

TEST REPRT

Applicant:	Quanzhou SKYDROID Technology Co., Ltd.		
Address of Applicant:	2nd Floor, Building A, Yucheng Base, Fengze District, Quanzhou City, Fujian Province, China		
Manufacturer:	Quanzhou SKYDROID Technology Co., Ltd.		
Address of Manufacturer:	2nd Floor, Building A, Yucheng Base, Fengze District, Quanzhou City, Fujian Province, China		
Factory:	Quanzhou SKYDROID Technology Co., Ltd.		
Address of Factory:	2nd Floor, Building A, Yucheng Base, Fengze District,		
Equipment Under Test (E	Quanzhou City, Fujian Province, China E UT)		
Product Name:	Remote control		
Model No.:	G20, G20Pro, G20/G20Pro,GR01		
Trade Mark:	SKYDROID		
FCC ID:	2ATGZQZYZG20		
Applicable standards:	FCC CFR Title 47 Part 15 Subpart E Section 15.407		
Date of sample receipt:	01/15/2025		
Date of Test:	01/15/2025~03/10/2025		
Date of report issued:	03/10/2025		
Test Result :	PASS *		

* In the configuration tested, the EUT complied with the standards specified above.

Authorized Signature:

Robinson Luo Laboratory Manager

This results shown in this test report refer only to the sample(s) tested, this test report cannot be reproduced, except in full, without prior written permission of the company. The report would be invalid without specific stamp of test institute and the signatures of compiler and approver. Page 1 of 28

2 Version

Version No.	Date	Description
00	03/10/2025	Original

Prepared By:

branklu

Project Engineer

Date:

03/10/2025

Check By:

Homesong Curd Reviewer

Date:

03/10/2025

GTS

Report No.: GTSL2025020051F07

3 Contents

		Pag	je
1	COV	ER PAGE	.1
2	VFR	SION	2
3		ITENTS	10.0
4	TES	T SUMMARY	4
	4.1	MEASUREMENT UNCERTAINTY	4
5	GEN		5
	5.1	GENERAL DESCRIPTION OF EUT	5
	5.2	TEST MODE	
	5.2	DESCRIPTION OF SUPPORT UNITS	
	5.3	Test Facility	
	5.5		
	5.6	Additional Instructions	
6	TES	T INSTRUMENTS LIST	8
7	TES	T RESULTS AND MEASUREMENT DATA 1	0
	7.1	ANTENNA REQUIREMENT	0
	7.2	CONDUCTED EMISSIONS	
	7.3	MAXIMUM CONDUCTED OUTPUT POWER	
	7.4	CHANNEL BANDWIDTH AND 99% OCCUPIED BANDWIDTH 1	5
	7.5	Power Spectral Density	6
	7.6	BAND EDGE 1	7
	7.6.1	1 Radiated Emission Method 1	17
	7.7	SPURIOUS EMISSION 1	
	7.7.1	1 Radiated Emission Method 1	19
	7.8	FREQUENCY STABILITY	27
8	TES	Т SETUP PHOTO 2	28
9	EUT	CONSTRUCTIONAL DETAILS	28

4 Test Summary

Test Item	Section	Result
Antenna requirement	FCC part 15.203	Pass
AC Power Line Conducted Emission	FCC part 15.207	Pass
Maximum Conducted Output Power	FCC part 15.407(a)(3)	Pass
Channel Bandwidth and 99% Occupied Bandwidth	FCC part 15.407(e)	Pass
Power Spectral Density	FCC part 15.407(a)(3)	Pass
Band Edge	FCC part 15.407(b)(4)	Pass
Spurious Emission	FCC part 15.205/15.209/15.407(b)(4)	Pass
Frequency Stability	FCC part 15.407(g)	Pass

Remarks:

1. Pass: The EUT complies with the essential requirements in the standard.

2. Test according to ANSI C63.10:2013.

4.1 Measurement Uncertainty

No.	Item	Measurement Uncertainty		
1	Radio Frequency	±7.25×10 ⁻⁸		
2	Duty cycle	±0.37%		
3	Occupied Bandwidth	±3%		
4	RF conducted power	±0.75dB		
5	RF power density	±3dB		
6	Conducted Spurious emissions	±2.58dB		
7	AC Power Line Conducted Emission	±3.44dB (0.15MHz ~ 30MHz)		
		±3.1dB (9kHz-30MHz)		
100	Radiated Spurious emission test	±3.8039dB (30MHz-200MHz)		
8		±3.9679dB (200MHz-1GHz)		
		±4.29dB (1GHz-18GHz)		
		±3.30dB (18GHz-40GHz)		
9	Temperature test	±1°C		
10	Humidity test	±3%		
11	Time	±3%		

5 General Information

5.1 General Description of EUT

Product Name:	Remote control
Test Model No.:	G20
Family Model:	G20Pro, G20/G20Pro, GR01
Test sample(s) ID:	GTS2025020051-1
Sample(s) Status:	Engineer sample
S/N:	2024G20A0001
Operation Frequency:	802.11a/802.11n(HT20)/802.11ac(HT20): 5745MHz ~ 5825MHz 802.11n(HT40)/ 802.11ac(HT40): 5755MHz ~ 5795MHz 802.11ac(HT80): 5775MHz
Channel numbers:	802.11a/802.11n(HT20)/802.11ac(HT20): 5 802.11n(HT40)/ 802.11ac(HT40): 2 802.11ac(HT80): 1
Channel bandwidth:	802.11a/802.11n(HT20)/802.11ac(HT20): 20MHz 802.11n(HT40)/802.11ac(HT40): 40MHz 802.11ac(HT80): 80MHz
Modulation technology:	Orthogonal Frequency Division Multiplexing (OFDM)
Antenna Type:	FPCB Antenna
Antenna gain:	3.06dBi
Power supply:	AC Adapter(100~240VAC)
The second s	

Remark:

1. Antenna gain information provided by the customer

2. The relevant information of the sample is provided by the entrusting company, and the laboratory is not responsible for its authenticity.

