) | |--------------------|------------------------|-------------|--------------|---------------|------------------------|----------------|-------------------| | 41.632658 | 28.6 | 100.0 | V | 76.0 | -4.4 | 11.4 | 40.0 | | 58.941978 | 19.0 | 100.0 | V | 192.0 | -8.3 | 21.0 | 40.0 | | 138.449612 | 19.1 | 175.0 | Н | 89.0 | -14.2 | 24.4 | 43.5 | | 184.249425 | 18.2 | 100.0 | V | 4.0 | -13.0 | 25.3 | 43.5 | | 362.987500 | 19.8 | 175.0 | Н | 74.0 | -5.5 | 26.2 | 46.0 | | 943.479000 | 26.8 | 100.0 | Н | 252.0 | 2.0 | 19.2 | 46.0 | Remark: 1. Correction Factor = Antenna factor+ Insertion loss(cable loss+amplifier gain) ^{2.} Margin = Limit - Quasi-Peak 802.11b CH1 Note: The signal beyond the limit is carrier. Radiates Emission from 1GHz to 3GHz Radiates Emission from 3GHz to 18GHz Frequency Peak Height Azimuth Correct Margin Limit **Polarization** Factor (dB) (dBuV/m) (MHz) (dBuV/m) (cm) (deg) (dB) 1164.875000 45.3 200.0 ٧ 38.0 0.0 28.7 74.0 1428.875000 46.1 100.0 V 0.0 1.5 27.9 74.0 ٧ 1675.000000 47.3 100.0 303.0 2.2 26.7 74.0 1992.875000 61.5 100.0 Н 0.0 3.5 12.5 74.0 V 2609.375000 49.5 100.0 317.0 6.0 24.5 74.0 V 2873.375000 50.4 100.0 93.0 7.0 23.6 74.0 Remark: 1. Correction Factor = Antenna factor+ Insertion loss (cable loss + amplifier gain) | Frequency
(MHz) | Average
(dBuV/m) | Height
(cm) | Polarization | Azimuth (deg) | Correct
Factor (dB) | Margin
(dB) | Limit
(dBuV/m) | |--------------------|---------------------|----------------|--------------|---------------|------------------------|----------------|-------------------| | 1196.500000 | 35.7 | 100.0 | Н | 125.0 | 0.1 | 18.3 | 54.0 | | 1404.875000 | 37.3 | 100.0 | V | 107.0 | 1.3 | 16.7 | 54.0 | | 1653.625000 | 38.0 | 200.0 | V | 25.0 | 2.2 | 16.0 | 54.0 | | 1992.875000 | 39.8 | 100.0 | Н | 0.0 | 3.5 | 14.2 | 54.0 | | 2603.500000 | 39.7 | 100.0 | Н | 97.0 | 6.0 | 14.3 | 54.0 | | 2824.500000 | 40.9 | 200.0 | V | 263.0 | 6.9 | 13.1 | 54.0 | Remark: 1. Correction Factor = Antenna factor+ Insertion loss (cable loss + amplifier gain) 802.11b CH6 Note: The signal beyond the limit is carrier. Radiates Emission from 1GHz to 3GHz Radiates Emission from 3GHz to 18GHz 49.9 100.0 2976.500000 Frequency Peak Height Azimuth Correct Margin Limit **Polarization** (MHz) (dBuV/m) Factor (dB) (dBuV/m) (cm) (deg) (dB) 1187.125000 45.4 200.0 ٧ 37.0 0.2 28.6 74.0 1415.250000 46.3 200.0 V 281.0 1.4 27.7 74.0 ٧ 1636.000000 47.0 200.0 359.0 2.1 27.0 74.0 ٧ 3.7 2063.250000 48.1 100.0 0.0 25.9 74.0 V 2617.875000 49.5 200.0 63.0 6.1 24.5 74.0 Remark: 1. Correction Factor = Antenna factor+ Insertion loss (cable loss + amplifier gain) 226.0 7.4 V | Frequency
(MHz) | Average
(dBuV/m) | Height
(cm) | Polarization | Azimuth (deg) | Correct
Factor (dB) | Margin
(dB) | Limit
(dBuV/m) | |--------------------|---------------------|----------------|--------------|---------------|------------------------|----------------|-------------------| | 1182.875000 | 36.1 | 200.0 | Н | 0.0 | 0.2 | 17.9 | 54.0 | | 1434.125000 | 36.9 | 100.0 | Н | 356.0 | 1.5 | 17.1 | 54.0 | | 1609.250000 | 38.0 | 100.0 | Н | 124.0 | 1.9 | 16.0 | 54.0 | |
