

Report No.: EED32Q81668001 Page 1 of 42

TEST REPORT

Product : PETBRICK 65

Trade mark : N/A

Model/Type reference : DR002

Serial Number : N/A

Report Number : EED32Q81668001

FCC ID : 2A3FY-DR002

Date of Issue : Dec, 02, 2024

Test Standards : 47 CFR Part 15 Subpart C

Test result : PASS

Prepared for:

Angry Miao Technology Co., Limited 2/F, No.5 of Nanteng Street, Qi'ao Industrial Zone, Tangjiawan Town Xiangzhou District, Zhuhai China

Prepared by:

Centre Testing International Group Co., Ltd. Hongwei Industrial Zone, Bao'an 70 District, Shenzhen, Guangdong, China

TEL: +86-755-3368 3668 FAX: +86-755-3368 3385

Compiled by:

Zhenxia Wen

Zhenxia Wen

Approved by:

Aaron Ma

Reviewed by:

Frazer Li

Dec, 02, 2024

Check No.: 4314211024

Report No.: EED32Q81668001

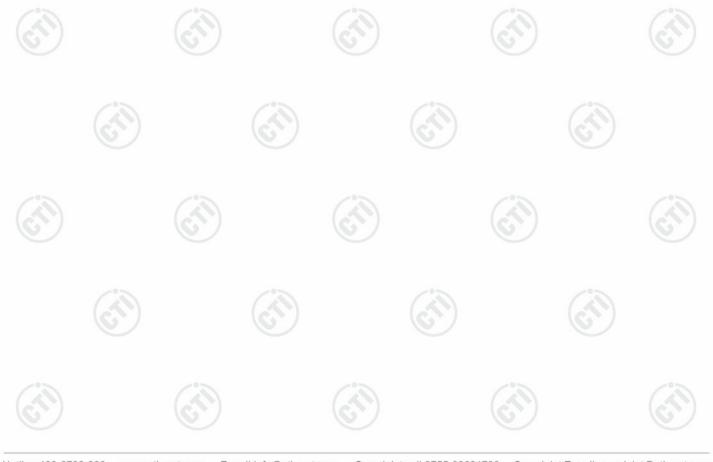
Version

Version No.	No. Date Description				
00	Dec, 02, 2024	-	Original	_0~	

Page 3 of 42 Report No.: EED32Q81668001

Content

1 VERSION		•••••	2
2 CONTENT			
3 TEST SUMMARY			
4 GENERAL INFORMATION			5
4.1 CLIENT INFORMATION			
5 EQUIPMENT LIST			9
6 TEST RESULTS AND MEASUREMEN			
6.1 ANTENNA REQUIREMENT	WER		13 16 17 18
7 APPENDIX BLUETOOTH LE			31
8 PHOTOGRAPHS OF TEST SETUP			32
A DUOTOGRADUS OF FUT CONSTRU	ICTIONAL DETAILS		3/

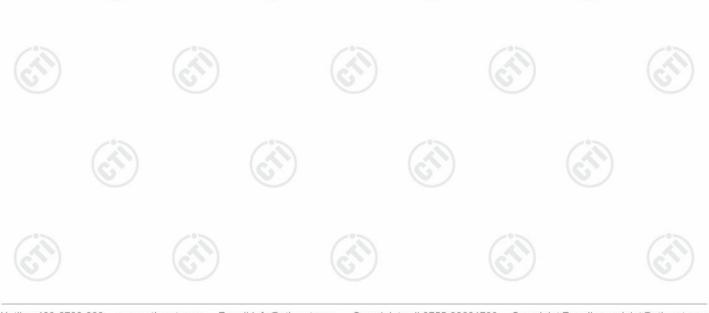

Report No. : EED32Q81668001 Page 4 of 42

3 Test Summary

Test Item	Test Requirement	Result
Antenna Requirement	47 CFR Part 15 Subpart C Section 15.203/15.247 (c)	PASS
AC Power Line Conducted Emission	47 CFR Part 15 Subpart C Section 15.207	PASS
DTS Bandwidth	47 CFR Part 15 Subpart C Section 15.247 (a)(2)	PASS
Maximum Conducted Output Power	47 CFR Part 15 Subpart C Section 15.247 (b)(3)	PASS
Maximum Power Spectral Density	47 CFR Part 15 Subpart C Section 15.247 (e)	PASS
Band Edge Measurements	47 CFR Part 15 Subpart C Section 15.247(d)	PASS
Conducted Spurious Emissions	47 CFR Part 15 Subpart C Section 15.247(d)	PASS
Radiated Spurious Emission & Restricted bands	47 CFR Part 15 Subpart C Section 15.205/15.209	PASS

Remark:

Company Name and Address shown on Report, the sample(s) and sample Information were provided by the applicant who should be responsible for the authenticity which CTI hasn't verified.


