

RADIO TEST REPORT

Report No.:STS2007111W02

Issued for

LYNQ Technologies, Inc.

19 Morris Avenue Building 128, Brooklyn, NY, 11205, USA

Product Name:	Lynq Network Stack Module	
Brand Name:	Lynq	
Model Name:	LNQNSM01	
Series Model:	LNQNSM	
FCC ID:	2ARHMLNQNSM01	
IC	24896-LYNQNSM01	
Test Standard:	FCC Part 15.247 RSS-247 Issue 2, February 2017 RSS-Gen Issue 5, March 2019	

APPROVA

Any reproduction of this document must be done in full. No single part of this document/may be reproduced with permission from STS, All Test Data Presented in this report is only applicable to presented Test sample.

TEST RESULT CERTIFICATION

Applicant's Name...... LYNQ Technologies, Inc.

Manufacture's Name...... Season Group

Address Unit 3, 5/F Sun Fung Industrial Building, 8 Ma Kok Street, Tsuen

Wan, New Territories, Hong Kong

Product Description

Product Name...... Lyng Network Stack Module

Brand Name Lyng

Model Name LNQNSM01

Series Model..... LNQNSM

FCC Part15.247

Test Standards RSS-247 Issue 2, February 2017

RSS-Gen Issue 5, March 2019

Test Procedure ANSI C63.10-2013

This device described above has been tested by STS, the test results show that the equipment under test (EUT) is in compliance with the FCC/IC requirements. And it is applicable only to the tested sample identified in the report.

This report shall not be reproduced except in full, without the written approval of STS, this document may be altered or revised by STS, personal only, and shall be noted in the revision of the document.

Date of Test

Date of receipt of test item 31 July 2020

Date (s) of performance of tests 31 July 2020 ~ 13 Oct. 2020

Date of Issue 13 Oct. 2020

Test Result..... Pass

Testing Engineer :

(Chris Chen)

Technical Manager :

(Sean she)

Authorized Signatory:

Mari

(Vita Li)

Table of Contents

1. SUMMARY OF TEST RESULTS	6
1.1 TEST FACTORY	7
1.2 MEASUREMENT UNCERTAINTY	7
2. GENERAL INFORMATION	8
2.1 GENERAL DESCRIPTION OF THE EUT	8
2.2 DESCRIPTION OF THE TEST MODES	9
2.3 TEST SOFTWARE AND POWER LEVEL	9
2.4 BLOCK DIGRAM SHOWING THE CONFIGURATION OF SYSTEM TESTED	10
2.5 DESCRIPTION OF NECESSARY ACCESSORIES AND SUPPORT UNITS	11
2.6 EQUIPMENTS LIST	12
3. EMC EMISSION TEST	13
3.1 CONDUCTED EMISSION MEASUREMENT	13
3.2 TEST PROCEDURE	14
3.3 TEST SETUP	14
3.4 EUT OPERATING CONDITIONS	14
3.5 TEST RESULTS	15
4. RADIATED EMISSION MEASUREMENT	17
4.1 RADIATED EMISSION LIMITS	17
4.2 TEST PROCEDURE	20
4.3 TEST SETUP	21
4.4 EUT OPERATING CONDITIONS	21
4.5 FIELD STRENGTH CALCULATION	22
4.6 TEST RESULTS	23
5. CONDUCTED SPURIOUS & BAND EDGE EMISSION	27
5.1 LIMIT	27
5.2 TEST PROCEDURE	27
5.3 TEST SETUP	27
5.4 EUT OPERATION CONDITIONS	27
5.5 TEST RESULTS	28
6. POWER SPECTRAL DENSITY TEST	30
6.1 LIMIT	30
6.2 TEST PROCEDURE	30
6.3 TEST SETUP	30

Table of Contents

6.4 EUT OPERATION CONDITIONS	30
6.5 TEST RESULTS	31
7. BANDWIDTH TEST	32
7.1 LIMIT	32
7.2 TEST PROCEDURE	32
7.3 TEST SETUP	32
7.4 EUT OPERATION CONDITIONS	32
7.5 TEST RESULTS	33
8. PEAK OUTPUT POWER TEST	35
8.1 LIMIT	35
8.2 TEST PROCEDURE	35
8.3 TEST SETUP	35
8.4 EUT OPERATION CONDITIONS	35
8.5 TEST RESULTS	36
9. ANTENNA REQUIREMENT	38
9.1 STANDARD REQUIREMENT	38
9.2 EUT ANTENNA	38
10. FREQUENCY STABILITY	39
10.1 LIMITS OF FREQUENCY STABILITY MEASUREMENT	39
10.2 TEST PROCEDURE	39
10.3 TEST RESULT	39
11. EUT TEST PHOTO	40

Page 5 of 40 Report No.: STS2007111W02

Revision History

Rev. Issue Date Report NO.		Effect Page	Contents	
00	00 13 Oct. 2020 STS2007111W02		ALL	Initial Issue

1. SUMMARY OF TEST RESULTS

Test procedures according to the technical standards: KDB 558074 D01 15.247 Meas Guidance v05r02.

DB 558074 D01 15.247 Meas Guidance v05f02.				
FCC Part 15.247,Subpart C RSS-247 Issue 2				
Standard Section	IAST ITAM			
15.207 RSS-Gen 8.8	Conducted Emission	PASS		
15.247 (a)(2) RSS-Gen 6.7 RSS-247 5.2 a)	6dB Bandwidth 99% Bandwidth	PASS		
15.247 (b)(3) RSS-247 5.4 d)	Output Power	PASS		
15.247 (c) RSS-Gen 8.9 8.10	Radiated Spurious Emission	PASS		
15.247 (d) RSS-247 5.5 RSS-Gen 8.9 8.10	Conducted Spurious & Band Edge Emission	PASS		
15.247 (e) RSS-247 5.2 b)	Power Spectral Density	PASS		
15.205 RSS-Gen 8.9 8.10	Restricted bands of operation	PASS		
Part 15.247(d)/part 15.209(a) RSS-247 5.5 RSS-Gen 8.9 8.10		PASS		
15.203 RSS-Gen 6.8	Antenna Requirement	PASS		
RSS-Gen 6.11 8.11 Frequency Stability		PASS		

NOTE:

- (1) 'N/A' denotes test is not applicable in this Test Report.
- (2) All tests are according to ANSI C63.10-2013.