2032.125000 | 38.9 | 200.0 | V | 2.0 | 3.6 | 15.1 | 54.0 | | 2619.875000 | 39.8 | 100.0 | Н | 172.0 | 6.1 | 14.2 | 54.0 | | 2997.125000 | 40.9 | 200.0 | Н | 275.0 | 7.5 | 13.1 | 54.0 | Remark: 1. Correction Factor = Antenna factor+ Insertion loss (cable loss + amplifier gain) Report No: R1904H0063-R6 24.1 74.0 802.11b CH11 Note: The signal beyond the limit is carrier. Radiates Emission from 1GHz to 3GHz Radiates Emission from 3GHz to 18GHz Frequency Peak Height Azimuth Correct Margin Limit **Polarization** Factor (dB) (dBuV/m) (MHz) (dBuV/m) (cm) (deg) (dB) 1175.250000 45.9 100.0 V 308.0 0.0 28.1 74.0 1327.875000 46.4 100.0 V 337.0 8.0 27.6 74.0 1714.750000 46.9 200.0 Н 212.0 2.3 27.1 74.0 ٧ 2021.500000 48.3 100.0 71.0 3.6 25.7 74.0 V 2637.500000 48.8 200.0 163.0 6.2 25.2 74.0 V 2944.750000 50.6 100.0 226.0 7.2 23.4 74.0 Remark: 1. Correction Factor = Antenna factor+ Insertion loss (cable loss + amplifier gain) | Frequency
(MHz) | Average
(dBuV/m) | Height
(cm) | Polarization | Azimuth (deg) | Correct
Factor (dB) | Margin
(dB) | Limit
(dBuV/m) | |--------------------|---------------------|----------------|--------------|---------------|------------------------|----------------|-------------------| | 1199.125000 | 36.4 | 100.0 | V | 261.0 | 0.2 | 17.6 | 54.0 | | 1431.500000 | 37.0 | 100.0 | V | 294.0 | 1.5 | 17.0 | 54.0 | | 1633.875000 | 38.2 | 200.0 | V | 82.0 | 2.1 | 15.8 | 54.0 | | 1942.625000 | 39.2 | 100.0 | Н | 239.0 | 3.3 | 14.8 | 54.0 | | 2645.875000 | 39.9 | 100.0 | Н | 32.0 | 6.3 | 14.1 | 54.0 | | 2881.875000 | 41.2 | 200.0 | V | 281.0 | 7.0 | 12.8 | 54.0 | Remark: 1. Correction Factor = Antenna factor+ Insertion loss (cable loss + amplifier gain) 802.11g CH1 Note: The signal beyond the limit is carrier. Radiates Emission from 1GHz to 3GHz Radiates Emission from 3GHz to 18GHz | Frequency
(MHz) | Peak
(dBuV/m) | Height
(cm) | Polarization | Azimuth (deg) | Correct
Factor (dB) | Margin
(dB) | Limit
(dBuV/m) | |--------------------|------------------|----------------|--------------|---------------|------------------------|----------------|-------------------| | 1134.750000 | 45.1 | 100.0 | V | 353.0 | -0.2 | 28.9 | 74.0 | | 1434.625000 | 46.7 | 100.0 | Н | 54.0 | 1.5 | 27.3 | 74.0 | | 1679.125000 | 47.2 | 100.0 | Н | 88.0 | 2.2 | 26.8 | 74.0 | | 2014.250000 | 47.9 | 100.0 | Н | 239.0 | 3.6 | 26.1 | 74.0 | | 2685.875000 | 50.0 | 100.0 | V | 339.0 | 6.4 | 24.0 | 74.0 | | 2880.375000 | 49.4 | 200.0 | V | 253.0 | 7.0 | 24.6 | 74.0 | Remark: 1. Correction Factor = Antenna factor+ Insertion loss (cable loss + amplifier gain) | Frequency
(MHz) | Average
(dBuV/m) | Height
(cm) | Polarization | Azimuth (deg) | Correct
Factor (dB) | Margin
(dB) | Limit
