

TEST REPORT

FCC ID: 2ARMK-ADMA04W-27

Product: Wall-mounted 27 inch LCD Signage with Writing-board

Model No.: ADMA04W-27 Additional Model No.: N/A

Trade Mark: YG displays

Report No.: TCT201230E014

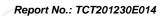
Issued Date: Feb. 01, 2021

Issued for:

GUANGZHOU YOUGUANG OPTOELECTRONICS CO., LTD.

No. 75, Pacific Ind. Zone, Xingtang Town, Zengcheng, Guangzhou 511340,
China

Issued By:


Shenzhen Tongce Testing Lab.

1B/F., Building 1, Yibaolai Industrial Park, Qiaotou, Fuyong, Baoan District,
Shenzhen, Guangdong, China

TEL: +86-755-27673339 FAX: +86-755-27673332

Note: This report shall not be reproduced except in full, without the written approval of Shenzhen Tongce Testing Lab.

This document may be altered or revised by Shenzhen Tongce Testing Lab. personnel only, and shall be noted in the revision section of the document. The test results in the report only apply to the tested sample.

TABLE OF CONTENTS

1.	Test Certification	
2.	Test Result Summary	4
3.	EUT Description	
4.	General Information	6
	4.1. Test environment and mode	6
	4.2. Description of Support Units	6
5.	Facilities and Accreditations	7
	5.1. Facilities	
	5.2. Location	7
	5.3. Measurement Uncertainty	7
6.	Test Results and Measurement Data	8
	6.1. Antenna requirement	8
	6.2. Conducted Emission	9
	6.3. Conducted Output Power	13
	6.4. 20dB Occupy Bandwidth	14
	6.5. Carrier Frequencies Separation	15
	6.6. Hopping Channel Number	17
	6.7. Dwell Time	
	6.8. Pseudorandom Frequency Hopping Sequence	19
	6.9. Conducted Band Edge Measurement	20
	6.10.Conducted Spurious Emission Measurement	
	6.11.Radiated Spurious Emission Measurement	22
Α	ppendix A: Test Result of Conducted Test	
Α	ppendix B: Photographs of Test Setup	
A	ppendix C: Photographs of EUT	

1. Test Certification

Product:	Wall-mounted 27 inch LCD Signage with Writing-board							
Model No.:	ADMA04W-27							
Additional Model No.:	N/A							
Trade Mark:	YG displays							
Applicant:	GUANGZHOU YOUGUANG OPTOELECTRONICS CO., LTD.							
Address:	No. 75, Pacific Ind. Zone, Xingtang Town, Zengcheng, Guangzhou 511340, China							
Manufacturer:	GUANGZHOU YOUGUANG OPTOELECTRONICS CO., LTD.							
Address:	No. 75, Pacific Ind. Zone, Xingtang Town, Zengcheng, Guangzhou 511340, China							
Date of Test:	Dec. 31, 2020 – Feb. 01, 2021							
Applicable Standards: FCC CFR Title 47 Part 15 Subpart C Section 15.247 FCC KDB 558074 D01 15.247 Meas Guidance v05r02 ANSI C63.10:2013								

The above equipment has been tested by Shenzhen Tongce Testing Lab. and found compliance with the requirements set forth in the technical standards mentioned above. The results of testing in this report apply only to the product/system, which was tested. Other similar equipment will not necessarily produce the same results due to production tolerance and measurement uncertainties.

Tested By: Kerin Huang Date: Jan. 29, 2021

Kevin Huang

Reviewed By: Date: Feb. 01, 2021

Beryl Zhao

Tomsin

Approved By: Towsm Date: Feb. 01, 2021

2. Test Result Summary

Requirement	CFR 47 Section	Result	
Antenna Requirement	§15.203/§15.247 (c)	PASS	
AC Power Line Conducted Emission	§15.207	PASS	
Conducted Peak Output Power	§15.247 (b)(1)	PASS	
20dB Occupied Bandwidth	§15.247 (a)(1)	PASS	
Carrier Frequencies Separation	§15.247 (a)(1)	PASS	
Hopping Channel Number	§15.247 (a)(1)	PASS	
Dwell Time	§15.247 (a)(1)	PASS	
Radiated Emission	§15.205/§15.209	PASS	
Band Edge	§15.247(d)	PASS	

Note:

- 1. PASS: Test item meets the requirement.
- 2. Fail: Test item does not meet the requirement.
- 3. N/A: Test case does not apply to the test object.
- 4. The test result judgment is decided by the limit of test standard.

Page 4 of 104

3. EUT Description

Product:	Wall-mounted 27 inch LCD Signage with Writing-board
Model No.:	ADMA04W-27
Additional Model No.:	N/A
Trade Mark:	YG displays
Bluetooth Version:	V4.2
Operation Frequency:	2402MHz~2480MHz
Transfer Rate:	1/2/3 Mbits/s
Number of Channel:	79
Modulation Type:	GFSK, π/4-DQPSK, 8DPSK
Modulation Technology:	FHSS
Antenna Type:	Internal Antenna
Antenna Gain:	5dBi
Power Supply:	AC 120V/60Hz

Note: The antenna gain listed in this report is provided by applicant, and the test laboratory is not responsible for this parameter.

Operation Frequency each of channel for GFSK, π/4-DQPSK, 8DPSK

Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
0	2402MHz	20	2422MHz	40	2442MHz	60	2462MHz
1	2403MHz	21	2423MHz	41	2443MHz	61	2463MHz
			<u> </u>				
10	2412MHz	30	2432MHz	50	2452MHz	70	2472MHz
11	2413MHz	31	2433MHz	51	2453MHz	71	2473MHz
			•••				•••
18	2420MHz	38	2440MHz	_ 58	2460MHz	78	2480MHz
19	2421MHz	39	2441MHz	59	2461MHz		-

Remark: Channel 0, 39 &78 have been tested for GFSK, $\pi/4$ -DQPSK, 8DPSK modulation mode.

Page 5 of 104

4. General Information

4.1. Test environment and mode

Operating Environment:						
Condition	Conducted Emission	Radiated Emission				
Temperature:	25.0 °C	25.0 °C				
Humidity:	55 % RH	55 % RH				
Atmospheric Pressure:	1010 mbar	1010 mbar				
Test Mode:						
Engineering mode:	Keep the EUT in continuous transmitting by select channel and modulations with Fully-charged battery					

The sample was placed 0.8m & 1.5m for the measurement below & above 1GHz above the ground plane of 3m chamber. Measurements in both horizontal and vertical polarities were performed. During the test, each emission was maximized by: having the EUT continuously working, investigated all operating modes, rotated about all 3 axis (X, Y & Z) and considered typical configuration to obtain worst position, manipulating interconnecting cables, rotating the turntable, varying antenna height from 1m to 4m in both horizontal and vertical polarizations. The emissions worst-case(Z axis) are shown in Test Results of the following pages. DH1 DH3 DH5 all have been tested, only worse case DH1 is reported.

4.2. Description of Support Units

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

Equipment	Model No.	Serial No.	FCC ID	Trade Name
(6)	1 (6)	/	(6)1	1 (0)

Note:

- 1. All the equipment/cables were placed in the worst-case configuration to maximize the emission during the test.
- 2. Grounding was established in accordance with the manufacturer's requirements and conditions for the intended use.
- 3. For conducted measurements (Output Power, 20dB Occupied Bandwidth, Carrier Frequencies Separation, Hopping Channel Number, Dwell Time, Spurious Emissions), the antenna of EUT is connected to the test equipment via temporary antenna connector, the antenna connector is soldered on the antenna port of EUT, and the temporary antenna connector is listed in the Test Instruments.

5. Facilities and Accreditations

5.1. Facilities

The test facility is recognized, certified, or accredited by the following organizations:

• FCC - Registration No.: 645098

Shenzhen Tongce Testing Lab

The 3m Semi-anechoic chamber has been registered and fully described in a report with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in our files.

IC - Registration No.: 10668A-1

The 3m Semi-anechoic chamber of SHENZHEN TONGCE TESTING LAB has been registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing

5.2. Location

Shenzhen Tongce Testing Lab.

Address: 1B/F., Building 1, Yibaolai Industrial Park, Qiaotou, Fuyong, Baoan District, Shenzhen, Guangdong, China

Tel: 86-755-27673339

5.3. Measurement Uncertainty

The reported uncertainty of measurement $y \pm U$, where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of k=2, providing a level of confidence of approximately 95 %.

No.	Item	MU
1	Conducted Emission	±2.56dB
2	RF power, conducted	±0.12dB
3	Spurious emissions, conducted	±0.11dB
4	All emissions, radiated(<1G)	±3.92dB
5	All emissions, radiated(>1G)	±4.28dB
6	Temperature	±0.1°C
7	Humidity	±1.0%

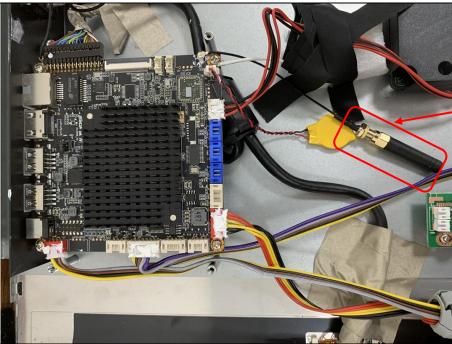
Page 7 of 104

6. Test Results and Measurement Data

6.1. Antenna requirement

Standard requirement: FCC Part15 C Section 15.203 /247(c)

15.203 requirement:


An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(c) (1)(i) requirement:

(i) Systems operating in the 2400-2483.5 MHz band that is used exclusively for fixed. Point-to-point operations may employ transmitting antennas with directional gain greater than 6dBi provided the maximum conducted output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6dBi.

E.U.T Antenna:

The Bluetooth antenna is internal antenna which permanently attached, and the best case gain of the antenna is 5dBi.

Antenna

Page 8 of 104

6.2. Conducted Emission

6.2.1. Test Specification

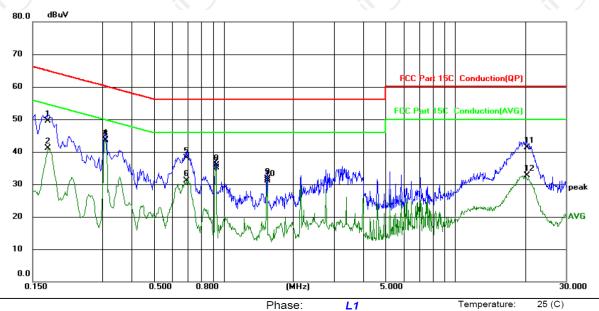
Test Requirement:	FCC Part15 C Section	15.207	(^C C ₂)				
Test Method:	ANSI C63.10:2013						
Frequency Range:	150 kHz to 30 MHz		*				
Receiver setup:	RBW=9 kHz, VBW=30	kHz, Sweep time:	=auto				
	Frequency range	Limit (c	dBuV)				
Limits:	(MHz)	Quasi-peak	Average				
	0.15-0.5	66 to 56*	56 to 46*				
	0.5-5	56	46				
	5-30	60	50				
	Reference Plane						
Test Setup:	E.U.T AC power Filter AC power EMI Receiver Remark E.U.T. Equipment Under Test LISN: Line Impedence Stabilization Network Test table height=0.8m						
Test Mode:	Refer to item 4.1	KC					
Test Procedure:	 The E.U.T is connected to an adapter through a line impedance stabilization network (L.I.S.N.). This provides a 50ohm/50uH coupling impedance for the measuring equipment. The peripheral devices are also connected to the main power through a LISN that provides a 50ohm/50uH coupling impedance with 50ohm termination. (Please refer to the block diagram of the test setup and photographs). Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.10:2013 on conducted measurement. 						
Test Result:	PASS						

Page 9 of 104

6.2.2. Test Instruments

Conducted Emission Shielding Room Test Site (843)										
Equipment Manufacturer Model Serial Number Calibration I										
Test Receiver	R&S	ESCI3	100898	Jul. 27, 2021						
LISN-2	Schwarzbeck	NSLK 8126	8126453	Sep. 11, 2021						
Line-5	TCT	CE-05	N/A	Sep. 02, 2021						
EMI Test Software	Shurple Technology	EZ-EMC	N/A	N/A						

Note: The calibration interval of the above test instruments is 12 months and the calibrations are traceable to international system unit (SI).