3. The ANT1&ANT2 support both SISO, MIMO mode.

	Operation Frequency each of channel						
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
149	5745MHz	151	5755MHz	153	5765MHz	155	5775MHz
157	5785MHz	159	5795MHz	161	5805MHz	163	5815MHz
165	5825MHz						

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

Test shannel	Frequency (MHz)				
Test channel	802.11 a/n/ac(HT20)	802.11 n/ac(HT40)	802.11ac(HT80)		
Lowest channel	5745	5755			
Middle channel	5785		5775		
Highest channel	5825	5795			

5.2 Test mode

Transmitting mode	Keep the EUT in continuously transmitting mode
Tranorniting mode	reop the Eer in continuedoly danomitang mode

We have verified the construction and function in typical operation. All the test modes were carried out with the EUT in transmitting operation, which was shown in this test report and defined as follows:

Per-scan all kind of data rate in lowest channel, and found the follow list which it was worst case.

Mode	Data rate	Mode	Data rate
802.11a	6Mbps	802.11n/ac(HT40)	13Mbps
802.11n/ac(HT20)	6.5Mbps	802.11ac(HT80)	29.3Mbps

5.3 Description of Support Units

ZTE WIFI Router, Model P602

5.4 Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

• FCC — Registration No.: 381383

Designation Number: CN5029

Global United Technology Services Co., Ltd., Shenzhen EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in files.

ISED — Registration No.: 9079A

CAB identifier: CN0091

The 3m Semi-anechoic chamber of Global United Technology Services Co., Ltd. has been registered by Certification and Engineering Bureau of ISED for radio equipment testing.

• NVLAP (LAB CODE:600179-0)

Global United Technology Services Co., Ltd., is accredited by the National Voluntary Laboratory Accreditation Program (NVLAP).

5.5 Test Location

All tests were performed at:	
Global United Technology Services Co., Ltd.	
Address: No. 123-128, Tower A, Jinyuan Business Building, No.2, Laodong Industrial Zone, Xixiang	
Road, Baoan District, Shenzhen, Guangdong, China 518102	-2-3
Tel: 0755-27798480	
Fax: 0755-27798960	

5.6 Additional Instructions

Test Software	Special test software provided by manufacturer
Power level setup	Default

6 Test Instruments list

Radiated Emission:							
ltem	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)	
1	3m Semi- Anechoic Chamber	ZhongYu Electron	9.2(L)*6.2(W)* 6.4(H)	GTS250	Jun. 22, 2024	Jun. 21, 2027	
2	Control Room	ZhongYu Electron	6.2(L)*2.5(W)* 2.4(H)	GTS251	N/A	N/A	
3	EMI Test Receiver	Rohde & Schwarz	ESU26	GTS203	Apr. 11, 2024	Apr. 10, 2025	
4	BiConiLog Antenna	SCHWARZBECK MESS-ELEKTRONIK	VULB9168	GTS640	Mar. 19, 2023	Mar. 18, 2025	
5	Double -ridged waveguide horn	SCHWARZBECK MESS-ELEKTRONIK	BBHA 9120 D	GTS208	Apr. 17, 2023	Apr. 16, 2025	
6	Wideband Radio Communication Tester	Rohde & Schwarz	CMW500	GTS575	Apr. 11, 2024	Apr. 10, 2025	
7	Loop Antenna	ZHINAN	ZN30900A	GTS534	Nov.12, 2024	Nov.11, 2025	
8	Broadband Preamplifier	SCHWARZBECK	BBV9718	GTS535	Apr. 11, 2024	Apr. 10, 2025	
9	Amplifier(1GHz-26.5GHz)	HP	8449B	GTS601	Apr. 11, 2024	Apr. 10, 2025	
10	Horn Antenna (15GH-40GHz)	SCHWARZBECK	01296	GTS691	Mar. 06, 2025	Mar. 05, 2026	
11	FSV-Signal Analyzer (10Hz-40GHz)	Keysight	FSV-40-N	GTS666	Mar. 12, 2024	Mar. 11, 2025	
12	Amplifier	/	LNA-1000-30S	GTS650	Apr. 11, 2024	Apr. 10, 2025	
13	CDNE M2+M3-16A	НСТ	30MHz-300MHz	GTS692	Nov. 07, 2024	Nov. 06, 2025	
14	Wideband Amplifier	1	WDA-01004000-15P35	GTS602	Apr. 11, 2024	Apr. 10, 2025	
15	Thermo meter	JINCHUANG	GSP-8A	GTS643	Apr. 18, 2024	Apr. 17, 2025	
16	RE cable 1	GTS	N/A	GTS675	Jul. 02, 2024	Jul. 01, 2025	
17	RE cable 2	GTS	N/A	GTS676	Jul. 02, 2024	Jul. 01, 2025	
18	RE cable 3	GTS	N/A	GTS677	Jul. 02, 2024	Jul. 01, 2025	
19	RE cable 4	GTS	N/A	GTS678	Jul. 02, 2024	Jul. 01, 2025	
20	RE cable 5	GTS	N/A	GTS679	Jul. 02, 2024	Jul. 01, 2025	
21	RE cable 6	GTS	N/A	GTS680	Jul. 02, 2024	Jul. 01, 2025	
22	RE cable 7	GTS	N/A	GTS681	Jul. 05, 2024	Jul. 04, 2025	
23	RE cable 8	GTS	N/A	GTS682	Jul. 05, 2024	Jul. 04, 2025	
24	EMI Test Software	AUDIX	E3-6.100614a	GTS725	N/A	N/A	