(dBuV/m) | |--------------------|---------------------|----------------|--------------|---------------|------------------------|----------------|-------------------| | 1069.625000 | 35.8 | 200.0 | Н | 110.0 | -0.8 | 18.2 | 54.0 | | 1425.000000 | 37.0 | 200.0 | V | 175.0 | 1.4 | 17.0 | 54.0 | | 1652.375000 | 38.3 | 200.0 | Н | 186.0 | 2.2 | 15.7 | 54.0 | | 2051.625000 | 38.9 | 100.0 | Н | 231.0 | 3.7 | 15.1 | 54.0 | | 2662.125000 | 41.0 | 100.0 | V | 69.0 | 6.3 | 13.0 | 54.0 | | 2879.875000 | 39.4 | 200.0 | V | 0.0 | 7.0 | 14.6 | 54.0 | Remark: 1. Correction Factor = Antenna factor+ Insertion loss (cable loss + amplifier gain) 802.11g CH6 Note: The signal beyond the limit is carrier. Radiates Emission from 1GHz to 3GHz Radiates Emission from 3GHz to 18GHz Frequency Peak Height Azimuth Correct Margin Limit **Polarization** Factor (dB) (dBuV/m) (MHz) (dBuV/m) (cm) (deg) (dB) 1104.625000 45.6 100.0 Η 35.0 -0.5 28.4 74.0 1416.500000 46.2 100.0 V 279.0 1.4 27.8 74.0 ٧ 1611.250000 47.1 100.0 212.0 2.0 26.9 74.0 2027.750000 47.9 100.0 Н 332.0 3.6 26.1 74.0 V 2682.625000 50.2 200.0 198.0 6.4 23.8 74.0 V 2998.375000 49.5 200.0 25.0 7.5 24.5 74.0 Remark: 1. Correction Factor = Antenna factor+ Insertion loss (cable loss + amplifier gain) | Frequency
(MHz) | Average
(dBuV/m) | Height
(cm) | Polarization | Azimuth (deg) | Correct
Factor (dB) | Margin
(dB) | Limit
(dBuV/m) | |--------------------|---------------------|----------------|--------------|---------------|------------------------|----------------|-------------------| | 1118.625000 | 35.9 | 100.0 | V | 335.0 | -0.4 | 18.1 | 54.0 | | 1434.250000 | 37.6 | 100.0 | V | 102.0 | 1.5 | 16.4 | 54.0 | | 1712.500000 | 38.0 | 100.0 | V | 212.0 | 2.3 | 16.0 | 54.0 | | 2060.000000 | 38.5 | 100.0 | V | 335.0 | 3.7 | 15.5 | 54.0 | | 2681.375000 | 40.0 | 200.0 | Н | 355.0 | 6.4 | 14.0 | 54.0 | | 2993.375000 | 40.8 | 100.0 | Н | 110.0 | 7.5 | 13.2 | 54.0 | Remark: 1. Correction Factor = Antenna factor+ Insertion loss (cable loss + amplifier gain) 802.11g CH11 Note: The signal beyond the limit is carrier. Radiates Emission from 1GHz to 3GHz Radiates Emission from 3GHz to 18GHz | Frequency
(MHz) | Peak
(dBuV/m) | Height
(cm) | Polarization | Azimuth (deg) | Correct
Factor (dB) | Margin
(dB) | Limit
(dBuV/m) | |--------------------|------------------|----------------|--------------|---------------|------------------------|----------------|-------------------| | 1185.250000 | 44.8 | 200.0 | V | 32.0 | 0.2 | 29.2 | 74.0 | | 1425.250000 | 46.6 | 100.0 | Н | 25.0 | 1.4 | 27.4 | 74.0 | | 1715.500000 | 47.1 | 200.0 | Н | 255.0 | 2.3 | 26.9 | 74.0 | | 1883.375000 | 48.4 | 200.0 | Н | 83.0 | 3.0 | 25.6 | 74.0 | | 2698.750000 | 50.2 | 100.0 | V | 228.0 | 6.5 | 23.8 | 74.0 | | 2935.500000 | 49.3 | 200.0 | V | 5.0 | 7.2 | 24.7 | 74.0 | Remark: 1. Correction Factor = Antenna factor+ Insertion loss (cable loss + amplifier gain) | Frequency
(MHz) | Average
(dBuV/m) | Height
(cm) | Polarization | Azimuth (deg) | Correct
Factor (dB) | Margin
(dB) | Limit
