

FCC PART 15.407

TEST REPORT

For

INFINIX MOBILITY LIMITED

FLAT 39 8/F BLOCK D WAH LOK INDUSTRIAL CENTRE 31-35 SHAN MEI STREET FOTAN NT Hong Kong

FCC ID: 2AIZN-X695

Report Type: Original Report		Product Type: Mobile phone
Report Number:	RSZ201	1228003-00D
Report Date:	2021-02	2-02
	Jacob K	Jours Frong
Reviewed By:	RF Eng	gineer
Prepared By:	Bay Area Compliance Laboratories Corp. (Shenzhen) 6/F., West Wing, Third Phase of Wanli Industrial Building, Shihua Road, Futian Free Trade Zone, Shenzhen, Guangdong, China Tel: +86-755-33320018 Fax: +86-755-33320008 www.baclcorp.com.cn	

Note: This report may contain data that are not covered by the A2LA accreditation and are marked with an asterisk " \star ".

BACL is not responsible for the authenticity of any test data provided by the applicant. Data included from the applicant that may affect test results are marked with an asterisk '*'. Customer model name, addresses, names, trademarks etc. are not considered data.

This report cannot be reproduced except in full, without prior written approval of the Company. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested. This report is valid only with a valid digital signature. The digital signature may be available only under the Adobe software above version 7.0.

TABLE OF CONTENTS

GENERAL INFORMATION	4
PRODUCT DESCRIPTION FOR EQUIPMENT UNDER TEST (EUT)	4
OBJECTIVE	
Test Methodology	
Measurement Uncertainty Test Facility	
SYSTEM TEST CONFIGURATION	
DESCRIPTION OF TEST CONFIGURATION EUT Exercise Software	
DUTY CYCLE	
Equipment Modifications	7
SUPPORT EQUIPMENT LIST AND DETAILS	7
EXTERNAL I/O CABLE	8
BLOCK DIAGRAM OF TEST SETUP	
SUMMARY OF TEST RESULTS	
TEST EQUIPMENT LIST	10
FCC §1.1307(b) & §2.1093 - RF EXPOSURE INFORMATION	12
APPLICABLE STANDARD	
TEST RESULT	
FCC §15.203 – ANTENNA REQUIREMENT	
APPLICABLE STANDARD	
ANTENNA CONNECTOR CONSTRUCTION	
FCC §15.407 (b) (6) §15.207 (a) – CONDUCTED EMISSIONS	
APPLICABLE STANDARD	
EUT SETUP	
EMI Test Receiver Setup Test Procedure	
TEST DATA	
§15.205 & §15.209 & §15.407(B) (1), (4), (6), (7) – UNDESIRABLE EMISSION	
APPLICABLE STANDARD	
EUT SETUP	
EMI TEST RECEIVER & SPECTRUM ANALYZER SETUP	
Test Procedure Corrected Amplitude & Margin Calculation	
TEST DATA	
FCC §15.407(a) (1) – 26 dB & 6dB EMISSION BANDWIDTH	
APPLICABLE STANDARD	
Test Procedure	
TEST DATA	
FCC §15.407(a) (1) (3) – CONDUCTED TRANSMITTER OUTPUT POWER	
APPLICABLE STANDARD	
TEST PROCEDURE	
TEST DATA	

FCC Part 15.407

Page 2 of 62

Report No.: RSZ201228003-00D

FCC §15.407(a) (1) (3) - POWER SPECTRAL DENSITY	
APPLICABLE STANDARD	
Test Procedure	
TEST DATA	
APPENDIX	
APPENDIX A1: EMISSIONBANDWIDTH	
APPENDIX A2: OCCUPIED CHANNEL BANDWIDTH	
APPENDIX A3: MIN EMISSION BANDWIDTH	
APPENDIX B: MAXIMUM CONDUCTED OUTPUT POWER	
APPENDIX C: MAXIMUM POWER SPECTRAL DENSITY	
Appendix D: DutyCycle	

GENERAL INFORMATION

Product Description	for Equipment under	Test (EUT)
----------------------------	---------------------	------------

Product	Mobile phone
Model	X695
Frequency Range	5G Wi-Fi: 5150-5250 MHz; 5725-5850 MHz
Maximum conducted output power	Wi-Fi: 5150-5250 MHz: 10.47dBm (802.11a), 10.42dBm(802.11n20), 9.29 dBm(802.11n40) 5725-5850 MHz: 10.98dBm (802.11a), 10.80dBm(802.11n20), 10.85dBm(802.11n40)
Modulation Technique	OFDM
Antenna Specification*	1.5dBi (It is provided by the applicant)
Voltage Range	DC 3.87V from battery or DC 5.0V from adapter
Date of Test	2021-01-04 to 2021-02-02
Sample serial number	RSZ201228003-RF-S1 (Assigned by BACL, Shenzhen)
Received date	2020-12-28
Sample/EUT Status	Good condition
Adapter information	Model: U330XSA Input: AC 100-240V, 50/60Hz, 1.5A Output: DC 5.0V, 3.0A 15.0W or 10.0V, 3.3A 33.0W MAX

Objective

This test report is in accordance with Part 2-Subpart J, Part 15-Subparts A and E of the Federal Communication Commissions rules.

The tests were performed in order to determine compliance with FCC Part 15, Subpart E, section 15.203, 15.205, 15.207, 15.209 and 15.407 rules.

Test Methodology

All measurements contained in this report were conducted with ANSI C63.10-2013, American National Standard of Procedures for Compliance Testing of Unlicensed Wireless Devices. And KDB789033D02 General U-NII Test Procedures New Rules v02r01.

All emissions measurement was performed at Bay Area Compliance Laboratories Corp. (Shenzhen). The radiated testing was performed at an antenna-to-EUT distance of 3 meters.

Measurement Uncertainty

Parameter		Uncertainty
Occupied Cha	nnel Bandwidth	±5%
RF Output Power	with Power meter	±0.73dB
RF conducted test with spectrum		±1.6dB
AC Power Lines Conducted Emissions		±1.95dB
Emissions,	Below 1GHz	±4.75dB
Radiated	Above 1GHz	±4.88dB
Temperature		±1 °C
Humidity		±6%
Supply	voltages	±0.4%

Note: The extended uncertainty given in this report is obtained by combining the standard uncertainty times the coverage factor K with the 95% confidence interval. Otherwise required by the applicant or Product Regulations, Decision Rule in this report did not consider the uncertainty.

Test Facility

The Test site used by Bay Area Compliance Laboratories Corp. (Shenzhen) to collect test data is located on the 6/F., West Wing, Third Phase of Wanli Industrial Building, Shihua Road, Futian Free Trade Zone, Shenzhen, Guangdong, China.

The test site has been approved by the FCC under the KDB 974614 D01 and is listed in the FCC Public Access Link (PAL) database, FCC Registration No.: 342867, the FCC Designation No.: CN1221.

The test site has been registered with ISED Canada under ISED Canada Registration Number 3062B.

SYSTEM TEST CONFIGURATION

Description of Test Configuration

The system was configured for testing in an engineering mode, which was provided by manufacturer.

The EUT can operate in 802.11a/n20/n40 modes.

For 5150-5250MHz Band, 6 channels are provided to testing:

Channel	Frequency (MHz)	Channel	Frequency (MHz)
36	5180	44	5220
38	5190	46	5230
40	5200	48	5240

For 802.11a, 802.11n20 channel 36, 40, 48 were tested; For 802.11n40 channel 38, 46 were tested.

For 5725-5850MHz Band, 7 channels are provided to testing:

Channel	Frequency (MHz)	Channel	Frequency (MHz)
149	5745	157	5785
151	5755	159	5795
153	5765	161	5805
/	/	165	5825

For 802.11a, 802.11n20 channel 149, 157, 165 were tested; For 802.11n40channel 151, 159 were tested;

EUT Exercise Software

Test in the engineer mode.

Test frequencies and power level were configured as below:

U-NII	Mode	Frequency (MHz)	Rate (Mbps)	Power Level*
		5180	6	16
	802.11 a	5200	6	16
		5240	6	16
		5180	MCS0	16
5150 – 5250MHz	802.11 n20	5200	MCS0	16
		5240	MCS0	16
	802.11 n40	5190	MCS0	16
		5230	MCS0	16
5725 – 5850MHz	802.11 a	5745	6	16
		5785	6	16
		5825	6	16
	802.11 n20	5745	MCS0	16
		5785	MCS0	16
		5825	MCS0	16
	802.11 n40	5755	MCS0	16
		5795	MCS0	16

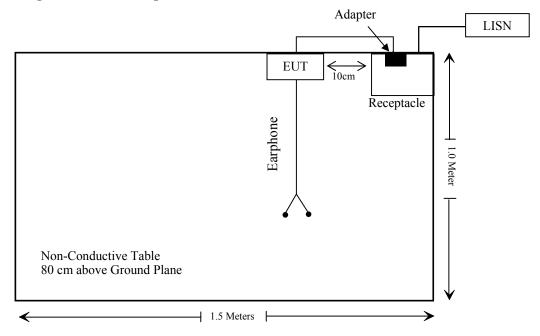
Note 1: The worse-case data rates are determined to be as follows for each mode based upon investigations by measuring the output power and PSD across all data rated bandwidths, and modulations. Note 2: The power level was provided by the applicant.

Duty cycle

Test Result: Pass. Please refer to the Appendix.

Equipment Modifications

No modification was made to the EUT tested.


Support Equipment List and Details

Manufacturer	Description	Model	Serial Number
/	/	/	/

External I/O Cable

Cable Description	Length (m)	From Port	То
Unshield Detachable USBCable	1.0	Adapter	EUT

Block Diagram of Test Setup

SUMMARY OF TEST RESULTS

FCC Rules	Description of Test	Result
§1.1307 (b) (1) & §2.1093	RF Exposure	Compliance
§15.203	Antenna Requirement	Compliance
§15.407(b)(6)& §15.207(a)	Conducted Emissions	Compliance
§15.205& §15.209 &§15.407(b) (1), (4),(7)	Undesirable Emission& Restricted Bands	Compliance
§15.407(a) (1), (5),(e)	26 dB Emission Bandwidth & 6dB Bandwidth	Compliance
§15.407(a)(1),(3)	Conducted Transmitter Output Power	Compliance
§15.407 (a)(1),(3)	Power Spectral Density	Compliance