1.1 TEST FACTORY

SHENZHEN STS TEST SERVICES CO., LTD

Add.: A 1/F, Building B, Zhuoke Science Park, No.190 Chongqing Road, HepingShequ,

Fuyong Sub-District, Bao'an District, Shenzhen, Guang Dong, China

FCC test Firm Registration Number: 625569 IC test Firm Registration Number: 12108A

A2LA Certificate No.: 4338.01

1.2 MEASUREMENT UNCERTAINTY

The reported uncertainty of measurement $\mathbf{y} \pm \mathbf{U}$, where expended uncertainty \mathbf{U} is based on a standard uncertainty multiplied by a coverage factor of $\mathbf{k=2}$, providing a level of confidence of approximately 95 %.

No.	Item	Uncertainty
1	RF output power, conducted	±0.68dB
2	Unwanted Emissions, conducted	±2.988dB
3	All emissions, radiated 30-1GHz	±5.6dB
4	All emissions, radiated 1G-6GHz	±5.5dB
5	All emissions, radiated>6G	±5.8dB
6	Conducted Emission (9KHz-150KHz)	±3.37dB
7	Conducted Emission (150KHz-30MHz)	±3.83dB

2. GENERAL INFORMATION

2.1 GENERAL DESCRIPTION OF THE EUT

Product Name	Lynq Network Stack Module		
Trade Name	Lynq		
Model Name	LNQNSM01		
Series Model	LNQNSM		
Model Difference	Only difference in m	nodel name.	
	The EUT is a Lynq	Network Stack Module.	
	Operation Frequency:	925.0MHz(500KHz)	
	Modulation Type:	LoRa	
Product Description	Number Of Channel:	CH 1.	
	Antenna Designation:	Please refer to the Note 3.	
	Antenna Gain (dBi) 0dBi		
Channel List	Please refer to the I	Note 2.	
Power Rating	DC 3.6V		
Hardware version number	r6		
Software version number	r6		
Connecting I/O Port(s)	Please refer to the I	Note 1.	

Note

1. For a more detailed features description, please refer to the manufacturer's specifications or the User Manual.

2.

Channel List		
Channel	Frequency (MHz)	
01	925.00	

Table for Filed Antenna

Ant.	Brand	Model Name	Antenna Type	Connector	Gain (dBi)	NOTE
1	Lynq	LNQNSM01	РСВ	N/A	0dBi	ANT

2.2 DESCRIPTION OF THE TEST MODES

For conducted test items and radiated spurious emissions

Each of these EUT operation mode(s) or test configuration mode(s) mentioned below was evaluated respectively.

Worst Mode	Description	Modulation
Mode 1	TX CH01(925.0MHz)	LoRa

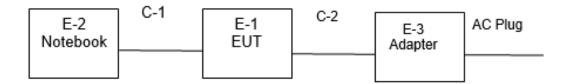
Note:

- (1) The measurements are performed at all Bit Rate of Transmitter, the worst data was reported.
- (2) We have be tested for all avaiable U.S. voltage and frequencies(For 120V,50/60Hz and 240V, 50/60Hz) for which the device is capable of operation, and the worst case of 120V/60Hz is shown in the report.

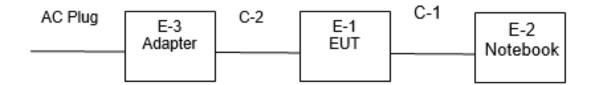
For AC Conducted Emission

OT TO COMMUNICA ET	
	Test Case
AC Conducted Emission	Mode 2: Keeping TX

2.3 TEST SOFTWARE AND POWER LEVEL


During testing channel & power controlling software provided by the customer was used to control the operating channel as well as the output power level.

RF	Tuno	Mode Or	Ant	Power	Coffware For Testing
Function	Type	Modulation type	Gain(dBi)	Class	Software For Testing
LORA	500KHz	902MHz-928MHz	0	15	fcc-commercial



2.4 BLOCK DIGRAM SHOWING THE CONFIGURATION OF SYSTEM TESTED

Radiated Spurious Emission Test

Conducted Emission Test

2.5 DESCRIPTION OF NECESSARY ACCESSORIES AND SUPPORT UNITS

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

Necessary accessories

Item	Equipment	Mfr/Brand	Model/Type No.	Serial No.	Note
E-3	Adapter	LITEON	PA-1650-86	N/A	N/A
C-2	DC Cable	N/A	N/A	110cm	N/A

Support units

Item	Equipment	Mfr/Brand	Model/Type No.	Serial No.	Note
E-2	Notebook	Lenovo	ThinkPad E470	N/A	N/A
C-1	USB Cable	N/A	N/A	120cm	N/A

Note:

(1) For detachable type I/O cable should be specified the length in cm in <code>"Length_"</code> column.