(dBuV/m) | |--------------------|---------------------|----------------|--------------|---------------|------------------------|----------------|-------------------| | 1134.875000 | 36.0 | 200.0 | Н | 234.0 | -0.2 | 18.0 | 54.0 | | 1359.875000 | 37.0 | 200.0 | Н | 214.0 | 0.9 | 17.0 | 54.0 | | 1642.375000 | 37.9 | 100.0 | V | 0.0 | 2.2 | 16.1 | 54.0 | | 2040.750000 | 39.0 | 100.0 | V | 310.0 | 3.7 | 15.0 | 54.0 | | 2692.625000 | 39.8 | 200.0 | Н | 0.0 | 6.5 | 14.2 | 54.0 | | 2934.000000 | 40.5 | 200.0 | V | 0.0 | 7.1 | 13.5 | 54.0 | Remark: 1. Correction Factor = Antenna factor+ Insertion loss (cable loss + amplifier gain) # 802.11n (HT20) CH1 Note: The signal beyond the limit is carrier. Radiates Emission from 1GHz to 3GHz Radiates Emission from 3GHz to 18GHz Frequency Peak Height Azimuth Correct Margin Limit **Polarization** Factor (dB) (dBuV/m) (MHz) (dBuV/m) (cm) (deg) (dB) 1043.500000 45.5 100.0 Н 68.0 -1.0 28.5 74.0 1397.125000 46.3 100.0 Н 247.0 1.2 27.7 74.0 ٧ 1676.750000 47.2 100.0 322.0 2.2 26.8 74.0 2012.500000 48.0 200.0 Н 277.0 3.6 26.0 74.0 V 2612.625000 50.1 100.0 349.0 6.0 23.9 74.0 2997.875000 49.7 200.0 Н 263.0 7.5 24.3 74.0 Remark: 1. Correction Factor = Antenna factor+ Insertion loss (cable loss + amplifier gain) | Frequency
(MHz) | Average
(dBuV/m) | Height
(cm) | Polarization | Azimuth (deg) | Correct
Factor (dB) | Margin
(dB) | Limit
(dBuV/m) | |--------------------|---------------------|----------------|--------------|---------------|------------------------|----------------|-------------------| | 1199.625000 | 35.8 | 200.0 | Н | 331.0 | 0.2 | 18.2 | 54.0 | | 1412.125000 | 36.8 | 200.0 | V | 226.0 | 1.3 | 17.2 | 54.0 | | 1623.000000 | 37.7 | 100.0 | V | 82.0 | 2.0 | 16.3 | 54.0 | | 2011.000000 | 38.8 | 100.0 | V | 152.0 | 3.6 | 15.2 | 54.0 | | 2619.875000 | 39.9 | 200.0 | V | 170.0 | 6.1 | 14.1 | 54.0 | | 2998.750000 | 40.7 | 100.0 | Н | 326.0 | 7.5 | 13.3 | 54.0 | Remark: 1. Correction Factor = Antenna factor+ Insertion loss (cable loss + amplifier gain) # 802.11n (HT20) CH6 Note: The signal beyond the limit is carrier. Radiates Emission from 1GHz to 3GHz Radiates Emission from 3GHz to 18GHz 50.1 100.0 2786.375000 Frequency Peak Height Azimuth Correct Margin Limit **Polarization** (MHz) (dBuV/m) Factor (dB) (dBuV/m) (cm) (deg) (dB) 1121.375000 45.1 100.0 V 197.0 -0.3 28.9 74 1439.250000 46.2 100.0 V 211.0 1.4 27.8 74 1648.875000 47.0 100.0 Н 0.0 2.2 27.0 74 3.7 74 2049.000000 48.0 200.0 Н 285.0 26.0 2581.750000 48.3 100.0 Н 40.0 5.9 25.7 74 Remark: 1. Correction Factor = Antenna factor+ Insertion loss (cable loss + amplifier gain) 0.0 6.8 V | Frequency
(MHz) | Average
(dBuV/m) | Height
(cm) | Polarization | Azimuth (deg) | Correct
Factor (dB) | Margin
(dB) | Limit
(dBuV/m) | |--------------------|---------------------|----------------|--------------|---------------|------------------------|----------------|-------------------| | 1175.125000 | 36.1 | 100.0 | V | 183.0 | 0.0 | 17.9 | 54 | | 1391.125000 | 36.9 | 100.0 | Н | 174.0 | 1.2 | 17.1 | 54 | | 1714.875000 | 37.8 | 100.0 | V | 334.0 | 2.3 | 16.2 | 54 | | 2046.125000 | 38.8 | 200.0 | V | 0.0 | 3.7 | 15.2 | 54 | | 2582.125000 | 39.4 | 200.0 | V | 330.0 | 5.9 | 14.6 | 54 | | 2861.875000 | 40.7 | 100.0 | V | 307.0 | 7.0 | 13.3 | 54 | Remark: 1. Correction Factor = Antenna factor+ Insertion loss (cable loss + amplifier gain) Report No: R1904H0063-R6 23.9 74 Note: The signal beyond the limit is carrier. Radiates Emission from 1GHz to 3GHz Radiates Emission from 3GHz to 18GHz | Frequency