TEST EQUIPMENT LIST

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
	Condu	cted Emissions	Test		
Rohde & Schwarz	EMI Test Receiver	ESCI	101120	2020/08/04	2021/08/03
Rohde & Schwarz	LISN	ENV216	101613	2020/08/04	2021/08/03
Rohde & Schwarz	Transient Limitor	ESH3Z2	DE25985	2020/11/29	2021/11/28
Unknown	CE Cable	CE Cable	UF A210B-1- 0720-504504	2020/11/29	2021/11/28
Rohde & Schwarz	CE Test software	EMC 32	V8.53.0	NCR	NCR
	Radiated E	mission Test (B	elow 1G)		
R&S	EMI Test Receiver	ESR3	102455	2020/08/04	2021/08/03
Sonoma instrument	Pre-amplifier	310 N	186238	2020/08/04	2021/08/03
Sunol Sciences	Broadband Antenna	JB1	A040904-1	2020/12/22	2023/12/21
Unknown	Unknown Cable 2 RF Cable 2 F-03-E		F-03-EM197	2020/11/29	2021/11/28
Unknown	Cable	Chamber Cable 1	F-03-EM236	2020/11/29	2021/11/28
Rohde & Schwarz	Auto test software	EMC 32	V9.10	NCR	NCR
	Radiated E	mission Test (A	bove 1G)		
Rohde & Schwarz	Spectrum Analyzer	FSV40-N	102259	2020/08/04	2021/08/03
COM-POWER	Pre-amplifier	PA-122	181919	2020/11/29	2021/11/28
Quinstar	Amplifier	QLW- 18405536-J0	15964001002	2020/11/29	2021/11/28
Sunol Sciences	Horn Antenna	DRH-118	A052604	2020/12/22	2023/12/21
Insulted Wire Inc.	RF Cable	SPS-2503- 3150	02222010	2020/11/29	2021/11/28
Unknown	RF Cable	W1101-EQ1 OUT	F-19-EM005	2020/11/29	2021/11/28
Ducommun technologies	RF Cable	RG-214	1	2020/11/12	2021/11/12
Ducommun technologies	RF Cable	RG-214	2	2020/11/12	2021/11/12
SNSD	Band Reject filter	BSF5150- 5850MN- 0899-004	5G filter	2020/04/20	2021/04/20
Ducommun Technolagies	Horn antenna	ARH-4223- 02	1007726-02 1304	2020/12/06	2023/12/05
Ducommun Technologies	Horn Antenna	ARH-2823- 02	1007726-03	2020/12/06	2023/12/05

Report No.: RSZ201228003-00D

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date		
RF Conducted Test							
Tonscend Corporation	RF control Unit	JS0806-2	19D8060154	2020/08/04	2021/08/03		
Rohde & Schwarz	Signal and Spectrum Analyzer	FSV40	101473	2020/08/04	2021/08/03		
Unknown	RF Cable	Unknown	2301 276	2020/11/29	2021/11/28		

* **Statement of Traceability:** Bay Area Compliance Laboratories Corp. (Shenzhen) attests that all calibrations have been performed in accordance to requirements that traceable to National Primary Standards and International System of Units (SI).

FCC §1.1307(b) & §2.1093 - RF EXPOSURE INFORMATION

Applicable Standard

FCC§1.1310 and §2.1093.

Test Result

Compliance, please refer to the SAR report: RSZ201228003-SA.

FCC §15.203 – ANTENNA REQUIREMENT

Applicable Standard

According to § 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the user of a standard antenna jack or electrical connector is prohibited. The structure and application of the EUT were analyzed to determine compliance with section §15.203 of the rules. §15.203 state that the subject device must meet the following criteria:

a. Antenna must be permanently attached to the unit.

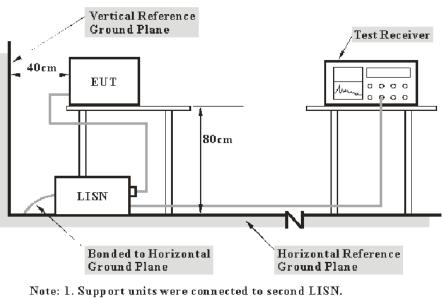
b. Antenna must use a unique type of connector to attach to the EUT.

Unit must be professionally installed, and installer shall be responsible for verifying that the correct antenna is employed with the unit.

And according to FCC 47 CFR section 15.407 (a), if the transmitting antennas of directional gain greater than 6dBi are used, the transmit power and power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

Antenna Connector Construction

The EUT has one internal antenna arrangement for 5G Wi-Fi, which was permanently attached and the antenna gain is 1.5dBi, fulfill the requirement of this section. Please refer to the EUT photos.


Result: Pass

FCC §15.407 (b) (6) §15.207 (a) – CONDUCTED EMISSIONS

Applicable Standard

FCC §15.207, §15.407(b) (6)

EUT Setup

Support units were connected to second LISM.
 Both of LISNs (AMN) 80 cm from EUT and at the least 80 cm from other units and other metal planes support units.

The setup of EUT is according with per ANSI C63.10-2013 measurement procedure. The specification used was with the FCC Part 15.207 limits.

The spacing between the peripherals was 10 cm.

EMI Test Receiver Setup

The EMI test receiver was set to investigate the spectrum from 150 kHz to 30 MHz.

During the conducted emission test, the EMI test receiver was set with the following configurations:

Frequency Range	IF B/W
150 kHz – 30 MHz	9 kHz

Test Procedure

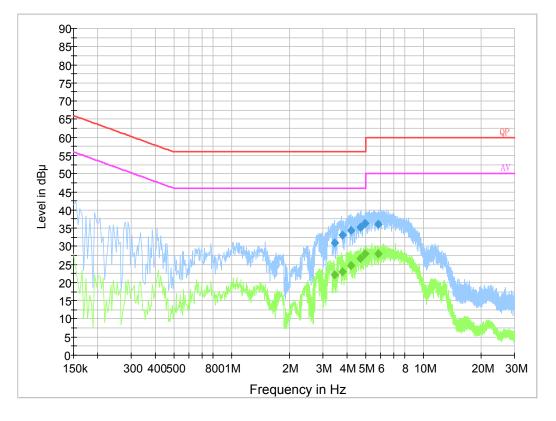
During the conducted emission test, the adapter was connected to the LISN.

Maximizing procedure was performed on the six (6) highest emissions of the EUT.

All data was recorded in the Quasi-peak and average detection mode.

Test Data

Environmental Conditions


Temperature:	25 °C
Relative Humidity:	65 %
ATM Pressure:	101.0 kPa

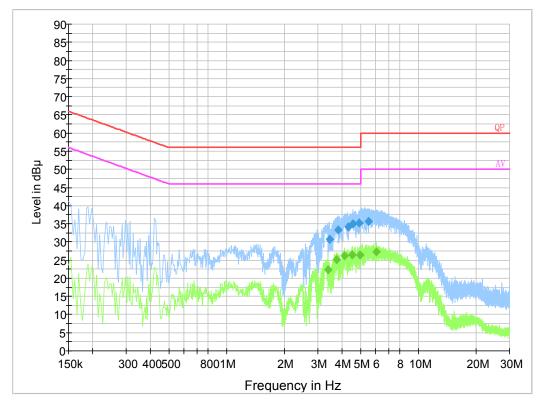
The testing was performed by Haiguo Li on 2021-01-04.

EUT operation mode: Transmitting (the worst case is 802.11a Mode, 5785MHz)

Report No.: RSZ201228003-00D

AC 120V/60 Hz, Line:

Final Result 1


Frequency (MHz)	QuasiPeak (dB µ V)	Bandwidth (kHz)	Line	Corr. (dB)	Margin (dB)	Limit (dB µ V)
3.450190	31.0	9.000	L1	19.9	25.0	56.0
3.785810	33.0	9.000	L1	19.9	23.0	56.0
4.195270	34.3	9.000	L1	19.9	21.7	56.0
4.719110	35.2	9.000	L1	19.9	20.8	56.0
4.971570	36.4	9.000	L1	19.9	19.6	56.0
5.809710	36.0	9.000	L1	19.9	24.0	60.0

Final Result 2

Frequency (MHz)	Average (dB µ V)	Bandwidth (kHz)	Line	Corr. (dB)	Margin (dB)	Limit (dB µ V)
3.450190	22.1	9.000	L1	19.9	23.9	46.0
3.785810	23.0	9.000	L1	19.9	23.0	46.0
4.195270	24.6	9.000	L1	19.9	21.4	46.0
4.719110	26.6	9.000	L1	19.9	19.4	46.0
4.971570	27.9	9.000	L1	19.9	18.1	46.0
5.809710	28.0	9.000	L1	19.9	22.0	50.0

Report No.: RSZ201228003-00D

AC120V, 60 Hz, Neutral:

Final Result 1

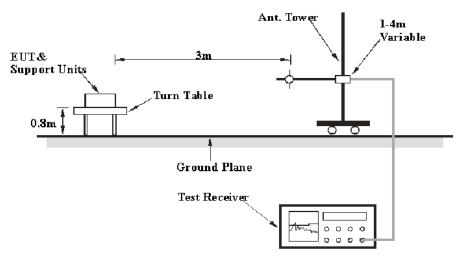
Frequency (MHz)	QuasiPeak (dB µ V)	Bandwidth (kHz)	Line	Corr. (dB)	Margin (dB)	Limit (dB µ V)
3.466310	30.7	9.000	Ν	19.9	25.3	56.0
3.828490	33.3	9.000	Ν	19.9	22.7	56.0
4.301950	34.2	9.000	N	19.9	21.8	56.0
4.581450	35.0	9.000	Ν	19.9	21.0	56.0
4.939510	35.3	9.000	Ν	19.9	20.7	56.0
5.503290	35.8	9.000	Ν	19.9	24.2	60.0

Final Result 2

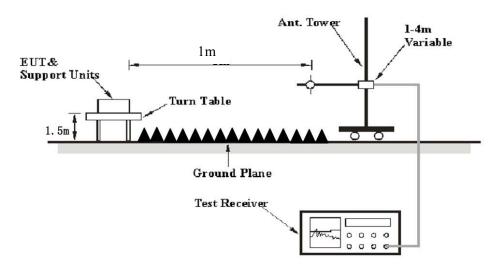
Frequency (MHz)	Average (dB µ V)	Bandwidth (kHz)	Line	Corr. (dB)	Margin (dB)	Limit (dB µ V)
3.386000	22.4	9.000	N	19.9	23.6	46.0
3.770000	25.2	9.000	N	19.9	20.8	46.0
4.142000	26.2	9.000	N	19.9	19.8	46.0
4.546000	26.5	9.000	N	19.9	19.5	46.0
4.974000	26.4	9.000	N	19.9	19.6	46.0
6.054000	27.4	9.000	Ν	19.9	22.6	50.0

§15.205 & §15.209 & §15.407(B) (1), (4), (6), (7) – UNDESIRABLE EMISSION

Applicable Standard


FCC §15.407 (b) (1), (4), (6), (7); §15.209; §15.205;

- (b) Undesirable emission limits. Except as shown in paragraph (b)(7) of this section, the maximum emissions outside of the frequency bands of operation shall be attenuated in accordance with the following limits:
- (1) For transmitters operating in the 5.15-5.25 GHz band: All emissions outside of the 5.15-5.35 GHz band shall not exceed an e.i.r.p. of -27 dBm/MHz.
- (4) For transmitters operating in the 5.725-5.85 GHz band:
- (i) All emissions shall be limited to a level of -27 dBm/MHz at 75 MHz or more above or below the band edge increasing linearly to 10 dBm/MHz at 25 MHz above or below the band edge, and from 25 MHz above or below the band edge increasing linearly to a level of 15.6 dBm/MHz at 5 MHz above or below the band edge, and from 5 MHz above or below the band edge increasing linearly to a level of 27 dBm/MHz at the band edge.


Unwanted emissions below 1 GHz must comply with the general field strength limits set forth in §15.209.

EUT Setup

Below 1 GHz:

Above 1 GHz:

The setup of EUT is according with per ANSI C63.10-2013 measurement procedure. The specification used was with the FCC 15.209 and FCC 15.407 limits.

The external I/O cables were draped along the test table and formed a bundle 30 to 40 cm long in the middle.

EMI Test Receiver & Spectrum Analyzer Setup

The system was investigated from 30 MHz to 40 GHz.

During the radiated emission test, the EMI test receiver & Spectrum Analyzer Setup were set with the following configurations:

Frequency Range	RBW	Video B/W	IF B/W	Measurement
30 MHz – 1000 MHz	100 kHz	300 kHz	120 kHz	QP
	1 MHz	3 MHz	/	РК
Above 1 GHz	1MHz	10 Hz ^{Note 1}	/	Average
	1MHz	$> 1/T^{Note 2}$	/	Average

Note 1: when duty cycle is no less than 98% Note 2: when duty cycle is less than 98%

Test Procedure

Radiated Spurious Emission

During the radiated emission test, the adapter was connected to the AC floor outlet.