4 General Information

4.1 Client Information

Applicant:	Angry Miao Technology Co., Limited
Address of Applicant:	2/F, No.5 of Nanteng Street, Qi'ao Industrial Zone, Tangjiawan Town Xiangzhou District, Zhuhai China
Manufacturer:	Angry Miao Technology Co., Limited
Address of Manufacturer:	2/F, No.5 of Nanteng Street, Qi'ao Industrial Zone, Tangjiawan Town Xiangzhou District, Zhuhai China
Factory:	Angry Miao Technology Co., Limited
Address of Factory:	2/F, No.5 of Nanteng Street, Qi'ao Industrial Zone, Tangjiawan Town Xiangzhou District, Zhuhai China

4.2 General Description of EUT

Product Name:	PETBRICK (65			
Model No.:	DR002	- 0.00			
Trade mark:	N/A				
Product Type:	☐ Mobile	□ Portable	☐ Fixed Location		6
Operation Frequency:	2402MHz~2	480MHz			
Modulation Type:	GFSK				
Transfer Rate:	⊠1Mbps □	☑ 2Mbps	Cil)		
Number of Channel:	40		(6,)	(0,)	
Antenna Type:	PIFA Antenr	na			
Antenna Gain:	0.44dBi				
Dower Cumply	USB port:	DC 5V			
Power Supply:	Battery:	DC 3.8V	(C)		(0,)
Test Voltage:	DC 3.8V				
Sample Received Date:	Nov. 08, 202	24			
Sample tested Date:	Nov. 08, 202	24 to Nov. 23, 2	2024		

Report No. : EED32Q81668001 Page 6 of 42

Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
0	2402MHz	10	2422MHz	20	2442MHz	30	2462MHz
1	2404MHz	11	2424MHz	21	2444MHz	31	2464MHz
2	2406MHz	12	2426MHz	22	2446MHz	32	2466MHz
3	2408MHz	13	2428MHz	23	2448MHz	33	2468MHz
4	2410MHz	14	2430MHz	24	2450MHz	34	2470MHz
5	2412MHz	15	2432MHz	25	2452MHz	35	2472MHz
6	2414MHz	16	2434MHz	26	2454MHz	36	2474MHz
7	2416MHz	17	2436MHz	27	2456MHz	37	2476MHz
8	2418MHz	18	2438MHz	28	2458MHz	38	2478MHz
9	2420MHz	19	2440MHz	29	2460MHz	39	2480MHz

Note

In section 15.31(m), regards to the operating frequency range over 10 MHz, the lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

Channel	Frequency
The lowest channel (CH0)	2402MHz
The middle channel (CH19)	2440MHz
The highest channel (CH39)	2480MHz

4.3 Test Configuration

EUT Test Softward	e Settings:						
Software:		nRF_DTM		(27)		(25)	
EUT Power Grade:		Default (Powerselected)	Default (Power level is built-in set parameters and cannot be changed an selected)				
Use test software to transmitting of the E		est frequency,	the middle fre	quency and	the highest	frequency keep	
Test Mode	Modu	ulation	Rate	(Channel	Frequency(MHz)	
Mode a	GF	SK	1Mbps		CH0	2402	
Mode b	GF	SK	1Mbps		CH19	2440	
Mode c	GF	SK	1Mbps		CH39	2480	
Mode d	GF	SK	2Mbps	(c)	CH0	2402	
Mode e	GF	SK	2Mbps		CH19	2440	
Mode f	GF	SK	2Mbps		CH39	2480	

Report No.: EED32Q81668001 Page 7 of 42

4.4 Test Environment

	Operating Environment	:					
	Radiated Spurious Emissions:						
	Temperature:	22~25.0 °C	(4)		(41)		(41)
1	Humidity:	50~55 % RH	0		(0)		6
	Atmospheric Pressure:	1010mbar					
	Conducted Emissions:						
	Temperature:	22~25.0 °C		(3)		(30)	
	Humidity:	50~55 % RH		(0,)		(0,)	
	Atmospheric Pressure:	1010mbar					
	RF Conducted:						
	Temperature:	22~25.0 °C	(3)		(3)		
r)	Humidity:	50~55 % RH	(6,2)		(6,2,2)		(6,7)
	Atmospheric Pressure:	1010mbar					

4.5 Description of Support Units

The EUT has been tested with associated equipment below.

1) support equipment

Description	Manufacturer	Model No.	Certification	Supplied by
Netbook	HP	HP ZHAN 66 PRO	FCC&CE	СТІ
		14 G4		
Netbook	ASUSTek	(67)	FCC&CE	СТІ

4.6 Test Location

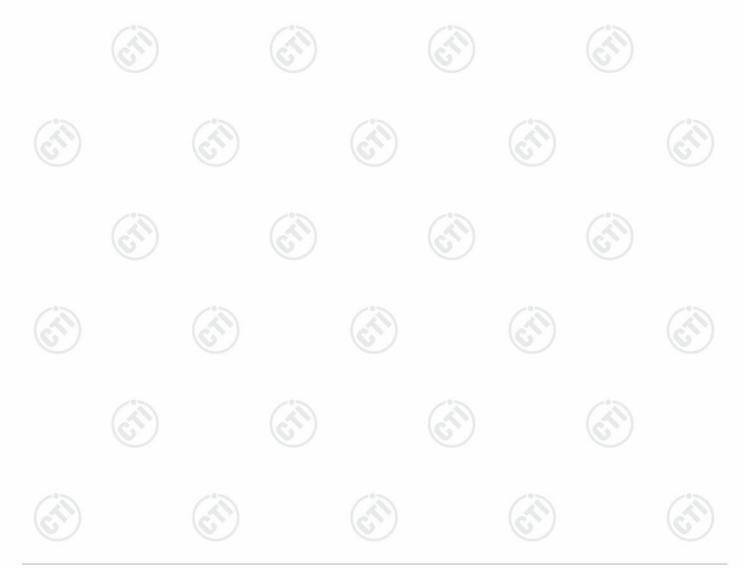
All tests were performed at:

Centre Testing International Group Co., Ltd

Building C, Hongwei Industrial Park Block 70, Bao'an District, Shenzhen, China

Telephone: +86 (0) 755 33683668 Fax:+86 (0) 755 33683385

No tests were sub-contracted. FCC Designation No.: CN1164

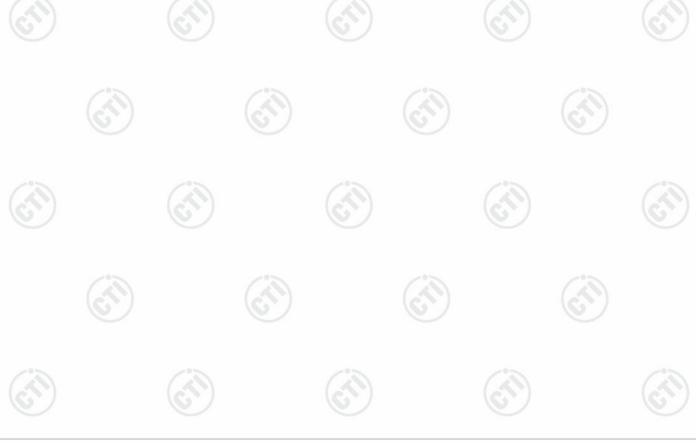


4.7 Measurement Uncertainty (95% confidence levels, k=2)

No.	Item	Measurement Uncertainty
1	Radio Frequency	7.9 x 10 ⁻⁸
2	DE nower conducted	0.46dB (30MHz-1GHz)
2	RF power, conducted	0.55dB (1GHz-40GHz)
	6	3.3dB (9kHz-30MHz)
3	2 Radiated Courieus amission test	4.3dB (30MHz-1GHz)
3	Radiated Spurious emission test	4.5dB (1GHz-18GHz)
(P)		3.4dB (18GHz-40GHz)
	Conduction emission	3.5dB (9kHz to 150kHz)
4	Conduction emission	3.1dB (150kHz to 30MHz)
5	Temperature test	0.64°C
6	Humidity test	3.8%
7	DC power voltages	0.026%

Report No.: EED32Q81668001 Page 9 of 42

5 Equipment List


		RF test	system			
Equipment	Manufacturer	Model No.	Serial Number	Cal. Date (mm-dd-yyyy)	Cal. Due date	
Spectrum Analyzer	Keysight	N9010A	MY54510339	12-14-2023	12-13-2024	
Signal Generator	Keysight	N5182B	MY53051549	12-11-2023	12-10-2024	
DC Power	Keysight	E3642A	MY56376072	12-11-2023	12-10-2024	
Communication test	R&S	CMW500	169004	03-08-2024	03-07-2025	
RF control unit(power unit)	JS Tonscend	JS0806-2	22G8060592	07-22-2024	07-21-2025	
Wi-Fi 7GHz Band Extendder	JS Tonscend	TS-WF7U2	2206200002	05-31-2024	05-30-2025	
High-low temperature test chamber	Dong Guang Qin Zhuo	LK-80GA	QZ20150611879	12-11-2023	12-10-2024	
Temperature/ Humidity Indicator	biaozhi	HM10	1804186	05-29-2024	05-28-2025	
BT&WI-FI Automatic test software	JS Tonscend	JS1120-3	V3.3.20	(<u>-</u>	
Spectrum Analyzer	R&S	FSV3044	101509	01-17-2024	01-16-2025	

	Conducted disturbance Test										
Equipment	Manufacturer	Model No.	Serial Number	Cal. date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)						
Receiver	R&S	ESCI	100435	04-18-2024	04-17-2025						
Temperature/ Humidity Indicator	Defu	TH128	1	04-25-2024	04-24-2025						
LISN	R&S	ENV216	100098	09-19-2024	09-18-2025						
Barometer	changchun	DYM3	1188	(6)	(67						
Test software	Fara	EZ-EMC	EMC-CON 3A1.1								

Report No.: EED32Q81668001 Page 10 of 42

	3M Semi-anechoic Chamber (2)- Radiated disturbance Test									
Equipment	Manufacturer Model No.		Serial Number	Cal. date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)					
3M Chamber & Accessory Equipment	TDK	SAC-3		05/22/2022	05/21/2025					
Receiver	R&S	ESCI7	100938-003	09/07/2024	09/06/2025					
TRILOG Broadband Antenna	schwarzbeck	VULB 9163	9163-618	05/22/2022	05/21/2025					
Loop Antenna	Schwarzbeck	FMZB 1519B	1519B-076	04/16/2024	04/15/2025					
Multi device Controller	maturo	NCD/070/10711112			(
Horn Antenna	ETS-LINGREN	BBHA 9120D	9120D-1869	04/16/2024	04/15/2025					
Microwave Preamplifier	Agilent	8449B	3008A02425	06/13/2024	06/12/2025					
Test software	Fara	EZ-EMC	EMEC-3A1-Pre		<u> </u>					