2.6 EQUIPMENTS LIST

Radiation Test equipment

Radiation Test equipment					
Manufacturer	Type No.	Serial No.	Last calibration	Calibrated until	
R&S	ESCI	101427	2020.09.30	2021.09.29	
Agilent	N9020A	MY51110105	2020.03.05	2021.03.04	
ZHINAN	ZN30900C	16035	2018.03.11	2021.03.10	
TESEQ	CBL6111D	34678	2017.11.02	2020.11.01	
SCHWARZBECK	BBHA 9120D(1201)	9120D-1343	2018.10.19	2021.10.18	
A-INFO	LB-180400-KF	J211020657	2018.03.11	2021.03.10	
EM	EM330	060665	2020.09.30	2021.09.29	
SKET	LNPA-01018G-45	SK201808090 1	2020.09.30	2021.09.29	
SKET	LNPA-1840-50	SK201810180 1	2020.09.30	2021.09.29	
HH660	Mieo	N/A	2019.10.17	2020.10.16	
EM	SC100_1	60531	N/A	N/A	
EM	SC100	N/A	N/A	N/A	
XINCBOKEJI	XBLBQ-DZA05	902-928MHz	N/A	N/A	
Test SW FARAD EZ-EMC(Ver.STSLAB-03A1 RE)					
	Manufacturer R&S Agilent ZHINAN TESEQ SCHWARZBECK A-INFO EM SKET SKET HH660 EM EM XINCBOKEJI	Manufacturer Type No. R&S ESCI Agilent N9020A ZHINAN ZN30900C TESEQ CBL6111D SCHWARZBECK BBHA 9120D(1201) A-INFO LB-180400-KF EM EM330 SKET LNPA-01018G-45 SKET LNPA-1840-50 HH660 Mieo EM SC100_1 EM SC100 XINCBOKEJI XBLBQ-DZA05	Manufacturer Type No. Serial No. R&S ESCI 101427 Agilent N9020A MY51110105 ZHINAN ZN30900C 16035 TESEQ CBL6111D 34678 SCHWARZBECK BBHA 9120D(1201) 9120D-1343 A-INFO LB-180400-KF J211020657 EM EM330 060665 SKET LNPA-01018G-45 SK201808090 1 SKET LNPA-1840-50 SK201810180 1 HH660 Mieo N/A EM SC100_1 60531 EM SC100 N/A XINCBOKEJI XBLBQ-DZA05 902-928MHz	Manufacturer Type No. Serial No. Last calibration R&S ESCI 101427 2020.09.30 Agilent N9020A MY51110105 2020.03.05 ZHINAN ZN30900C 16035 2018.03.11 TESEQ CBL6111D 34678 2017.11.02 SCHWARZBECK BBHA 9120D(1201) 9120D-1343 2018.10.19 A-INFO LB-180400-KF J211020657 2018.03.11 EM EM330 060665 2020.09.30 SKET LNPA-01018G-45 SK201808090 1 2020.09.30 SKET LNPA-1840-50 SK201810180 1 2020.09.30 HH660 Mieo N/A 2019.10.17 EM SC100_1 60531 N/A EM SC100 N/A N/A XINCBOKEJI XBLBQ-DZA05 902-928MHz N/A	

Conduction Test equipment

Kind of Equipment	Manufacturer	Type No.	Serial No.	Last calibration	Calibrated until	
Test Receiver	R&S	ESCI	101427	2020.09.30	2021.09.29	
LISN	R&S	ENV216	101242	2020.09.30	2021.09.29	
LISN	EMCO	3810/2NM	23625	2020.09.30	2021.09.29	
Temperature & Humidity	HH660	Mieo	N/A	2019.10.17	2020.10.16	
Test SW	FARAD	EZ-EMC(Ver.STSLAB-03A1 CE)				

RF Connected Test

Kind of Equipment	Manufacturer	Type No.	Serial No.	Last calibration	Calibrated until
USB RF power sensor	DARE	RPR3006W	15I00041SNO03	2020.09.30	2021.09.29
Signal Analyzer	Agilent	N9020A	MY49100060	2020.09.30	2021.09.29
Temperature & Humidity	HH660	Mieo	N/A	2019.10.17	2020.10.16
Test SW	FARAD		LZ-RF /L	zRf-3A3	

3. EMC EMISSION TEST

3.1 CONDUCTED EMISSION MEASUREMENT

3.1.1 POWER LINE CONDUCTED EMISSION LIMITS

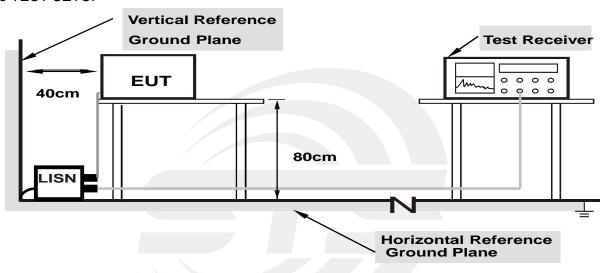
Operating frequency band. In case the emission fall within the restricted band specified on Part 207(a)&RSS-Gen Issue 5 limit in the table below has to be followed.

FREQUENCY (MHz)	Conducted Emission limit (dBuV)			
FREQUENCT (MHZ)	Quasi-peak	Average		
0.15 -0.5	66 - 56 *	56 - 46 *		
0.50 -5.0	56.00	46.00		
5.0 -30.0	60.00	50.00		

Note:

- (1) The tighter limit applies at the band edges.
- (2) The limit of " * " marked band means the limitation decreases linearly with the logarithm of the frequency in the range.

The following table is the setting of the receiver


Receiver Parameters	Setting
Attenuation	10 dB
Start Frequency	0.15 MHz
Stop Frequency	30 MHz
IF Bandwidth	9 kHz

3.2 TEST PROCEDURE

- a. The EUT was 0.8 meters from the horizontal ground plane and 0.4 meters from the vertical ground plane with EUT being connected to the power mains through a line impedance stabilization network (LISN). All other support equipments powered from additional LISN(s). The LISN provide 50 Ohm/ 50uH of coupling impedance for the measuring instrument.
- b. Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle 30 to 40 cm long.
- c. I/O cables that are not connected to a peripheral shall be bundled in the center. The end of the cable may be terminated, if required, using the correct terminating impedance. The overall length shall not exceed 1 m.
- d. LISN at least 80 cm from nearest part of EUT chassis.
- e. For the actual test configuration, please refer to the related Item -EUT Test Photos.

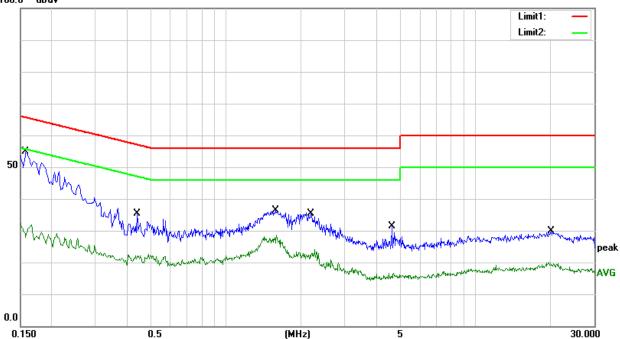
3.3 TEST SETUP

Note: 1.Support units were connected to second LISN.

2.Both of LISNs (AMN) are 80 cm from EUT and at least 80 cm from other units and other metal planes

3.4 EUT OPERATING CONDITIONS

The EUT was configured for testing in a typical fashion (as a customer would normally use it). The EUT has been programmed to continuously transmit during test. This operating condition was tested and used to collect the included data.