(MHz) | Peak
(dBuV/m) | Height
(cm) | Polarization | Azimuth (deg) | Correct
Factor (dB) | Margin
(dB) | Limit
(dBuV/m) | |--------------------|------------------|----------------|--------------|---------------|------------------------|----------------|-------------------| | 1151.750000 | 45.2 | 100.0 | Н | 180.0 | -0.1 | 28.8 | 74.0 | | 1431.000000 | 46.2 | 200.0 | V | 193.0 | 1.5 | 27.8 | 74.0 | | 1700.125000 | 46.9 | 100.0 | Н | 0.0 | 2.3 | 27.1 | 74.0 | | 2002.750000 | 48.3 | 100.0 | Н | 58.0 | 3.5 | 25.7 | 74.0 | | 2552.250000 | 50.0 | 100.0 | V | 159.0 | 5.7 | 24.0 | 74.0 | |
2951.000000 | 48.9 | 100.0 | V | 88.0 | 7.2 | 25.1 | 74.0 | Remark: 1. Correction Factor = Antenna factor+ Insertion loss (cable loss + amplifier gain) | Frequency
(MHz) | Average
(dBuV/m) | Height
(cm) | Polarization | Azimuth (deg) | Correct
Factor (dB) | Margin
(dB) | Limit
(dBuV/m) | |--------------------|---------------------|----------------|--------------|---------------|------------------------|----------------|-------------------| | 1136.500000 | 35.7 | 200.0 | V | 145.0 | -0.2 | 18.3 | 54.0 | | 1435.750000 | 36.8 | 100.0 | Н | 215.0 | 1.5 | 17.2 | 54.0 | | 1632.750000 | 37.8 | 200.0 | V | 4.0 | 2.1 | 16.2 | 54.0 | | 1990.000000 | 38.7 | 200.0 | V | 64.0 | 3.5 | 15.3 | 54.0 | | 2559.750000 | 39.6 | 200.0 | V | 97.0 | 5.7 | 14.4 | 54.0 | | 2951.250000 | 40.9 | 100.0 | Н | 194.0 | 7.2 | 13.1 | 54.0 | Remark: 1. Correction Factor = Antenna factor+ Insertion loss (cable loss + amplifier gain) # 802.11n (HT40) CH3 Note: The signal beyond the limit is carrier. Radiates Emission from 1GHz to 3GHz Radiates Emission from 3GHz to 18GHz 48.9 200.0 2814.375000 Frequency Peak Height Azimuth Correct Margin Limit **Polarization** Factor (dB) (dBuV/m) (MHz) (dBuV/m) (cm) (deg) (dB) 1163.125000 45.5 100.0 V 111.0 -0.1 28.5 74.0 1418.875000 46.5 200.0 V 4.0 1.4 27.5 74.0 ٧ 1708.500000 47.1 200.0 11.0 2.3 26.9 74.0 ٧ 3.7 2078.625000 48.1 200.0 357.0 25.9 74.0 2666.625000 50.0 200.0 Н 217.0 6.4 24.0 74.0 Remark: 1. Correction Factor = Antenna factor+ Insertion loss (cable loss + amplifier gain) 190.0 6.9 V | Frequency
(MHz) | Average
(dBuV/m) | Height
(cm) | Polarization | Azimuth (deg) | Correct
Factor (dB) | Margin
(dB) | Limit
(dBuV/m) | |--------------------|---------------------|----------------|--------------|---------------|------------------------|----------------|-------------------| | 1193.250000 | 35.7 | 200.0 | Н | 68.0 | 0.2 | 18.3 | 54.0 | | 1374.250000 | 37.0 | 100.0 | Н | 104.0 | 1.0 | 17.0 | 54.0 | | 1669.000000 | 37.7 | 100.0 | V | 200.0 | 2.2 | 16.3 | 54.0 | | 2040.375000 | 38.4 | 200.0 | Н | 124.0 | 3.7 | 15.6 | 54.0 | | 2671.500000 | 39.8 | 100.0 | V | 15.0 | 6.4 | 14.2 | 54.0 | | 2822.375000 | 40.8 | 100.0 | V | 241.0 | 6.9 | 13.2 | 54.0 | Remark: 1. Correction Factor = Antenna factor+ Insertion loss (cable loss + amplifier gain) Report No: R1904H0063-R6 25.1 74.0 # 802.11n (HT40) CH6 Note: The signal beyond the limit is carrier. Radiates Emission from 1GHz