Report No.: EED32Q81668001 Page 11 of 42

					10.
		3M full-anechoi	c Chamber		
Equipment	Manufacturer	Model No.	Serial Number	Cal. Date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)
Fully Anechoic Chamber	TDK	FAC-3		01-09-2024	01-08-2027
Receiver	Keysight	N9038A	MY57290136	01-09-2024	01-08-2025
Spectrum Analyzer	Keysight	N9020B	MY57111112	01-29-2024	01-28-2025
Spectrum Analyzer	Keysight	N9030B	MY57140871	01-23-2024	01-22-2025
TRILOG Broadband Antenna	Schwarzbeck	VULB 9163	9163-1148	04-28-2024	04-27-2025
Horn Antenna	Schwarzbeck	BBHA 9170	9170-832	04-16-2024	04-15-2025
Horn Antenna	ETS-LINDGREN	3117	57407	07-03-2024	07-02-2025
Preamplifier	EMCI	EMC001330	980563	03-08-2024	03-07-2025
Preamplifier	Tonscend	TAP-011858	AP21B806112	07-18-2024	07-17-2025
Preamplifier	Tonscend	EMC051845SE	980380	12-14-2023	12-13-2024
Communication test set	R&S	CMW500	102898	12-14-2023	12-13-2024
Temperature/ Humidity Indicator	biaozhi	GM1360	EE1186631	04-07-2024	04-06-2025
RSE Automatic test software	JS Tonscend	JS36-RSE	V4.0.0.0		
Cable line	Times	SFT205-NMSM-2.50M	394812-0001	(<u> </u>
Cable line	Times	SFT205-NMSM-2.50M	394812-0002		
Cable line	Times	SFT205-NMSM-2.50M	394812-0003		
Cable line	Times	SFT205-NMSM-2.50M	393495-0001		- (3
Cable line	Times	EMC104-NMNM-1000	SN160710		
Cable line	Times	SFT205-NMSM-3.00M	394813-0001		
Cable line	Times	SFT205-NMNM-1.50M	381964-0001	- (<u>in</u>
Cable line	Times	SFT205-NMSM-7.00M	394815-0001		·
Cable line	Times	HF160-KMKM-3.00M	393493-0001		

Hotline:400-6788-333 www.cti-cert.com E-mail:info@cti-cert.com Complaint call:0755-33681700 Complaint E-mail:complaint@cti-cert.com

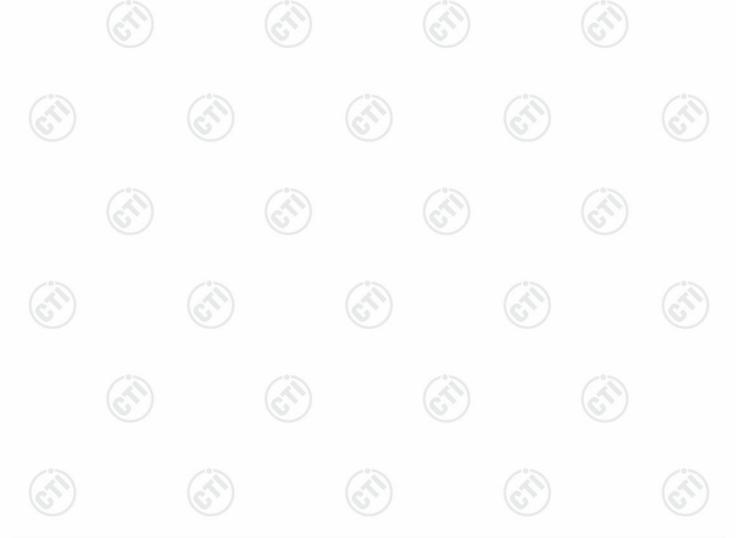
Report No. : EED32Q81668001 Page 12 of 42

6 Test results and Measurement Data

6.1 Antenna Requirement

Standard requirement: 47 CFR Part 15C Section 15.203 /247(c)

15.203 requirement:


An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(b) (4) requirement:

The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

EUT Antenna: Please see Internal photos

The antenna is PIFA antenna. The best case gain of the antenna is 0.44dBi.

Report No.: EED32Q81668001 Page 13 of 42

Test Method:		207					
	ANSI C63.10: 2013	NSI C63.10: 2013					
Test Frequency Range:	150kHz to 30MHz						
Receiver setup:	RBW=9 kHz, VBW=30 kHz, S	Sweep time=auto	9				
Limit:	(1411-)	Limit (dBuV)				
	Frequency range (MHz)	Quasi-peak	Average				
	0.15-0.5	66 to 56*	56 to 46*				
	0.5-5	56	46				
	5-30	60	50				
	* Decreases with the logarithm	m of the frequency.					