6.2.3. Test data

Report No.: TCT201230E014

Please refer to following diagram for individual

Conducted Emission on Line Terminal of the power line (150 kHz to 30MHz)

Site Phase: L1 Temperature: 25 (C)
Limit: FCC Part 15C Conduction(QP) Power: AC120V/60Hz Humidity: 55 %RH

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
		MHz	dBu∀	dB	dBu∀	dBu∀	dB	Detector	Comment
1		0.1748	39.36	10.07	49.43	64.73	-15.30	QP	
2		0.1748	30.96	10.07	41.03	54.73	-13.70	AVG	
3		0.3082	33.50	10.09	43.59	60.02	-16.43	QP	
4	*	0.3082	33.53	10.09	43.62	50.02	-6.40	AVG	
5		0.6900	28.08	10.11	38.19	56.00	-17.81	QP	
6		0.6900	20.92	10.11	31.03	46.00	-14.97	AVG	
7		0.9260	25.01	10.13	35.14	56.00	-20.86	QP	
8		0.9260	25.84	10.13	35.97	46.00	-10.03	AVG	
9		1.5420	21.51	10.16	31.67	56.00	-24.33	QP	
10		1.5420	21.02	10.16	31.18	46.00	-14.82	AVG	
11		20.3180	30.00	11.23	41.23	60.00	-18.77	QP	
12		20.3180	21.39	11.23	32.62	50.00	-17.38	AVG	

Note:

Freq. = Emission frequency in MHz

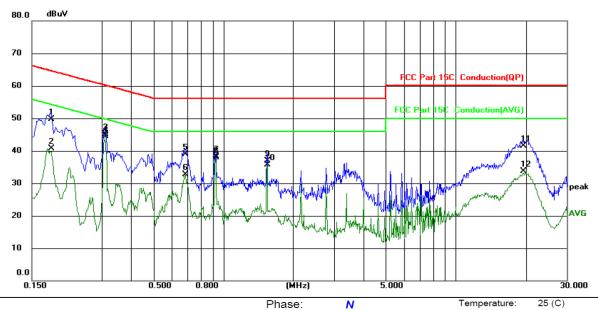
Reading level $(dB\mu V)$ = Receiver reading

Corr. Factor (dB) = LISN factor + Cable loss

Measurement $(dB\mu V)$ = Reading level $(dB\mu V)$ + Corr. Factor (dB)

 $Limit (dB\mu V) = Limit stated in standard$

 $Margin (dB) = Measurement (dB\mu V) - Limits (dB\mu V)$


Q.P. =Quasi-Peak

AVG =average

^{*} is meaning the worst frequency has been tested in the frequency range 150 kHz to 30MHz.

Conducted Emission on Neutral Terminal of the power line (150 kHz to 30MHz)

Limit: FCC Part 15C Conduction(QP)

Power: AC120V/60Hz Humidity: 55 %RH

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
		MHz	dBu∨	dB	dBu∨	dBu∀	dB	Detector	Comment
1		0.1819	39.58	10.07	49.65	64.40	-14.75	QP	
2		0.1819	30.69	10.07	40.76	54.40	-13.64	AVG	
3		0.3100	35.09	10.09	45.18	59.97	-14.79	QP	
4	*	0.3100	34.46	10.09	44.55	49.97	-5.42	AVG	
5		0.6860	28.77	10.11	38.88	56.00	-17.12	QP	
6		0.6860	22.60	10.11	32.71	46.00	-13.29	AVG	
7		0.9260	28.12	10.13	38.25	56.00	-17.75	QP	
8		0.9260	27.69	10.13	37.82	46.00	-8.18	AVG	
9		1.5420	26.83	10.16	36.99	56.00	-19.01	QP	
10		1.5420	25.58	10.16	35.74	46.00	-10.26	AVG	
11		19.4338	30.34	11.17	41.51	60.00	-18.49	QP	
12		19.4338	22.46	11.17	33.63	50.00	-16.37	AVG	

Note1:

Freq. = Emission frequency in MHz

Reading level $(dB\mu V)$ = Receiver reading

Corr. Factor (dB) = LISN factor + Cable loss

Measurement ($dB\mu V$) = Reading level ($dB\mu V$) + Corr. Factor (dB)

Limit (dBµV) = Limit stated in standard

 $Margin (dB) = Measurement (dB\mu V) - Limits (dB\mu V)$

Q.P. =Quasi-Peak AVG =average

* is meaning the worst frequency has been tested in the frequency range 150 kHz to 30MHz.

Note2:

Measurements were conducted in all three channels (high, middle, low) and three modulation (GFSK, Pi/4 DQPSK, 8DPSK), and the worst case Mode (lowest channel and 8DPSK) was submitted only.

Page 12 of 104

6.3. Conducted Output Power

6.3.1. Test Specification

Test Requirement:	FCC Part15 C Section 15.247 (b)(1)				
Test Method:	KDB 558074 D01 v05r02				
Limit:	Section 15.247 (b) The maximum peak conducted output power of the intentional radiator shall not exceed the following: (1) For frequency hopping systems operating in the 2400-2483.5 MHz band employing at least 75 non-overlapping hopping channels, and all frequency hopping systems in the 5725-5850 MHz band: 1 watt. For all other frequency hopping systems in the 2400-2483.5 MHz band 0.125 watts.				
Test Setup:	Spectrum Analyzer EUT				
Test Mode:	Transmitting mode with modulation				
Test Procedure:	Use the following spectrum analyzer settings: Span = approximately 5 times the 20 dB bandwidth, centered on a hopping channel RBW > the 20 dB bandwidth of the emission being measured VBW ≥ RBW Sweep = auto Detector function = peak Trace = max hold Allow the trace to stabilize. Use the marker-to-peak function to set the marker to the peak of the emission.				
Test Result:	PASS				

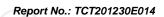
6.3.2. Test Instruments

Name	Manufacturer	Model No.	Serial Number	Calibration Due
Spectrum Analyzer	Agilent	N9020A	MY49100619	Sep. 11, 2021
4 Ch. Simultaneous Sampling 14 Bits 2 MS/s	Agilent	U2531A	N/A	Sep. 02, 2021
Combiner Box	Ascentest	AT890-RFB	N/A	Sep. 02, 2021

Note: The calibration interval of the above test instruments is 12 months and the calibrations are traceable to international system unit (SI).

Page 13 of 104

6.4. 20dB Occupy Bandwidth


6.4.1. Test Specification

Test Method: KDB 558074 D01 v05r02 Limit: N/A Test Setup: Spectrum Analyzer Transmitting mode with modulation 1. The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss
Test Setup: Spectrum Analyzer Test Mode: Transmitting mode with modulation 1. The RF output of EUT was connected to the spectrum
Test Setup: Spectrum Analyzer Test Mode: Transmitting mode with modulation 1. The RF output of EUT was connected to the spectrum
Test Mode: Transmitting mode with modulation 1. The RF output of EUT was connected to the spectrum
was compensated to the results for each measurement. 2. Set to the maximum power setting and enable the EUT transmit continuously. 3. Use the following spectrum analyzer settings for 20d Bandwidth measurement. Span = approximately 2 to 5 times the 20 dB bandwidth, centered on a hopping channel; 1%≤RBW≤5% of the 20 dB bandwidth; VBW≥3RBW Sweep = auto; Detector function = peak; Trace = mahold. 4. Measure and record the results in the test report.
Test Result: PASS

6.4.2. Test Instruments

Name	Manufacturer	Model No.	Serial Number	Calibration Due
Spectrum Analyzer	Agilent	N9020A	MY49100619	Sep. 11, 2021
4 Ch. Simultaneous Sampling 14 Bits 2 MS/s	Agilent	U2531A	N/A	Sep. 02, 2021
Combiner Box	Ascentest	AT890-RFB	N/A	Sep. 02, 2021

Note: The calibration interval of the above test instruments is 12 months and the calibrations are traceable to international system unit (SI).

6.5. Carrier Frequencies Separation

6.5.1. Test Specification

the 20 dB bandwidth of the hopping channel, whichever is greater. Alternatively, frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW. Test Setup: Hopping mode 1. The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. 2. Set to the maximum power setting and enable the EUT transmit continuously. 3. Enable the EUT hopping function. 4. Use the following spectrum analyzer settings: Span = wide enough to capture the peaks of two	Test Requirement:	FCC Part15 C Section 15.247 (a)(1)			
Carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater. Alternatively, frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW. Test Setup: Test Mode: Hopping mode 1. The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. 2. Set to the maximum power setting and enable the EUT transmit continuously. 3. Enable the EUT hopping function. 4. Use the following spectrum analyzer settings: Span = wide enough to capture the peaks of two adjacent channels; RBW is set to approximately 30% of the channel spacing, adjust as necessary to best identify the center of each individual channel; VBW≥RBW; Sweep = auto; Detector function = peak; Trace = max hold. 5. Use the marker-delta function to determine the separation between the peaks of the adjacent channels. Record the value in report.	Test Method:	KDB 558074 D01 v05r02			
Test Mode: Hopping mode 1. The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. 2. Set to the maximum power setting and enable the EUT transmit continuously. 3. Enable the EUT hopping function. 4. Use the following spectrum analyzer settings: Span = wide enough to capture the peaks of two adjacent channels; RBW is set to approximately 30% of the channel spacing, adjust as necessary to best identify the center of each individual channel; VBW≥RBW; Sweep = auto; Detector function = peak; Trace = max hold. 5. Use the marker-delta function to determine the separation between the peaks of the adjacent channels. Record the value in report.	Limit:	carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater. Alternatively, frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than			
 The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. Enable the EUT hopping function. Use the following spectrum analyzer settings: Span = wide enough to capture the peaks of two adjacent channels; RBW is set to approximately 30% of the channel spacing, adjust as necessary to best identify the center of each individual channel; VBW≥RBW; Sweep = auto; Detector function = peak; Trace = max hold. Use the marker-delta function to determine the separation between the peaks of the adjacent channels. Record the value in report. 	Test Setup:	Spectrum Analyzer EUT			
spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. 2. Set to the maximum power setting and enable the EUT transmit continuously. 3. Enable the EUT hopping function. 4. Use the following spectrum analyzer settings: Span = wide enough to capture the peaks of two adjacent channels; RBW is set to approximately 30% of the channel spacing, adjust as necessary to best identify the center of each individual channel; VBW≥RBW; Sweep = auto; Detector function = peak; Trace = max hold. 5. Use the marker-delta function to determine the separation between the peaks of the adjacent channels. Record the value in report.	Test Mode:	Hopping mode			
Test Result: PASS	Test Procedure:	 spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. 2. Set to the maximum power setting and enable the EUT transmit continuously. 3. Enable the EUT hopping function. 4. Use the following spectrum analyzer settings: Span = wide enough to capture the peaks of two adjacent channels; RBW is set to approximately 30% of the channel spacing, adjust as necessary to best identify the center of each individual channel; VBW≥RBW; Sweep = auto; Detector function = peak; Trace = max hold. 5. Use the marker-delta function to determine the separation between the peaks of the adjacent 			
	Test Result:	PASS			

Fax: 86-755-27673332

Tel: 86-755-27673339

Hotline: 400-6611-140

http://www.tct-lab.com

6.5.2. Test Instruments

Name	Manufacturer	Model No.	Serial Number	Calibration Due
Spectrum Analyzer	Agilent	N9020A	MY49100619	Sep. 11, 2021
4 Ch. Simultaneous Sampling 14 Bits 2 MS/s	Agilent	U2531A	N/A	Sep. 02, 2021
Combiner Box	Ascentest	AT890-RFB	N/A	Sep. 02, 2021

Note: The calibration interval of the above test instruments is 12 months and the calibrations are traceable to international system unit (SI).