Maximizing procedure was performed on the highest emissions to ensure that the EUT complied with all the installation combinations.

Data was recorded in Quasi-peak detection mode for frequency range of 30 MHz-1GHz, peak and Average detection modes for frequencies above 1GHz.

FCC Part 15.407

According to ANSI C63.10-2013,9.4: For field strength measurements made at other than the distance at which the applicable limit is specified, extrapolate the measured field strength to the field strength at the distance specified by the limit using an inverse distance correction factor (20 dB/decade of distance). In some cases, a different distance correction factor may be required;

$$E_{\text{SpecLimit}} = E_{\text{Meas}} + 20 \log \left(\frac{d_{\text{Meas}}}{d_{\text{SpecLimit}}} \right)$$

where

$E_{\text{SpecLimit}}$	is the field strength of the emission at the distance specified by the limit, in
	dBµV/m
E_{Meas}	is the field strength of the emission at the measurement distance, in $dB\mu V/m$
d_{Meas}	is the measurement distance, in m
$d_{\rm SpecLimit}$	is the distance specified by the limit, in m

So the extrapolation factor of 1m is $20*\log(1/3) = -9.5$ dB

Corrected Amplitude & Margin Calculation

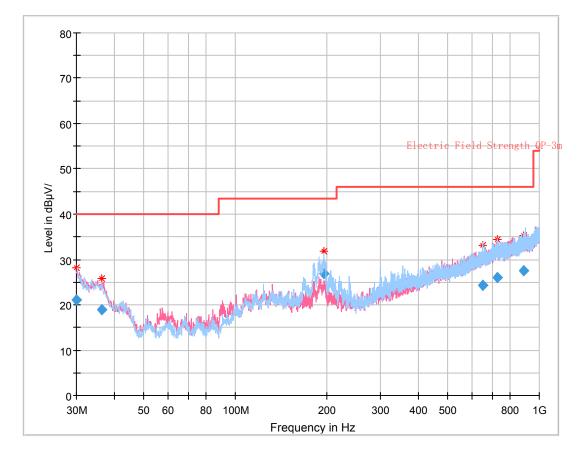
The Corrected Amplitude is calculated by adding the Antenna Factor and Cable Loss, and subtracting the Amplifier Gain from the Meter Reading. The basic equation is as follows:

Corrected Amplitude = Meter Reading + Antenna Factor + Cable Loss - Amplifier Gain

The "**Margin**" column of the following data tables indicates the degree of compliance with the applicable limit. For example, a margin of 7dB means the emission is 7dB below the limit. The equation for margin calculation is as follows:

Margin = Limit – Corrected Amplitude

Test Data


Environmental Conditions

Temperature:	20.1∼24 °C
Relative Humidity:	42~58%
ATM Pressure:	101.1 kPa

The testing was performed by Kilroy Deng on 2021-01-29 for below 1GHz and by Troy Wang on 2021-01-29 for above 1GHz.

EUT operation mode: Transmitting

Report No.: RSZ201228003-00D

30 MHz~1 GHz: (the worst case is 802.11a Mode, 5785MHz)

Final_Result

Frequency (MHz)	QuasiPeak (dB µ V/m)	Limit (dB µ V/m)	Margin (dB)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB)
30.072115	21.15	40.00	18.85	374.0	Н	340.0	2.4
36.282125	18.84	40.00	21.16	338.0	Н	342.0	-2.1
195.380375	26.88	43.50	16.62	176.0	Н	92.0	-5.6
650.397750	24.39	46.00	21.61	168.0	Н	185.0	3.6
728.047875	26.02	46.00	19.98	341.0	V	244.0	5.0
889.384375	27.55	46.00	18.45	188.0	Н	166.0	6.8

1 ~ 40 GHz:

Note: The test distance is 1m, so the correct factor from 3m to 1m is $20\log(3/1)=9.5$ dB which was added into the final limit.

5150-5250 MHz:

	Re	eceiver	Turntable	Rx Ante	enna	Corrected	Corrected	FCC 1 15.407/2	
Frequency (MHz)	Reading (dBµV)	PK/QP/Ave.	Degree	Height (m)	Polar (H / V)	Factor (dB/m)	Amplitude (dBµV/m)	Limit (dBµV/m)	Margin (dB)
					.11a				
					MHz				
5146.14	31.12	PK	11	2.1	Н	38.36	69.48	83.5	14.02
5146.14	17.54	Ave.	11	2.1	Н	38.36	55.90	63.5	7.60
5352.48	33.19	PK	177	1.3	Н	39.09	72.28	83.5	11.22
5352.48	17.58	Ave.	177	1.3	Н	39.09	56.67	63.5	6.83
10360.00	54.55	PK	224	2.2	Н	17.42	71.97	77.7	5.73
				5200	MHz				
10400.00	54.27	PK	190	1.6	Н	17.52	71.79	77.7	5.91
				5240	MHz				
5143.78	32.28	PK	340	1.6	Н	38.36	70.64	83.5	12.86
5143.78	17.61	Ave.	340	1.6	Н	38.36	55.97	63.5	7.53
5353.67	32.71	PK	231	1.3	Н	39.09	71.80	83.5	11.70
5353.67	17.63	Ave.	231	1.3	Н	39.09	56.72	63.5	6.78
10480.00	55.91	РК	309	1.1	Н	17.25	73.16	77.7	4.54
				802.	11n20				
				5180	MHz				
5149.83	32.38	PK	247	1.9	Н	38.36	70.74	83.5	12.76
5149.83	17.56	Ave.	247	1.9	Н	38.36	55.92	63.5	7.58
5352.29	31.96	РК	257	1.9	Н	39.09	71.05	83.5	12.45
5352.29	17.59	Ave.	257	1.9	Н	39.09	56.68	63.5	6.82
10360.00	51.51	РК	107	1.0	Н	17.42	68.93	77.7	8.77
				5200	MHz				
10400.00	52.43	РК	70	1.7	Н	17.52	69.95	77.7	7.75
				5240	MHz				
5146.85	33.15	РК	9	1.6	Н	38.36	71.51	83.5	11.99
5146.85	17.64	Ave.	9	1.6	Н	38.36	56.00	63.5	7.50
5354.17	31.87	РК	167	1.4	Н	39.09	70.96	83.5	12.54
5354.17	17.61	Ave.	167	1.4	Н	39.09	56.70	63.5	6.80
10480.00	53.29	PK	267	1.2	Н	17.25	70.54	77.7	7.16

Report No.: RSZ201228003-00D

	-	eceiver	Turntable Rx Antenna			Corrected	Corrected	FCC 1 15.407/2	
Frequency (MHz)		PK/QP/Ave.	Degree	Height (m)	Polar (H / V)		Amplitude (dBµV/m)	Limit (dBµV/m)	Margin (dB)
				802.1	l 1n40				
	5190 MHz								
5147.97	32.74	PK	246	2.0	Η	38.36	71.10	83.5	12.40
5147.97	17.65	Ave.	246	2.0	Η	38.36	56.01	63.5	7.49
5355.09	32.26	PK	126	1.6	Η	39.09	71.35	83.5	12.15
5355.09	17.60	Ave.	126	1.6	Н	39.09	56.69	63.5	6.81
10380.00	49.01	PK	332	1.9	Η	17.42	66.43	77.7	11.27
				5230	MHz				
5145.25	31.85	PK	185	1.5	Н	38.36	70.21	83.5	13.29
5145.25	17.61	Ave.	185	1.5	Η	38.36	55.97	63.5	7.53
5350.18	33.02	РК	356	1.6	Η	39.09	72.11	83.5	11.39
5350.18	17.68	Ave.	356	1.6	Η	39.09	56.77	63.5	6.73
10460.00	50.34	РК	179	2.1	Н	17.15	67.49	77.7	10.21

5725-5850 MHz:

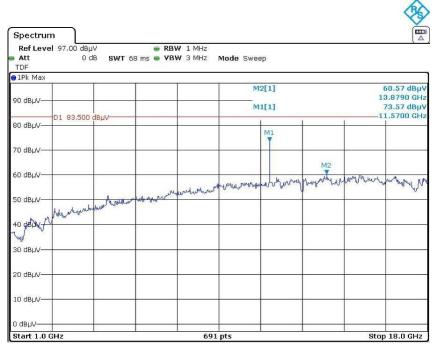
F	Re	eceiver	T (11	Rx An	itenna	Corrected	Corrected		C Part /205/209
Frequency (MHz)	Reading (dBµV)	PK/QP/Ave.	Turntable Degree	Height (m)	Polar (H/V)		Amplitude (dBµV/m)		Margin (dB)
802.11a									
				5745 M	Hz				
5642.28	30.34	РК	93	2.3	Н	39.46	69.80	77.7	7.90
5688.89	33.07	РК	339	1.3	Н	39.49	72.56	106.48	33.92
5716.34	32.25	РК	90	1.4	Н	39.49	71.74	119.28	47.54
5724.86	34.22	РК	86	1.2	Н	39.49	73.71	131.38	57.67
11490.00	56.97	РК	120	2.4	Н	17.47	74.44	83.5	9.06
11490.00	42.83	Ave.	120	2.4	Н	17.47	60.30	63.5	3.20
				5785 M	Hz				
11570.00	57.08	РК	152	2.1	Н	17.51	74.59	83.5	8.91
11570.00	43.11	Ave.	152	2.1	Н	17.51	60.62	63.5	2.88
				5825 M	Hz				
5852.29	34.72	РК	135	1.0	Н	39.87	74.59	126.48	51.89
5870.27	32.74	РК	136	2.1	Н	39.87	72.61	116.02	43.41
5824.31	33.42	РК	255	1.1	Н	39.61	73.03	78.21	5.18
5947.41	28.45	РК	195	2.1	Н	39.97	68.42	77.7	9.28
11650.00	58.35	РК	29	1.2	Н	16.18	74.53	83.5	8.97
11650.00	44.10	Ave.	29	1.2	Н	16.18	60.28	63.5	3.22

