

Page 1 of 28

FCC Test Report

Report No.	: 1812C50045412501
Applicant	: Shenzhen Seenda Technology Co., Ltd.
Address	#3402-3405, 3410-3411, Building B, Longhua District Digital Innovation Center, Beizhan Community, Minzhi Street, Longhua District, Shenzhen, China
Product Name	: Wireless Mouse
Report Date	: 2025-05-29

Shenzhen Anbotek Compliance Laboratory Limited

Contents

1. General Information	6
 1.1. Client Information 1.2. Description of Device (EUT) 1.3. Auxiliary Equipment Used During Test 1.4. Operation channel list 1.5. Description of Test Modes 1.6. Measurement Uncertainty 1.7. Test Summary 1.8. Description of Test Facility 1.9. Disclaimer 1.10. Test Equipment List 	6 7 7 7 8 9 9
2. Antenna requirement	12
2.1. Conclusion	12
3. Conducted Emission at AC power line	13
3.1. EUT Operation 3.2. Test Setup 3.3. Test Data	13
4. 6dB Bandwidth	14
4.1. EUT Operation4.2. Test Setup4.3. Test Data	14
5. Maximum Conducted Output Power	15
5.1. EUT Operation 5.2. Test Setup 5.3. Test Data	15
6. Power Spectral Density	16
6.1. EUT Operation 6.2. Test Setup 6.3. Test Data	16
7. Emissions in non-restricted frequency bands	17
7.1. EUT Operation 7.2. Test Setup 7.3. Test Data	17
8. Band edge emissions (Radiated)	18
8.1. EUT Operation 8.2. Test Setup 8.3. Test Data	18
9. Emissions in restricted frequency bands (below 1GHz)	20
9.1. EUT Operation 9.2. Test Setup 9.3. Test Data	21
10. Emissions in restricted frequency bands (above 1GHz)	

Shenzhen Anbotek Compliance Laboratory Limited

Address: Sogood Industrial Zone Laboratory & 1/F. of Building D, Sogood Science and Technology Park, Sanwei Community, Hangcheng Subdistrict, Bao'an District, Shenzhen, Guangdong, China Tel:(86)0755-26066440 Email: service@anbotek.com

Report No.:1812C50045412501 FCC ID: 2BDJR-SK38-M

10.1. EUT Operation	
10.2. Test Setup	
10.3. Test Data	
APPENDIX I TEST SETUP PHOTOGRAPH	
APPENDIX II EXTERNAL PHOTOGRAPH	
APPENDIX III INTERNAL PHOTOGRAPH	

Shenzhen Anbotek Compliance Laboratory Limited

Address: Sogood Industrial Zone Laboratory & 1/F. of Building D, Sogood Science and Technology Park, Sanwei Community, Hangcheng Subdistrict, Bao'an District, Shenzhen, Guangdong, China Tel:(86)0755-26066440 Email: service@anbotek.com

Report No.:1812C50045412501 FCC ID: 2BDJR-SK38-M

TEST REPORT

Test Standard(s)	:	47 CFR Part 15.247 ANSI C63.10-2020
Rating(s)	:	Input: DC 3V by "AAA"*2 batteries
Trade Mark	:	SEENDA
Model No.	:	SK38, WGJP-038, SK38C, SK38A, COE202, COE203, COE200
Product Name	:	Wireless Mouse
Manufacturer	:	Shenzhen Seenda Technology Co., Ltd.
Applicant	:	Shenzhen Seenda Technology Co., Ltd.

The device described above is tested by Shenzhen Anbotek Compliance Laboratory Limited to determine the maximum emission levels emanating from the device and the severe levels of the device can endure and its performance criterion. The measurement results are contained in this test report and Shenzhen Anbotek Compliance Laboratory Limited is assumed full of responsibility for the accuracy and completeness of these measurements. Also, this report shows that the EUT (Equipment Under Test) is technically compliant with above listed standard(s) requirements. This report applies to above tested sample only and shall not be reproduced in part without written approval of Shenzhen Anbotek Compliance Laboratory Limited.

KDB 558074 D01 15.247 Meas Guidance v05r02

Date of Receipt:

Feb. 14, 2025

Date of Test:

Prepared By:

Feb. 14, 2025 to Feb. 26, 2025

ecilia Chen

(Cecilia Chen)

(Hugo Chen)

Approved & Authorized Signer:

Shenzhen Anbotek Compliance Laboratory Limited

Revision History

Report Version	Description	Issued Date
R00	Original Issue.	2025-05-29

Shenzhen Anbotek Compliance Laboratory Limited

Address: Sogood Industrial Zone Laboratory & 1/F. of Building D, Sogood Science and Technology Park, Sanwei Community, Hangcheng Subdistrict, Bao'an District, Shenzhen, Guangdong, China Tel:(86)0755-26066440 Email: service@anbotek.com

1. General Information

1.1. Client Information

Applicant	:	Shenzhen Seenda Technology Co., Ltd.
Address	:	#3402-3405, 3410-3411, Building B, Longhua District Digital Innovation Center, Beizhan Community, Minzhi Street, Longhua District, Shenzhen, China
Manufacturer	:	Shenzhen Seenda Technology Co., Ltd.
Address	:	#3402-3405, 3410-3411, Building B, Longhua District Digital Innovation Center, Beizhan Community, Minzhi Street, Longhua District, Shenzhen, China
Factory	:	Shenzhen Hangshi Electronic Technology Co., LTD
Address	:	Floor 2, Building A1, Zone G, Democratic West Industrial Zone, Democratic Community, Shajing Street, Bao 'an District, Shenzhen, China