LISN1

Test Procedure:

1) The mains terminal disturbance voltage test was conducted in a shielded room

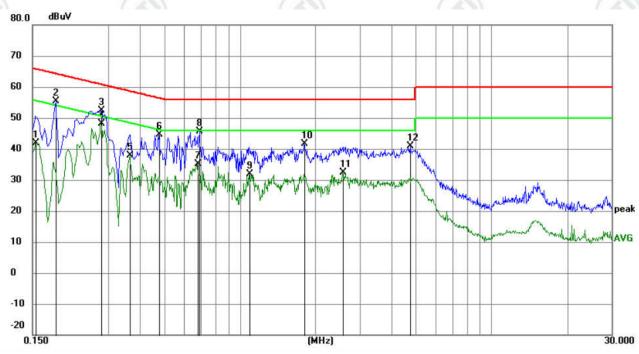
Ground Reference Plane

LISNO

- 2) The EUT was connected to AC power source through a LISN 1 (Line Impedance Stabilization Network) which provides a 50Ω/50μH + 5Ω linear impedance. The power cables of all other units of the EUT were connected to a second LISN 2, which was bonded to the ground reference plane in the same way as the LISN 1 for the unit being measured. A multiple socket outlet strip was used to connect multiple power cables to a single LISN provided the rating of the LISN was not exceeded.
- 3) The tabletop EUT was placed upon a non-metallic table 0.8m above the ground reference plane. And for floor-standing arrangement, the EUT was placed on the horizontal ground reference plane.
- 4) The test was performed with a vertical ground reference plane. The rear of the EUT shall be 0.4 m from the vertical ground reference plane. The vertical ground reference plane was bonded to the horizontal ground reference plane. The LISN 1 was placed 0.8 m from the boundary of the unit under test and bonded to a ground reference plane for LISNs mounted on top of the ground reference plane. This distance was between the closest points of the LISN 1 and the EUT. All other units of the EUT and associated equipment was at least 0.8 m from the LISN 2.
- 5) In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.10: 2013 on conducted measurement.

Test Mode:

All modes were tested, only the worst case mode a was recorded in the report.



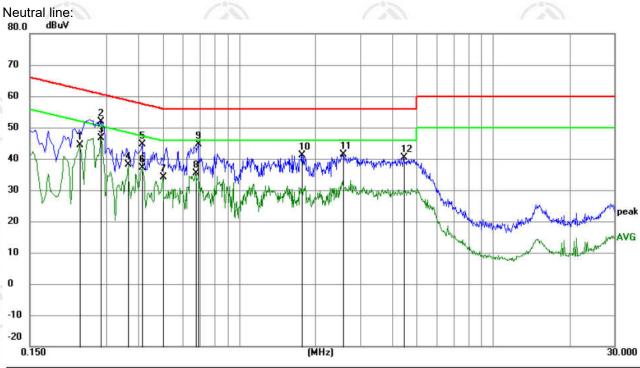
Report No.: EED32Q81668001 Page 14 of 42

Test Results:	Pass	
---------------	------	--

Measurement Data

Live line:

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		
		MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment
1		0.1545	32.13	9.85	41.98	55.75	-13.77	AVG	
2		0.1860	45.61	9.86	55.47	64.21	-8.74	QP	
3		0.2805	42.75	9.60	52.35	60.80	-8.45	QP	
4	*	0.2805	38.59	9.60	48.19	50.80	-2.61	AVG	
5		0.3660	28.18	9.70	37.88	48.59	-10.71	AVG	
6		0.4785	34.93	9.78	44.71	56.37	-11.66	QP	
7		0.6809	25.10	9.92	35.02	46.00	-10.98	AVG	
8		0.6900	35.68	9.96	45.64	56.00	-10.36	QP	
9		1.0905	22.26	9.74	32.00	46.00	-14.00	AVG	
10		1.8015	31.91	9.75	41.66	56.00	-14.34	QP	
11		2.5665	22.52	9.77	32.29	46.00	-13.71	AVG	
12		4.7625	30.95	9.83	40.78	56.00	-15.22	QP	


Remark:

- 1. The following Quasi-Peak and Average measurements were performed on the EUT:
- 2. Final Test Level =Receiver Reading + LISN Factor + Cable Loss.
- 3. If the Peak value under Average limit, the Average value is not recorded in the report.

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		
		MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment
1		0.2355	34.51	9.75	44.26	52.25	-7.99	AVG	
2		0.2850	42.39	9.59	51.98	60.67	-8.69	QP	
3	*	0.2850	37.05	9.59	46.64	50.67	-4.03	AVG	
4		0.3660	28.44	9.70	38.14	48.59	-10.45	AVG	
5		0.4155	34.79	9.79	44.58	57.54	-12.96	QP	
6		0.4155	27.29	9.79	37.08	47.54	-10.46	AVG	
7		0.5010	24.44	9.78	34.22	46.00	-11.78	AVG	
8		0.6720	25.52	9.89	35.41	46.00	-10.59	AVG	
9		0.6900	34.55	9.96	44.51	56.00	-11.49	QP	
10		1.7700	31.49	9.75	41.24	56.00	-14.76	QP	
11		2.5665	31.72	9.77	41.49	56.00	-14.51	QP	
12		4.4340	30.64	9.82	40.46	56.00	-15.54	QP	

Remark:

- 1. The following Quasi-Peak and Average measurements were performed on the EUT:
- 2. Final Test Level =Receiver Reading + LISN Factor + Cable Loss.
- 3. If the Peak value under Average limit, the Average value is not recorded in the report.