Cond	Conducted Emission						
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)	
1	Shielding Room	ZhongYu Electron	7.3(L)x3.1(W)x2.9(H)	GTS252	Jul. 12, 2022	Jul. 11, 2027	
2	EMI Test Receiver	R&S	ESCI 7	GTS552	Apr. 11, 2024	Apr. 10, 2025	
3	LISN	ROHDE & SCHWARZ	ENV216	GTS226	Apr. 11, 2024	Apr. 10, 2025	
4	Coaxial Cable	GTS	N/A	GTS227	N/A	N/A	
5	Thermo meter	JINCHUANG	GSP-8A	GTS642	Apr. 18, 2024	Apr. 17, 2025	
6	Absorbing clamp	Elektronik- Feinmechanik	MDS21	GTS229	Apr. 11, 2024	Apr. 10, 2025	
7	ISN	SCHWARZBECK	NTFM 8158	GTS565	Apr. 11, 2024	Apr. 10, 2025	
8	High voltage probe	SCHWARZBECK	TK9420	GTS537	Apr. 11, 2024	Apr. 10, 2025	
9	Antenna end assembly	Weinschel	1870A	GTS560	Apr. 11, 2024	Apr. 10, 2025	
10	EMI Test Software	AUDIX	E3-6.100622	GTS726	N/A	N/A	

RF Conducted Test:							
Item	Test Equipment	Manufacturer	Model No.	Serial No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)	
1	MXA Signal Analyzer	Agilent	N9020A	GTS566	Apr. 13, 2024	Apr. 12, 2025	
2	EMI Test Receiver	R&S	ESCI 7	GTS552	Apr. 13, 2024	Apr. 12, 2025	
3	PSA Series Spectrum Analyzer	Agilent	E4440A	GTS536	Apr. 13, 2024	Apr. 12, 2025	
4	MXG vector Signal Generator	Agilent	N5182A	GTS567	Apr. 13, 2024	Apr. 12, 2025	
5	ESG Analog Signal Generator	Agilent	E4428C	GTS568	Apr. 13, 2024	Apr. 12, 2025	
6	USB RF Power Sensor	DARE	RPR3006W	GTS569	Apr. 13, 2024	Apr. 12, 2025	
7	RF Switch Box	Shongyi	RFSW3003328	GTS571	Apr. 13, 2024	Apr. 12, 2025	
8	Programmable Constant Temp & Humi Test Chamber	WEWON	WHTH-150L-40-880	GTS572	Apr. 13, 2024	Apr. 12, 2025	
9	Thermo meter	JINCHUANG	GSP-8A	GTS641	Apr. 18, 2024	Apr. 17, 2025	

Ger	General used equipment:							
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)		
1	Barometer	KUMAO	SF132	GTS647	Apr. 18, 2024	Apr. 17, 2025		

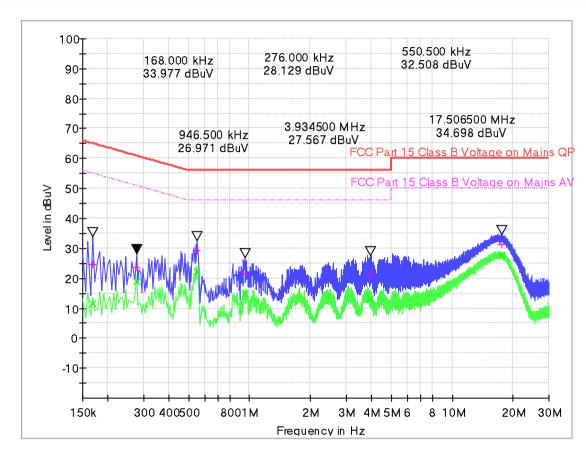
7 Test results and Measurement Data

7.1 Antenna requirement

Standard requirement:	FCC Part15 C Section 15.203						
	15.203 requirement: An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an						
antenna that uses a unique co	antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical						
E.U.T Antenna:							
The antenna is internal antenna,	The antenna is internal antenna, reference to the appendix II for details						