FCC Part 15.407

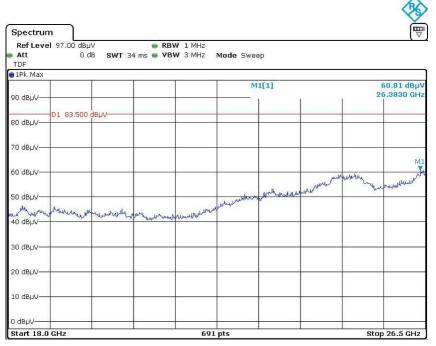
Page 23 of 62

Report No.: RSZ201228003-00D

F	Re	eceiver	T4 b- b- b-	Rx Ar	ntenna	Corrected	Corrected		C Part /205/209
Frequency (MHz)	Reading (dBµV)	PK/QP/Ave.	Turntable Degree	Height (m)	Polar (H/V)	Factor (dB/m)	Amplitude (dBµV/m)		Margin (dB)
				802.11r	n20				
				5745 M	Hz				
5635.64	29.14	РК	96	2.1	Н	39.46	68.60	77.7	9.10
5693.96	33.02	РК	14	1.9	Н	39.49	72.51	110.23	37.72
5715.64	33.31	РК	18	1.0	Н	39.49	72.80	119.08	46.28
5724.95	34.22	РК	192	1.9	Н	39.49	73.71	131.59	57.88
11490.00	59.04	РК	93	2.2	Н	17.47	76.51	83.5	6.99
11490.00	41.81	Ave.	93	2.2	Н	17.47	59.28	63.5	4.22
				5785 M	Hz				
11570.00	59.12	РК	303	1.1	Н	17.51	76.63	83.5	6.87
11570.00	43.86	Ave.	303	1.1	Н	17.51	61.37	63.5	2.13
				5825 M	Hz				
5853.77	33.05	РК	228	1.4	Н	39.87	72.92	123.1	50.18
5859.76	34.34	РК	137	2.3	Н	39.87	74.21	118.97	44.76
5921.64	34.83	РК	227	1.3	Н	39.97	74.80	80.19	5.39
5944.66	27.81	РК	277	1.3	Н	39.97	67.78	77.7	9.92
11650.00	56.38	РК	196	1.1	Н	16.18	72.56	83.5	10.94
11650.00	42.81	Ave.	196	1.1	Н	16.18	58.99	63.5	4.51
				802.11r	n40				
				5755 M	Hz			· · · · · · · · · · · · · · · · · · ·	
5633.37	25.71	РК	123	1.9	Н	39.46	65.17	77.7	12.53
5689.11	32.24	РК	289	2.0	Н	39.49	71.73	106.64	34.91
5717.49	33.68	РК	47	2.3	Н	39.49	73.17	119.6	46.43
5724.91	32.62	РК	234	1.2	Н	39.49	72.11	131.52	59.41
11510	56.87	РК	43	1.5	Н	17.47	74.34	83.5	9.16
11510	43.19	Ave.	43	1.5	Н	17.47	60.66	63.5	2.84
				5795 M	Hz				
5853.29	34.04	РК	274	2.4	Н	39.87	73.91	124.2	50.29
5861.12	33.04	РК	169	2.4	Н	39.87	72.91	118.59	45.68
5885.67	33.24	РК	215	1.0	Н	39.87	73.11	106.8	33.69
5935.54	25.82	РК	116	1.8	Н	39.97	65.79	77.7	11.91
11590.00	55.04	РК	171	1.8	Н	17.51	72.55	83.5	10.95
11590.00	38.93	Ave.	171	1.8	Н	17.51	56.44	63.5	7.06

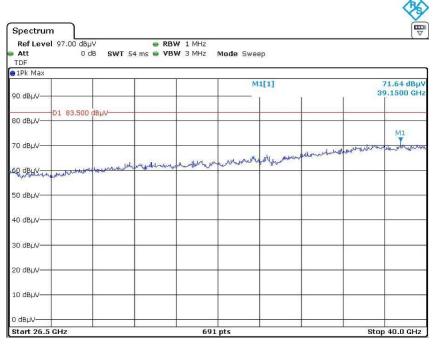

Note:

Corrected Amplitude = Corrected Factor + Reading Corrected Factor=Antenna factor (RX) + Cable Loss – Amplifier Factor Margin = Limit- Corr. Amplitude All other spurious emissions are 20 dB below the limit or are on the system noise floor level.

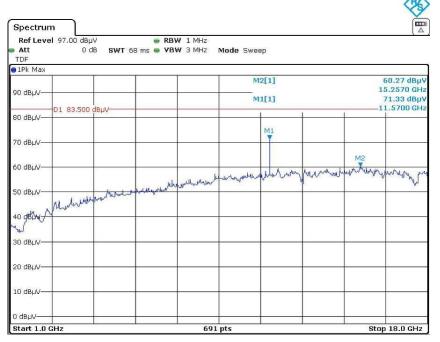

FCC Part 15.407

Peak

Pre-scan with 802.11n20 5785MHz Horizontal

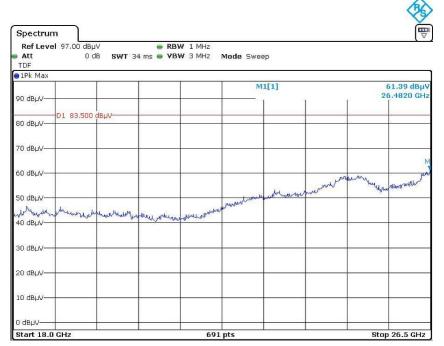


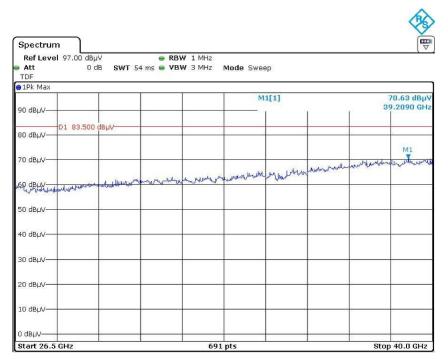
Date: 29.JAN.2021 12:52:46


Date: 29.JAN.2021 13:31:46

FCC Part 15.407

Date: 29.JAN.2021 13:51:46


Vertical


Date: 29.JAN.2021 13:04:15

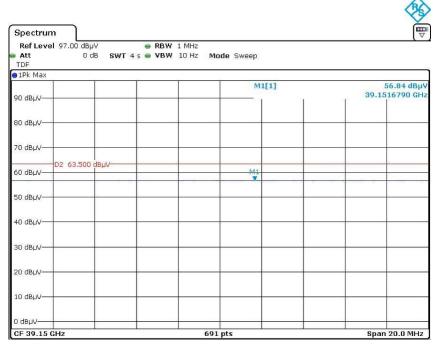
FCC Part 15.407

Page 26 of 62

Date: 29.JAN.2021 13:42:17

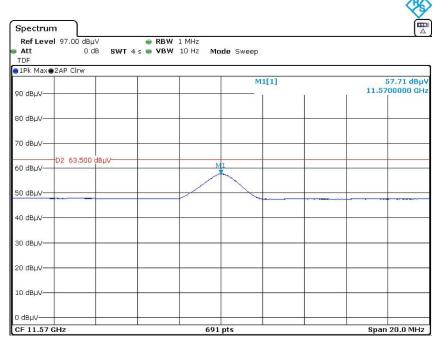
Date: 29.JAN.2021 14:01:06

FCC Part 15.407



Spectrur	n						
Ref Leve Att TDF	I 97.00 dBµ∨ 0 dB		RBW 1 MHz VBW 10 Hz	Mode Sweep			
1Pk Maxe	2AP Clrw						
				M1[:	1]		1.37 dBµV 0580 GHz
90 dBµV—				1	1	11.070	0000 0112
80 dBµV—							
70 dBµV	-						
60 dBµV—	D2 63.500 dB	μV		M1			
00 UBµV							
50 dBµV							
40 dBµV—							
30 dBµV—							
00 000							
20 dBµV—	2		-				
10 dBµV							
o dbµv							
	GHz AN.2021 12:	47:37		691 pts		Span 2	20.0 MHz
	AN.2021 12:	47:37		691 pts		Span 2	20.0 MHz
ate: 29.J Spectrur	n)		RBW 1 MHz	691 pts		Span 2	
Spectrur Ref Leve	n 97.00 dBµV		• RBW 1 MHz	691 pts Mode Sweep		Span 2	
ate: 29.J Spectrur	n 97.00 dBµV		• RBW 1 MHz			Span 2	
Spectrur Ref Leve Att TDF JPk Max	n 97.00 dBµV		• RBW 1 MHz		1	44	€ .94 dBµV
Spectrur Ref Leve Att TDF JPk Max	n 97.00 dBµV		• RBW 1 MHz	Mode Sweep		44	₹
Spectrur Ref Leve Att DF 1Pk Max 90 dBµV	n 97.00 dBµV		• RBW 1 MHz	Mode Sweep	I]	44	€ .94 dBµV
Spectrur Ref Leve Att DF DPk Max 90 dBµV	n 97.00 dBµV		• RBW 1 MHz	Mode Sweep	uj	44	€ .94 dBµV
Spectrur Ref Leve Att TDF JIPk Max 90 dBµV- 80 dBµV-	n 97.00 dBµV		• RBW 1 MHz	Mode Sweep		44	€ .94 dBµV
Spectrur Ref Leve Att TDF 1Pk Max 90 dBµV	n 97.00 dBµV	SWT 4 5	• RBW 1 MHz	Mode Sweep		44	€ .94 dBµV
Spectrur Ref Leve Att TDF JIPk Max 90 dBµV- 80 dBµV-	n 97.00 dBµV 0 dB	SWT 4 5	• RBW 1 MHz	Mode Sweep		44	€ .94 dBµV
spectrur Ref Leve Att TDF 1Pk Max 90 dBµV	n 97.00 dBµV 0 dB	SWT 4 5	• RBW 1 MHz	Mode Sweep		44	5.94 dBµV 6960 GH2
Spectrur Ref Leve Att TDF 1Pk Max 90 dBµV	n 97.00 dBµV 0 dB	SWT 4 5	• RBW 1 MHz	Mode Sweep		44	€ .94 dBµV
Spectrur Ref Leve Att TDF 1Pk Max 90 dBµV	n 97.00 dBµV 0 dB	SWT 4 5	• RBW 1 MHz	Mode Sweep		44	5.94 dBµV 6960 GH2
Spectrur Ref Leve Att TDF 90 dBµV- 70 dBµV- 60 dBµV- 50 dBµV- 40 dBµV-	n 97.00 dBµV 0 dB	SWT 4 5	• RBW 1 MHz	Mode Sweep		44	5.94 dBµV 6960 GH2
Spectrur Ref Leve Att TDF 90 dBµV- 70 dBµV- 60 dBµV- 50 dBµV- 40 dBµV-	n 97.00 dBµV 0 dB	SWT 4 5	• RBW 1 MHz	Mode Sweep	N	44	5.94 dBµV 6960 GH2
Spectrur Ref Leve Att TDF 91Pk Max 90 dBµV	n 97.00 dBµV 0 dB	SWT 4 5	• RBW 1 MHz	Mode Sweep		44	5.94 dBµV 6960 GH2
Spectrur Ref Leve Att TDF 1Pk Max 30 dBµV 30 dBµV 50 dBµV 50 dBµV 50 dBµV 30 dBµV 30 dBµV 30 dBµV 30 dBµV 20 dBµV 30 dBµV 20 dBµV	n 97.00 dBµV 0 dB	SWT 4 5	• RBW 1 MHz	Mode Sweep		44	5.94 dBµV 6960 GH2
Spectrur Ref Leve Att TDF 1Pk Max 90 dBµV	n 97.00 dBµV 0 dB	SWT 4 5	• RBW 1 MHz	Mode Sweep		44	5.94 dBµV 6960 GH2

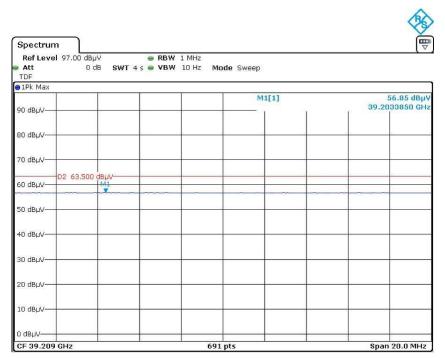
Date: 29.JAN.2021 13:36:28


FCC Part 15.407

Page 28 of 62

Date: 29.JAN.2021 13:56:35

Vertical


Date: 29.JAN.2021 12:59:18

FCC Part 15.407

Page 29 of 62

					3
Spectrum					
Ref Level 97.00 Att TDF		RBW 1 MHz VBW 10 Hz Mo	de Sweep		x
●1Pk Max					
90 dBµV			M1[1]	26.4	46.94 dBµV 766740 GHz
80 dBµV					6
70 dBµV					
60 dBµV	500 dBµV				
50 dBµV	Mi				
40 dBµV					
30 dBµV					
20 dBµV					
10 dBµV					
0 dBµV					
CF 26.482 GHz		691	pts	Spa	n 20.0 MHz

Date: 29.JAN.2021 13:46:55

Date: 29.JAN.2021 14:05:35

FCC Part 15.407

FCC §15.407(a) (1) – 26 dB & 6dB EMISSION BANDWIDTH

Applicable Standard

The maximum power spectral density is measured as a conducted emission by direct connection of a calibrated test instrument to the equipment under test. If the device cannot be connected directly, alternative techniques acceptable to the Commission may be used. Measurements in the 5.725-5.85 GHz band are made over a reference bandwidth of 500 kHz or the 26 dB emission bandwidth of the device, whichever is less. Measurements in the 5.15-5.25 GHz, 5.25-5.35 GHz, and the 5.47-5.725 GHz bands are made over a bandwidth of 1 MHz or the 26 dB emission bandwidth of the device, whichever is less. A narrower resolution bandwidth can be used, provided that the measured power is integrated over the full reference bandwidth.