6.3 Maximum Conducted Output Power

10.0						
Test Requirement:	47 CFR Part 15C Section 15.247 (b)(3)					
Test Method:	ANSI C63.10 2013					
Test Setup:		(3)				
	Control Computer Supply Power port Supply Table RF test System System Instrument					
	Remark: Offset=Cable loss+ attenuation factor.					
Test Procedure:	a) Set the RBW ≥ DTS bandwidth.b) Set VBW ≥ 3 × RBW.	(C)				
	 c) Set span ≥ 3 x RBW d) Sweep time = auto couple. e) Detector = peak. f) Trace mode = max hold. g) Allow trace to fully stabilize. h) Use peak marker function to determine the peak amplitude level. 					
Limit:	30dBm	/3>				
Test Mode:	Refer to clause 5.3	(2)				
Test Results:	Refer to Appendix Bluetooth LE					
· · · · · · · · · · · · · · · · · · ·						

6.4 DTS Bandwidth

Test Requirement:	47 CFR Part 15C Section 15.247 (a)(2)					
Test Method:	ANSI C63.10 2013					
Test Setup:						
	Control Conputer Power Supply Attenuator Table RF test System System Instrument					
	Remark: Offset=Cable loss+ attenuation factor.					
Test Procedure:	a) Set RBW = 100 kHz. b) Set the VBW ≥[3 × RBW]. c) Detector = peak. d) Trace mode = max hold. e) Sweep = auto couple. f) Allow the trace to stabilize. g) Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission.					
Limit:	≥ 500 kHz					
Test Mode:	Refer to clause 5.3					
Test Results:	Refer to Appendix Bluetooth LE					

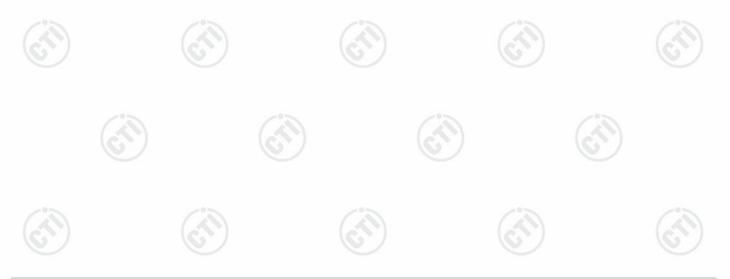
6.5 Maximum Power Spectral Density

_							
	Test Requirement:	47 CFR Part 15C Section 15.247 (e)					
	Test Method:	ANSI C63.10 2013					
9	Test Setup:						
		Control Composition Actions Actions Actions Found Temperature Cabnet Table RF test System System Instrument					
10		Remark: Offset=Cable loss+ attenuation factor.					
(45.5)	Test Procedure:	 a) Set analyzer center frequency to DTS channel center frequency. b) Set the span to 1.5 times the DTS bandwidth. c) Set the RBW to 3 kHz < RBW < 100 kHz. d) Set the VBW > [3 × RBW]. e) Detector = peak. f) Sweep time = auto couple. g) Trace mode = max hold. h) Allow trace to fully stabilize. i) Use the peak marker function to determine the maximum amplitude level within the RBW. j) If measured value exceeds requirement, then reduce RBW (but no less than 3 kHz) and repeat. 					
	Limit:	≤8.00dBm/3kHz					
	Test Mode:	Refer to clause 5.3					
	Test Results:	Refer to Appendix Bluetooth LE					



6.6 Band Edge measurements and Conducted Spurious Emission

	Test Requirement:	47 CFR Part 15C Section 15.247 (d)
	Test Method:	ANSI C63.10 2013
	Test Setup:	Control Control Control Power Power Poort Table RF test System Instrument
0.1		Remark: Offset=Cable loss+ attenuation factor.
	Test Procedure:	a) Set RBW =100KHz. b) Set VBW = 300KHz. c) Sweep time = auto couple. d) Detector = peak. e) Trace mode = max hold. f) Allow trace to fully stabilize. g) Use peak marker function to determine the peak amplitude level.
	Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.
	Test Mode:	Refer to clause 5.3
	Test Results:	Refer to Appendix Bluetooth LE



6.7 Radiated Spurious Emission & Restricted bands

Test Requirement:	47 CFR Part 15C Section 15.209 and 15.205						
Test Method:	ANSI C63.10 2013						
Test Site:	Measurement Distance	e: 3m	(Semi-Anec	hoic Char	nbe	r)	- C Tra-
Receiver Setup:	Frequency	10	Detector	RBV	٧	VBW	Remark
	0.009MHz-0.090MH	lz	Peak	10kl	łz	30kHz	Peak
	0.009MHz-0.090MH	lz	Average	10kH	lz	30kHz	Average
	0.090MHz-0.110MH	lz	Quasi-peak	(10kH	lz	30kHz	Quasi-peak
	0.110MHz-0.490MH	lz	Peak	10kH	lz	30kHz	Peak
	0.110MHz-0.490MH	lz	Average	10kH	łz	30kHz	Average
	0.490MHz -30MHz		Quasi-peak	(10kH	łz	30kHz	Quasi-peak
	30MHz-1GHz		Quasi-peak	100 k	Hz	300kHz	Quasi-peak
	Abaya 1015	7	Peak	1MH	z	3MHz	Peak
	Above 1GHz		Peak	1MH	lz	10kHz	Average
Limit:	Frequency		d strength ovolt/meter)	Limit (dBuV/m)	Pamark		Measurement distance (m)
	0.009MHz-0.490MHz	24	00/F(kHz)	-		- /07	300
	0.490MHz-1.705MHz	24000/F(kHz)		-		- (3	30
	1.705MHz-30MHz		30	-	- 6		30
	30MHz-88MHz		100	40.0	Quasi-peak		3
	88MHz-216MHz		150	43.5	Qu	ıasi-peak	3
	216MHz-960MHz	11	200	46.0	Qu	ıasi-peak	3
	960MHz-1GHz		500	54.0	Qu	ıasi-peak	3
	Above 1GHz		500	54.0	Α	verage	3
	Note: 15.35(b), frequency emissions is limit applicable to the epeak emission level rad	20d equip	B above the ment under	maximum test. This	n pe	rmitted av	erage emissior