1.2. Description of Device (EUT)

Product Name	:	Wireless Mouse
Model No.	:	SK38, WGJP-038, SK38C, SK38A, COE202, COE203, COE200 (Note: All samples are the same except the model number, so we prepare "SK38" for test only.)
Trade Mark	:	SEENDA
Test Power Supply	:	DC 3V by Battery
Test Sample No.	:	1-2-1(Normal Sample), 1-2-2(Engineering Sample)
Adapter	:	N/A
RF Specification		
Operation Frequency		2405MHz ~ 2460MHz
Number of Channel	:	5
Modulation Type	:	GFSK
Antenna Type	:	PCB Antenna
Antenna Gain(Peak)	:	2dBi
		ation are provided by customer. eatures description, please refer to the manufacturer's specifications or the

User's Manual.

1.3. Auxiliary Equipment Used During Test

Title	Manufacturer	Model No.	Serial No.	
	/	/	1	

1.4. Operation channel list

Operation Band:

Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)
1	2405	2	2417	3	2430	4	2445
5	2460						

1.5. Description of Test Modes

Pretest Modes	Descriptions
TM1	Keep the EUT in continuously transmitting mode

1.6. Measurement Uncertainty

Parameter	Uncertainty			
Conducted emissions (AMN 150kHz~30MHz)	3.2dB			
Occupied Bandwidth	925Hz			
Conducted Output Power	0.76dB			
Power Spectral Density	0.76dB			
Conducted Spurious Emission	1.24dB			
Radiated spurious emissions (above 1GHz)	1G-6GHz: 4.64dB; 6G-18GHz: 4.82dB 18G-40GHz: 5.62dB			
Radiated emissions (Below 30MHz)	3.26dB			
Radiated spurious emissions (30MHz~1GHz)	Horizontal: 3.70dB; Vertical: 4.42dB			
The measurement uncertainty and decision risk evaluated according to AB/WI-RF-F-032. This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.				

1.7. Test Summary

Test Items	Test Modes	Status
Antenna requirement	1	Р
Conducted Emission at AC power line	1	N
6dB Bandwidth	Mode1	Р
Maximum Conducted Output Power	Mode1	Р
Power Spectral Density	Mode1	Р
Emissions in non-restricted frequency bands	Mode1	Р
Band edge emissions (Radiated)	Mode1	Р
Emissions in restricted frequency bands (below 1GHz)	Mode1	Р
Emissions in restricted frequency bands (above 1GHz)	Mode1	Р
Note: P: Pass N: N/A, not applicable		

1.8. Description of Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

FCC-Registration No.:279531

Shenzhen Anbotek Compliance Laboratory Limited, EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in our files. Registration No. 279531.

ISED-Registration No.: 8058A

Shenzhen Anbotek Compliance Laboratory Limited, EMC Laboratory has been registered and fully described in a report filed with the (ISED) Innovation, Science and Economic Development Canada. The acceptance letter from the ISED is maintained in our files. Registration 8058A.

Test Location

Shenzhen Anbotek Compliance Laboratory Limited. Sogood Industrial Zone Laboratory & 1/F. of Building D, Sogood Science and Technology Park, Sanwei Community, Hangcheng Subdistrict, Bao'an District, Shenzhen, Guangdong, China.

1.9. Disclaimer

- 1. The test report is invalid if not marked with the signatures of the persons responsible for preparing and approving the test report.
- 2. The test report is invalid if there is any evidence and/or falsification.
- 3. The results documented in this report apply only to the tested sample, under the conditions and modes of operation as described herein.
- 4. This document may not be altered or revised in any way unless done so by Anbotek and all revisions are duly noted in the revisions section.
- 5. Content of the test report, in part or in full, cannot be used for publicity and/or promotional purposes without prior written approval from the laboratory.
- 6. The authenticity of the information provided by the customer is the responsibility of the customer and the laboratory is not responsible for its authenticity.
- 7. The data in this report will be synchronized with the corresponding national market supervision and management departments and cross-border e-commerce platforms as required by regulatory agencies.

The laboratory is only responsible for the data released by the laboratory, except for the part provided by the applicant.