Within the 5.725-5.85 GHz band, the minimum 6 dB bandwidth of U-NII devices shall be at least 500 kHz.

Test Procedure

1. Emission Bandwidth (EBW)

a) Set RBW = approximately 1% of the emission bandwidth.

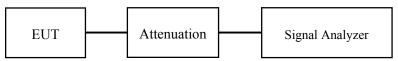
- b) Set the VBW > RBW.
- c) Detector = Peak.
- d) Trace mode = max hold.

e) Measure the maximum width of the emission that is 26 dB down from the maximum of the emission. Compare this with the RBW setting of the analyzer. Readjust RBW and repeat measurement as needed until the RBW/EBW ratio is approximately 1%.

2. Minimum Emission Bandwidth for the band 5.725-5.85 GHz

Section 15.407(e) specifies the minimum 6 dB emission bandwidth of at least 500 KHz for the band 5.715-5.85 GHz. The following procedure shall be used for measuring this bandwidth:

a) Set RBW = 100 kHz.
b) Set the video bandwidth (VBW) ≥ 3 × RBW.


c) Detector = Peak.

d) Trace mode = max hold.

e) Sweep = auto couple.

f) Allow the trace to stabilize.

g) Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission.

Test Data

Environmental Conditions

Temperature:	24 °C
Relative Humidity:	55 %
ATM Pressure:	101.0 kPa

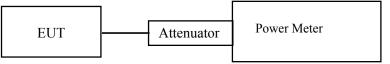
The testing was performed by Bravos Zhao from 2021-01-28 to 2021-02-02.

EUT operation mode: Transmitting

Test Result: Pass

Please refer to the Appendix

FCC §15.407(a) (1) (3) – CONDUCTED TRANSMITTER OUTPUT POWER


Applicable Standard

For client devices in the 5.15-5.25 GHz band, the maximum conducted output power over the frequency band of operation shall not exceed 250 mW provided the maximum antenna gain does not exceed 6 dBi. In addition, the maximum power spectral density shall not exceed 11 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

For the band 5.725-5.85 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W. In addition, the maximum power spectral density shall not exceed 30 dBm in any 500-kHz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi. However, fixed point-to-point U-NII devices operating in this band may employ transmitting antennas with directional gain greater than 6 dBi without any corresponding reduction in transmitter conducted power. Fixed, point-to-point operations exclude the use of point-to-multipoint systems, omnidirectional applications, and multiple collocated transmitters transmitting the same information. The operator of the U-NII device, or if the equipment is professionally installed, the installer, is responsible for ensuring that systems employing high gain directional antennas are used exclusively for fixed, point-to-point operations.

Test Procedure

- 1. Place the EUT on a bench and set it in transmitting mode.
- 2. Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to one test equipment.
- 3. Add a correction factor to the display.

Test Data

Environmental Conditions

Temperature:	24 °C
Relative Humidity:	55 %
ATM Pressure:	101.0 kPa

The testing was performed by Bravos Zhao from 2021-01-28.

EUT operation mode: Transmitting

Test Result: Pass

Please refer to the Appendix

FCC §15.407(a) (1) (3) - POWER SPECTRAL DENSITY

Applicable Standard

For client devices in the 5.15-5.25 GHz band, the maximum conducted output power over the frequency band of operation shall not exceed 250 mW provided the maximum antenna gain does not exceed 6 dBi. In addition, the maximum power spectral density shall not exceed 11 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

For the band 5.725-5.85 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W. In addition, the maximum power spectral density shall not exceed 30 dBm in any 500-kHz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi. However, fixed point-to-point U-NII devices operating in this band may employ transmitting antennas with directional gain greater than 6 dBi without any corresponding reduction in transmitter conducted power. Fixed, point-to-point operations exclude the use of point-to-multipoint systems, omnidirectional applications, and multiple collocated transmitters transmitting the same information. The operator of the U-NII device, or if the equipment is professionally installed, the installer, is responsible for ensuring that systems employing high gain directional antennas are used exclusively for fixed, point-to-point operations.

Test Procedure

For devices operating in the bands 5.15-5.25 GHz, 5.25-5.35 GHz, and 5.47-5.725 GHz, the above procedures make use of 1 MHz RBW to satisfy directly the 1 MHz reference bandwidth specified in § 15.407(a)(5). For devices operating in the band 5.725-5.85 GHz, the rules specify a measurement bandwidth of 500 kHz. Many spectrum analyzers do not have 500 kHz RBW, thus a narrower RBW may need to be used. The rules permit the use of a RBWs less than 1 MHz, or 500 kHz, "provided that the measured power is integrated over the full reference bandwidth" to show the total power over the specified measurement bandwidth (i.e., 1 MHz, or 500 kHz). If measurements are performed using a reduced resolution bandwidth (< 1 MHz, or < 500 kHz) and integrated over 1 MHz, or 500 kHz bandwidth, the following adjustments to the procedures apply:

a) Set RBW ≥ 1/T, where T is defined in section II.B.l.a).
b) Set VBW ≥ 3 RBW.

- c) If measurement bandwidth of Maximum PSD is specified in 500 kHz, add 10 log (500 kHz/RBW) to the measured result, whereas RBW (< 500 kHz) is the reduced resolution bandwidth of the spectrum analyzer set during measurement.
- d) If measurement bandwidth of Maximum PSD is specified in 1 MHz, add 10 log (1MHz/RBW) to the measured result, whereas RBW (< 1 MHz) is the reduced resolution bandwidth of spectrum analyzer set during measurement.
- e) Care must be taken to ensure that the measurements are performed during a period of continuous transmission or are corrected upward for duty cycle.

Report No.: RSZ201228003-00D

Test Data

Environmental Conditions

Temperature:	24 °C
Relative Humidity:	55 %
ATM Pressure:	101.0 kPa

The testing was performed by Bravos Zhao on 2021-01-28.

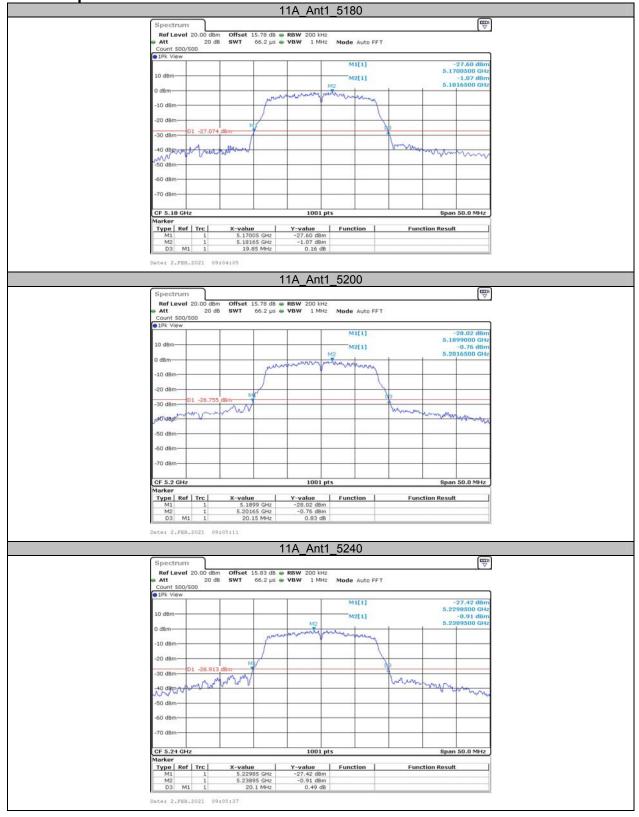
EUT operation mode: Transmitting

Test Result: Pass

Please refer to the Appendix

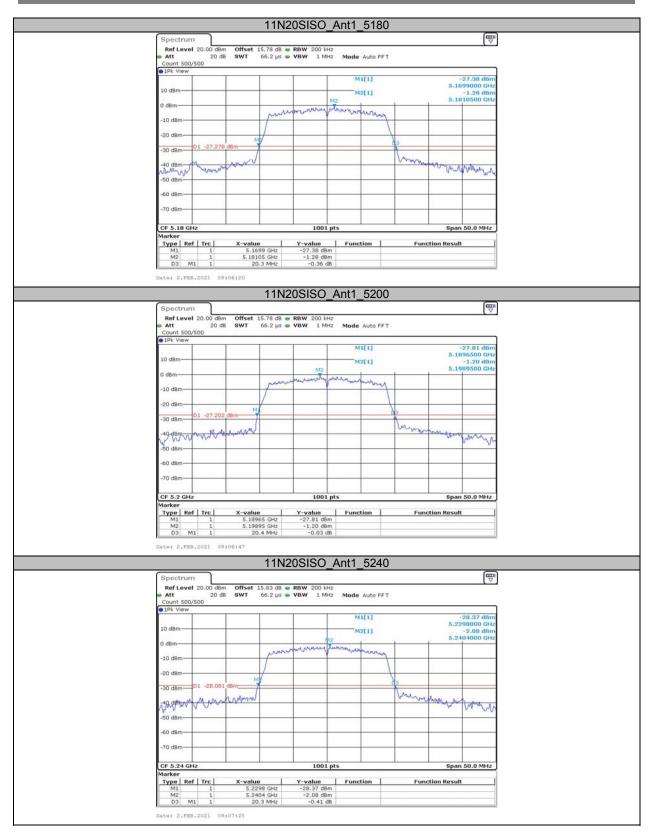
APPENDIX

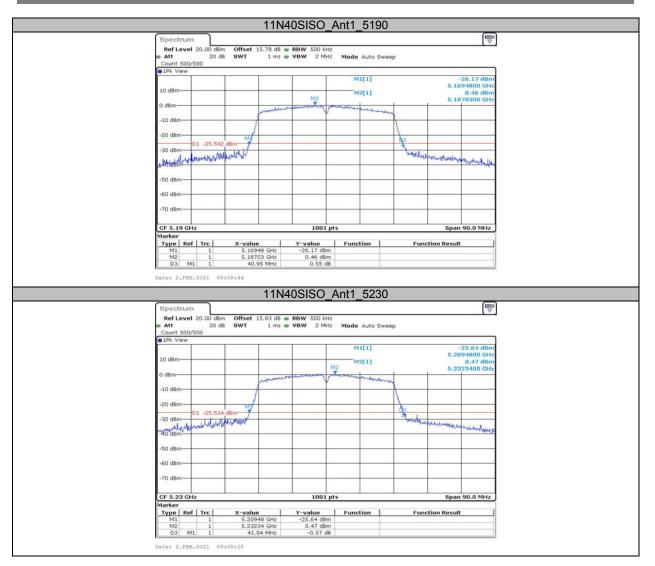
Appendix A1: EmissionBandwidth


Test Result

TestMode	Antenna	Channel	26db EBW [MHz]	Limit[MHz]	Verdict
		5180	19.850		PASS
11A	Ant1	5200	20.150		PASS
		5240	20.100		PASS
		5180	20.300		PASS
11N20SISO	Ant1	5200	20.400		PASS
		5240	20.300		PASS
11N40SISO	Ant1	5190	40.950		PASS
1111403130	Anti	5230	41.040		PASS