to 3GHz Radiates Emission from 3GHz to 18GHz Frequency Peak Height Azimuth Correct Margin Limit **Polarization** (MHz) Factor (dB) (dBuV/m) (dBuV/m) (cm) (deg) (dB) 1091.625000 45.6 200.0 V 151.0 -0.6 28.4 74 1414.875000 46.0 200.0 V 124.0 1.4 28.0 74 ٧ 1730.125000 46.9 200.0 131.0 2.4 27.1 74 3.4 74 1972.000000 48.3 200.0 Н 49.0 25.7 V 2589.875000 48.8 100.0 204.0 6.0 25.2 74 V 2955.625000 50.0 200.0 226.0 7.3 24.0 74 Remark: 1. Correction Factor = Antenna factor+ Insertion loss (cable loss + amplifier gain) | Frequency
(MHz) | Average
(dBuV/m) | Height
(cm) | Polarization | Azimuth (deg) | Correct
Factor (dB) | Margin
(dB) | Limit
(dBuV/m) | |--------------------|---------------------|----------------|--------------|---------------|------------------------|----------------|-------------------| | 1156.500000 | 35.7 | 200.0 | V | 45.0 | -0.1 | 18.3 | 54 | | 1404.750000 | 37.3 | 100.0 | Н | 178.0 | 1.3 | 16.7 | 54 | | 1661.750000 | 37.6 | 200.0 | V | 331.0 | 2.2 | 16.4 | 54 | | 2050.500000 | 38.8 | 200.0 | V | 138.0 | 3.7 | 15.2 | 54 | | 2589.625000 | 39.7 | 200.0 | Н | 329.0 | 6.0 | 14.3 | 54 | | 2898.250000 | 41.1 | 200.0 | Н | 151.0 | 7.0 | 12.9 | 54 | Remark: 1. Correction Factor = Antenna factor+ Insertion loss (cable loss + amplifier gain) # 802.11n (HT40) CH9 Note: The signal beyond the limit is carrier. Radiates Emission from 1GHz to 3GHz Radiates Emission from 3GHz to 18GHz | Frequency
(MHz) | Peak
(dBuV/m) | Height
(cm) | Polarization | Azimuth (deg) | Correct
Factor (dB) | Margin
(dB) | Limit
(dBuV/m) | |--------------------|------------------|----------------|--------------|---------------|------------------------|----------------|-------------------| | 1089.625000 | 44.7 | 100.0 | Н | 182.0 | -0.6 | 29.3 | 74 | | 1419.375000 | 47.1 | 200.0 | V | 2.0 | 1.4 | 26.9 | 74 | | 1656.125000 | 47.9 | 200.0 | V | 62.0 | 2.2 | 26.1 | 74 | | 1865.125000 | 47.2 | 100.0 | Н | 231.0 | 3.0 | 26.8 | 74 | | 2074.250000 | 47.9 | 100.0 | Н | 343.0 | 3.7 | 26.1 | 74 | | 2697.875000 | 50.3 | 100.0 | Н | 210.0 | 6.5 | 23.7 | 74 | Remark: 1. Correction Factor = Antenna factor+ Insertion loss (cable loss + amplifier gain) | Frequency
(MHz) | Average
(dBuV/m) | Height
(cm) | Polarization | Azimuth (deg) | Correct
Factor (dB) | Margin
(dB) | Limit
(dBuV/m) | |--------------------|---------------------|----------------|--------------|---------------|------------------------|----------------|-------------------| | 1145.375000 | 36.0 | 200.0 | V | 49.0 | -0.1 | 18.0 | 54 | | 1364.125000 | 36.7 | 200.0 | V | 68.0 | 1.0 | 17.3 | 54 | | 1657.750000 | 38.0 | 100.0 | V | 17.0 | 2.2 | 16.0 | 54 | | 1854.125000 | 38.6 | 200.0 | V | 0.0 | 2.9 | 15.4 | 54 | | 2074.500000 | 38.7 | 200.0 | Н | 318.0 | 3.7 | 15.3 | 54 | | 2686.000000 | 40.4 | 200.0 | Н | 0.0 | 6.4 | 13.6 | 54 | Remark: 1. Correction Factor = Antenna factor+ Insertion loss (cable loss + amplifier gain) FCC RF Test Report No: R1904H0063-R6 During the test, the Radiates Emission from 18GHz to 26.5GHz was performed in all modes with all channels, 802.11b CH1 are selected as the