7.2 Conducted Emissions

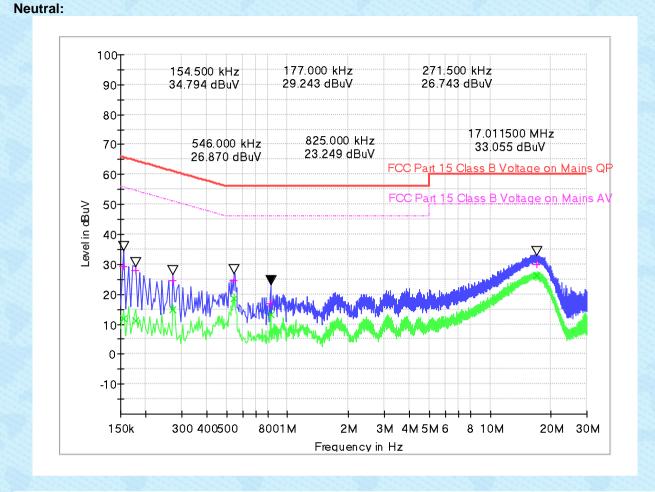
Test Requirement:	FCC Part15 C Section 15.207						
Test Method:	ANSI C63.10:2013						
Test Frequency Range:	150KHz to 30MHz						
Receiver setup:	RBW=9KHz, VBW=30KHz, Sv	weep time=auto					
Limit:		Limit	(dBuV)				
	Frequency range (MHz)	Quasi-peak	Average 56 to 46*				
	0.15-0.5						
	0.5-5	56	46				
	5-30	60	50				
Test setup:	* Decreases with the logarithn Reference Plane						
	40cm 40cm 40cm 40cm LISN 80cm Equipment E.U.T Filter AC power Test table/Insulation plane EMI Receiver Remark: EUT: Equipment Under Test LISN Isin in empedence Stabilization Network Test table height=0.8m 8m						
Test procedure:	 The E.U.T and simulators are connected to the main power through a line impedance stabilization network (L.I.S.N.). This provides a 50ohm/50uH coupling impedance for the measuring equipment. The peripheral devices are also connected to the main power through a LISN that provides a 50ohm/50uH coupling impedance with 50ohm termination. (Please refer to the block diagram of the test setup and photographs). Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.10:2013 on conducted measurement. 						
Test Instruments:	Refer to section 6.0 for details						
Test mode:	Refer to section 5.2 for details						
Test environment:	Temp.: 25 °C Hum	nid.: 52%	Press.: 1012mbar				
Test voltage:	AC 120V, 60Hz						
Test results:	Pass						


GTS

Measurement data

Report No.: GTSL2025020051F07

Pre-scan all test modes, found worst case at 802.11ac (VHT80) 5775MHz, and so only show the test result of it


Line:

Frequency (MHz)	QuasiPeak (dBuV)	CAverage (dBuV)	Corr. (dB)	Margin - QPK (dB)	Limit - QPK (dBuV)	Margin - CAV (dB)	Limit - CAV (dBuV)
0.168000	24.42	11.46	10.8	40.64	65.1	43.60	55.1
0.276000	23.72	18.99	10.8	37.22	60.9	31.95	50.9
0.550500	29.27	22.17	10.8	26.73	56.0	23.83	46.0
0.946500	21.53	14.72	10.7	34.47	56.0	31.28	46.0
3.934500	21.09	13.27	10.4	34.91	56.0	32.73	46.0
17.506500	31.24	27.69	11.0	28.76	60.0	22.31	50.0

GTS

Report No.: GTSL2025020051F07

Frequency (MHz)	QuasiPeak (dBuV)	CAverage (dBuV)	Corr. (dB)	Margin - QPK (dB)	Limit - QPK (dBuV)	Margin - CAV (dB)	Limit - CAV (dBuV)
0.154500	29.42	11.77	10.9	36.33	65.8	43.98	55.8
0.177000	28.02	11.14	10.9	36.61	64.6	43.49	54.6
0.271500	24.44	14.84	10.9	36.63	61.1	36.23	51.1
0.546000	24.48	18.52	10.9	31.52	56.0	27.48	46.0
0.825000	16.79	13.20	10.9	39.21	56.0	32.80	46.0
17.011500	29.89	26.28	11.0	30.11	60.0	23.72	50.0

Notes:

- 1. An initial pre-scan was performed on the line and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level =Receiver Read level + LISN Factor + Cable Loss

4. If the average limit is met when using a quasi-peak detector receiver, the EUT shall be deemed to meet both limits and measurement with the average detector receiver is unnecessary.

Global United Technology Services Co., Ltd. No. 123-128, Tower A, Jinyuan Business Building, No.2, Laodong Industrial Zone, Xixiang Road, Baoan District, Shenzhen, Guangdong, China 518102 Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

7.3 Maximum Conducted Output Power

Test Requirement:	FCC Part15 E Section 15.407(a)(3)		
Test Method:	ANSI C63.10:2013 and KDB 789033 D02 General U-NII Test Procedures New Rules v02r01		
Limit:	30dBm		
Duty Cycle set up:	RBW=1MHz, VBW=8MHz		
Test setup:	Power Meter E.U.T Non-Conducted Table Ground Reference Plane		
Test Instruments:	Refer to section 6.0 for details		
Test mode:	Refer to section 5.2 for details		
Test results:	Pass		

7.4 Channel Bandwidth and 99% Occupied Bandwidth

Test Requirement:	FCC Part15 E Section 15.407(e)				
Test Method:	ANSI C63.10:2013 and KDB 789033 D02 General U-NII Test Procedures New Rules v02r01				
Limit:	>500KHz				
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane				
Test Instruments:	Refer to section 6.0 for details				
Test mode:	Refer to section 5.2 for details				
Test results:	Pass				

7.5 Power Spectral Density

Test Requirement:	FCC Part15 E Section 15.407(a)(3)				
Test Method:	ANSI C63.10:2013 and KDB 789033 D02 General U-NII Test Procedures New Rules v02r01				
Limit:	30dBm/500kHz				
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane				
Test Instruments:	Refer to section 6.0 for details				
Test mode:	Refer to section 5.2 for details				
Test results:	Pass				