1.10. Test Equipment List

Cond	Conducted Emission at AC power line					
Item	Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal.Due Date
1	L.I.S.N. Artificial Mains Network	Rohde & Schwarz	ENV216	100055	2024-09-09	2025-09-08
2	Three Phase V- type Artificial Power Network	CYBERTEK	EM5040DT	E215040D T001	2025-01-13	2026-01-12
3	Software Name EZ-EMC	Farad Technology	ANB-03A	N/A	/	/
4	4 EMI Test Receiver(CE2#) Rohde & Schwarz ESPI3 100926 2024-09-09 2025-09-08					
Maximum Conducted Output Power Power Spectral Density						

Emissions in	non-restricted fr	requency bands

6dB	Bandwidth	

OUD L	Sanuwiutin					
Item	Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal.Due Date
1	Constant Temperature Humidity Chamber	ZHONGJIAN	ZJ- KHWS80B	N/A	2024-10-14	2025-10-13
2	DC Power Supply	IVYTECH	IV3605	1804D360 510	2024-09-09	2025-09-08
3	Spectrum Analyzer	Rohde & Schwarz	FSV40-N	102150	2024-05-06	2025-05-05
4	MXA Spectrum Analysis	KEYSIGHT	N9020A	MY505318 23	2024-09-09	2025-09-08
5	Oscilloscope	Tektronix	MDO3012	C020298	2024-10-10	2025-10-09
6	MXG RF Vector Signal Generator	Agilent	N5182A	MY474206 47	2025-01-14	2026-01-13

1.32

)

20

	Emissions in restricted frequency bands (above 1GHz) Band edge emissions (Radiated)					
Item	Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal.Due Date
1	EMI Test Receiver(RE2/3#)	Rohde & Schwarz	ESR26	101481	2025-01-14	2026-01-13
2	EMI Preamplifier	SKET Electronic	LNPA- 0118G-45	SKET-PA- 002	2025-01-13	2026-01-12
3	Double Ridged Horn Antenna	SCHWARZBECK	BBHA 9120D	02555	2022-10-16	2025-10-15
4	EMI Test Software EZ-EMC	SHURPLE	N/A	N/A	/	/
5	Horn Antenna	A-INFO	LB-180400- KF	J2110606 28	2024-01-22	2027-01-21
6	Spectrum Analyzer	Rohde & Schwarz	FSV40-N	102150	2024-05-06	2025-05-05
7	Amplifier	Talent Microwave	TLLA18G40 G-50-30	23022802	2024-05-07	2025-05-06

Emis	Emissions in restricted frequency bands (below 1GHz)					
Item	Equipment	Manufacturer	Manufacturer Model No. Serial No. Last Cal. C			
1	EMI Test Receiver(RE2/3#)	Rohde & Schwarz	ESR26	101481	2025-01-14	2026-01-13
2	Pre-amplifier	SONOMA	310N	186860	2025-01-14	2026-01-13
3	Bilog Broadband Antenna	Schwarzbeck	VULB9163	345	2022-10-23	2025-10-22
4	Loop Antenna (9K-30M)	Schwarzbeck	FMZB1519 B	00053	2024-09-12	2025-09-11
5	EMI Test Software EZ-EMC	SHURPLE	N/A	N/A	/	1

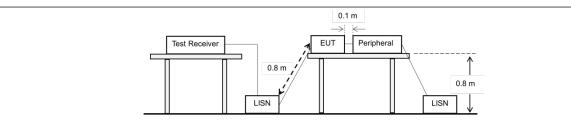
2. Antenna requirement

Test Requirement:	Refer to 47 CFR Part 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section.
-------------------	---

2.1. Conclusion

The antenna is a **PCB Antenna** which permanently attached, and the best case gain of the antenna is **2dBi**. It complies with the standard requirement.

motaury Limis


3. Conducted Emission at AC power line

Test Requirement:	Refer to 47 CFR 15.207(a), Except as shown in paragraphs (b)and (c)of this section, for an intentional radiator that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies, within the band 150 kHz to 30 MHz, shall not exceed the limits in the following table, as measured using a 50 μ H/50 ohms line impedance stabilization network (LISN).				
	Frequency of emission (MHz)	on (MHz) Conducted limit (dBµV)			
		Quasi-peak	Average		
T = = (1 + = =)	0.15-0.5	66 to 56*	56 to 46*		
Test Limit:	0.5-5	56	46		
	5-30	60	50		
	*Decreases with the logarithm of the frequency.				
Test Method:	ANSI C63.10-2020 section 6.2				
Procedure:	Refer to ANSI C63.10-2020 section 6.2, standard test method for ac power- line conducted emissions from unlicensed wireless devices				

3.1. EUT Operation

Operating Environment:		
Test mode:	1: TX Mode: Keep the EUT in continuously transmitting mode	

3.2. Test Setup

3.3. Test Data

Temperature:	24.8 °C	Humidity:	52.7 %	Atmospheric Pressure:	101 kPa

Not applicable. The EUT is powered by DC 3V battery inside, so there is no need to conduct this test.

4. 6dB Bandwidth

Test Requirement:	47 CFR 15.247(a)(2)
Test Limit:	Refer to 47 CFR 15.247(a)(2), Systems using digital modulation techniques may operate in the 902-928 MHz, and 2400-2483.5 MHz bands. The minimum 6 dB bandwidth shall be at least 500 kHz.
Test Method:	ANSI C63.10-2020, section 11.8 KDB 558074 D01 15.247 Meas Guidance v05r02
Procedure:	 11.8.1 Option 1 The steps for the first option are as follows: a) Set RBW = shall be in the range of 1% to 5% of the OBW but not less than 100 kHz. b) Set the VBW ≥ [3 × RBW]. c) Detector = peak. d) Trace mode = max-hold. e) Sweep = No faster than coupled (auto) time. f) Allow the trace to stabilize. g) Measure the maximum width of the emission by placing two markers, one at the lowest frequency and the other at the highest frequency of the envelope of the spectral display, such that each marker is at or slightly below the "-6 dB down amplitude". If a marker is below this "-6 dB down amplitude". If a marker is below this "-6 dB down amplitude". If a marker is below this value. 11.8.2 Option 2 The automatic bandwidth measurement capability of an instrument may be employed using the X dB bandwidth mode with X set to 6 dB, if the functionality described in 11.8.1 (i.e., RBW = 100 kHz, VBW ≥ 3 × RBW, and peak detector with maximum hold) is implemented by the instrumentation function. When using this capability, care shall be taken so that the bandwidth measurement is not influenced by any intermediate power nulls in the fundamental emission that might be ≥ 6 dB.