worst condition. The test data of the worst-case condition was recorded in this report. Radiates Emission from 18GHz to 26.5GHz 5.7. Conducted Emission ### **Ambient condition** | Temperature | Relative humidity | Pressure | | | |-------------|-------------------|----------|--|--| | 23°C ~25°C | 45%~50% | 101.5kPa | | | ### **Methods of Measurement** The EUT is placed on a non-metallic table of 80cm height above the horizontal metal reference ground plane. During the test, the EUT was operating in its typical mode. The test method is according to ANSI C63.10-2013. Connect the AC power line of the EUT to the L.I.S.N. Use EMI receiver to detect the average and Quasi-peak value. RBW is set to 9 kHz, VBW is set to 30kHz. The measurement result should include both L line and N line. The test is in transmitting mode. # **Test Setup** Note: AC Power source is used to change the voltage 110V/60Hz. # Limits | Frequency | Conducted Limits(dBμV) | | | | | | | |--|------------------------|-----------|--|--|--|--|--| | (MHz) | Quasi-peak | Average | | | | | | | 0.15 - 0.5 | 66 to 56 [*] | 56 to 46* | | | | | | | 0.5 - 5 | 56 | 46 | | | | | | | 5 - 30 | 60 | 50 | | | | | | | * Decreases with the logarithm of the frequency. | | | | | | | | # **Measurement Uncertainty** The assessed measurement uncertainty to ensure 95% confidence level for the normal distribution is with the coverage factor k = 1.96, U = 2.69 dB. ## **Test Results:** Following plots, Blue trace uses the peak detection and Green trace uses the average detection. During the test, the Conducted Emission was performed in all modes (WIFI 2.4G) with all channels, 802.11b, Channel 1 are selected as the worst condition. The test data of the worst-case condition was recorded in this report. | Frequency
(MHz) | QuasiPeak
(dBµV) | Average
(dBµV) | Limit
(dBµV) | Margin
(dB) | Meas.
Time
(ms) | Bandwidth
(kHz) | Line | Filter | Corr.
(dB) | |--------------------|---------------------|-------------------|-----------------|----------------|-----------------------|--------------------|------|--------|---------------| | 0.26 | | 27.29 | 51.28 | 23.99 | 1000.0 | 9.000 | L1 | ON | 19.15 | | 0.27 | 40.86 | | 61.00 | 20.14 | 1000.0 | 9.000 | L1 | ON | 19.14 | | 0.68 | 39.55 | | 56.00 | 16.45 | 1000.0 | 9.000 | L1 | ON | 19.28 | | 0.86 | | 29.15 | 46.00 | 16.85 | 1000.0 | 9.000 | L1 | ON | 19.24 | | 1.31 | | 28.64 | 46.00 | 17.36 | 1000.0 | 9.000 | L1 | ON | 19.22 | | 1.33 | 37.27 | | 56.00 | 18.73 | 1000.0 | 9.000 | L1 | ON | 19.21 | | 4.00 | 33.07 | | 56.00 | 22.93 | 1000.0 | 9.000 | L1 | ON | 19.04 | | 4.29 | | 24.31 | 46.00 | 21.69 | 1000.0 | 9.000 | L1 | ON | 19.10 | | 9.70 | | 35.04 | 50.00 | 14.96 | 1000.0 | 9.000 | L1 | ON | 19.36 | | 9.91 | 43.57 | | 60.00 | 16.43 | 1000.0 | 9.000 | L1 | ON | 19.39 | | 12.46 | | 27.47 | 50.00 | 22.53 | 1000.0 | 9.000 | L1 | ON | 19.44 | | 19.18 | 35.84 | | 60.00 | 24.16 | 1000.0 | 9.000 | L1 | ON | 19.63 | Conducted Emission from 150 KHz to 30 MHz | Frequency
(MHz) | QuasiPeak
(dBµV) | Average
(dBµV) | Limit
(dBµV) | Margin
(dB) | Meas.