Page 16 of 104

6.6. Hopping Channel Number

6.6.1. Test Specification

FCC Part15 C Section 15.247 (a)(1)				
KDB 558074 D01 v05r02				
Frequency hopping systems in the 2400-2483.5 MHz band shall use at least 15 channels.				
Southern EUT				
Spectrum Analyzer				
Hopping mode				
 The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. Enable the EUT hopping function. Use the following spectrum analyzer settings: Span = the frequency band of operation; set the RBW to less than 30% of the channel spacing or the 20 dB bandwidth, whichever is smaller; VBW≥RBW; Sweep = auto; Detector function = peak; Trace = max hold. The number of hopping frequency used is defined as the number of total channel. Record the measurement data in report. 				
PASS				

6.6.2. Test Instruments

Name	Manufacturer	Model No.	Serial Number	Calibration Due
Spectrum Analyzer	Agilent	N9020A	MY49100619	Sep. 11, 2021
4 Ch. Simultaneous Sampling 14 Bits 2 MS/s	Agilent	U2531A	N/A	Sep. 02, 2021
Combiner Box	Ascentest	AT890-RFB	N/A	Sep. 02, 2021

Note: The calibration interval of the above test instruments is 12 months and the calibrations are traceable to international system unit (SI).

6.7. Dwell Time

6.7.1. Test Specification

Test Requirement:	FCC Part15 C Section 15.247 (a)(1)				
Test Method:	KDB 558074 D01 v05r02				
Limit:	The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed.				
Test Setup:	Spectrum Analyzer EUT				
Test Mode:	Hopping mode				
Test Procedure:	 The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. Enable the EUT hopping function. Use the following spectrum analyzer settings: Span = zero span, centered on a hopping channel; RBW shall be ≤ channel spacing and where possible RBW should be set >> 1 / T, where T is the expected dwell time per channel; VBW≥RBW; Sweep = as necessary to capture the entire dwell time per hopping channel; Detector function = peak; Trace = max hold. Measure and record the results in the test report. 				
Test Result:	PASS				

6.7.2. Test Instruments

Name	Manufacturer	Model No.	Serial Number	Calibration Due
Spectrum Analyzer	Agilent	N9020A	MY49100619	Sep. 11, 2021
4 Ch. Simultaneous Sampling 14 Bits 2 MS/s	Agilent	U2531A	N/A	Sep. 02, 2021
Combiner Box	Ascentest	AT890-RFB	N/A	Sep. 02, 2021

Note: The calibration interval of the above test instruments is 12 months and the calibrations are traceable to international system unit (SI).

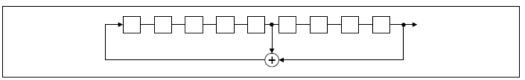
6.8. Pseudorandom Frequency Hopping Sequence

Test Requirement:

FCC Part15 C Section 15.247 (a)(1) requirement:

Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater.

Alternatively. Frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater. provided the systems operate with an output power no greater than 125 mW. The system shall hop to channel frequencies that are selected at the system hopping rate from a Pseudorandom ordered list of hopping frequencies. Each frequency must be used equally on the average by each transmitter. The system receivers shall have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shall shift frequencies in synchronization with the transmitted signals.


EUT Pseudorandom Frequency Hopping Sequence

The pseudorandom sequence may be generated in a nine-stage shift register whose 5th and 9th stage outputs are added in a modulo-two addition stage. And the result is fed back to the input of the first stage. The sequence begins with the first one of 9 consecutive ones; i.e. the shift register is initialized with nine ones.

Number of shift register stages: 9

Hotline: 400-6611-140

- Length of pseudo-random sequence: 2⁹-1 = 511 bits
- Longest sequence of zeros: 8 (non-inverted signal)

Linear Feedback Shift Register for Generation of the PRBS sequence

An example of Pseudorandom Frequency Hopping Sequence as follow:

Each frequency used equally on the average by each transmitter. The system receivers have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shift frequencies in synchronization with the transmitted signals.

Tel: 86-755-27673339

Fax: 86-755-27673332

http://www.tct-lab.com

6.9. Conducted Band Edge Measurement


6.9.1. Test Specification

Test Requirement:	FCC Part15 C Section 15.247 (d)				
Test Method:	KDB 558074 D01 v05r02				
Limit:	In any 100 kHz bandwidth outside the intentional radiation frequency band, the radio frequency power shall be at least 20 dB below the highest level of the radiated power. In addition, radiated emissions which fal in the restricted bands must also comply with the radiated emission limits.				
Test Setup:	Spectrum Analyzer EUT				
Test Mode:	Transmitting mode with modulation				
Test Procedure:	 Set to the maximum power setting and enable the EUT transmit continuously. Set RBW = 100 kHz (≥1% span=10MHz), VBW = 300 kHz (≥RBW). Band edge emissions must be at least 20 dB down from the highest emission level within the authorized band as measured with a 100kHz RBW. The attenuation shall be 30 dB instead of 20 dB when RMS conducted output power procedure is used. Enable hopping function of the EUT and then repeat step 2 and 3. Measure and record the results in the test report. 				
Test Result:	PASS				

6.9.2. Test Instruments

Name	Manufacturer	Model No.	Serial Number	Calibration Due
Spectrum Analyzer	Agilent	N9020A	MY49100619	Sep. 11, 2021
4 Ch. Simultaneous Sampling 14 Bits 2 MS/s	Agilent	U2531A	N/A	Sep. 02, 2021
Combiner Box	Ascentest	AT890-RFB	N/A	Sep. 02, 2021

Note: The calibration interval of the above test instruments is 12 months and the calibrations are traceable to international system unit (SI).

6.10. Conducted Spurious Emission Measurement

6.10.1. Test Specification

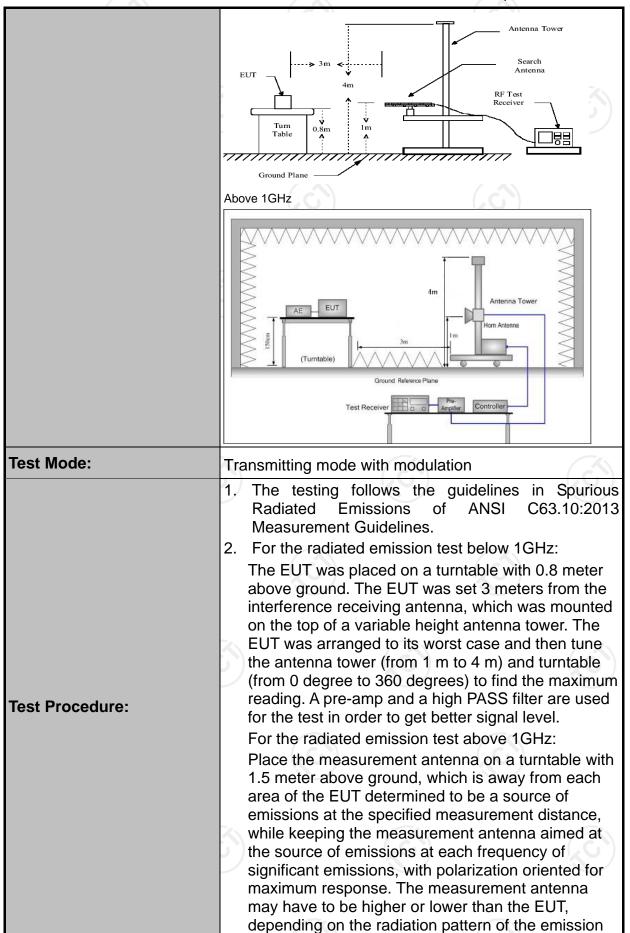
Test Requirement:	FCC Part15 C Section 15.247 (d)					
Test Method:	KDB 558074 D01 v05r02					
Limit:	In any 100 kHz bandwidth outside the intentional radiation frequency band, the radio frequency power shall be at least 20 dB below the highest level of the radiated power. In addition, radiated emissions which fall in the restricted bands must also comply with the radiated emission limits.					
Test Setup:						
Test Mode:	Transmitting mode with modulation					
Test Procedure:	 The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. Set RBW = 100 kHz, VBW = 300kHz, scan up through 10th harmonic. All harmonics / spurs must be at least 20 dB down from the highest emission level within the authorized band as measured with a 100 kHz RBW. Measure and record the results in the test report. The RF fundamental frequency should be excluded against the limit line in the operating frequency band. 					
Test Result:	PASS					

6.10.2. Test Instruments

Name	Manufacturer	Model No.	Serial Number	Calibration Due
Spectrum Analyzer	Agilent	N9020A	MY49100619	Sep. 11, 2021
4 Ch. Simultaneous Sampling 14 Bits 2 MS/s	Agilent	U2531A	N/A	Sep. 02, 2021
Combiner Box	Ascentest	AT890-RFB	N/A	Sep. 02, 2021

Note: The calibration interval of the above test instruments is 12 months and the calibrations are traceable to international system unit (SI).

6.11. Radiated Spurious Emission Measurement


6.11.1. Test Specification

Test Requirement:	FCC Part15	C Section	n 15.209		
Test Method:	ANSI C63.10):2013			
Frequency Range:	9 kHz to 25 (GHz			
Measurement Distance:	3 m	Ž\			
Antenna Polarization:	Horizontal &	Vertical		KO	
Receiver Setup:	Frequency 9kHz- 150kHz 150kHz- 30MHz 30MHz Above 1GHz	r RBW ak 200Hz ak 9kHz ak 120KHz 1MHz 1MHz	VBW 1kHz 30kHz 300KHz 3MHz 10Hz	Remark Quasi-peak Value Quasi-peak Value Quasi-peak Value Peak Value Average Value	
Limit:	Frequen 0.009-0.4 0.490-1.7 1.705-3 30-88 88-216 216-96 Above 9 Frequency Above 1GHz	190 705 50 60 Figure (mic	Field Str (microvolts 2400/F(24000/F) 30 100 150 200 500 eld Strength rovolts/meter)	s/meter) KHz) (KHz)	Measurement Distance (meters) 300 30 30 30 30 3 3 3 3 3 ment ce Detector
Test setup:	For radiated emis	Turn table	w 30MHz	 	Computer Amplifier Receiver

Page 22 of 104

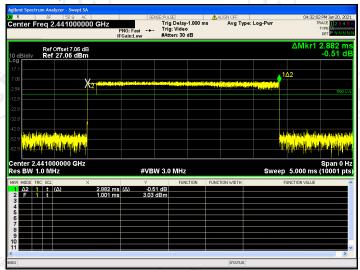
TESTING CENTRE TECHNOLOGY		Report No.: 1C1201230E0
	and staying aimed at the emistreceiving the maximum signal measurement antenna elevate maximizes the emissions. The antenna elevation for maximum restricted to a range of height above the ground or reference. 3. Set to the maximum power EUT transmit continuously. 4. Use the following spectrum at (1) Span shall wide enough the emission being measured (2) Set RBW=120 kHz for for f>1GHz; VBW≥RBW; Sweep = auto; Detector = max hold for peak (3) For average measurement correction factor method 15.35(c). Duty cycle = Or On time =N1*L1+N2*L2+Where N1 is number of length of type 1 pulses, Average Emission Leve Level + 20*log(Duty cycle = Corrected Reading: Ante Loss + Read Level - Preserved.	I. The final ion shall be that which ion shall be that which is measurement in emissions shall be sof from 1 m to 4 m is ground plane. Setting and enable the inalyzer settings: to fully capture the digitary of the setting and enable the inalyzer settings: to fully capture the digitary of the setting and enable the inalyzer settings: to fully capture the digitary of the setting and enable the inalyzer settings: to fully capture the digitary of the setting and enable the inalyzer settings: to fully capture the digitary of the setting and enable the inalyzer settings: to fully capture the digitary of the setting and enable the inalyzer settings: to fully capture the digitary of the setting and enable the inalyzer settings: to fully capture the digitary of the setting and enable the inalyzer settings: to fully capture the digitary of the setting and enable the inalyzer settings: to fully capture the digitary of the setting and enable the inalyzer settings: to fully capture the digitary of the setting and enable the inalyzer settings: to fully capture the digitary of the setting and enable t
Test results:	PASS	
73373331		