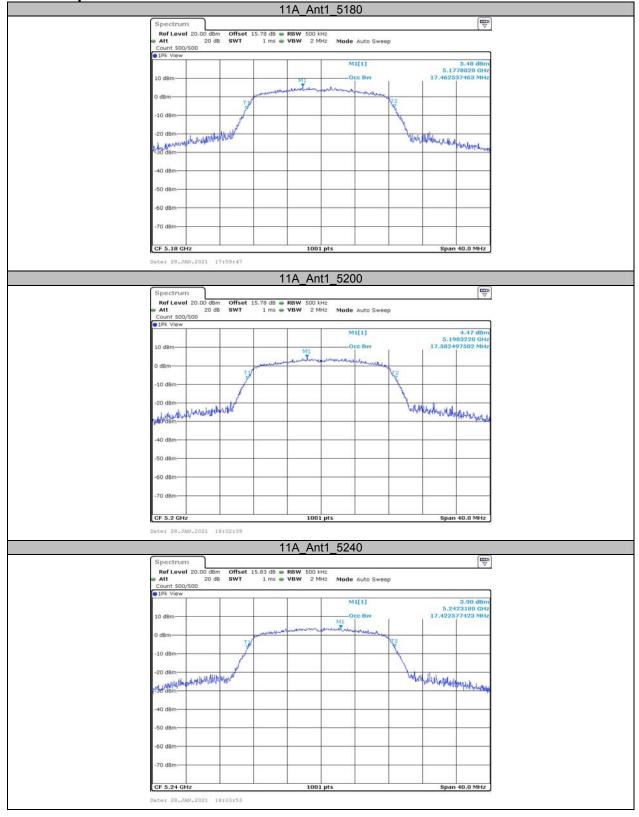
FCC Part 15.407


Report No.: RSZ201228003-00D


Test Graphs

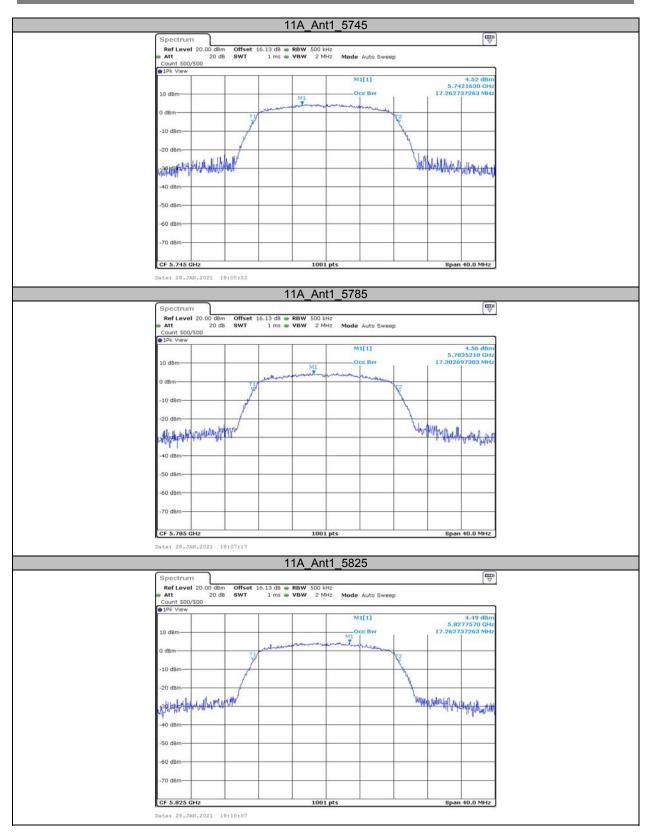
FCC Part 15.407

Page 38 of 62

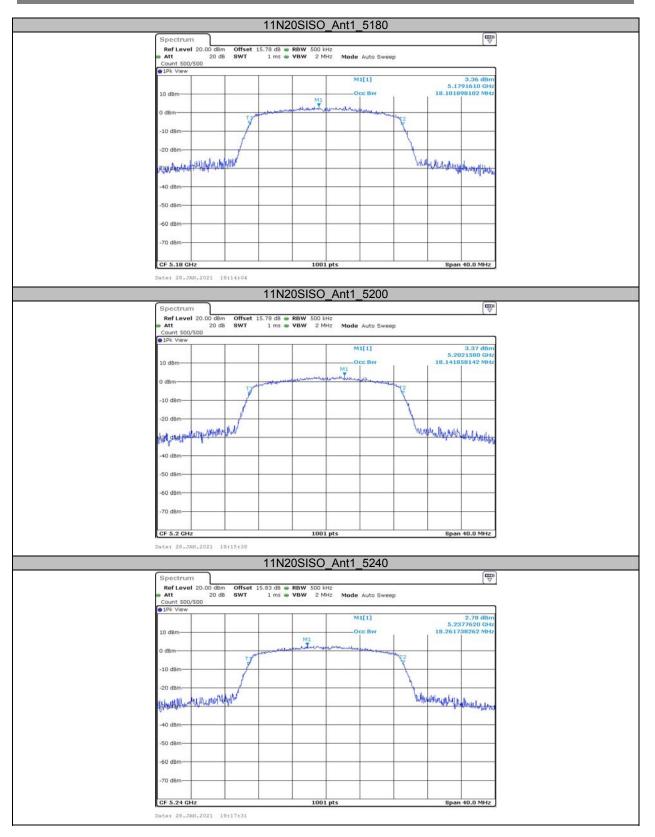


Appendix A2: Occupied channel bandwidth Test Result

TestMode	Antenna	Channel	OCB [MHz]	Limit[MHz]	Verdict
		5180	17.463		PASS
		5200	17.502		PASS
11A	Ant1	5240	17.423		PASS
IIA	Anti	5745	17.263		PASS
		5785	17.303		PASS
		5825	17.263		PASS
		5180	18.102		PASS
		5200	18.142		PASS
11N20SISO	Ant1	5240	18.262		PASS
1111203130	Anti	5745	18.181		PASS
		5785	18.102		PASS
		5825	18.142		PASS
		5190	36.843		PASS
11N40SISO	Ant1	5230	36.763		PASS
111403130	AILI	5755	36.683		PASS
		5795	36.763		PASS