7.6 Band edge

7.6.1 Radiated Emission Method

7.0.1 Radiated Emission Method						
Test Requirement:	FCC Part15 C S	Section 15.209 a	and 15.205			
Test Method:	ANSI C63.10: 2	ANSI C63.10: 2013				
Test Frequency Range:	9kHz to 40GHz	, only worse cas	se is reporte	d		
Test site:	Measurement D	Distance: 3m		Carlo and		
Receiver setup:	Frequency	Detector	RBW	VBW	Value	
	Above 1GHz	Peak	1MHz	3MHz	Peak	
	Above IGHZ	RMS	1MHz	3MHz	RMS	
Limit:	All emissions sl	hall be limited to	a level of -	27 dBm/MH	Hz at 75 MHz or	
					y to 10 dBm/MHz	
		ve or below the b				
2					5.6 dBm/MHz at 5	
					above or below the	
		easing linearly to	b a level of 2	27 dBm/MH	z at the band	
	edge.		10 A A	Contraction of the		
Test setup:	Tum Table <150ca>	< 3m >	Test Antenna-	mplifier.		
Test Procedure:	 the ground a determine th 2. The EUT wa antenna, whi tower. 3. The antenna ground to de horizontal ar measuremer 4. For each sus and then the and the rota the maximun 5. The test-rece Specified Ba 6. If the emission the limit specified Ba 6. If the emission the EUT we have 10dB m peak or aver sheet. 	t a 3 meter cam e position of the s set 3 meters a ich was mounted height is varied termine the max d vertical polarized the termine the max d vertical polarized the termine the max d vertical polarized the termine the max and vertical polarized the termine the max and vertical polarized the termine the max and vertical polarized the termine the max antenna was turned in reading. eiver system was not vertical polarized table was turned in reading.	ber. The tak highest rac way from th d on the top from one n kimum value zations of th n, the EUT ned to heig d from 0 de s set to Pea aximum Hole UT in peak ng could be d. Otherwis re-tested of specified ar	ble was rota diation. The interferent of a variab meter to four e of the field the antenna was arrange hts from 1 r grees to 360 ak Detect Fu d Mode. mode was stopped an e the emiss ne by one un ad then repo	Ie-height antenna r meters above the d strength. Both are set to make the ed to its worst case neter to 4 meters 0 degrees to find unction and 10dB lower than id the peak values ions that did not using peak, quasi- orted in a data	
					, Z axis positioning. ase, only the test	

Global United Technology Services Co., Ltd. No. 123-128, Tower A, Jinyuan Business Building, No.2, Laodong Industrial Zone, Xixiang Road, Baoan District, Shenzhen, Guangdong, China 518102 Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

 Report No.: GTSL2025020051F07

 worst case mode is recorded in the report.

 Test Instruments:
 Refer to section 6.0 for details

 Test mode:
 Refer to section 5.2 for details

 Test results:
 Pass

Remarks:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.
- 3. The pre-test were performed on lowest, middle and highest frequencies, only the worst case's (lowest and highest frequencies) data was showed.
- 4. All antennas were tested and passed, only an1 report
- According to KDB 789033 D02v02r01 section G) 1) d), for measurements above 1000 MHz @3m distance, the limit of field strength is computed as follows: E[dBuV/m] = EIRP[dBm] + 95.2;

E[dBuV/m] = E17F[dBm] + 95.2,E[dBuV/m] = -27 + 95.2 = 68.2dBuV/m.E[dBuV/m] = 10 + 95.2 = 105.2dBuV/m.

E[dBuV/m] = 15.6 + 95.2 = 110.8dBuV/m.

E[dBuV/m] = 27 + 95.2 = 122.2dBuV/m

Measurement data:

Detailed test data can be found in Section 7.7.