4.1. EUT Operation

Operating Envir	ronment:
Test mode:	1: TX Mode: Keep the EUT in continuously transmitting mode

4.2. Test Setup

EUT S	Spectrum Analyzer
-------	-------------------

4.3. Test Data

Temperature: 20.2 °C	Humidity:	47 %	Atmospheric Pressure:	101 kPa
----------------------	-----------	------	-----------------------	---------

Please Refer to Appendix for Details.

5. Maximum Conducted Output Power

Test Requirement:	47 CFR 15.247(b)(3)
Test Limit:	Refer to 47 CFR 15.247(b)(3), For systems using digital modulation in the 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz bands: 1 Watt. As an alternative to a peak power measurement, compliance with the one Watt limit can be based on a measurement of the maximum conducted output power. Maximum Conducted Output Power is defined as the total transmit power delivered to all antennas and antenna elements averaged across all symbols in the signaling alphabet when the transmitter is operating at its maximum power control level. Power must be summed across all antennas and antenna elements. The average must not include any time intervals during which the transmitter is off or is transmitting at a reduced power level. If multiple modes of operation are possible (e.g., alternative modulation methods), the maximum conducted output power is the highest total transmit power occurring in any mode.
Test Method:	ANSI C63.10-2020 section 11.9.1 KDB 558074 D01 15.247 Meas Guidance v05r02
Procedure:	ANSI C63.10-2020, section 11.9.1.1 Maximum peak conducted output power

5.1. EUT Operation

Operating Environment:		
Test mode: 1: TX Mode: Keep the EUT in continuously transmitting mode		
5.2. Test Setup		

EUT _____ Spectrum Analyzer

5.3. Test Data

Temperature: 20.2 °C	Humidity:	47 %	Atmospheric Pressure:	101 kPa
----------------------	-----------	------	-----------------------	---------

Please Refer to Appendix for Details.

6. Power Spectral Density

Test Requirement:	47 CFR 15.247(e)
Test Limit:	Refer to 47 CFR 15.247(e), For digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission. This power spectral density shall be determined in accordance with the provisions of paragraph (b) of this section. The same method of determining the conducted output power shall be used to determine the power spectral density.
Test Method:	ANSI C63.10-2020, section 11.10 KDB 558074 D01 15.247 Meas Guidance v05r02
Procedure:	ANSI C63.10-2020, section 11.10.2, Maximum power spectral density level in the fundamental emission

6.1. EUT Operation

Operating Environment:	
Test mode: 1: TX Mode: Keep the EUT in continuously transmitting mode	

6.2. Test Setup

EUT Spectrum Analyzer

6.3. Test Data

Temperature:20.2 °CHumidity:47 %Atmospheric Pressu	e: 101 kPa
--	------------

Please Refer to Appendix for Details.

7. Emissions in non-restricted frequency bands

Test Requirement:	47 CFR 15.247(d)
Test Limit:	Refer to 47 CFR 15.247(d), In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in § 15.209(a) is not required.
Test Method:	ANSI C63.10-2020 section 11.11 KDB 558074 D01 15.247 Meas Guidance v05r02
Procedure:	ANSI C63.10-2020 Section 11.11.1, Section 11.11.2, Section 11.11.3

7.1. EUT Operation

	Operating Environment:		
Test mode:1: TX Mode: Keep the EUT in continuously transmitting mode 2: TX (Hopping): Keep the EUT in continuously transmitting mode (hopping).			

7.2. Test Setup

EUT	Spectrum Analyzer

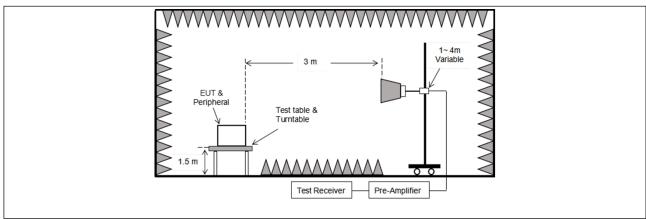
7.3. Test Data

Temperature:	20.2 °C	Humidity:	47 %	Atmospheric Pressure:	101 kPa

Please Refer to Appendix for Details.