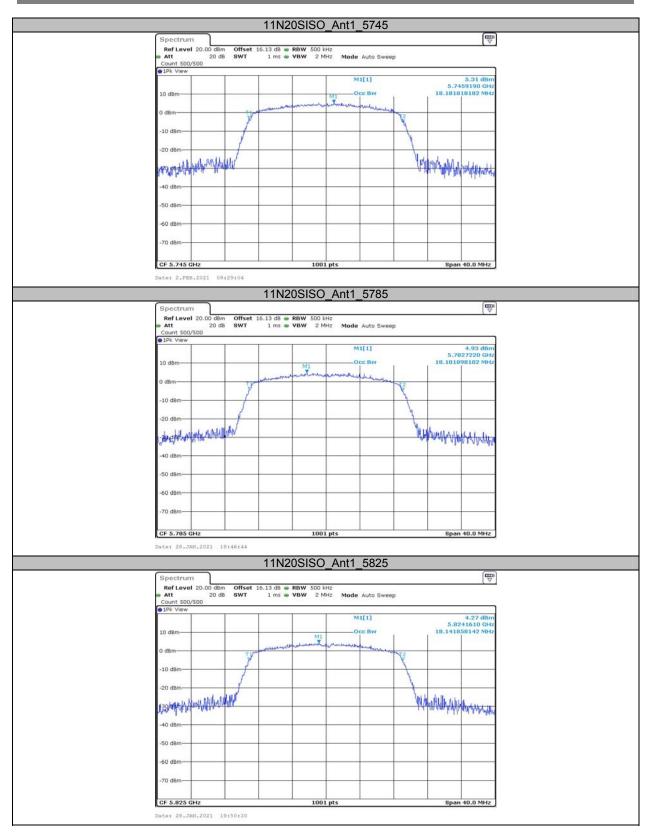

Report No.: RSZ201228003-00D

Test Graphs

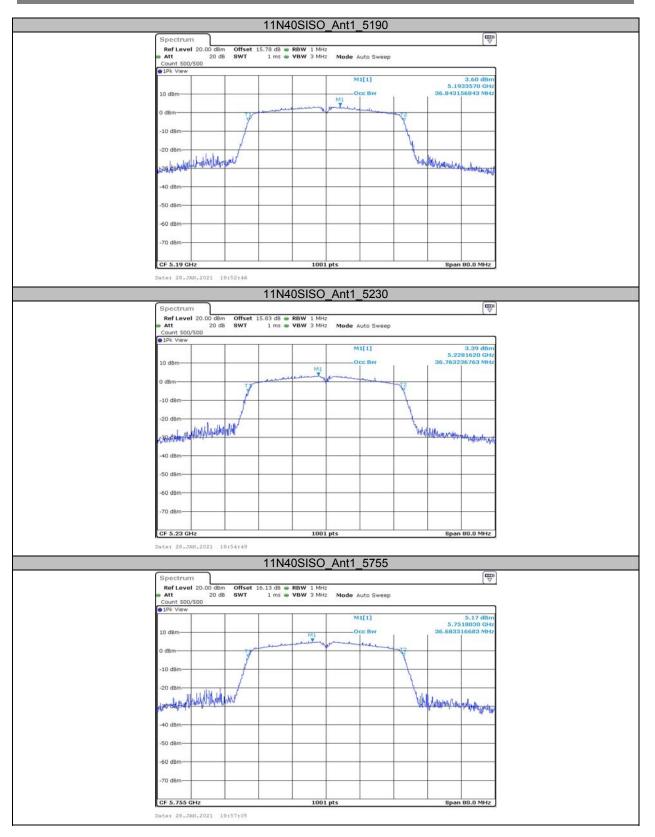


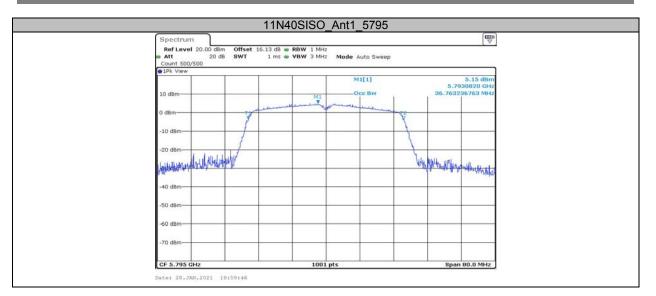
FCC Part 15.407

Page 42 of 62


Report No.: RSZ201228003-00D

FCC Part 15.407


Page 44 of 62

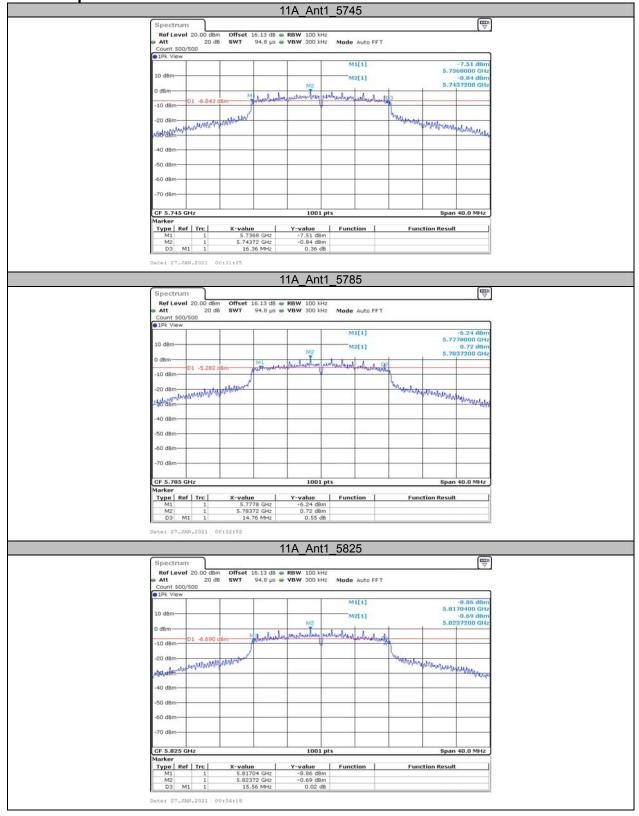

Report No.: RSZ201228003-00D

FCC Part 15.407

Page 45 of 62

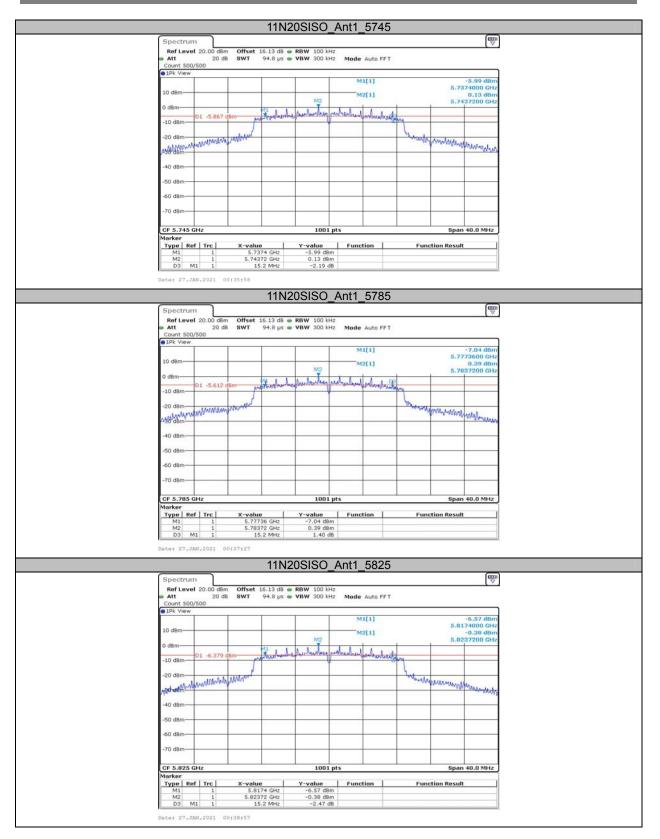
Appendix A3: Min emission bandwidth Test Result

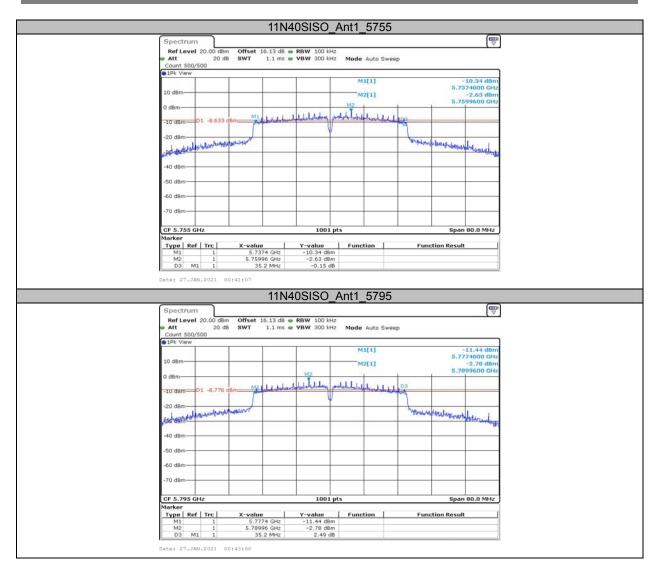
TestMode	Antenna	Channel	6db EBW [MHz]	Limit[MHz]	Verdict
		5745	16.360	0.5	PASS
11A	Ant1	5785	14.760	0.5	PASS
		5825	15.560	0.5	PASS
	20SISO Ant1	5745	15.200	0.5	PASS
11N20SISO		5785	15.200	0.5	PASS
		5825	15.200	0.5	PASS
441400100	Ant1	5755	35.200	0.5	PASS
11N40SISO	AIILI	5795	35.200	0.5	PASS


FCC Part 15.407

Page 48 of 62

5.407


Report No.: RSZ201228003-00D


Test Graphs

FCC Part 15.407

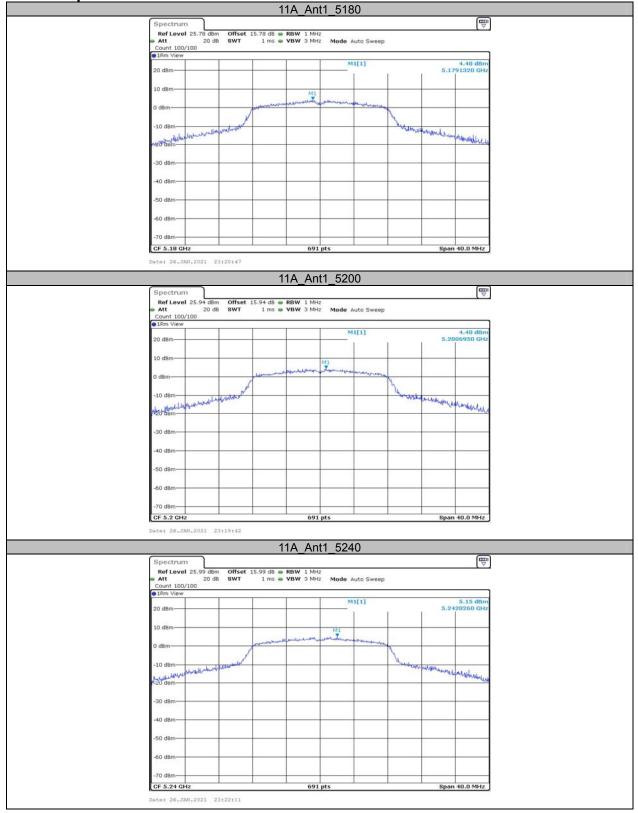
Page 49 of 62

Appendix B: Maximum conducted output powe	er
Test Result	

105t Result					
TestMode	Antenna	Channel	Result[dBm]	Limit[dBm]	Verdict
		5180	9.53	<=23.98	PASS
		5200	10.08	<=23.98	PASS
11 0	A set 1	5240	10.47	<=23.98	PASS
11A	Ant1	5745	10.86	<=30	PASS
		5785	10.98	<=30	PASS
		5825	9.80	<=30	PASS
		5180	9.67	<=23.98	PASS
		5200	10.07	<=23.98	PASS
44N000000	A == 14	5240	10.42	<=23.98	PASS
11N20SISO	Ant1	5745	10.80	<=30	PASS
		5785	10.60	<=30	PASS
		5825	9.54	<=30	PASS
		5190	9.29	<=23.98	PASS
441400100	A == 14	5230	8.65	<=23.98	PASS
11N40SISO	Ant1	5755	10.85	<=30	PASS
		5795	10.61	<=30	PASS

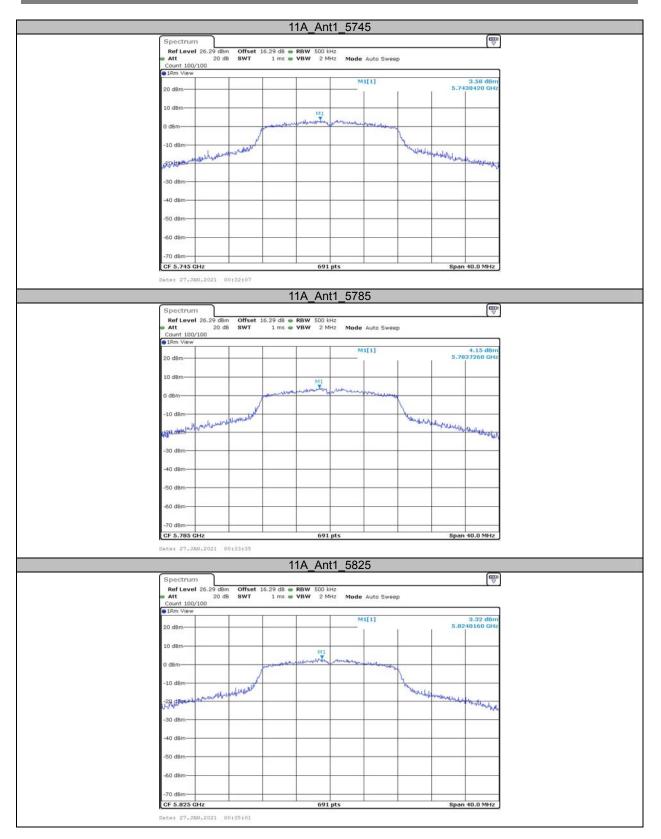
Appendix C: Maximum power spectral density Test Result

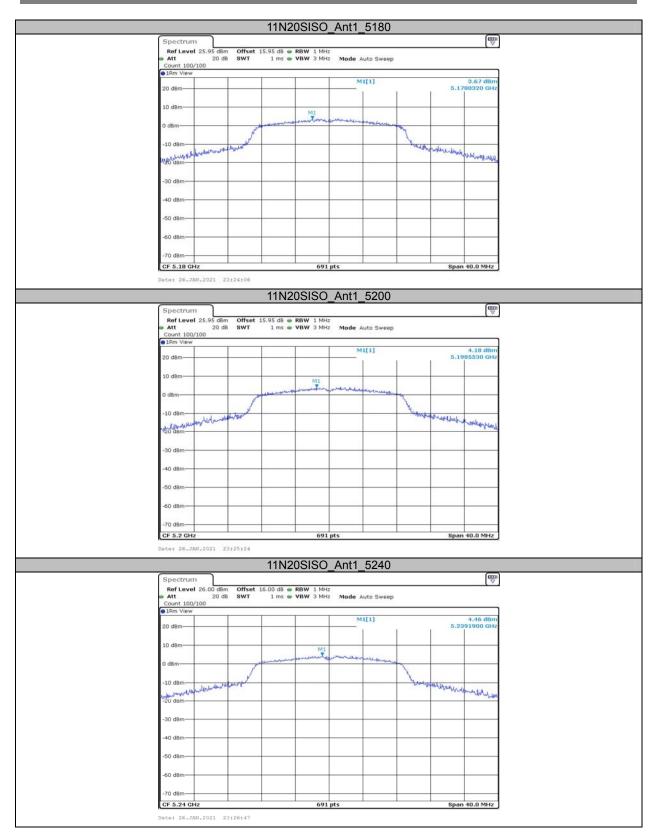
Toot Roodit					
TestMode	Antenna	Channel	Result [dBm/MHz]	Limit[dBm/MHz]	Verdict
		5180	4.40	<=11	PASS
		5200	4.40	<=11	PASS
11A	Ant1	5240	5.15	<=11	PASS
ПА	Anti	5745	3.58	<=30	PASS
		5785	4.15	<=30	PASS
		5825	3.32	<=30	PASS
		5180	3.67	<=11	PASS
		5200	4.18	<=11	PASS
11N20SISO	Ant1	5240	4.46	<=11	PASS
1111203130	Anti	5745	2.92	<=30	PASS
		5785	3.33	<=30	PASS
		5825	2.80	<=30	PASS
		5190	0.57	<=11	PASS
11N40SISO	Ant1	5230	0.24	<=11	PASS
1111403130	AILI	5755	0.72	<=30	PASS
		5795	0.51	<=30	PASS