7.7 Spurious Emission

7.7.1 Radiated Emission Method

FCC Part15 C Section 15.209, Part 15E Section 15.407(b)(4)							
ANSI C63.10:2013							
9kHz to 40GHz							
Measurement Di	Measurement Distance: 3m						
Frequency	Detector	RBW	VBW	Value			
9kHz-150KHz	Quasi-peak	200Hz	1kHz	Quasi-peak Value			
150kHz- 30MHz	Quasi-peak	9kHz	30kHz	Quasi-peak Value			
30MHz-1GHz	Quasi-peak	120KHz	300KHz	Quasi-peak Value			
Above 1GHz	Peak	1MHz	3MHz	Peak Value			
				Average Value			
Frequency (MHz) F	ield strength (microv	olts/meter)	Measureme	ent distance (meters)			
	-			300			
				30			
				30			
				3			
				3			
Above 960 5	00			3			
measurements the frequency b MHz. Radiated	employing a 0 ands 9-90 kH emission limit	CISPR qua z, 110-490 s in these	asi-peak d) kHz and three ban	etector except for above 1000			
For radiated en	nissions from 9	9kHz to 30	OMHz				
< 80cm >+1	EUT-	lm	->- Test Anten	na			
	ANSI C63.10:20 9kHz to 40GHz Measurement Di Frequency 9kHz-150KHz 150kHz- 30MHz 30MHz-1GHz Above 1GHz Note: For Duty cycle < 98%, av	ANSI C63.10:2013 9kHz to 40GHz Measurement Distance: 3m Frequency Detector 9kHz-150KHz Quasi-peak 150kHz- Quasi-peak 30MHz Quasi-peak 30MHz-1GHz Quasi-peak Above 1GHz Peak Above 1GHz AV Note: For Duty cycle ≥ 98%, average detector Frequency (MHz) Field strength (microv 0.09-0.490 2400/F(kHz) 0.490-1.705 24000/F(kHz) 1.705-30.0 30 30-88 100** 88-216 150** 216-960 200** Above 960 500 The emission limits shown in measurements employing a O the frequency bands 9-90 kH MHz. Radiated emission limit measurements employing an For radiated emissions from signal form	ANSI C63.10:2013 9kHz to 40GHz Measurement Distance: 3m Frequency Detector 9kHz-150KHz Quasi-peak 200Hz 150kHz- Quasi-peak 30MHz-1GHz Quasi-peak Above 1GHz Peak Above 1GHz Peak Above 1GHz Av Note: For Duty cycle ≥ 98%, average detector set as below Frequency (MHz) Field strength (microvolts/meter) 0.09-0.490 2400/F(kHz) 1.705-30.0 30 30-88 100** 88-216 150** 216-960 200** Above 960 500 The emission limits shown in the above measurements employing a CISPR quather frequency bands 9-90 kHz, 110-490 MHz. Radiated emission limits in these measurements employing an average of the frequency bands 9-90 kHz, 110-490 For radiated emissions from 9kHz to 30 Game Sm > For radiated emissions from 9kHz to 30 Sm > Sm > Kexter and above and average of the frequency bands 9-90 kHz, 110-490 Muz. Radiated emissions from 9kHz to 30 Sm > Sm >	ANSI C63.10:2013 9kHz to 40GHz Measurement Distance: 3m Frequency Detector RBW VBW 9kHz-150KHz Quasi-peak 200Hz 1kHz 150kHz- Quasi-peak 9kHz 30kHz 30MHz Quasi-peak 9kHz 30KHz 30MHz-1GHz Quasi-peak 120KHz 300KHz Above 1GHz Peak 1MHz 3MHz Note: For Duty cycle ≥ 98%, average detector set as cycle < 98%, average detector set as below: VBW ≥			

GTS Report No.: GTSL2025020051F07 < 3m > Test Antenna < 1m ... 4m > EUT-Turn Table-< 80cm -Receiver. Preamplifier. For radiated emissions above 1GHz < 3m > Test Antenna-< 1m ... 4m > EUT. Tum Table+'--150cm -Preamplifier-Receiver+ Test Procedure: 1. The EUT was placed on the top of a rotating table (0.8m for below 1GHz and 1.5 meters for above 1GHz) above the ground at a 3 meter camber. The table was rotated 360 degrees to determine the position of the highest radiation. 2. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower. 3. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement. 4. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rota table was turned from 0 degrees to 360 degrees to find the maximum reading. 5. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode. 6. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasipeak or average method as specified and then reported in a data sheet. 7. The radiation measurements are performed in X, Y, Z axis positioning. And found the X axis positioning which it is worse case, only the test worst case mode is recorded in the report.

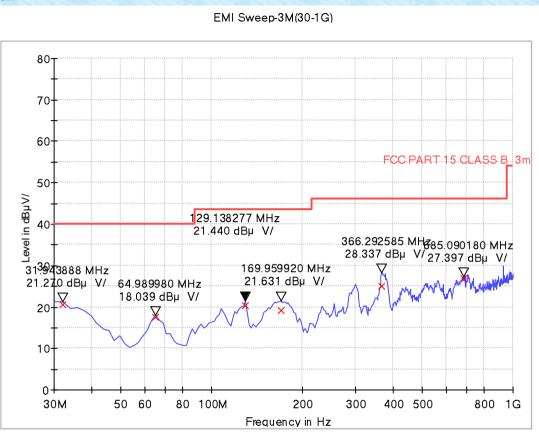
				Report No.:	GTSL2025	020051F07	
Test Instruments:	Refer to section 6.0 for details						
Test mode:	Refer to section 5.2 for details						
Test environment:	Temp.:	25 °C	Humid.:	52%	Press.:	1012mbar	
Test voltage:	AC 120V, 60Hz						
Test results:	Pass						

Remarks:

1. Pre-scan all kind of the place mode (X-axis, Y-axis, Z-axis), and found the Y-axis which it is worse case.

Measurement Data:

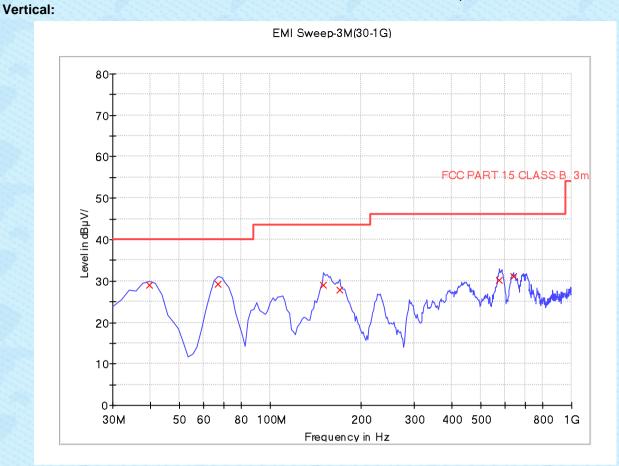
9 kHz ~ 30 MHz


The low frequency, which started from 9 kHz to 30 MHz, was pre-scanned and the result which was 20 dB lower than the limit line per 15.31(o) was not reported.