3.5 TEST RESULTS

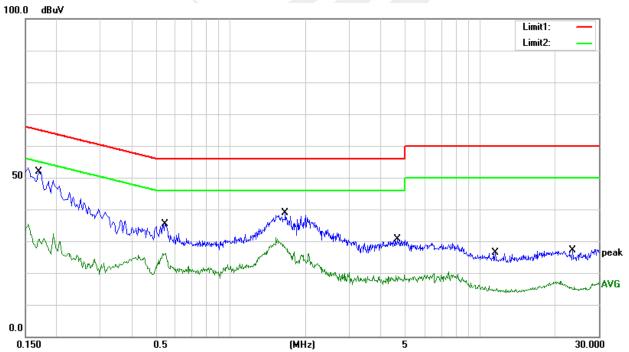
Temperature:	27.0(C)	Relative Humidity:	67%RH
Test Voltage:	AC 120V/60Hz	Phase:	L
Test Mode: Mode 2			

No.	Frequen cy	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	Factor(d B)	(dBuV)	(dBuV)	(dB)	
1	0.1582	34.78	20.21	54.99	65.56	-10.57	QP
2	0.1582	8.88	20.21	29.09	55.56	-26.47	AVG
3	0.4420	14.94	20.49	35.43	57.02	-21.59	QP
4	0.4420	1.70	20.49	22.19	47.02	-24.83	AVG
5	1.5780	16.17	20.15	36.32	56.00	-19.68	QP
6	1.5780	8.60	20.15	28.75	46.00	-17.25	AVG
7	2.1940	15.15	20.14	35.29	56.00	-20.71	QP
8	2.1940	2.72	20.14	22.86	46.00	-23.14	AVG
9	4.6380	11.34	20.03	31.37	56.00	-24.63	QP
10	4.6380	-3.48	20.03	16.55	46.00	-29.45	AVG
11	20.0700	9.26	20.65	29.91	60.00	-30.09	QP
12	20.0700	-0.63	20.65	20.02	50.00	-29.98	AVG

Remark:

- 1. All readings are Quasi-Peak and Average values
- 2. Margin = Result (Result = Reading + Factor)-Limit
- 3. Factor=LISN factor+Cable loss+Limiter (10dB) 100.0 dBuV

A 1/F, Building B, Zhuoke Science Park, No.190 Chongqing Road, HepingShequ, Fuyong Sub-District, Bao'an District, Shenzhen, Guang Dong, China Tel: +86-755 3688 6288 Fax:+86-755 3688 6277 Http://www.stsapp.com E-mail: sts@stsapp.com


Page 16 of 40 Report No.: STS2007111W02

Temperature:	27.0(C)	Relative Humidity:	67%RH
Test Voltage:	AC 120V/60Hz	Phase:	N
Test Mode:	Mode 2		

No.	Frequen cy	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	Factor(d B)	(dBuV)	(dBuV)	(dB)	
1	0.1700	31.69	20.24	51.93	64.96	-13.03	QP
2	0.1700	10.69	20.24	30.93	54.96	-24.03	AVG
3	0.5460	15.07	20.39	35.46	56.00	-20.54	QP
4	0.5460	5.71	20.39	26.10	46.00	-19.90	AVG
5	1.6620	18.75	20.16	38.91	56.00	-17.09	QP
6	1.6620	9.13	20.16	29.29	46.00	-16.71	AVG
7	4.6940	10.54	20.03	30.57	56.00	-25.43	QP
8	4.6940	-0.60	20.03	19.43	46.00	-26.57	AVG
9	11.5580	6.38	19.89	26.27	60.00	-33.73	QP
10	11.5580	-4.78	19.89	15.11	50.00	-34.89	AVG
11	23.5620	6.36	20.67	27.03	60.00	-32.97	QP
12	23.5620	-5.15	20.67	15.52	50.00	-34.48	AVG

Remark:

- 1. All readings are Quasi-Peak and Average values
- 2. Margin = Result (Result = Reading + Factor)-Limit
- 3. Factor=LISN factor+Cable loss+Limiter (10dB)

4. RADIATED EMISSION MEASUREMENT

4.1 RADIATED EMISSION LIMITS

In any 100 kHz bandwidth outside the operating frequency band. In case the emission fall within the Restricted band specified on Part15.205(a)&209(a), RSS-Gen Issue 5 and RSS-247 Issue 2, February 2017 (5.5) limit in the table and according to ANSI C63.10-2013 below has to be followed.

LIMITS OF RADIATED EMISSION MEASUREMENT (Frequency Range 9kHz-1000MHz)

Eliving of the Elivin						
Frequencies	Field Strength	Measurement Distance				
(MHz)	(micorvolts/meter)	(meters)				
0.009~0.490	2400/F(KHz)	300				
0.490~1.705	24000/F(KHz)	30				
1.705~30.0	30	30				
30~88	100	3				
88~216	150	3				
216~960	200	3				
Above 960	500	3				

LIMITS OF RADIATED EMISSION MEASUREMENT (Above 1000MHz)

FREQUENCY (MHz)	(dBuV/m) (at 3M)		
FREQUENCT (MITZ)	PEAK	AVERAGE	
Above 1000	74	54	

Notes:

- (1) The limit for radiated test was performed according to FCC PART 15C.
- (2) The tighter limit applies at the band edges.
- (3) Emission level (dBuV/m)=20log Emission level (uV/m).

LIMITS OF RESTRICTED FREQUENCY BANDS

FCC

FREQUENCY (MHz)	FREQUENCY (MHz)	FREQUENCY (MHz)	FREQUENCY (GHz)
0.090-0.110	16.42-16.423	399.9-410	4.5-5.15
0.495-0.505	16.69475-16.69525	608-614	5.35-5.46
2.1735-2.1905	16.80425-16.80475	960-1240	7.25-7.75
4.125-4.128	25.5-25.67	1300-1427	8.025-8.5
4.17725-4.17775	37.5-38.25	1435-1626.5	9.0-9.2
4.20725-4.20775	73-74.6	1645.5-1646.5	9.3-9.5
6.215-6.218	74.8-75.2	1660-1710	10.6-12.7
6.26775-6.26825	108-121.94	1718.8-1722.2	13.25-13.4
6.31175-6.31225	123-138	2200-2300	14.47-14.5
8.291-8.294	149.9-150.05	2310-2390	15.35-16.2
8.362-8.366	156.52475-156.52525	2483.5-2500	17.7-21.4
8.37625-8.38675	156.7-156.9	2690-2900	22.01-23.12
8.41425-8.41475	162.0125-167.17	3260-3267	23.6-24.0
12.29-12.293	167.72-173.2	3332-3339	31.2-31.8
12.51975-12.52025	240-285	3345.8-3358	36.43-36.5
12.57675-12.57725	322-335.4	3600-4400	Above 38.6
13.36-13.41			