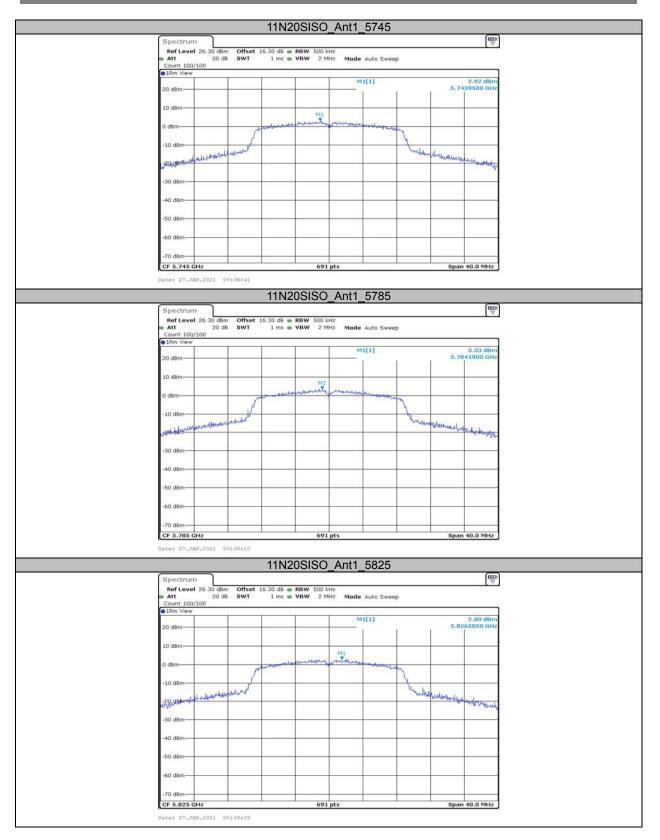

Note: 1.TheResult and LimitUnit is dBm/500 kHz in the band 5.725–5.85 GHz.

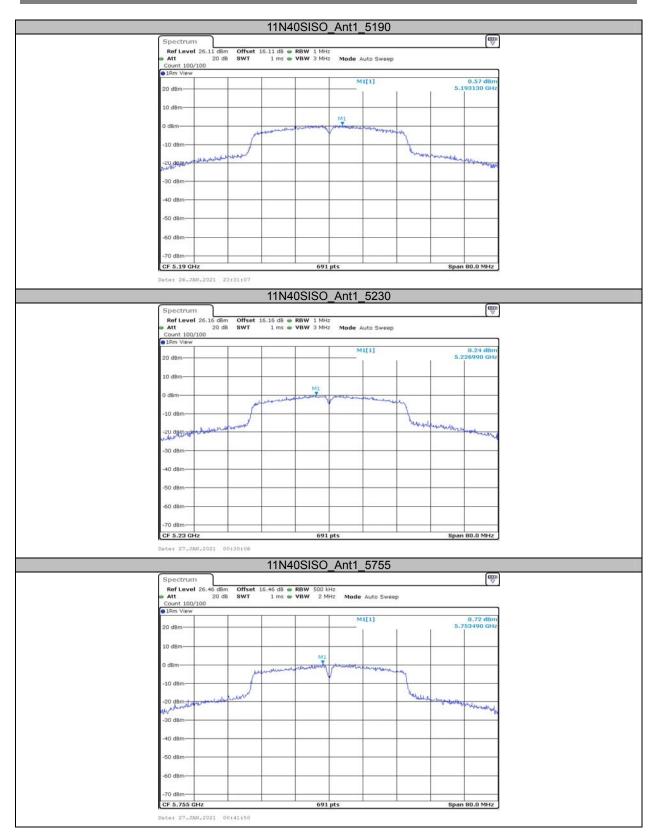
2. The Duty Cycle Factor and RBW Factor is compensated in the graph.

FCC Part 15.407


Report No.: RSZ201228003-00D


Test Graphs



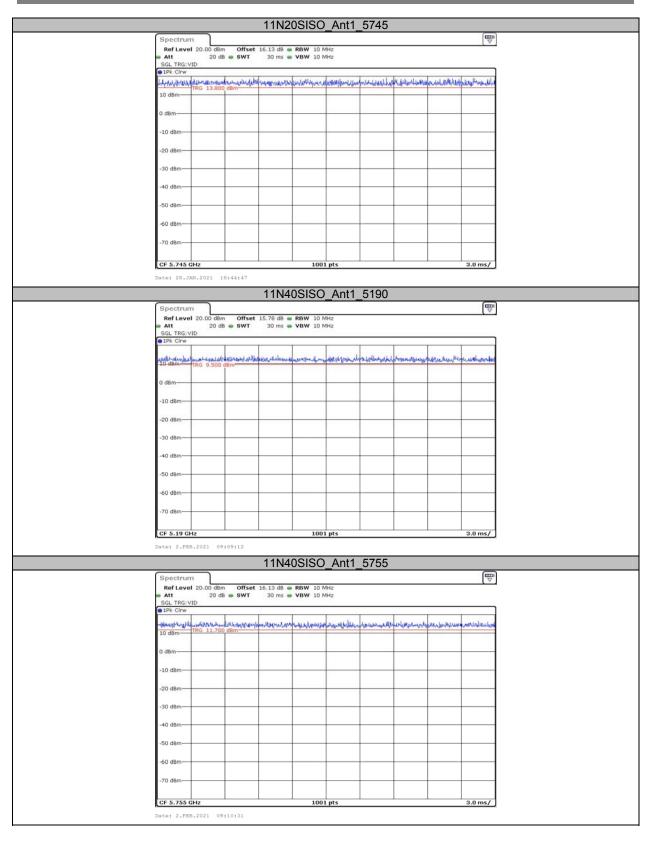

FCC Part 15.407

Page 54 of 62

Report No.: RSZ201228003-00D

Appendix D: DutyCycle Test Result

TestMode	Antenna	Channel	TransmissionDuration [ms]	Transmission Period [ms]	Duty Cycle [%]
11A	Ant1	5180	1.37	1.43	95.80
IIA	Anti	5745	30.00	30.00	100.00
11N20SISO	Ant1	5180	30.00	30.00	100.00
1111205150	Anti	5745	30.00	30.00	100.00
11N40SISO	Ant1	5190	30.00	30.00	100.00
1111403130	Anti	5755	30.00	30.00	100.00


Report No.: RSZ201228003-00D

Test Graphs

	11A Ant1 5180	
Spectrum		
	15.78 dB • RBW 10 MHz 10 ms • VBW 10 MHz	
SGL TRG: VID	AV THE W TENT AN THE	
• 1Pk Cirw	mendular procession and proceeding process	mathematication and a second and a
10 dBm TRG 11.900 dBm	D1[1]	780.00 ps 3.51 dB 1.37000 ms
0 dBm-		1.37000 ms
-10 dBm-		
100000		
-20 dBm		
-30 dBm		U
-40 dBm		
-50 dBm		
-60 dBm		
-70 dBm		
CF 5.18 GHz	1001 pts	1.0 ms/
Marker		
Type Ref Trc X-value	30.0 µs 11.61 dBm	Function Result
D1 M1 1 1 D2 M1 1	.37 ms 3.51 dB .43 ms -0.33 dB	
Date: 28.JAN.2021 18:01:29		
	11A_Ant1_5745	
Spectrum		
Ref Level 20.00 dBm Offset	16.13 dB 🖷 RBW 10 MHz	
SGL TRG:VID	30 ms 🗰 VBW 10 MHz	
1Pk Clrw		and the data is the data
TRG 13.600 dBm	possiburrowine material and a constraint of the second and the sec	ersten juli della fan de
10 dBm		
0 dBm		
-10 dBm		
-20 dBm		
-30 dBm		
-40 dBm		
-50 dBm		
-60 dBm		
-70 dBm		
-70 dBm		
CF 5.745 GHz	1001 pts	3.0 ms/
Date: 28.JAN.2021 18:06:00		
	11N20SISO_Ant1_5180	
Spectrum		
		1 * 1
	15.78 dB • RBW 10 MHz	
SGL TRG:VID	15.78 dB • RBW 10 MHz 30 ms • VBW 10 MHz	
SGL TRG:VID	30 ms 🖷 VBW 10 MHz	
SGL TRG:VID	30 ms 🖷 VBW 10 MHz	an alwayd ar follow yward aw alway a follow a
SGL TRG:VID		weatureterspectuality and the states
SGL TRG:VID	30 ms 🖷 VBW 10 MHz	พระสะนองไป การราชไปเขาไข่สามให้เป็นไป รังการ
Att 20 dB SWT SGL TRG: VID 1Pk: Clrw 1	30 ms 🖷 VBW 10 MHz	มหา,สูสันเลรูโประการที่เป็นมี
Att 20 db SWT SGL TRG:VID 19k Clrw 19k Clrw 10 dbm TRG 11.500 dbm 10 dbm -10 dbm -10 dbm	30 ms 🖷 VBW 10 MHz	มหาะสูสารแล้วกับการการการการการการการการการการการการการก
Att 20 dB SWT SGL TRG:VID SGL TRG:VID I-k Cirw I	30 ms 🖷 VBW 10 MHz	มระสร้างสร้างสราวการการการการการการการการการการการการการก
Att 20 db SWT SGL TRG:VID 19k Clrw 19k Clrw 10 dbm TRG 11.500 dbm 10 dbm -10 dbm -10 dbm	30 ms 🖷 VBW 10 MHz	880, gituegiter
Att 20 dB SUL TRG:VID 1Pk Cinw 1Pk Cinw L	30 ms 🖷 VBW 10 MHz	999. gil ung kar-polici 29 gan polici ki bij bij bij bij bij bij bij bij bij bi
Att 20 db e SWT SGL TRG:VID 19k Clrw IPk Clrw In and and and and and and and and and an	30 ms 🖷 VBW 10 MHz	
Att 20 dB SUL TRG:VID 1Pk Cinw 1Pk Cinw L	30 ms 🖷 VBW 10 MHz	
Att 20 db e SWT SGL TRG:VID 19k Clrw IPk Clrw In and and and and and and and and and an	30 ms 🖷 VBW 10 MHz	
Att 20 db e SWT SGL TRG:VID 19k Cinw 19k Cinw 10 dbm 10 dbm TRG 11.500 dbm 0 dbm	30 ms 🖷 VBW 10 MHz	
Att 20 dB	30 ms 🖷 VBW 10 MHz	
Att 20 db e SWT SGL TRG:VID 19k Cinw 19k Cinw 10 dbm 10 dbm TRG 11.500 dbm 0 dbm	30 ms 🖷 VBW 10 MHz	3.0 ms/

FCC Part 15.407

Report No.: RSZ201228003-00D

***** END OF REPORT *****

FCC Part 15.407

Page 62 of 62