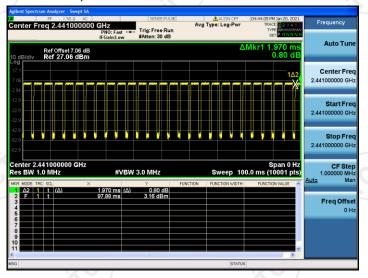
Page 24 of 104

6.11.2. Test Instruments

	Radiated Emission Test Site (966)									
Name of Equipment	Manufacturer	Model	Serial Number	Calibration Due						
Test Receiver	ROHDE&SCHW ARZ	ESIB7	100197	Jul. 27, 2021						
Spectrum Analyzer	ROHDE&SCHW ARZ	FSQ40	200061	Sep. 11, 2021						
Pre-amplifier	EM Electronics Corporation CO.,LTD	EM30265	07032613	Sep. 02, 2021						
Pre-amplifier	HP	8447D	2727A05017	Sep. 02, 2021						
Loop antenna	ZHINAN	ZN30900A	12024	Sep. 05, 2022						
Broadband Antenna	Schwarzbeck	VULB9163	340	Sep. 04, 2022						
Horn Antenna	Schwarzbeck	BBHA 9120D	631	Sep. 04, 2022						
Horn Antenna	A-INFO	LB-180400-KF	J211020657	Sep. 04, 2022						
Antenna Mast	Keleto	RE-AM	N/A	N/A						
Line-4	тст	RE-high-04	N/A	Sep. 02, 2021						
Line-8	TCT	RE-01	N/A	Jul. 27, 2021						
EMI Test Software	Shurple Technology	EZ-EMC	N/A	N/A						

Note: The calibration interval of the above test instruments is 12 months and the calibrations are traceable to international system unit (SI).


Page 25 of 104


6.11.3. Test Data

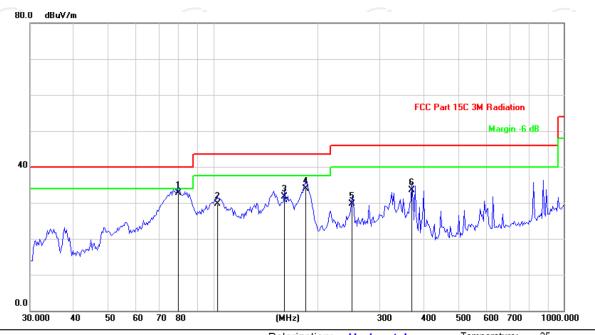
Duty cycle correction factor for average measurement

3DH5 on time (One Pulse) Plot on Channel 39

3DH5 on time (Count Pulses) Plot on Channel 39

Note:

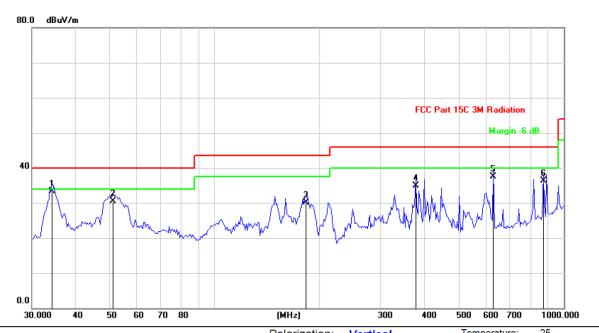
- 1. Worst case Duty cycle = on time/100 milliseconds = (2.882*26+1.970)/100= 0.7690
- 2. Worst case Duty cycle correction factor = 20*log (Duty cycle) = -2.28dB
- 3. 3DH5 has the highest duty cycle worst case and is reported.
- 4. The average levels were calculated from the peak level corrected with duty cycle correction factor (-2.28dB) derived from 20log (dwell time/100ms). This correction is only for signals that hop with the fundamental signal, such as band-edge and harmonic. Other spurious signals that are independent of the hopping signal would not use this correction.


Page 26 of 104

Please refer to following diagram for individual

Below 1GHz

Horizontal:


Site Polarization: Horizontal Temperature: 25
Limit: FCC Part 15C 3M Radiation Power: AC 120V/60Hz Humidity: 55 %

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBu∀	dB	dBuV/m	dB/m	dB	Detector
1	*	79.6764	48.57	-15.90	32.67	40.00	-7.33	QP
2	,	102.6117	43.00	-13.32	29.68	43.50	-13.82	QP
3	,	159.7586	46.93	-15.22	31.71	43.50	-11.79	QP
4	,	183.8660	48.10	-14.13	33.97	43.50	-9.53	QP
5	2	248.7319	41.65	-12.00	29.65	46.00	-16.35	QP
6	3	368.6681	42.79	-9.33	33.46	46.00	-12.54	QP

Page 27 of 104

Vertical:

Site	Polanzation. Vertical	remperature.	25
Limit: FCC Part 15C 3M Radiation	Power: AC 120V/60Hz	Humidity:	55 %

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBu∀	dB	dBuV/m	dB/m	dB	Detector
1	*	34.2852	47.62	-14.32	33.30	40.00	-6.70	QP
2		51.1756	42.71	-12.20	30.51	40.00	-9.49	QP
3		182.5785	44.21	-14.18	30.03	43.50	-13.47	QP
4	,	376.5227	44.28	-9.33	34.95	46.00	-11.05	QP
5	(628.8936	42.63	-5.20	37.43	46.00	-8.57	QP
6	(875.0133	39.07	-2.75	36.32	46.00	-9.68	QP

Note: 1. The low frequency, which started from 9KHz~30MHz, was pre-scanned and the result which was 20dB lower than the limit line per 15.31(o) was not reported.

Measurement ($dB\mu V/m$) = Reading level ($dB\mu V$) + Corr. Factor (dB) Correction Factor= Antenna Factor + Cable loss - Pre-amplifier

Limit (dBµV/m) = Limit stated in standard

Over (dB) = Measurement $(dB\mu V/m)$ – Limits $(dB\mu V/m)$

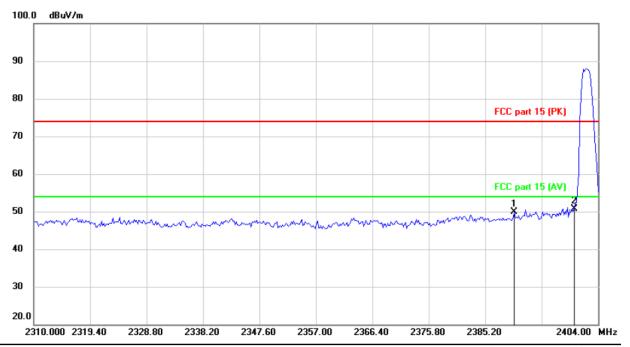
Measurements were conducted in all three channels (high, middle, low) and three modulation (GFSK, Pi/4 DQPSK, 8DPSK) and the worst case Mode (lowest channel and 8DPSK) was submitted only.
 Freq. = Emission frequency in MHz

^{*} is meaning the worst frequency has been tested in the test frequency range.

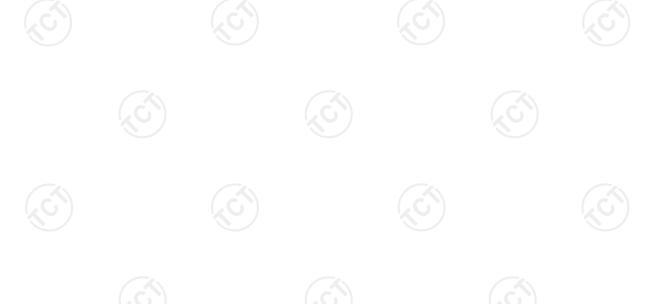
Test Result of Radiated Spurious at Band edges

Lowest channel 2402:

Horizontal:


Site Polarization: Horizontal Temperature: 25
Limit: FCC part 15 (PK) Power: Humidity: 55 %

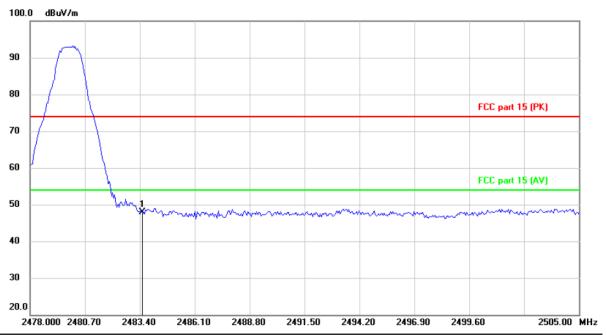
	No. N	Лk.	Freq.			Measure- ment	Limit	Over	
			MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector
	1	23	90.000	60.92	-13.15	47.77	74.00	-26.23	peak
-	2 *	24	00.000	64.42	-13.12	51.30	74.00	-22.70	peak



Vertical:

Site Polarization: Vertical Temperature: 25
Limit: FCC part 15 (PK) Power: Humidity: 55 %

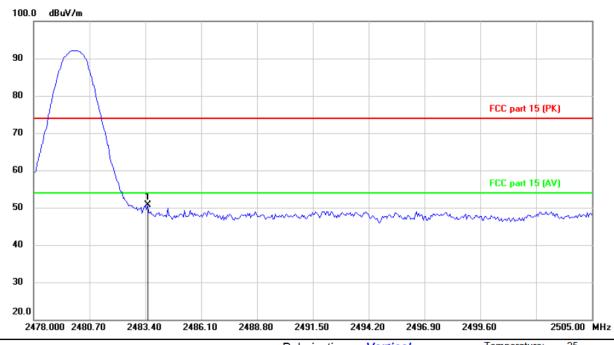
No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector
1		2390.000	63.04	-13.15	49.89	74.00	-24.11	peak
2	*	2400.000	63.81	-13.12	50.69	74.00	-23.31	peak



Page 30 of 104

Highest channel 2480:

Horizontal:


Site Polarization: Horizontal Temperature: 25
Limit: FCC part 15 (PK) Power: Humidity: 55 %

No.	М	lk.	Freq.			Measure- ment	Limit	Over	
			MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector
1	*	2	483.500	60.69	-12.84	47.85	74.00	-26.15	peak

Vertical:

Site Polarization: Vertical Temperature: 25
Limit: FCC part 15 (PK) Power: Humidity: 55 %

No.	MI	k. Freq.			Measure- ment	Limit	Over	
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector
1	*	2483.500	63.53	-12.84	50.69	74.00	-23.31	peak

Note: Measurements were conducted in all three modulation (GFSK, Pi/4 DQPSK, 8DPSK), and the worst case Mode (8DPSK) was submitted only.