IC:

FREQUENCY (MHz)	FREQUENCY (MHz)	FREQUENCY (GHz)
0.090 - 0.110	149.9 - 150.05	9.0 - 9.2
0.495 - 0.505	156.52475 - 156.52525	9.3 - 9.5
2.1735 - 2.1905	156.7 - 156.9	10.6 - 12.7
3.020 - 3.026	162.0125 - 167.17	13.25 - 13.4
4.125 - 4.128	167.72 - 173.2	14.47 - 14.5
4.17725 - 4.17775	240 – 285	15.35 - 16.2
4.20725 - 4.20775	322 - 335.4	17.7 - 21.4
5.677 - 5.683	399.9 - 410	22.01 - 23.12
6.215 - 6.218	608 - 614	23.6 - 24.0
6.26775 - 6.26825	960 - 1427	31.2 - 31.8
6.31175 - 6.31225	1435 - 1626.5	36.43 - 36.5
8.291 - 8.294	1645.5 - 1646.5	Above 38.6
8.362 - 8.366	1660 - 1710	
8.37625 - 8.38675	1718.8 - 1722.2	
8.41425 - 8.41475	2200 - 2300	
12.29 - 12.293	2310 - 2390	
12.51975 - 12.52025	2483.5 - 2500	
12.57675 - 12.57725	2655 - 2900	
13.36 - 13.41	3260 – 3267	7
16.42 - 16.423	3332 - 3339	
16.69475 - 16.69525	3345.8 - 3358	
16.80425 - 16.80475	3500 - 4400	
25.5 - 25.67	4500 - 5150	
37.5 - 38.25	5350 - 5460	
73 - 74.6	7250 - 7750	
74.8 - 75.2	8025 – 8500	
108 – 138		

For Radiated Emission

Spectrum Parameter	Setting
Attenuation	Auto
Detector	Peak/QP/AV
Start Frequency	9 KHz/150KHz(Peak/QP/AV)
Stop Frequency	150KHz/30MHz(Peak/QP/AV)
	200Hz (From 9kHz to 0.15MHz)/
RB / VB (emission in restricted	9KHz (From 0.15MHz to 30MHz);
band)	200Hz (From 9kHz to 0.15MHz)/
	9KHz (From 0.15MHz to 30MHz)

Spectrum Parameter	Setting	
Attenuation	Auto	
Detector	Peak/QP	
Start Frequency	30 MHz(Peak/QP)	
Stop Frequency	1000 MHz (Peak/QP)	
RB / VB (emission in restricted band)	120 KHz / 300 KHz	

Spectrum Parameter	Setting	
Attenuation	Auto	
Detector	Peak/AV	
Start Frequency	1000 MHz(Peak/AV)	
Stop Frequency	10th carrier hamonic(Peak/AV)	
RB / VB (emission in restricted	1 MHz / 3 MHz(Peak)	
band)	1 MHz/1/T MHz(AVG)	

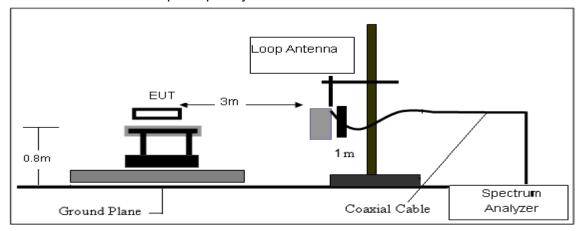
For Band Edge

Note: The EUT main frequency is too far away from the restricted band, so the band edge of the radiation method is not tested.

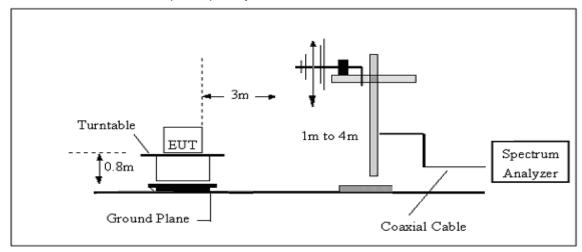
Page 20 of 40 Report No.: STS2007111W02

Receiver Parameter	Setting
Start ~ Stop Frequency	9kHz~90kHz / RB 200Hz for PK & AV
Start ~ Stop Frequency	90kHz~110kHz / RB 200Hz for QP
Start ~ Stop Frequency	110kHz~490kHz / RB 200Hz for PK & AV
Start ~ Stop Frequency	490kHz~30MHz / RB 9kHz for QP
Start ~ Stop Frequency	30MHz~1000MHz / RB 120kHz for QP

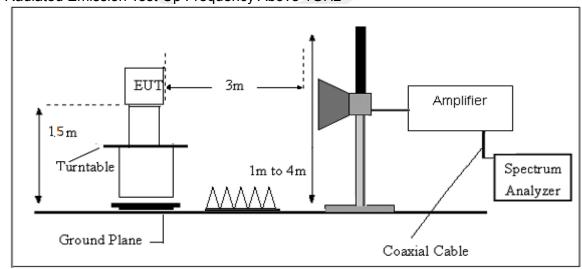
4.2 TEST PROCEDURE


- a. The measuring distance of at 3 m shall be used for measurements at frequency 0.009MHz up to 1GHz, and above 1GHz.
- b. The EUT was placed on the top of a rotating table 0.8 meters(above 1GHz is 1.5 m) above the ground at a 3 meter anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.
- c. The height of the equipment shall be 0.8 m(above 1GHz is 1.5 m); the height of the test antenna shall vary between 1 m to 4 m. Horizontal and vertical polarizations of the antenna are set to make the measurement
- d. The initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured.
- e. If the Peak Mode measured value compliance with and lower than Quasi Peak Mode Limit, the EUT shall be deemed to meet QP Limits and then no additional QP Mode measurement performed.
- f. For the actual test configuration, please refer to the related Item –EUT Test Photos.

Both horizontal and vertical antenna polarities were tested and performed pretest to three orthogonal axis. The worst case emissions were reported.