Time
(ms) | Bandwidth
(kHz) | Line | Filter | Corr.
(dB) | |--------------------|---------------------|-------------------|-----------------|----------------|-----------------------|--------------------|------|--------|---------------| | 0.26 | | 35.48 | 51.28 | 15.80 | 1000.0 | 9.000 | N | ON | 19.15 | | 0.26 | 44.58 | | 61.28 | 16.70 | 1000.0 | 9.000 | N | ON | 19.15 | | 0.60 | | 31.52 | 46.00 | 14.48 | 1000.0 | 9.000 | N | ON | 19.27 | | 0.60 | 37.54 | | 56.00 | 18.46 | 1000.0 | 9.000 | N | ON | 19.27 | | 0.93 | | 27.03 | 46.00 | 18.97 | 1000.0 | 9.000 | N | ON | 19.24 | | 1.32 | 33.51 | | 56.00 | 22.49 | 1000.0 | 9.000 | N | ON | 19.21 | | 4.64 | | 28.79 | 46.00 | 17.21 | 1000.0 | 9.000 | N | ON | 19.10 | | 4.81 | 34.89 | | 56.00 | 21.11 | 1000.0 | 9.000 | N | ON | 19.07 | | 9.55 | 39.97 | | 60.00 | 20.03 | 1000.0 | 9.000 | N | ON | 19.36 | | 9.67 | | 33.50 | 50.00 | 16.50 | 1000.0 | 9.000 | N | ON | 19.37 | | 12.47 | | 25.47 | 50.00 | 24.53 | 1000.0 | 9.000 | N | ON | 19.42 | | 12.62 | 30.20 | | 60.00 | 29.80 | 1000.0 | 9.000 | N | ON | 19.44 | Conducted Emission from 150 KHz to 30 MHz # 6. Main Test Instruments | Name | Manufacturer | Туре | Serial
Number | Calibration
Date | Expiration
Date |
--|-------------------------|-----------------|------------------|---------------------|--------------------| | Spectrum Analyzer | R&S | FSV30 | 100815 | 2018-12-16 | 2019-12-15 | | EMI Test Receiver | R&S | ESCI | 100948 | 2018-05-20 | 2019-05-19 | | Loop Antenna | SCHWARZBECK | FMZB1519 | 1519-047 | 2017-09-26 | 2019-09-25 | | TRILOG Broadband
Antenna | Schwarzbeck | VULB 9163 | 9163-201 | 2017-11-18 | 2019-11-17 | | Double Ridged
Waveguide Horn
Antenna | R&S | HF907 | 100126 | 2018-07-07 | 2020-07-06 | | Standard Gain Horn | ETS-Lindgren | 3160-09 | 00102643 | 2018-06-20 | 2020-06-19 | | EMI Test Receiver | R&S | ESR | 101667 | 2018-05-20 | 2019-05-19 | | LISN | R&S | ENV216 | 101171 | 2016-12-16 | 2019-12-15 | | Spectrum Analyzer | Agilent | N9010A | MY47191109 | 2018-05-20 | 2019-05-19 | | Power Meter | R&S | NRP | 104306 | 2018-05-20 | 2019-05-19 | | Power Sensor | R&S | NRP-Z21 | 104799 | 2018-05-20 | 2019-05-19 | | 20dB Attenuator | Star River
Highlight | UCL-TS2S-
20 | 18013001 | 2018-12-16 | 2019-12-15 | | RF Cable | Agilent | SMA 15cm | 0001 | 2019-03-15 | 2019-06-14 | | Software | R&S | EMC32 | 9.26.0 | / | / | *****END OF REPORT *****