Above 1GHz

Modulation Type: 8DPSK										
Low channel: 2402 MHz										
Frequency (MHz)	Ant. Pol. H/V	Peak reading (dBµV)	AV reading (dBuV)	eading Factor Peak AV (dRu)//m) (dRu			Margin (dB)			
4804	Η	45.36		0.66	46.02	-	74	54	-7.98	
7206	Η	35.12		9.5	44.62		74	54	-9.38	
	Η									
4804	V	45.09		0.66	45.75		74	54	-8.25	
7206	V	36.61		9.5	46.11		74	54	-7.89	
	V	/			/			/		

Middle channel: 2441 MHz									
Frequency (MHz)	Ant. Pol. H/V	Peak reading (dBµV)	AV reading (dBµV)	Correction Factor (dB/m)	Emissio Peak (dBµV/m)	AV	Peak limit (dBµV/m)	AV limit (dBµV/m)	Margin (dB)
4882	Η	45.92		0.99	46.91		74	54	-7.09
7323	Η	36.44	-	9.87	46.31	-	74	54	-7.69
	Η		-			-	-		
4882	V	44.36		0.99	45.35		74	54	-8.65
7323	V	35.52	-	9.87	45.39		74	54	-8.61
	٧								

High channel: 2480 MHz									
Frequency (MHz)	Ant. Pol. H/V	Peak reading (dBµV)	AV reading (dBµV)	Correction Factor (dB/m)	Emissic Peak (dBµV/m)	AV	Peak limit (dBµV/m)	AV limit (dBµV/m)	Margin (dB)
4960	Η	46.67		1.33	48.00		74	54	-6.00
7440	Η	37.23	-	10.22	47.45		74	54	-6.55
	Η		-				-		
4960	V	47.97		1.33	49.30		74	54	-4.70
7440	V	37.81		10.22	48.03		74	54	-5.97
	٧								

Note:

- 1. Emission Level=Peak Reading + Correction Factor; Correction Factor= Antenna Factor + Cable loss Pre-amplifier
- 2. $Margin (dB) = Emission Level (Peak) (dB\mu V/m)-Average limit (dB\mu V/m)$
- 3. The emission levels of other frequencies are very lower than the limit and not show in test report.
- 4. Measurements were conducted from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 5. Data of measurement shown "---"in the above table mean that the reading of emissions is attenuated more than 20 dB below the limits or the field strength is too small to be measured.
- Measurements were conducted in all three modulation (GFSK, Pi/4 DQPSK, 8DPSK), and the worst case Mode (8DPSK) was submitted only.
- 7. All the restriction bands are compliance with the limit of 15.209.

Appendix A: Test Result of Conducted Test

Maximum Conducted Output Power

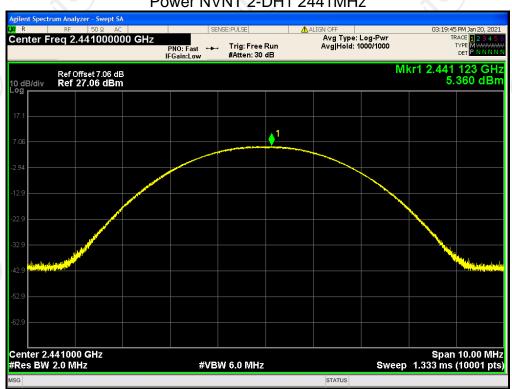
maximam conducted cutput i circi										
Condition	Mode	Frequency (MHz)	Conducted Power (dBm)	Total Power (dBm)	Limit (dBm)	Verdict				
NVNT	1-DH1	2402	6.499	6.499	21	Pass				
NVNT	1-DH1	2441	4.705	4.705	21	Pass				
NVNT	1-DH1	2480	2.719	2.719	21	Pass				
NVNT	2-DH1	2402	6.530	6.530	21	Pass				
NVNT	2-DH1	2441	5.360	5.360	21	Pass				
NVNT	2-DH1	2480	3.404	3.404	21	Pass				
NVNT	3-DH1	2402	6.984	6.984	21	Pass				
NVNT	3-DH1	2441	5.991	5.991	21	Pass				
NVNT	3-DH1	2480	3.998	3.998	21	Pass				

Power NVNT 1-DH1 2402MHz

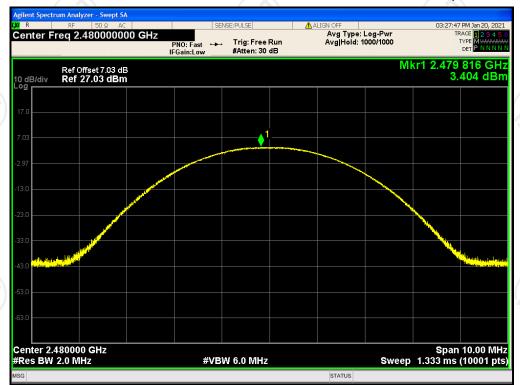
Power NVNT 1-DH1 2441MHz

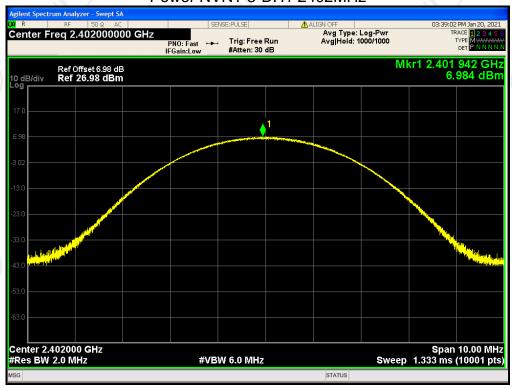
Page 34 of 104

Power NVNT 1-DH1 2480MHz



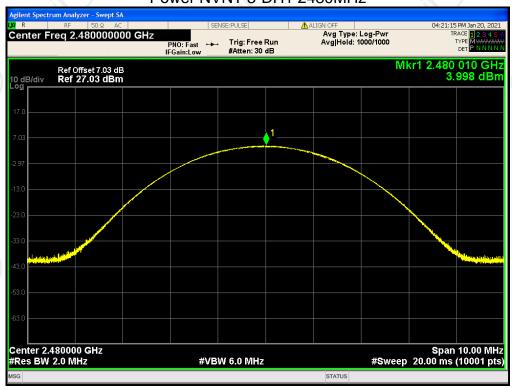
Power NVNT 2-DH1 2402MHz


Power NVNT 2-DH1 2441MHz


Power NVNT 2-DH1 2480MHz

Tel: 86-755-27673339 Fax: 86-755-27673332 Hotline: 400-6611-140 http://www.tct-lab.com

Power NVNT 3-DH1 2402MHz


Power NVNT 3-DH1 2441MHz

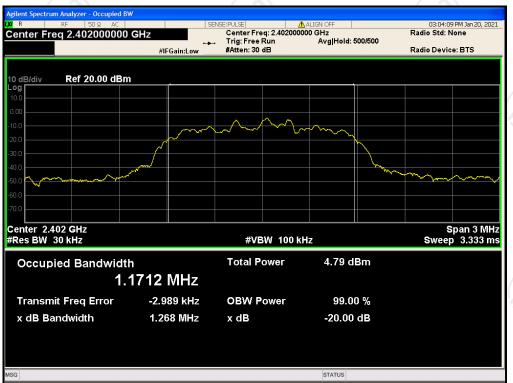
Power NVNT 3-DH1 2480MHz

Occupied Channel Bandwidth

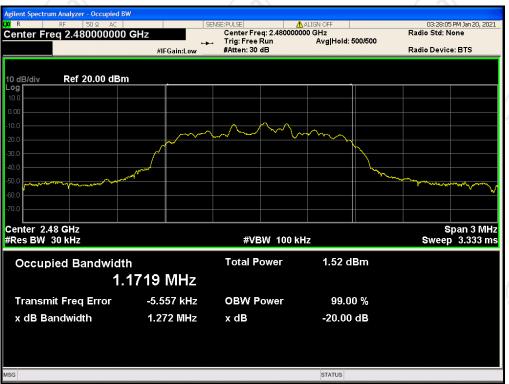
Occupion Citating: Danaman								
		Frequency	99%	-20 dB				
Condition	Mode	(MHz)	OBW	Bandwidth	Verdict			
		(1011 12)	(MHz)	(MHz)				
NVNT	1-DH1	2402	0.8231	0.8715	Pass			
NVNT	1-DH1	2441	0.8196	0.8785	Pass			
NVNT	1-DH1	2480	0.8201	0.8785	Pass			
NVNT	2-DH1	2402	1.1712	1.2683	Pass			
NVNT	2-DH1	2441	1.1714	1.2621	Pass			
NVNT	2-DH1	2480	1.1719	1.2716	Pass			
NVNT	3-DH1	2402	1.1642	1.2537	Pass			
NVNT	3-DH1	2441	1.1623	1.2577	Pass			
NVNT	3-DH1	2480	1.1637	1.2500	Pass			

OBW NVNT 1-DH1 2402MHz

OBW NVNT 1-DH1 2441MHz


OBW NVNT 1-DH1 2480MHz

OBW NVNT 2-DH1 2402MHz

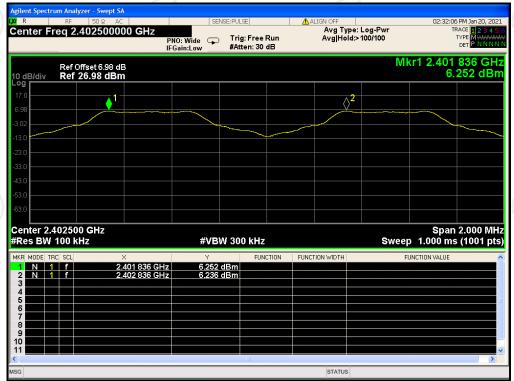

OBW NVNT 2-DH1 2441MHz

OBW NVNT 2-DH1 2480MHz


OBW NVNT 3-DH1 2402MHz

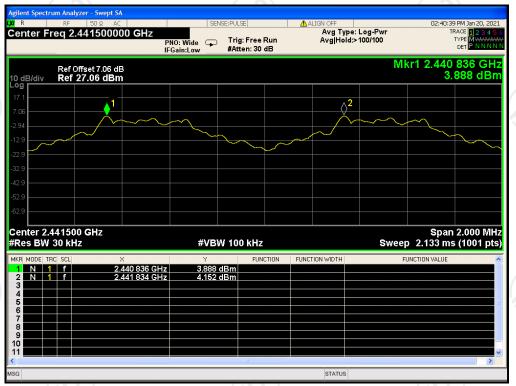
OBW NVNT 3-DH1 2441MHz

OBW NVNT 3-DH1 2480MHz



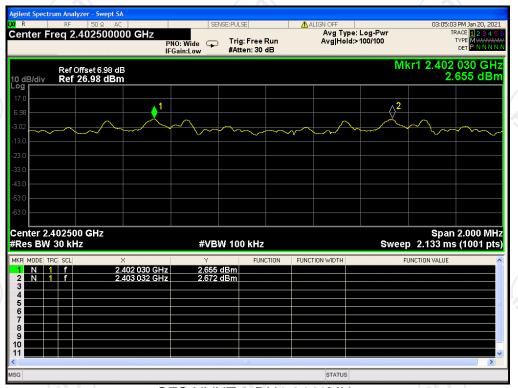
Carrier Frequencies Separation

	Carrior Freedonicies Caparation							
Condition	Mode	Hopping Freq1 (MHz)	Hopping Freq2 (MHz)	HFS (MHz)	Limit (MHz)	Verdict		
NVNT	1-DH1	2401.836	2402.836	1.000	0.872	Pass		
NVNT	1-DH1	2440.836	2441.834	0.998	0.879	Pass		
NVNT	1-DH1	2478.834	2479.836	1.002	0.879	Pass		
NVNT	2-DH1	2402.03	2403.032	1.002	0.846	Pass		
NVNT	2-DH1	2441.028	2442.028	1.000	0.841	Pass		
NVNT	2-DH1	2479.028	2480.028	1.000	0.848	Pass		
NVNT	3-DH1	2402.03	2403.028	0.998	0.836	Pass		
NVNT	3-DH1	2441.028	2442.03	1.002	0.838	Pass		
NVNT	3-DH1	2479.028	2480.03	1.002	0.833	Pass		