Å

8. Band edge emissions (Radiated)


Test Requirement:	Refer to 47 CFR 15.247(d), In addition, radiated emissions which fall in the restricted bands, as defined in § 15.205(a), must also comply with the radiated emission limits specified in § 15.209(a)(see § 15.205(c)).`					
	Frequency (MHz)	Field strength (microvolts/meter)	Measurement distance (meters)			
	0.009-0.490	2400/F(kHz)	300			
	0.490-1.705	24000/F(kHz)	30			
	1.705-30.0	30	30			
	30-88	100 **	3			
	88-216	150 **	3			
	216-960	200 **	3			
	Above 960	500	3			
Test Limit:	 ** Except as provided in paragraph (g), fundamental emissions from intentional radiators operating under this section shall not be located in the frequency bands 54-72 MHz, 76-88 MHz, 174-216 MHz or 470-806 MHz. However, operation within these frequency bands is permitted under other sections of this part, e.g., §§ 15.231 and 15.241. In the emission table above, the tighter limit applies at the band edges. The emission limits shown in the above table are based on measurements employing a CISPR quasi-peak detector except for the frequency bands 9–90 kHz, 110–490 kHz and above 1000 MHz. Radiated emission limits in these three bands are based on measurements employing an average detector. 					
Test Method:	ANSI C63.10-2020 section 6.10 KDB 558074 D01 15.247 Meas Guidance v05r02					
Procedure:	ANSI C63.10-2020 section	on 6.10.5.2				

8.1. EUT Operation

 Operating Environment:

 Test mode:
 1: TX Mode: Keep the EUT in continuously transmitting mode

8.2. Test Setup

Shenzhen Anbotek Compliance Laboratory Limited

Address: Sogood Industrial Zone Laboratory & 1/F. of Building D, Sogood Science and Technology Park, Sanwei Community, Hangcheng Subdistrict, Bao'an District, Shenzhen, Guangdong, China Tel:(86)0755-26066440 Email: service@anbotek.com