4.3 TEST SETUP


(A) Radiated Emission Test-Up Frequency Below 30MHz

(B) Radiated Emission Test-Up Frequency 30MHz~1GHz

(C) Radiated Emission Test-Up Frequency Above 1GHz

4.4 EUT OPERATING CONDITIONS

The EUT tested system was configured as the statements of 2.3 Unless otherwise a special operating condition is specified in the follows during the testing.

4.5 FIELD STRENGTH CALCULATION

The field strength is calculated by adding the Antenna Factor and Cable Factor and subtracting the Amplifier Gain and Duty Cycle Correction Factor (if any) from the measured reading. The basic equation with a sample calculation is as follows:

FS = RA + AF + CL - AG

Where

FS = Field Strength

CL = Cable Attenuation Factor (Cable Loss)

RA = Reading Amplitude

AG = Amplifier Gain

AF = Antenna Factor

For example

Frequency	FS	RA	AF	CL	AG	Factor
(MHz)	(dBµV/m)	(dBµV/m)	(dB)	(dB)	(dB)	(dB)
300	40	58.1	12.2	1.6	31.9	-18.1

Factor=AF+CL-AG

4.6 TEST RESULTS

(Between 9KHz - 30 MHz)

Temperature:	23.3(C)	Relative Humidtity:	60%RH
Test Voltage:	DC 3.6V	Polarization:	
Test Mode:	TX Mode		

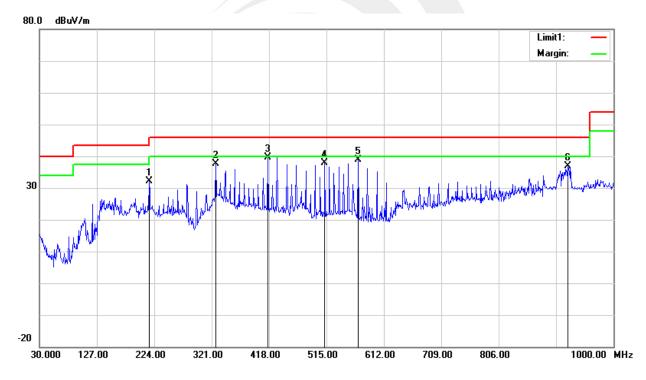
Freq.	Reading	Limit	Margin	State
(MHz)	(dBuV/m)	(dBuV/m)	(dB)	P/F
				PASS
				PASS

Note:

The amplitude of spurious emissions which are attenuated by more than 20dB below the permissible value has no need to be reported.

Distance extrapolation factor =40 log (specific distance/test distance)(dB);

Limit line = specific limits(dBuv) + distance extrapolation factor.

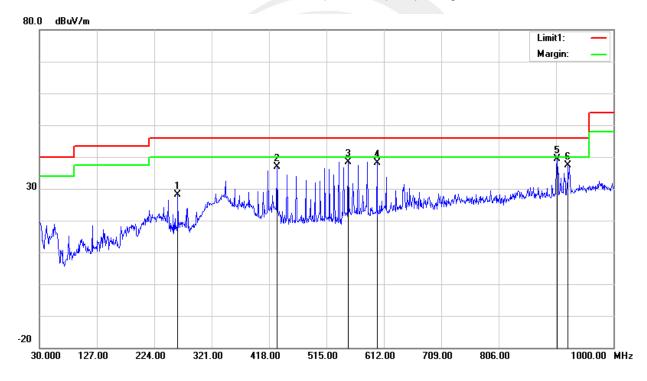

(30MHz -1000MHz)

Temperature:	23.3(C)	Relative Humidtity:	60%RH
Test Voltage:	DC 3.6V	Phase:	Horizontal
Test Mode:	Mode 1		

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	Factor(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	215.2700	52.29	-20.17	32.12	43.50	-11.38	QP
2	327.7900	51.29	-13.77	37.52	46.00	-8.48	QP
3	416.0600	49.94	-10.28	39.66	46.00	-6.34	QP
4	512.0900	45.79	-7.92	37.87	46.00	-8.13	QP
5	568.3500	44.37	-5.58	38.79	46.00	-7.21	QP
6	923.3700	36.65	0.18	36.83	46.00	-9.17	QP

Remark:

- 1. Margin = Result (Result = Reading + Factor)-Limit
- 2. Factor= Antenna factor+Cable attenuation factor(cable loss)-Amplifier gain


Page 25 of 40 Report No.: STS2007111W02

Temperature:	23.3(C)	Relative Humidtity:	60%RH
Test Voltage:	DC 3.6V	Phase:	Vertical
Test Mode:	Mode 1		

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	Factor(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	263.7700	42.78	-14.75	28.03	46.00	-17.97	QP
2	431.5800	46.92	-10.13	36.79	46.00	-9.21	QP
3	551.8600	44.22	-5.72	38.50	46.00	-7.50	QP
4	600.3600	43.91	-5.84	38.07	46.00	-7.93	QP
5	904.9400	39.82	-0.32	39.50	46.00	-6.50	QP
6	923.3700	37.24	0.18	37.42	46.00	-8.58	QP

Remark:

- 1. Margin = Result (Result = Reading + Factor)—Limit
- 2. Factor= Antenna factor+Cable attenuation factor(cable loss)-Amplifier gain