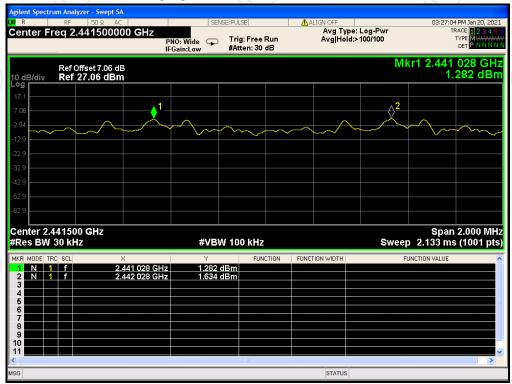

CFS NVNT 1-DH1 2402MHz

CFS NVNT 1-DH1 2441MHz

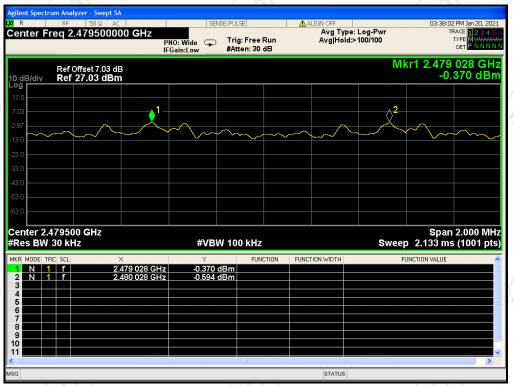
Page 44 of 104



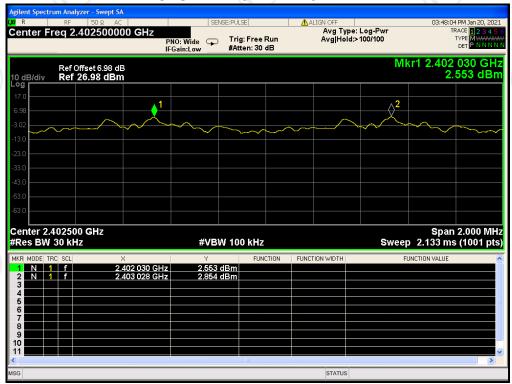
CFS NVNT 1-DH1 2480MHz



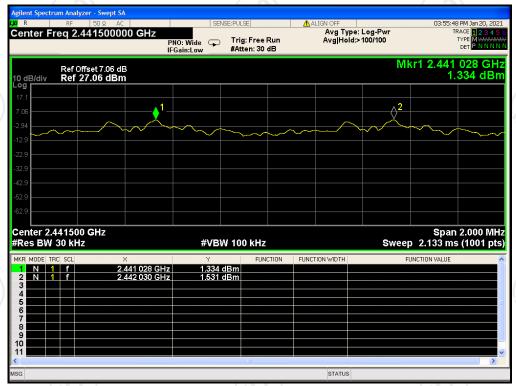
CFS NVNT 2-DH1 2402MHz



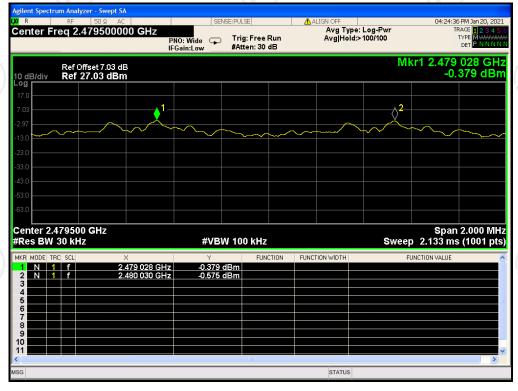
CFS NVNT 2-DH1 2441MHz



CFS NVNT 2-DH1 2480MHz



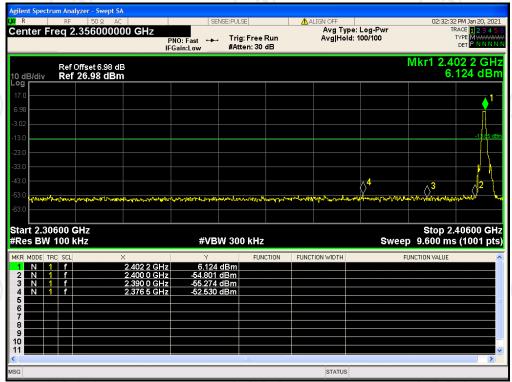
CFS NVNT 3-DH1 2402MHz



CFS NVNT 3-DH1 2441MHz

CFS NVNT 3-DH1 2480MHz

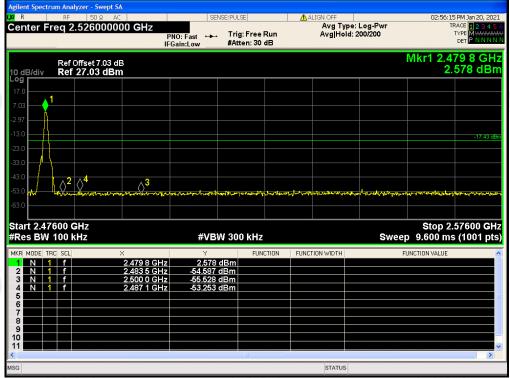
Band Edge


Condition	Mode	Frequency	Hopping	Max Value	Limit	Verdict
Condition	IVIOGE	(MHz)	Mode	(dBc)	(dBc)	verdict
NVNT	1-DH1	2402	No-Hopping	-58.67	-20	Pass
NVNT	1-DH1	2480	No-Hopping	-55.82	-20	Pass
NVNT	2-DH1	2402	No-Hopping	-57.20	-20	Pass
NVNT	2-DH1	2480	No-Hopping	-54.12	-20	Pass
NVNT	3-DH1	2402	No-Hopping	-57.14	-20	Pass
NVNT	3-DH1	2480	No-Hopping	-53.31	-20	Pass

Band Edge NVNT 1-DH1 2402MHz No-Hopping Ref

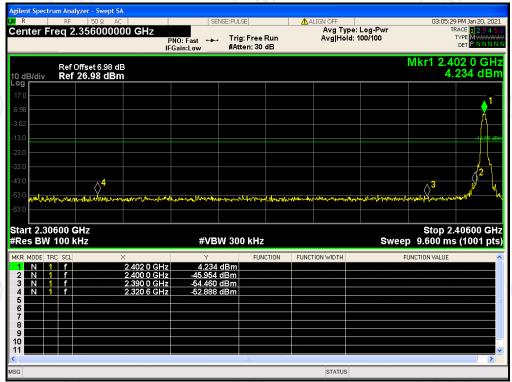
Band Edge NVNT 1-DH1 2402MHz No-Hopping Emission

Page 49 of 104



Band Edge NVNT 1-DH1 2480MHz No-Hopping Ref

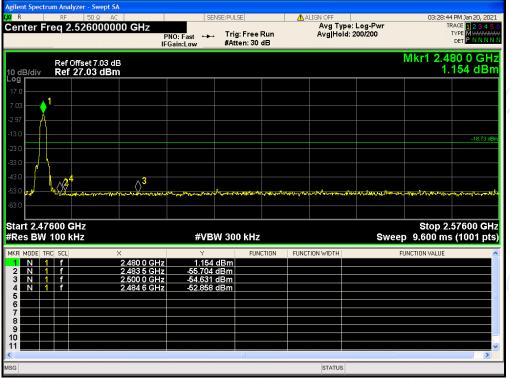
Band Edge NVNT 1-DH1 2480MHz No-Hopping Emission



Band Edge NVNT 2-DH1 2402MHz No-Hopping Ref

Band Edge NVNT 2-DH1 2402MHz No-Hopping Emission

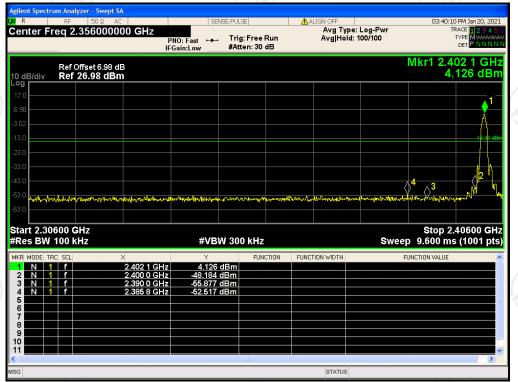
Page 51 of 104



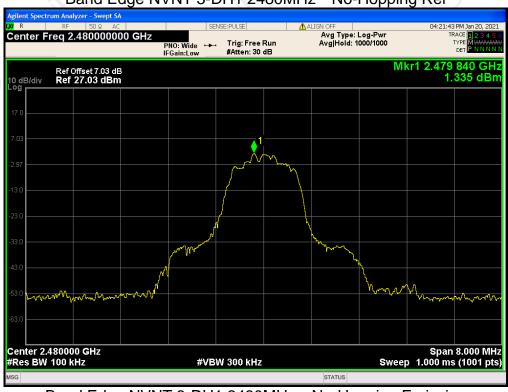
Band Edge NVNT 2-DH1 2480MHz No-Hopping Ref

Band Edge NVNT 2-DH1 2480MHz No-Hopping Emission

Page 52 of 104

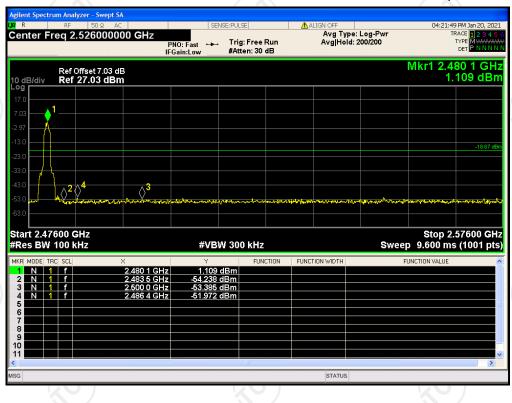


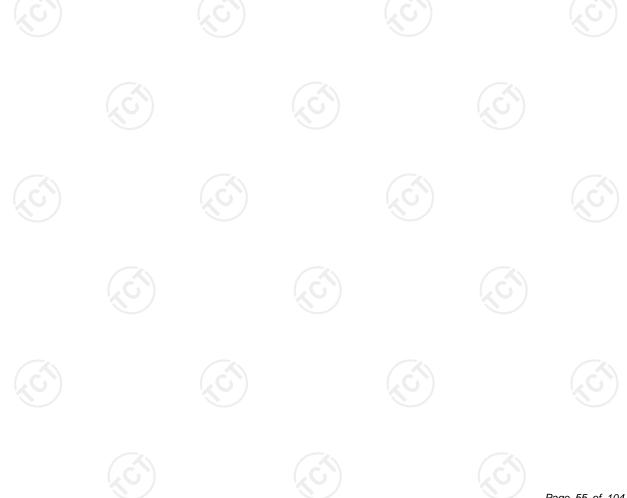
Band Edge NVNT 3-DH1 2402MHz No-Hopping Ref



Band Edge NVNT 3-DH1 2402MHz No-Hopping Emission

Page 53 of 104


Band Edge NVNT 3-DH1 2480MHz No-Hopping Ref

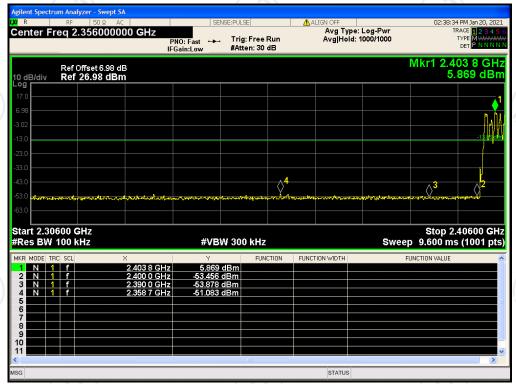


Band Edge NVNT 3-DH1 2480MHz No-Hopping Emission

Page 54 of 104

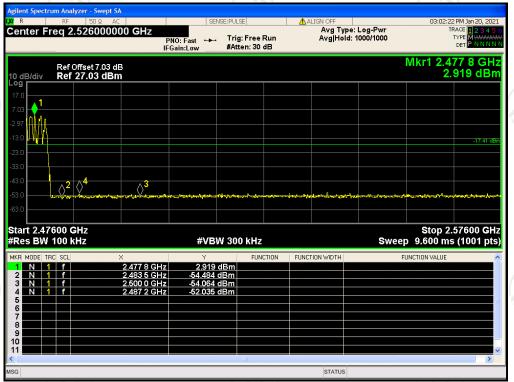
Page 55 of 104

Band Edge(Hopping)