Temperature:	20.2 °C	Humidity:	47	%	Atmosp	heric Pressure:	101 kPa
		٦	·M1 /	CH: L			
Spectrum				Spectrum			T T
Ref Level 98.00 dBµV/m Offset	1.00 dB RBW 1 MHz 1 ms VBW 3 MHz Mode Swee	qe		RefLevel 98.00 o		dB 👄 RBW 1 MHz ns 👄 VBW 3 MHz 🛛 Mode Sweep	
SGL Count 50/50 TDF				SGL Count 50/50 1Pk Max	TDF		
90 dBµV/m	M2[1]		2 dBµV/m 18¦470 GHz	90 dBµV/m		M2[1]	36.22 dBµV/ı 2.358990 GF
80 dBµV/m	M1[1]	34.0	7 dBµV/m 90000 GHz	80 dBµV/m		M1[1]	33.84 dBµV/i 2.39D000 GH
D1 74.000 dBµV/m			ft -		00 dBµV/m		
60 dBµV/m				60 dBµV/m-			
50 dBµV/m				50 dBµV/m-			
40 dBpV/22	www.wallowen.	M1	hours	40 dBUV/m-	phy approximate some	Here with the second with the	M1 how was how how how
30 dBµV/m				30 dBµV/m			
20 dBµV/m				20 dBµV/m			
10 dBµV/m				10 dBµV/m			
Start 2.31 GHz	691 pts	Stop	2.41 GHz	Start 2.31 GHz		691 pts	Stop 2.41 GHz
1arker Type Ref Trc X-value	Y-value Function	Function Result		Marker Type Ref Trc	X-value	Y-value Function	Function Result
M1 1 2.34 M2 1 2.3184	9 GHz 34.07 dBµV/m	r unction result		M1 1 M2 1	2.39 GHz 2.35899 GHz	33.84 dBµV/m 36.22 dBµV/m	- Tunction Result
		Ready					ady 🗰
F	Peak Value(Vertic	al)			Peak	Value(Horizont	al)
		,					
		Т	·M1 /	CH: H			
Spectrum				Spectrum			E C
Ref Level 98.00 dBµV/m Offset	1.00 dB		(*	RefLevel 98.00 c	dBµV/m Offset 1.00 (0 dB SWT 1 r	dB 👄 RBW 1 MHz ns 👄 VBW 3 MHz 🛛 Mode Sweep	(`
SGL Count 50/50 TDF	1 ms 🖶 VBW 3 MHz Mode Swee	əb		SGL Count 50/50	TDF	ns 🖶 VBW 3 MHz 🛛 Mode Sweep	
) 1Pk Max	M2[1]	38.8	2 dBµV/m	●1Pk Max		M2[1]	37.39 dBµV/r
90 dBµV/m	M1[1]	34.6	58570 GHz 4 dBµV/m	90 dBµV/m-/	\wedge	M1[1]	2.4989330 GH 34.39 dBµV/r
80 dBµV/m / / /		2.48	35000 GHz	80 dBµV/m /			2.4835000 GH
				D1 74.0			
D1 74.000 dBµV/m				70 dBµV/m			
D1 74.000 dBuV/m				70 dBµV/m 60 dBµV/m			
01 74,000 dBµV/m				70 dBµV/m			
D1 74.000 dBµV/m 60 dBµV/m 50 dBµV/m 40 dBµV/m	701	M2		70 dBµV/m 60 dBµV/m 50 dBµV/m 40 dBµV/m			
D1 74,000 dBµV/m 70 dBµV/m 60 dBµV/m 50 dBµV/m	7/11 		Morthelite	70 dBµV/m 60 dBµV/m 50 dBµV/m		mysigneen to derive the forest	SM
01 74.000 dBµV/m 60 dBµV/m 50 dBµV/m 40 dBµV/m	7/11 		Monthalle	70 dBµV/m 60 dBµV/m 50 dBµV/m 40 dBµV/m		re-glipper letter	M2
01 74-000 dBµV/m 60 dBµV/m 50 dBµV/m 40 dBµV/m 40 dBµV/m 30 dBµV/m	<u>111</u> 		Monthelle	70 dBµV/m 60 dBµV/m 50 dBµV/m 40 dBµV/m 30 dBµV/m 30 dBµV/m			
D1 74-000 dBµV/m 50 dBµV/m 50 dBµV/m 40 dBµV/m 50 dBµV/m 20 dBµV/m 20 dBµV/m 10 dBµV/m		unterlander der Anderer		70 dBµV/m 60 dBµV/m 50 dBµV/m 40 dBµV/m 30 dBµV/m 20 dBµV/m 10 dBµV/m			
01 74-000 dBµV/m 00 dBµV/m 00 dBµV/m 00 dBµV/m 00 dBµV/m 00 dBµV/m 00 dBµV/m 00 dBµV/m 00 dBµV/m 00 dBµV/m	<u>ուս</u> ուս ուս ուս ուս ուս ուս ուս ուս	unterlander der Anderer	ԴՄՄ ^{ու Ա} սԱտ p 2.5 GHz	70 dBµV/m 60 dBµV/m 50 dBµV/m 40 dBµV/m 30 dBµV/m 20 dBµV/m		691 pts	M2
D1 74.000 dBµV/m 50 dBµV/m 50 dBµV/m 40 dBµV/m 40 dBµV/m 20 dBµV/m 20 dBµV/m 10 dBµV/m 51art 2.475 CHz 1arker 1arker 54 cm 55 cm 56 cm 56 cm 56 cm 57 cm 56 cm 57 cm	691 pts	unterlander der Anderer		70 dBµ//m 60 dBµ//m 50 dBµ//m 40 dBµ//m 20 dBµ//m 20 dBµ//m 10 dBµ//m Start 2.475 GHz	мі мі ладаточ 2.4835 GHz	691 pts Y-value Function	
D1 74-000 dbµV/m 60 dbµV/m 50 dbµV/m 40 dbµV/m 40 dbµV/m 40 dbµV/m 20 dbµV/m 10 dbµV/m 5tart 2.475 GHz Tarker Tarker Tarker	691 pts 691 ats 5 GH2 34.64 (BgU//m	Sto	p 2.5 GHz	70 dBµ//m 60 dBµ//m 50 dBµ//m 40 dBµ//m 20 dBµ//m 20 dBµ//m 10 dBµ//m Start 2.475 CHz Marker Type Ref Trc	X-volue	691 pts <u>Y-value</u> Function 37.39 dBµV/m 57.39 dBµV/m	Stop 2.5 GHz Function Result
01 74.000 dbji/V/m 04 84,0//m 0 05 84,0//m 0 84,0//m 05 84,0//m 0 84,0//m 04 84,0//m 0 84,0//m 05 84,0//m 0 84,0//m 04 94,0//m 0 94,0//m 05 84,0//m 0 94,0//m 06 84,0//m 0 94,0//m 07 94,0//m 0 94,0//m 08	691 pts 691 ats 5 GH2 34.64 (BgU//m	nter war in the state	p 2.5 GHz	70 dbµ//m 60 dbµ//m 50 dbµ//m 40 dbµ//m 30 dbµ//m 20 dbµ//m 20 dbµ//m 10 dbµ//m 50 dbµ//m 10 dbµ//m 10 dbµ//m 10 dbµ//m 10 dbµ//m 11 dbµ//m 12 dbµ//m 11 dbµ//m 12 dbµ//m 11 dbµ/m 11 dbµ/m 11 dbµ/m 11 dbµ/m 11 dbµ/m 11 dbµ/m 11 dbµ	мі мі ладаточ 2.4835 GHz	691 pts <u>Y-value</u> Function 37.39 dBµV/m 57.39 dBµV/m	Stop 2.5 GHz

Remark: When the PK measure result value is less than the AVG limit value, the AV measure result values test not applicable.

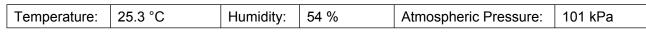
9. Emissions in restricted frequency bands (below 1GHz)