GTS

Report No.: GTSL2025020051F07

Below 1GHz


Pre-scan all test modes, found worst case at 802.11ac(VHT80) 5775MHz, and so only show the test result of it **Horizontal:**

Frequency (MHz)	QuasiPeak (dBµV/m)	Meas. Time	Bandwidth (kHz)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB/m)	Margin - QPK	Limit - QPK
31.960000	20.68	(ms) 1000.	120.000	100.0	н	322.0	20.1	(dB) 19.32	(dBµV/m) 40.0
65.000000	17.43	1000.	120.000	100.0	н	88.0	7.8	22.57	40.0
129.120000	20.27	1000.	120.000	100.0	н	140.0	13.6	23.23	43.5
169.960000	19.21	1000.	120.000	100.0	Н	61.0	12.6	24.29	43.5
366.280000	25.08	1000.	120.000	100.0	н	97.0	17.7	20.92	46.0
685.080000	26.83	1000.	120.000	100.0	Н	259.0	22.1	19.17	46.0

GTS

Report No.: GTSL2025020051F07

Frequency (MHz)	QuasiPeak (dBμV/m)	Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB/m)	Margin - QPK (dB)	Limit - QPK (dBµV/m)
39.720000	29.11	1000.	120.000	100.0	V	121.0	16.9	10.89	40.0
66.920000	29.15	1000.	120.000	100.0	V	87.0	8.0	10.85	40.0
150.520000	28.92	1000.	120.000	100.0	V	25.0	13.8	14.58	43.5
169.960000	27.72	1000.	120.000	100.0	V	147.0	12.6	15.78	43.5
576.240000	30.18	1000.	120.000	100.0	V	258.0	20.3	15.82	46.0
642.320000	31.19	1000.	120.000	100.0	V	350.0	21.2	14.81	46.0

Above 1GHz:

Report No.: GTSL2025020051F07

				802.11a	a_5745MH	z			
Fre. (MHz)	Emssion Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV/m)	Correction Factor (dB/m)	Polarity	Detector
5650.00	52.52	68.20	-15.68	1.50	200	51.72	0.80	Horizontal	Peak
5700.00	49.92	105.20	-55.28	1.50	200	48.68	1.24	Horizontal	Peak
5720.00	51.72	110.80	-59.08	1.50	200	50.44	1.28	Horizontal	Peak
5725.00	50.46	122.20	-71.74	1.50	200	49.16	1.30	Horizontal	Peak
11490.00	54.62	68.20	-13.58	1.50	200	43.07	11.55	Horizontal	Peak
11490.00	45.06	54.00	-8.94	1.50	200	33.51	11.55	Horizontal	Average
5650.00	50.49	68.20	-17.71	1.50	180	49.69	0.80	Vertical	Peak
5700.00	50.97	105.20	-54.23	1.50	180	49.73	1.24	Vertical	Peak
5720.00	51.37	110.80	-59.43	1.50	180	50.09	1.28	Vertical	Peak
5725.00	52.33	122.20	-69.87	1.50	180	51.03	1.30	Vertical	Peak
11490.00	56.45	68.20	-11.75	1.50	180	44.90	11.55	Vertical	Peak
11490.00	45.65	54.00	-8.35	1.50	180	34.10	11.55	Vertical	Average
				802.11a	a_5825MH	z			
Fre. (MHz)	Emssion Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV/m)	Correction Factor (dB/m)	Polarity	Detector
5850.00	51.70	122.20	-70.50	1.50	200	49.88	1.82	Horizontal	Peak
5855.00	52.29	110.80	-58.51	1.50	200	50.44	1.85	Horizontal	Peak
5875.00	52.85	105.20	-52.35	1.50	200	50.87	1.98	Horizontal	Peak
5925.00	53.10	68.20	-15.10	1.50	200	50.98	2.12	Horizontal	Peak
11650.00	54.80	68.20	-13.40	1.50	200	43.16	11.64	Horizontal	Peak
11650.00	45.45	54.00	-8.55	1.50	200	33.81	11.64	Horizontal	Average
5850.00	50.84	122.20	-71.36	1.50	180	49.02	1.82	Vertical	Peak
5855.00	51.48	110.80	-59.32	1.50	180	49.63	1.85	Vertical	Peak
5875.00	52.57	105.20	-52.63	1.50	180	50.59	1.98	Vertical	Peak
5925.00	51.18	68.20	-17.02	1.50	180	49.06	2.12	Vertical	Peak
11650.00	56.70	68.20	-11.50	1.50	180	45.06	11.64	Vertical	Peak
11650.00	45.58	54.00	-8.42	1.50	180	33.94	11.64	Vertical	Average