(1GHz-25GHz)Restricted band and Spurious emission Requirements

LoRa

Frequency	Meter Reading	Amplifier	Loss	Antenna Factor	Orrected Factor	Emission Level	Limits	Margin	Detector	Comment
(MHz)	(dBµV)	(dB)	(dB)	(dB/m)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Type	
	925 MHz									
1257.29	62.19	44.70	6.70	28.20	-9.80	52.39	74.00	-21.61	PK	Vertical
1257.29	51.64	44.70	6.70	28.20	-9.80	41.84	54.00	-12.16	AV	Vertical
1257.28	60.87	44.70	6.70	28.20	-9.80	51.07	74.00	-22.93	PK	Horizontal
1257.28	51.12	44.70	6.70	28.20	-9.80	41.32	54.00	-12.68	AV	Horizontal
1850.20	58.99	44.20	9.04	31.60	-3.56	55.43	74.00	-18.57	PK	Vertical
1850.20	50.53	44.20	9.04	31.60	-3.56	46.97	54.00	-7.03	AV	Vertical
1850.13	58.93	44.20	9.04	31.60	-3.56	55.37	74.00	-18.63	PK	Horizontal
1850.13	49.78	44.20	9.04	31.60	-3.56	46.22	54.00	-7.78	AV	Horizontal
2064.01	47.95	44.20	9.86	32.00	-2.34	45.61	74.00	-28.39	PK	Vertical
2064.01	39.29	44.20	9.86	32.00	-2.34	36.95	54.00	-17.05	AV	Vertical
2063.99	48.43	44.20	9.86	32.00	-2.34	46.09	74.00	-27.91	PK	Horizontal
2063.99	38.87	44.20	9.86	32.00	-2.34	36.53	54.00	-17.47	AV	Horizontal
2774.92	53.73	43.50	11.40	35.50	3.40	57.13	74.00	-16.87	PK	Vertical
2774.92	44.41	43.50	11.40	35.50	3.40	47.81	54.00	-6.19	AV	Vertical
2774.88	54.60	43.50	11.40	35.50	3.40	58.00	74.00	-16.00	PK	Horizontal
2774.88	44.73	43.50	11.40	35.50	3.40	48.13	54.00	-5.87	AV	Horizontal

Note:

- Factor = Antenna Factor + Cable Loss Pre-amplifier.
 Emission Level = Reading + Factor
- 2) The frequency emission of peak points that did not show above the forms are at least 20dB below the limit, the frequency emission is mainly from the environment noise.

5. CONDUCTED SPURIOUS & BAND EDGE EMISSION

5.1 LIMIT

According to FCC section 15.247(d)&RSS-247 Issue 2, in any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).

5.2 TEST PROCEDURE

Spectrum Parameter	Setting	
Detector	AV	
Start/Stop Frequency	30 MHz to 10th carrier harmonic	
RB / VB (emission in restricted band)	100 KHz/300 KHz	
Trace-Mode:	RMS hold	

For Band edge

Spectrum Parameter	Setting
Detector	AV
Span	Measure to the appropriate range of Band edge
RB / VB (emission in restricted band)	100 KHz/300 KHz
Trace-Mode:	RMS hold

5.3 TEST SETUP

The EUT which is powered by the DC Power, is connected to the Spectrum Analyzer; the RF load attached to the EUT antenna terminal is 50 Ohm; the path loss as the factor is calibrated to correct the reading. Make the measurement with the spectrum analyzer's resolution bandwidth(RBW) = 100 kHz. In order to make an accurate measurement, set the span greater than RBW.

5.4 EUT OPERATION CONDITIONS

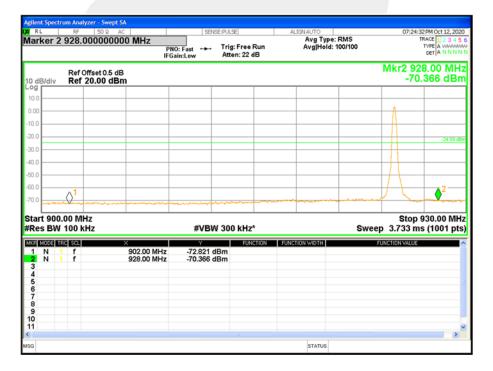
The EUT tested system was configured as the statements of 2.3 Unless otherwise a special operating condition is specified in the follows during the testing.

Page 28 of 40 Report No.: STS2007111W02

5.5 TEST RESULTS

Temperature:	25 ℃	Relative Humidity:	50%
Test Voltage:	DC 3.6V	Test Mode:	TX Mode /CH01

01 CH



For Band edge(it's also the reference level for conducted spurious emission)

01 CH

6. POWER SPECTRAL DENSITY TEST

6.1 LIMIT

٠.	I LIIVII I					
	FCC Part 15.247,Subpart C RSS-247 Issue 2					
	Section	Test Item	Limit	Frequency Range (MHz)	Result	
	15.247(e) RSS-247 Issue 2	Power Spectral Density	≤8 dBm (RBW≥3KHz)	2400-2483.5	PASS	

6.2 TEST PROCEDURE

- 1. Set analyzer center frequency to DTS channel center frequency.
- 2. Set the span to 1.5 times the DTS channel bandwidth.
- 3. Set the RBW to: 3 kHz.
- 4. Set the VBW \geq 3 x RBW.
- 5. Detector = AV.
- 6. Sweep time = auto couple.
- 7. Trace mode = RMS hold.
- 8. Allow trace to fully stabilize.
- 9. Use the peak marker function to determine the maximum amplitude level.
- 10. If measured value exceeds limit, reduce RBW (no less than 3 kHz) and repeat.

6.3 TEST SETUP

6.4 EUT OPERATION CONDITIONS

The EUT tested system was configured as the statements of 2.3 Unless otherwise a special operating condition is specified in the follows during the testing.

6.5 TEST RESULTS

Temperature:	25 ℃	Relative Humidity:	60%
Test Voltage:	DC 3.6V	Test Mode:	TX Mode /CH01

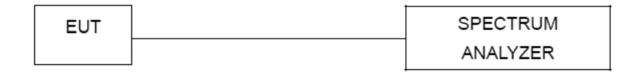
Fraguency (MHz)	Power Density	Limit (dBm/3KHz)	Result	
Frequency (MHz)	(dBm/3kHz)			
925 -19.146		≤8	PASS	

TX CH01

7. BANDWIDTH TEST

7.1 LIMIT

FCC Part 15.247,Subpart C					
		RSS-Gen Clause 6.7	7		
Section	Section Test Item Limit Frequency Range (MHz) Result				
15.247(a)(2) RSS-Gen Clause 6.7	Bandwidth	>= 500KHz (6dB bandwidth) 2400-2483.5 PAS			
RSS-Gen Clause 6.7	99% Bandwidth	For reporting purposes only.	2400-2483.5	PASS	


7.2 TEST PROCEDURE

Connect the UUT to the spectrum analyser and use the following settings:

Center Frequency	The centre frequency of the channel under test		
Detector	Peak		
RBW	For 6 dB Bandwidth :100KHz For 99% Bandwidth :1% to 5% of the occupied bandwidth		
VBW	For 6dB Bandwidth : ≥3 × RBW For 99% Bandwidth : approximately 3×RBW		
Trace	Max hold		
Sweep	Auto		

Allow the trace to stabilize and measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB and 99% relative to the maximum level measured in the fundamental emission.