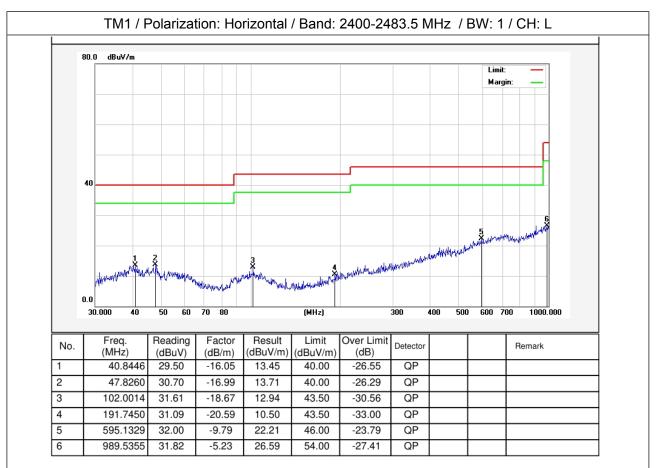
Test Requirement:	Refer to 47 CFR 15.247(d), In addition, radiated emissions which fall in the restricted bands, as defined in § 15.205(a), must also comply with the radiated emission limits specified in § 15.209(a)(see § 15.205(c)).`						
Test Limit:	Frequency (MHz) 0.009-0.490 0.490-1.705 1.705-30.0 30-88 88-216 216-960 Above 960 ** Except as provided in particular intentional radiators operated frequency bands 54-72 MH However, operation within sections of this part, e.g., § In the emission table above The emission limits shown employing a CISPR quasi- 90 kHz, 110–490 kHz and these three bands are base	Field strength (microvolts/meter) 2400/F(kHz) 24000/F(kHz) 30 100 ** 150 ** 200 ** 500 aragraph (g), fundamental emiss ing under this section shall not b tz, 76-88 MHz, 174-216 MHz or these frequency bands is permit	Measurement distance (meters) 300 30 30 30 3 3 3 3 3 3 3 3 3 3 3 3 3				
Test Method:	detector. ANSI C63.10-2020 section 6.6.4 KDB 558074 D01 15.247 Meas Guidance v05r02						
Procedure:	ANSI C63.10-2020 section	6.6.4					


9.1. EUT Operation

Operating Environment:				
Test mode:	1: TX Mode: Keep the EUT in continuously transmitting mode			

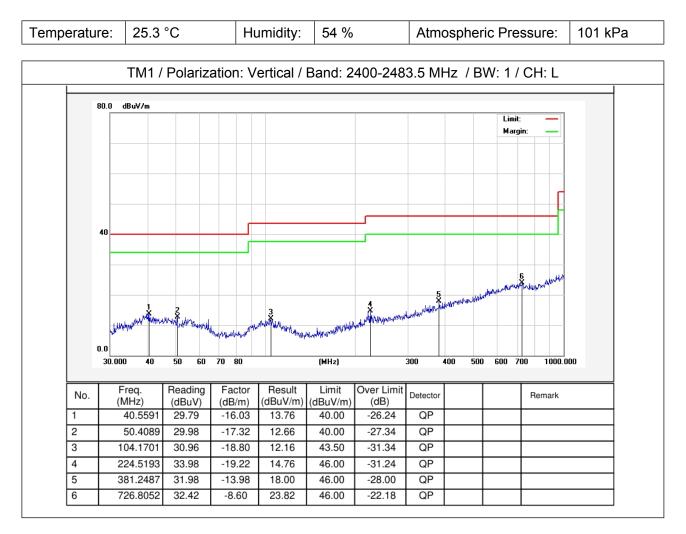
9.2. Test Setup





9.3. Test Data

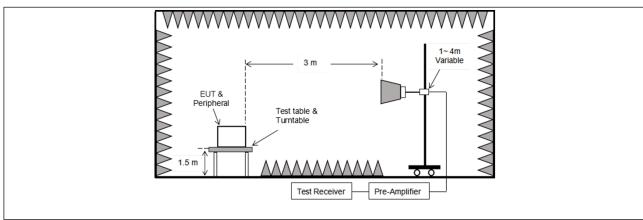
The test results of 9kHz-30MHz was attenuated more than 20dB below the permissible limits, so the results don't record in the report.



Report No.:1812C50045412501 FCC ID: 2BDJR-SK38-M

Note:Only record the worst data in the report.

10. Emissions in restricted frequency bands (above 1GHz)


Test Requirement:	In addition, radiated emissions which fall in the restricted bands, as defined in § $15.205(a)$, must also comply with the radiated emission limits specified in § $15.209(a)(see \ 15.205(c))$.						
Test Limit:	Frequency (MHz) 0.009-0.490 0.490-1.705 1.705-30.0 30-88 88-216 216-960 Above 960 ** Except as provided in p intentional radiators opera frequency bands 54-72 M However, operation withir sections of this part, e.g., In the emission table abov The emission limits shown employing a CISPR quas 90 kHz, 110–490 kHz and	Field strength (microvolts/meter) 2400/F(kHz) 24000/F(kHz) 30 100 ** 150 ** 200 ** 500 paragraph (g), fundamental emiss ating under this section shall not be Hz, 76-88 MHz, 174-216 MHz or n these frequency bands is permit	be located in the 470-806 MHz. tted under other band edges. measurements quency bands 9– ssion limits in				
	detector.	- 0.0.4					
Test Method:	ANSI C63.10-2020 section 6.6.4 KDB 558074 D01 15.247 Meas Guidance v05r02						
Procedure:	ANSI C63.10-2020 section 6.6.4						

10.1. EUT Operation

 Operating Environment:

 Test mode:
 1: TX Mode: Keep the EUT in continuously transmitting mode

10.2. Test Setup

Shenzhen Anbotek Compliance Laboratory Limited

Address: Sogood Industrial Zone Laboratory & 1/F. of Building D, Sogood Science and Technology Park, Sanwei Community, Hangcheng Subdistrict, Bao'an District, Shenzhen, Guangdong, China Tel:(86)0755-26066440 Email: service@anbotek.com