			1	802.11n-H	T40_5755I	MHz			
Fre. (MHz)	Emssion Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV/m)	Correction Factor (dB/m)	Polarity	Detector
5650.00	52.07	68.20	-16.13	1.50	200	51.27	0.80	Horizontal	Peak
5700.00	50.79	105.20	-54.41	1.50	200	49.55	1.24	Horizontal	Peak
5720.00	51.87	110.80	-58.93	1.50	200	50.59	1.28	Horizontal	Peak
5725.00	50.40	122.20	-71.80	1.50	200	49.10	1.30	Horizontal	Peak
11510.00	54.55	68.20	-13.65	1.50	200	42.99	11.56	Horizontal	Peak
11510.00	45.07	54.00	-8.93	1.50	200	33.51	11.56	Horizontal	Average
5650.00	50.36	68.20	-17.84	1.50	180	49.56	0.80	Vertical	Peak
5700.00	50.75	105.20	-54.45	1.50	180	49.51	1.24	Vertical	Peak
5720.00	51.61	110.80	-59.19	1.50	180	50.33	1.28	Vertical	Peak
5725.00	52.02	122.20	-70.18	1.50	180	50.72	1.30	Vertical	Peak
11510.00	56.13	68.20	-12.07	1.50	180	44.57	11.56	Vertical	Peak
11510.00	46.32	54.00	-7.68	1.50	180	34.76	11.56	Vertical	Average
			ł	802.11n-H		MHz			
Fre. (MHz)	Emssion Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV/m)	Correction Factor (dB/m)	Polarity	Detector
5850.00	51.03	122.20	-71.17	1.50	200	49.21	1.82	Horizontal	Peak
5855.00	51.62	110.80	-59.18	1.50	200	49.77	1.85	Horizontal	Peak
5875.00	51.94	105.20	-53.26	1.50	200	49.96	1.98	Horizontal	Peak
5925.00	52.98	68.20	-15.22	1.50	200	50.86	2.12	Horizontal	Peak
11590.00	55.55	68.20	-12.65	1.50	200	44.04	11.51	Horizontal	Peak
11590.00	45.78	54.00	-8.22	1.50	200	34.27	11.51	Horizontal	Average
5850.00	50.39	122.20	-71.81	1.50	180	48.57	1.82	Vertical	Peak
5855.00	52.20	110.80	-58.60	1.50	180	50.35	1.85	Vertical	Peak
5875.00	51.85	105.20	-53.35	1.50	180	49.87	1.98	Vertical	Peak
5925.00	51.05	68.20	-17.15	1.50	180	48.93	2.12	Vertical	Peak
11590.00	56.72	68.20	-11.48	1.50	180	45.21	11.51	Vertical	Peak
11590.00	45.11	54.00	-8.89	1.50	180	33.60	11.51	Vertical	Average

	802.11ac-VHT80_5775MHz								
Fre. (MHz)	Emssion Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV/m)	Correction Factor (dB/m)	Polarity	Detector
5650.00	51.94	68.20	-16.26	1.50	200	51.14	0.80	Horizontal	Peak
5700.00	50.00	105.20	-55.20	1.50	200	48.76	1.24	Horizontal	Peak
5720.00	52.16	110.80	-58.64	1.50	200	50.88	1.28	Horizontal	Peak
5725.00	51.31	122.20	-70.89	1.50	200	50.01	1.30	Horizontal	Peak
5850.00	51.61	122.20	-70.59	1.50	200	49.79	1.82	Horizontal	Peak
5855.00	50.92	110.80	-59.88	1.50	200	49.07	1.85	Horizontal	Peak
5875.00	51.83	105.20	-53.37	1.50	200	49.85	1.98	Horizontal	Peak
5925.00	52.79	68.20	-15.41	1.50	200	50.67	2.12	Horizontal	Peak
11550.00	55.39	68.20	-12.81	1.50	200	43.85	11.54	Horizontal	Peak
11550.00	45.58	54.00	-8.42	1.50	200	34.04	11.54	Horizontal	Average
5650.00	50.69	68.20	-17.51	1.50	180	49.89	0.80	Vertical	Peak
5700.00	51.30	105.20	-53.90	1.50	180	50.06	1.24	Vertical	Peak
5720.00	51.81	110.80	-58.99	1.50	180	50.53	1.28	Vertical	Peak
5725.00	51.77	122.20	-70.43	1.50	180	50.47	1.30	Vertical	Peak
5850.00	50.51	122.20	-71.69	1.50	180	48.69	1.82	Vertical	Peak
5855.00	51.66	110.80	-59.14	1.50	180	49.81	1.85	Vertical	Peak
5875.00	51.54	105.20	-53.66	1.50	180	49.56	1.98	Vertical	Peak
5925.00	50.86	68.20	-17.34	1.50	180	48.74	2.12	Vertical	Peak
11550.00	56.49	68.20	-11.71	1.50	180	44.95	11.54	Vertical	Peak
11550.00	44.78	54.00	-9.22	1.50	180	33.24	11.54	Vertical	Average

Remarks:

1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)

2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) - Pre-Amplifier Factor(dB)

3. Margin value = Emission Level – Limit value

4. The emission levels of other frequencies are very lower than the limit and not show in test report.

5. Truly the antenna height (from 1m to 4m) and turntable angle (from 0 degrees to 360 degrees) at maximum reading are recorded.

6. For 1GHz to 18GHz, Only worst-case data is reported.

7. For above 18GHz, The amplitude of spurious emissions which are attenuated by more than 20dB below the permissible value has no need to be reported.

7.8 Frequency stability

Test Requirement:	FCC Part15 C Section 15.407(g)					
Test Method:	ANSI C63.10:2013, FCC Part 2.1055					
Limit:	Manufactures of U-NII devices are responsible for ensuring frequency stability such that an emission is maintained within the band of operation under all conditions of normal operation as specified					
Test Procedure:	The EUT was setup to ANSI C63.4, 2003; tested to 2.1055 for compliance to FCC Part 15.407(g) requirements.					
Test setup:	Spectrum analyzer EUT Att. Image: Compare the second s					
Test Instruments:	Refer to section 6 for details					
Test mode:	Refer to section 5.2 for details					
Test results:	Pass					

8 Test Setup Photo

Reference to the appendix I for details.

9 EUT Constructional Details

Reference to the appendix II for details.

-----END------