7.3 TEST SETUP

7.4 EUT OPERATION CONDITIONS

The EUT tested system was configured as the statements of 2.3 Unless otherwise a special operating condition is specified in the follows during the testing.

Page 33 of 40 Report No.: STS2007111W02

7.5 TEST RESULTS

Temperature:	25 ℃	Relative Humidity:	60%
Test Voltage:	DC 3.6V	Test Mode:	TX Mode /CH01

Frequency(MHz)	6dB Bandwidth (KHz)	99% Bandwidth (KHz)	Channel Separation (KHz)	Result
925	691.200	601.580	≥500KHz	PASS

6dB Bandwidth TX CH 01

99% Bandwidth TX CH 01

8. PEAK OUTPUT POWER TEST

8.1 LIMIT

FCC Part 15.247,Subpart C				
RSS-247 Issue 2				
Section	Test Item	Limit	Frequency Range (MHz)	Result
15.247(b)(3) RSS 247 Issue 2	Output Power	1 watt or 30dBm	902-928	PASS
RSS-247	EIRP	4W	902-928	PASS

8.2 TEST PROCEDURE

One of the following procedures may be used to determine the maximum peak conducted output power of a DTS EUT.

RBW ≥ DTS bandwidth

The following procedure shall be used when an instrument with a resolution bandwidth that is greater than the DTS bandwidth is available to perform the measurement:

- a) Set the RBW ≥ DTS bandwidth.
- b) Set VBW ≥ [3 × RBW].
- c) Set span ≥ [3 × RBW].
- d) Sweep time = auto couple.
- e) Detector = AV.
- f) Trace mode = max hold.
- g) Allow trace to fully stabilize.
- h) Use peak marker function to determine the peak amplitude level.

Integrated band power method:

The following procedure can be used when the maximum available RBW of the instrument is less than the

DTS bandwidth:

- a) Set the RBW = 1 MHz.
- b) Set the VBW \geq [3 \times RBW].
- c) Set the span \geq [1.5 \times DTS bandwidth].
- d) Detector = AV.
- e) Sweep time = auto couple.
- f) Trace mode = max hold.
- g) Allow trace to fully stabilize.
- h) Use the instrument's band/channel power measurement function with the band limits set equal to the DTS bandwidth edges (for some instruments, this may require a manual override to select the peak detector). If the instrument does not have a band power function, then sum the spectrum levels (in linear power units) at intervals equal to the RBW extending across the DTS channel bandwidth.

PKPM1 Peak power meter method:

The maximum peak conducted output power may be measured using a broadband peak RF power meter. The power meter shall have a video bandwidth that is greater than or equal to the DTS bandwidth and shall use a fast-responding diode detector.

8.3 TEST SETUP

8.4 EUT OPERATION CONDITIONS

The EUT tested system was configured as the statements of 2.3 Unless otherwise a special operating condition is specified in the follows during the testing.

Page 36 of 40 Report No.: STS2007111W02

8.5 TEST RESULTS

Temperature:	25 ℃	Relative Humidity:	60%
Test Voltage:	DC 3.6V	Test Mode:	TX Mode /CH01

Test Channe	Frequency	AVG Conducted Output Power	LIMIT
rest oname	(MHz)	(dBm)	dBm
CH01	925	22.66	30

Note: Our power sensor test AVG power has no duty cycle display. The power sensor measures AVG power is Burst power. The software has considered the factor of the duty cycle factor, so it is unnecessary to add it again.

EIRP Power

Test Channe	Frequency	Conducted Output Power	Antenna Gain	ERP Power	EIRP Power	LIMIT
	(MHz)	(dBm)	(dBi)	(dBm)	(dBm)	dBm
CH01	925	22.66	0.00	22.66	24.81	36.02

Note: EIRP = ERP+2.15dB.

Duty cycle

Ton	Тр	Duty cycle(%)	Duty factor(dB)
2.000	2.000	100.00%	0.00

9. ANTENNA REQUIREMENT

9.1 STANDARD REQUIREMENT

15.203&RSS GEN requirement: For intentional device, according to 15.203&RSS GEN: an intentional ra requirement: For intentional device, according to 15.203: an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device.

9.2 EUT ANTENNA

The EUT antenna is PCB Antenna. It comply with the standard requirement.

10. FREQUENCY STABILITY

10.1 LIMITS OF FREQUENCY STABILITY MEASUREMENT

The frequency tolerance of the carrier signal shall be maintained within +/-0.02% of the operating frequency over a temperature variation of -30 degrees to 50 degrees C at normal supply voltage, and for a variation in primary supply voltage from 85% to 115% of the rated supply voltage at a temperature of 20 degrees.

10.2 TEST PROCEDURE

- 1. The EUT was placed inside the environmental test chamber and powered by nominal DC voltage.
- 2. Turn the EUT on and couple its output to spectrum analyzer.
- 3. Turn the EUT off and set the chamber to the highest temperature specified.
- 4. Allow sufficient time (approximately 30 min) for the temperature of the chamber to stabilize, turn the EUT on and measure the operating frequency after 2,5, and 10 minutes.
- 5. Repeat step 2 and 3 with the temperature chamber set to the lowest temperature.
- 6. The test chamber was allowed to stabilize at +20 degree C for a minimum of 30 minutes. The supply voltage was then adjusted on the EUT from 85% to 115% and the frequency record.

10.3 TEST RESULT

Channel 01 (925MHz)

Voltage vs. Frequency Stability

\/oltage(\/)	Measurement	
Voltage(V)	Frequency(MHz)	
4.14	925.0008	
3.6	924.9999	
3.06	925.0005	
Max.Deviation(MHz)	0.0008	
Max.Deviation(ppm)	0.86	

Rated working voltage: DC 3.6V Temperature vs. Frequency Stability

Tomporaturo(°C)	Measurement	
Temperature(°C)	Frequency(MHz)	
-30	925.0001	
-20	924.9996	
-10	924.9999	
0	924.9995	
10	924.9993	
20	925.0001	
30	924.9994	
40	924.9993	
50	924.9993	
Max.Deviation(MHz)	0.0001	
Max.Deviation(ppm)	0.14	

11. EUT TEST PHOTO

Note: See test photos in setup photo document for the actual connections between Product and support equipment.

* * * * * END OF THE REPORT * * * *