Report No. : EED32Q81668001 Page 21 of 42

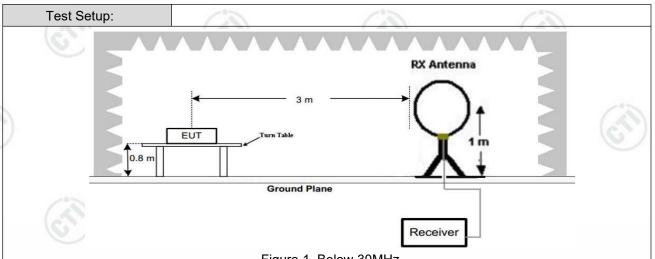


Figure 1. Below 30MHz

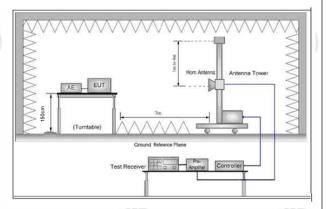


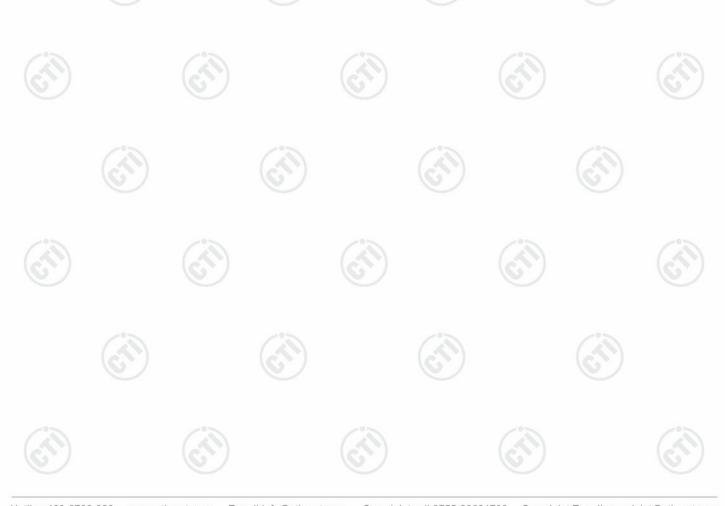
Figure 2. 30MHz to 1GHz

Figure 3. Above 1 GHz

Test Procedure:

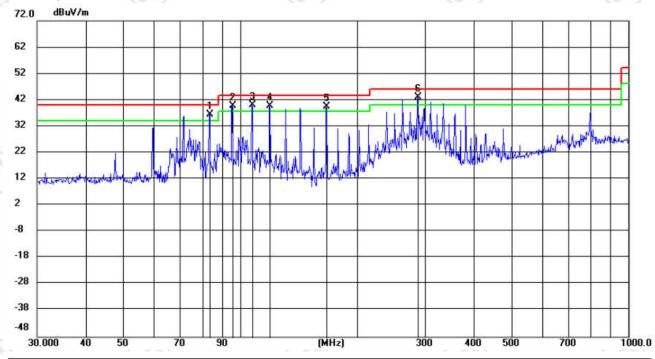
- a. 1) Below 1G: The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation.
 - 2) Above 1G: The EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation.

Note: For the radiated emission test above 1GHz:


Place the measurement antenna away from each area of the EUT determined to be a source of emissions at the specified measurement distance, while keeping the measurement antenna aimed at the source of emissions at each frequency of significant emissions, with polarization oriented for maximum response. The measurement antenna may have to be higher or lower than the EUT, depending on the radiation pattern of the emission and staying aimed at the emission source for receiving the maximum signal. The final measurement antenna elevation shall be that which maximizes the emissions. The measurement antenna elevation for maximum emissions shall be restricted to a range of heights of from 1 m to 4 m above the ground or reference ground plane.

- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both

Test Results:	Pass
Test Mode:	Refer to clause 5.3
	i. Repeat above procedures until all frequencies measured was complete.
	h. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is the worst case.
	g. Test the EUT in the lowest channel (2402MHz),the middle channel (2440MHz),the Highest channel (2480MHz)
	f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.
	e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
	d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
	horizontal and vertical polarizations of the antenna are set to make the measurement.



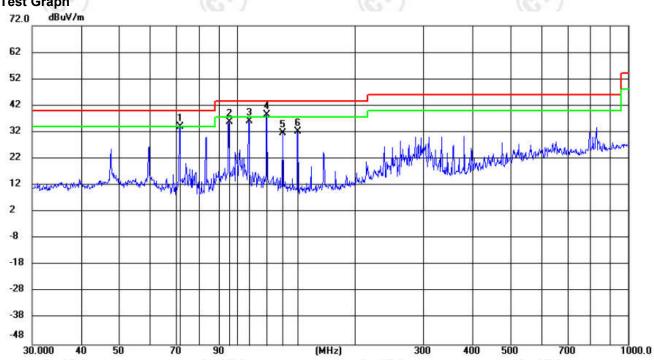
Report No.: EED32Q81668001 Page 23 of 42

Radiated Spurious Emission below 1GHz:

During the test, the Radiates Emission from 30MHz to 1GHz was performed in all modes, only the worst case highest channel of GFSK 2M was recorded in the report.