			- 4.30 (0)	···· 3 <i>)</i>		
Condition	Mode	Frequency	Hopping	Max Value	Limit	Verdict
Condition	Mode	(MHz)	Mode	(dBc)	(dBc)	verdict
NVNT 1-DH		2402	Hopping	-57.22	-20	Pass
NVNT	1-DH1	2480	Hopping	-54.63	-20	Pass
NVNT	2-DH1	2402	Hopping	-55.96	-20	Pass
NVNT	2-DH1	2480	Hopping	-53.15	-20	Pass
NVNT	3-DH1	2402	Hopping	-56.92	-20	Pass
NVNT	3-DH1	2480	Hopping	-53.31	-20	Pass

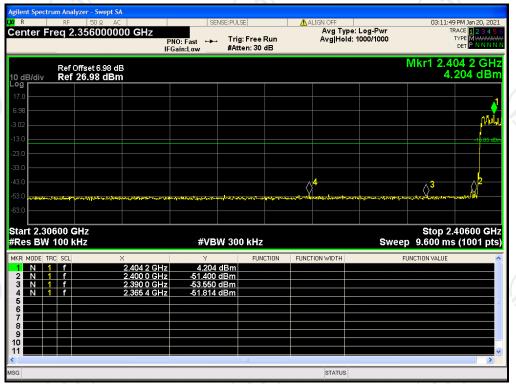
Band Edge(Hopping) NVNT 1-DH1 2402MHz Hopping Ref

Band Edge(Hopping) NVNT 1-DH1 2402MHz Hopping Emission



Band Edge(Hopping) NVNT 1-DH1 2480MHz Hopping Ref

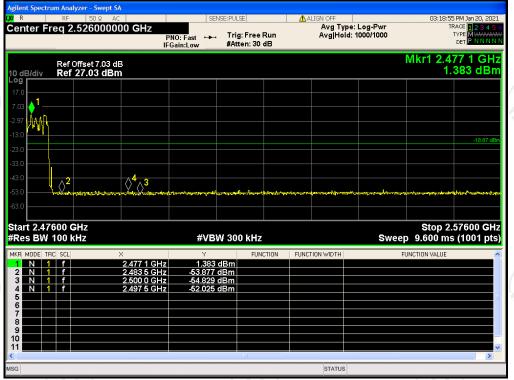
Band Edge(Hopping) NVNT 1-DH1 2480MHz Hopping Emission



Band Edge(Hopping) NVNT 2-DH1 2402MHz Hopping Ref

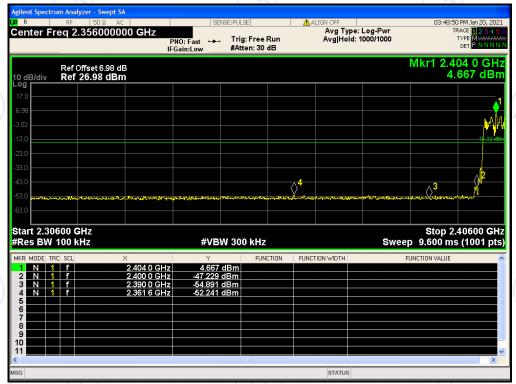
Band Edge(Hopping) NVNT 2-DH1 2402MHz Hopping Emission

Page 58 of 104



Band Edge(Hopping) NVNT 2-DH1 2480MHz Hopping Ref

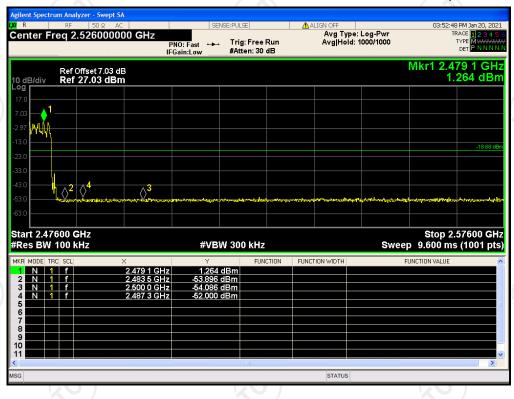
Band Edge(Hopping) NVNT 2-DH1 2480MHz Hopping Emission

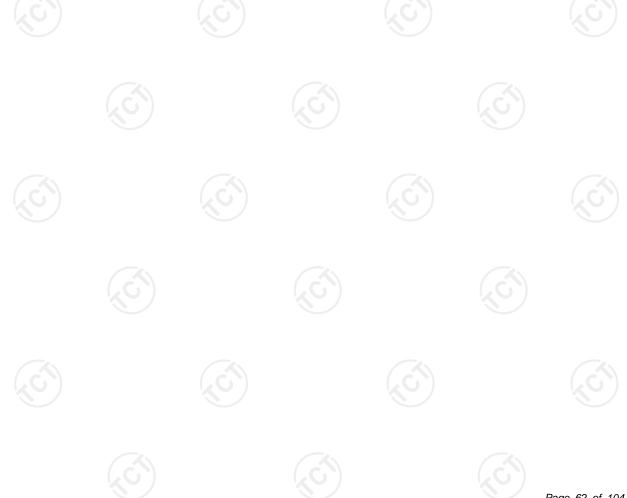


Band Edge(Hopping) NVNT 3-DH1 2402MHz Hopping Ref

Band Edge(Hopping) NVNT 3-DH1 2402MHz Hopping Emission

Page 60 of 104


Band Edge(Hopping) NVNT 3-DH1 2480MHz Hopping Ref

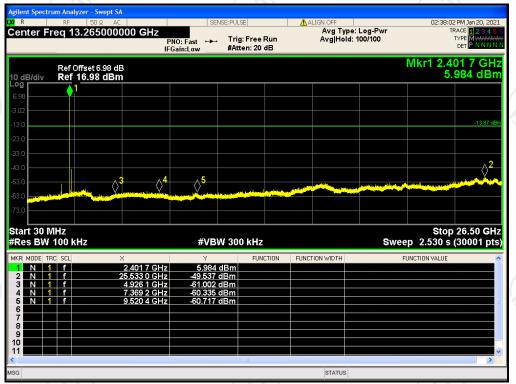


Band Edge(Hopping) NVNT 3-DH1 2480MHz Hopping Emission

Page 61 of 104

Page 62 of 104

Conducted RF Spurious Emission


Condition	Mode	Frequency (MHz)	Max Value (dBc)	Limit (dBc)	Verdict
NVNT	1-DH1	2402	-55.67	-20	Pass
NVNT	1-DH1	2441	-39.78	-20	Pass
NVNT	1-DH1	2480	-51.23	-20	Pass
NVNT	2-DH1	2402	-53.38	-20	Pass
NVNT	2-DH1	2441	-52.46	-20	Pass
NVNT	2-DH1	2480	-50.40	-20	Pass
NVNT	3-DH1	2402	-54.54	-20	Pass
NVNT	3-DH1	2441	-47.54	-20	Pass
NVNT	3-DH1	2480	-40.08	-20	Pass