Report No.:1812C50045412501 FCC ID: 2BDJR-SK38-M

10.3. Test Data

Temperature:	23.6 °C	Humidity:	52 %	Atmospher	ic Pressure:	101 kPa	
TM1 / CH: L							
Peak value:							
Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Over Limit (dB)	polarization	
4810.00	29.93	15.27	45.20	74.00	-28.80	Vertical	
7215.00	31.84	18.09	49.93	74.00	-24.07	Vertical	
9620.00	33.19	23.76	56.95	74.00	-17.05	Vertical	
12025.00	*			74.00		Vertical	
14430.00	*			74.00		Vertical	
4810.00	30.46	15.27	45.73	74.00	-28.27	Horizontal	
7215.00	32.42	18.09	50.51	74.00	-23.49	Horizontal	
9620.00	30.62	23.76	54.38	74.00	-19.62	Horizontal	
12025.00	*			74.00		Horizontal	
14430.00	*			74.00		Horizontal	
Average value	:						
Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Over Limit (dB)	polarization	
4810.00	19.31	15.27	34.58	54.00	-19.42	Vertical	
7215.00	20.87	18.09	38.96	54.00	-15.04	Vertical	
9620.00	22.21	23.76	45.97	54.00	-8.03	Vertical	
12025.00	*			54.00		Vertical	
14430.00	*			54.00		Vertical	
4810.00	18.81	15.27	34.08	54.00	-19.92	Horizontal	
7215.00	21.48	18.09	39.57	54.00	-14.43	Horizontal	
9620.00	19.93	23.76	43.69	54.00	-10.31	Horizontal	
12025.00	*			54.00		Horizontal	
14430.00	*			54.00		Horizontal	

1.32) 20

Report No.:1812C50045412501 FCC ID: 2BDJR-SK38-M

	TM1 / CH: M					
Peak value:						
Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Over Limit (dB)	polarization
4860.00	29.95	15.42	45.37	74.00	-28.63	Vertical
7290.00	31.69	18.02	49.71	74.00	-24.29	Vertical
9720.00	32.20	23.80	56.00	74.00	-18.00	Vertical
12150.00	*			74.00		Vertical
14580.00	*			74.00		Vertical
4860.00	30.16	15.42	45.58	74.00	-28.42	Horizontal
7290.00	32.41	18.02	50.43	74.00	-23.57	Horizontal
9720.00	30.32	23.80	54.12	74.00	-19.88	Horizontal
12150.00	*			74.00		Horizontal
14580.00	*			74.00		Horizontal
Average value:						
Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Over Limit (dB)	polarization
4860.00	19.04	15.42	34.46	54.00	-19.54	Vertical
7290.00	20.97	18.02	38.99	54.00	-15.01	Vertical
9720.00	22.07	23.80	45.87	54.00	-8.13	Vertical
12150.00	*			54.00		Vertical
14580.00	*			54.00		Vertical
4860.00	18.72	15.42	34.14	54.00	-19.86	Horizontal
7290.00	21.04	18.02	39.06	54.00	-14.94	Horizontal
9720.00	20.44	23.80	44.24	54.00	-9.76	Horizontal
12150.00	*			54.00		Horizontal
14580.00	*			54.00		Horizontal

			TM1 / CH: H			
Peak value:						
Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Over Limit (dB)	polarization
4920.00	30.22	15.58	45.80	74.00	-28.20	Vertical
7380.00	31.70	17.93	49.63	74.00	-24.37	Vertical
9840.00	32.75	23.83	56.58	74.00	-17.42	Vertical
12300.00	*			74.00		Vertical
14760.00	*			74.00		Vertical
4920.00	30.23	15.58	45.81	74.00	-28.19	Horizontal
7380.00	32.44	17.93	50.37	74.00	-23.63	Horizontal
9840.00	31.00	23.83	54.83	74.00	-19.17	Horizontal
12300.00	*			74.00		Horizontal
14760.00	*			74.00		Horizontal
Average value:						
Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Over Limit (dB)	polarization
4920.00	20.16	15.58	35.74	54.00	-18.26	Vertical
7380.00	21.98	17.93	39.91	54.00	-14.09	Vertical
9840.00	22.62	23.83	46.45	54.00	-7.55	Vertical
12300.00	*			54.00		Vertical
14760.00	*			54.00		Vertical
4920.00	20.16	15.58	35.74	54.00	-18.26	Horizontal
7380.00	22.41	17.93	40.34	54.00	-13.66	Horizontal
9840.00	20.34	23.83	44.17	54.00	-9.83	Horizontal
12300.00	*			54.00		Horizontal
14760.00	*			54.00		Horizontal

Remark:

1. Result =Reading + Factor

2. Test frequency are from 1GHz to 25GHz, "*" means the test results were attenuated more than 20dB below the permissible limits, so the results don't record in the report.

Shenzhen Anbotek Compliance Laboratory Limited

Same I.

APPENDIX I -- TEST SETUP PHOTOGRAPH

Please refer to separated files Appendix I -- Test Setup Photograph_RF

APPENDIX II -- EXTERNAL PHOTOGRAPH

Please refer to separated files Appendix II -- External Photograph

APPENDIX III -- INTERNAL PHOTOGRAPH

Please refer to separated files Appendix III -- Internal Photograph

----- End of Report -----