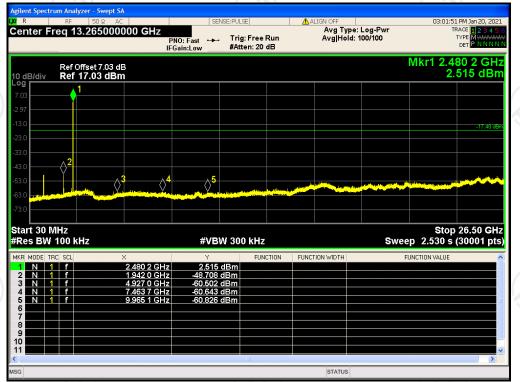
Tx. Spurious NVNT 1-DH1 2402MHz Ref

Tx. Spurious NVNT 1-DH1 2402MHz Emission

Page 63 of 104

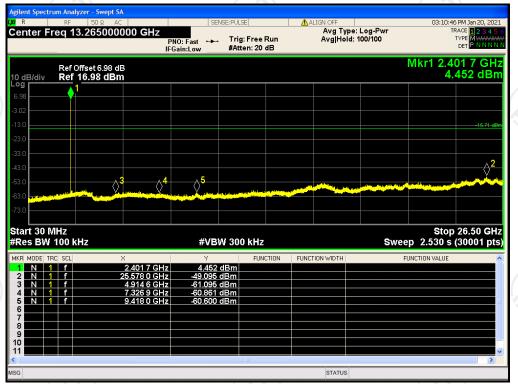
Tx. Spurious NVNT 1-DH1 2441MHz Ref

Tx. Spurious NVNT 1-DH1 2441MHz Emission



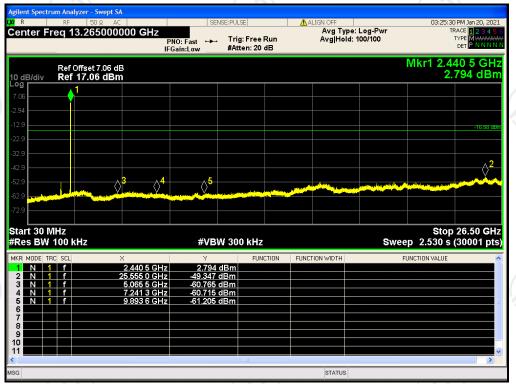
Tx. Spurious NVNT 1-DH1 2480MHz Ref

Tx. Spurious NVNT 1-DH1 2480MHz Emission



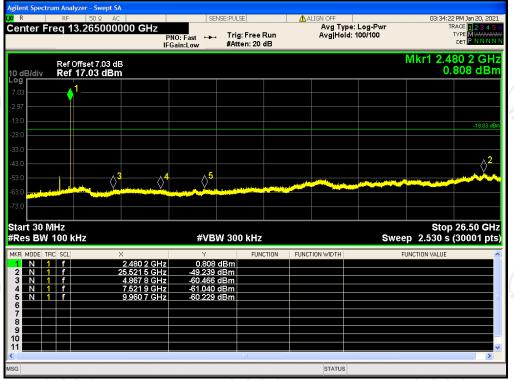
Tx. Spurious NVNT 2-DH1 2402MHz Ref

Tx. Spurious NVNT 2-DH1 2402MHz Emission



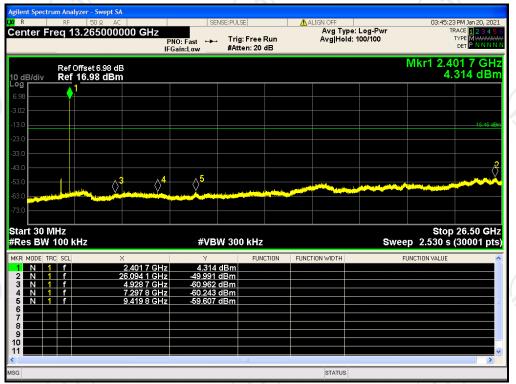
Tx. Spurious NVNT 2-DH1 2441MHz Ref

Tx. Spurious NVNT 2-DH1 2441MHz Emission



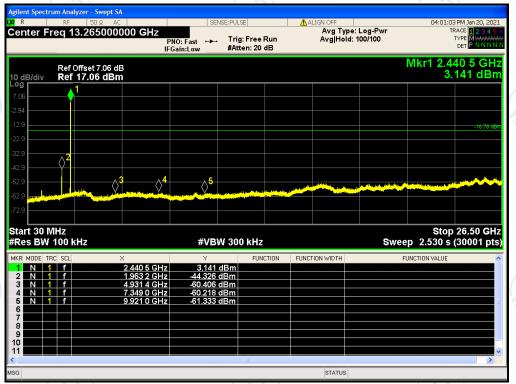
Tx. Spurious NVNT 2-DH1 2480MHz Ref

Tx. Spurious NVNT 2-DH1 2480MHz Emission



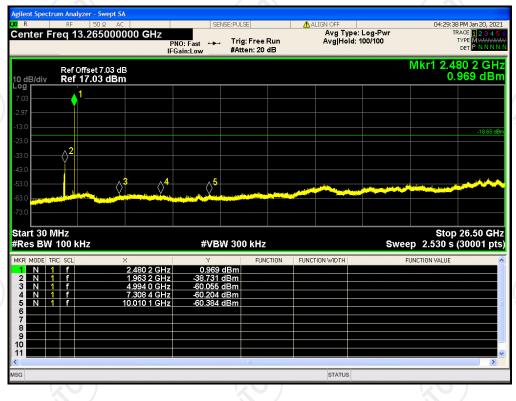
Tx. Spurious NVNT 3-DH1 2402MHz Ref

Tx. Spurious NVNT 3-DH1 2402MHz Emission



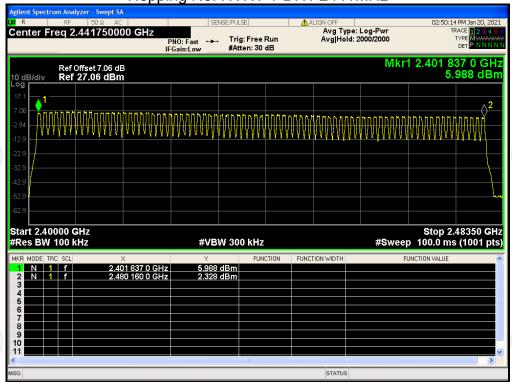
Tx. Spurious NVNT 3-DH1 2441MHz Ref

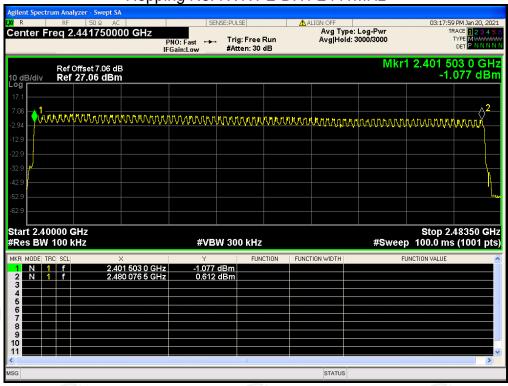
Tx. Spurious NVNT 3-DH1 2441MHz Emission


Tx. Spurious NVNT 3-DH1 2480MHz Ref

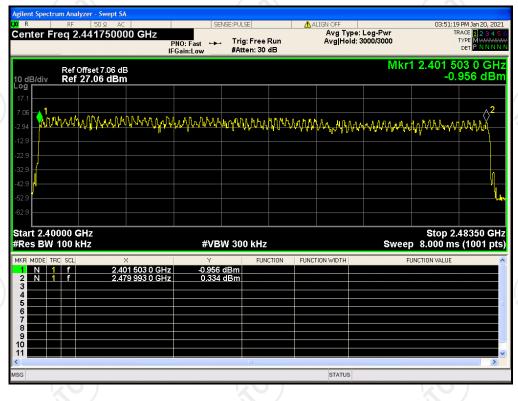
Tx. Spurious NVNT 3-DH1 2480MHz Emission

http://www.tct-lab.com



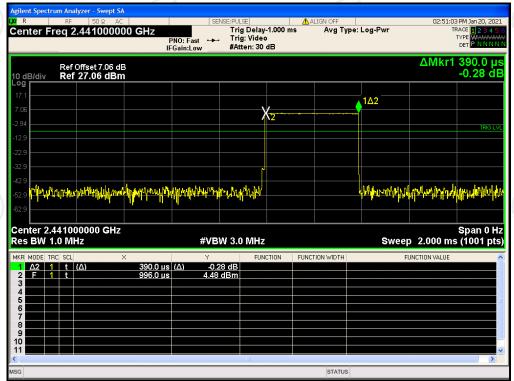

Number of Hopping Channel

Condition	Mode	Hopping Number	Limit	Verdict
NVNT	1-DH1	79	15	Pass
NVNT	2-DH1	79	15	Pass
NVNT	3-DH1	79	15	Pass

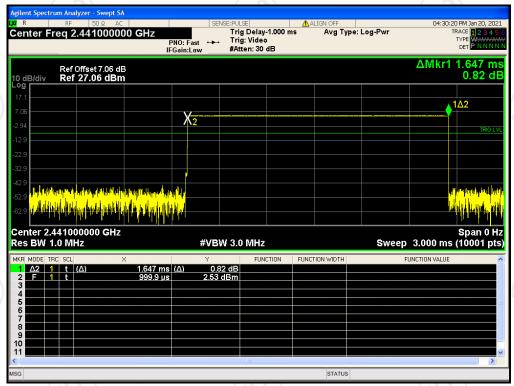


Hopping No. NVNT 2-DH1 2441MHz

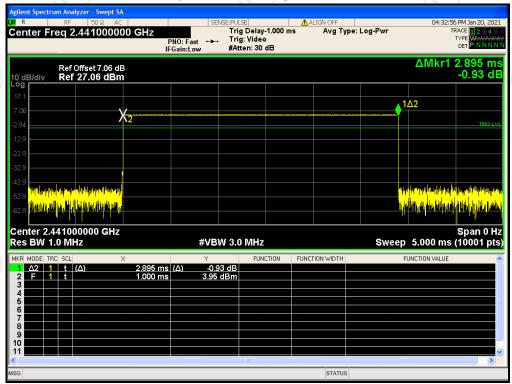
Hopping No. NVNT 3-DH1 2441MHz



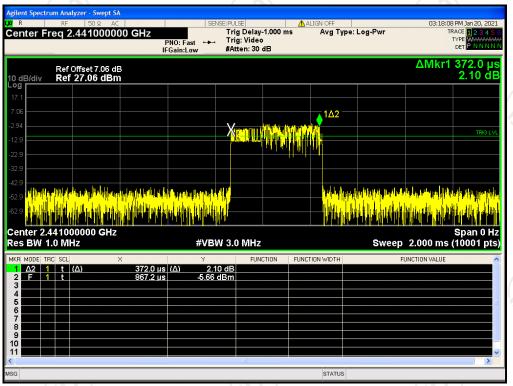
Dwell Time

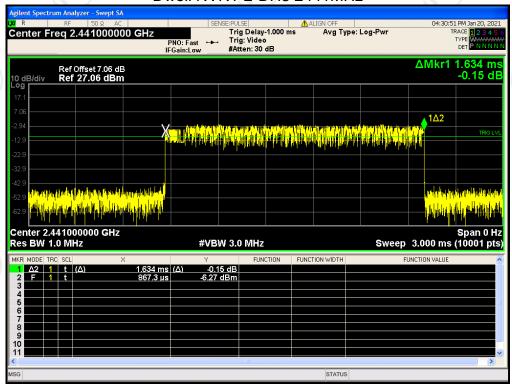

Condition	Mode	Frequency	Pulse	Total Dwell	Period	Limit	Verdict
	Mode	(MHz)	Time (ms)	Time (ms)	Time (ms)	(ms)	Verdict
NVNT	1-DH1	2441	0.390	124.80	31600	400	Pass
NVNT	1-DH3	2441	1.647	263.52	31600	400	Pass
NVNT	1-DH5	2441	2.895	308.80	31600	400	Pass
NVNT	2-DH1	2441	0.372	119.04	31600	400	Pass
NVNT	2-DH3	2441	1.634	261.36	31600	400	Pass
NVNT	2-DH5	2441	2.883	307.52	31600	400	Pass
NVNT	3-DH1	2441	0.371	118.72	31600	400	Pass
NVNT	3-DH3	2441	1.624	259.776	31600	400	Pass
NVNT	3-DH5	2441	2.882	307.413	31600	400	Pass

Dwell NVNT 1-DH1 2441MHz

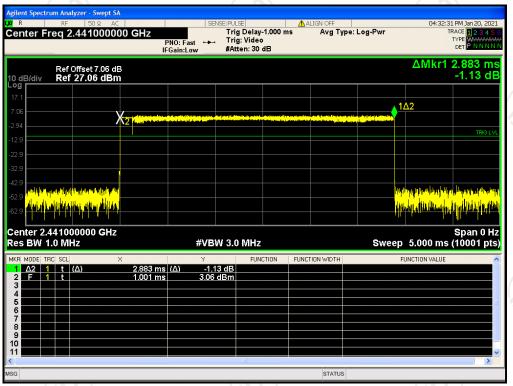


Dwell NVNT 1-DH3 2441MHz

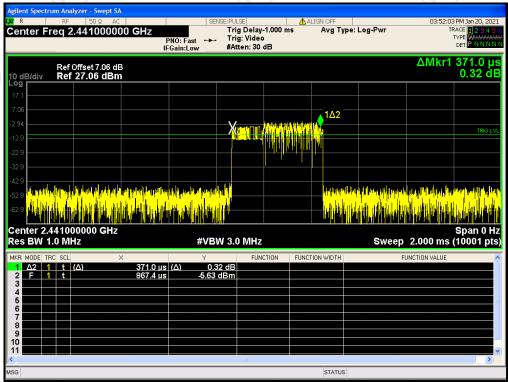

Page 75 of 104


Dwell NVNT 1-DH5 2441MHz

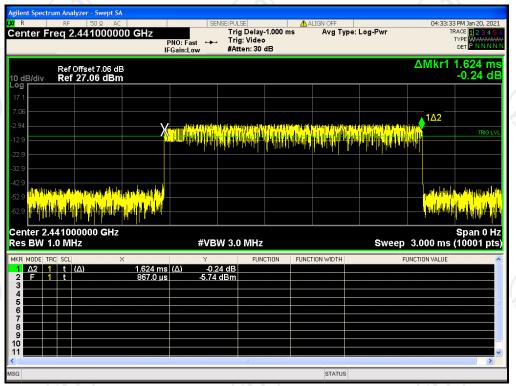
Dwell NVNT 2-DH1 2441MHz



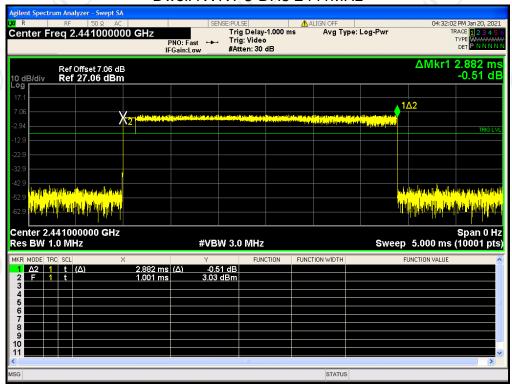
Dwell NVNT 2-DH3 2441MHz



Dwell NVNT 2-DH5 2441MHz

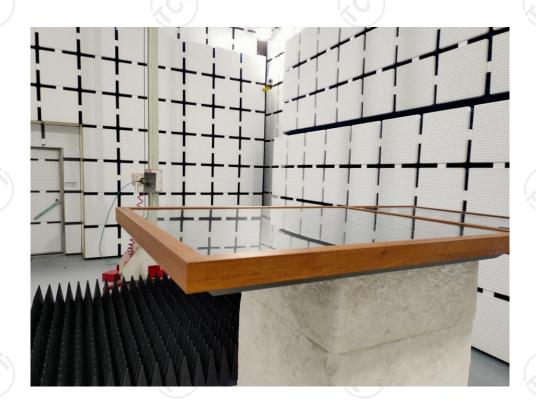


Dwell NVNT 3-DH1 2441MHz



Dwell NVNT 3-DH3 2441MHz




Dwell NVNT 3-DH5 2441MHz

Appendix B: Photographs of Test Setup
Product: Wall-mounted 27 inch LCD Signage with Writing-board
Model: ADMA04W-27

Page 80 of 104