Horizontal:

MHz dBuV dB/m dBuV/m dB uV/m dB uV/m </th <th>No.</th> <th>Mk.</th> <th>Freq.</th> <th>Reading Level</th> <th>Correct Factor</th> <th>Measure- ment</th> <th>Limit</th> <th>Margin</th> <th></th> <th>Antenna Height</th> <th>Table Degree</th> <th></th>	No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		Antenna Height	Table Degree	
2 ! 95.4771 27.31 12.49 39.80 43.50 -3.70 QP 100 360 3 ! 107.4158 27.07 12.98 40.05 43.50 -3.45 QP 100 360 4 ! 119.3314 28.15 11.74 39.89 43.50 -3.61 QP 100 360 5 ! 167.1195 28.51 10.87 39.38 43.50 -4.12 QP 100 173			MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector	cm	degree	Comment
3 ! 107.4158 27.07 12.98 40.05 43.50 -3.45 QP 100 360 4 ! 119.3314 28.15 11.74 39.89 43.50 -3.61 QP 100 360 5 ! 167.1195 28.51 10.87 39.38 43.50 -4.12 QP 100 173	1	I	83.5075	26.48	10.04	36.52	40.00	-3.48	QP	100	360	
4 ! 119.3314 28.15 11.74 39.89 43.50 -3.61 QP 100 360 5 ! 167.1195 28.51 10.87 39.38 43.50 -4.12 QP 100 173	2	ļ	95.4771	27.31	12.49	39.80	43.50	-3.70	QP	100	360	
5 ! 167.1195 28.51 10.87 39.38 43.50 -4.12 QP 100 173	3	Ŀ	107.4158	27.07	12.98	40.05	43.50	-3.45	QP	100	360	
	4	Ŀ	119.3314	28.15	11.74	39.89	43.50	-3.61	QP	100	360	
6 * 286.2285 27.32 15.63 42.95 46.00 -3.05 QP 100 343	5	Į,	167.1195	28.51	10.87	39.38	43.50	-4.12	QP	100	173	
	6	*	286.2285	27.32	15.63	42.95	46.00	-3.05	QP	100	343	



Report No.: EED32Q81668001 Page 24 of 42

Vertical:

Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		Antenna Height	Table Degree	
	MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector	cm	degree	Comment
	71.6057	23.73	10.24	33.97	40.00	-6.03	QP	100	217	
	95.4605	23.41	12.49	35.90	43.50	-7.60	QP	100	71	
	107.4912	23.25	12.98	36.23	43.50	-7.27	QP	100	92	
*	119.3314	26.89	11.74	38.63	43.50	-4.87	QP	100	113	
	131.2734	21.95	9.80	31.75	43.50	-11.75	QP	100	82	
	143.2256	23.23	9.15	32.38	43.50	-11.12	QP	100	82	
	*	MHz 71.6057	Mk. Freq. Level MHz dBuV 71.6057 23.73 95.4605 23.41 107.4912 23.25 * 119.3314 26.89 131.2734 21.95	Mk. Freq. Level Factor MHz dBuV dB/m 71.6057 23.73 10.24 95.4605 23.41 12.49 107.4912 23.25 12.98 * 119.3314 26.89 11.74 131.2734 21.95 9.80	Mk. Freq. Level Factor ment MHz dBuV dB/m dBuV/m 71.6057 23.73 10.24 33.97 95.4605 23.41 12.49 35.90 107.4912 23.25 12.98 36.23 * 119.3314 26.89 11.74 38.63 131.2734 21.95 9.80 31.75	Mk. Freq. Level Factor ment Limit MHz dBuV dBuV dBuV/m dBuV/m dBuV/m dBuV/m dBuV/m dBuV/m dBuV/m dBuV/m 40.00 4	Mk. Freq. Level Factor ment Limit Margin MHz dBuV dBuV dBuV/m dBuV/m dBuV/m dBuV/m dB 71.6057 23.73 10.24 33.97 40.00 -6.03 95.4605 23.41 12.49 35.90 43.50 -7.60 107.4912 23.25 12.98 36.23 43.50 -7.27 * 119.3314 26.89 11.74 38.63 43.50 -4.87 131.2734 21.95 9.80 31.75 43.50 -11.75	Mk. Freq. Level Factor ment Limit Margin MHz dBuV dBuV dBuV/m dBuV/m dBuV/m dB Detector 71.6057 23.73 10.24 33.97 40.00 -6.03 QP 95.4605 23.41 12.49 35.90 43.50 -7.60 QP 107.4912 23.25 12.98 36.23 43.50 -7.27 QP * 119.3314 26.89 11.74 38.63 43.50 -4.87 QP 131.2734 21.95 9.80 31.75 43.50 -11.75 QP	Mk. Freq. Level Factor ment Limit Margin Height MHz dBuV dBuV dBuV/m dBuV/m dBuV/m dB Detector cm 71.6057 23.73 10.24 33.97 40.00 -6.03 QP 100 95.4605 23.41 12.49 35.90 43.50 -7.60 QP 100 107.4912 23.25 12.98 36.23 43.50 -7.27 QP 100 * 119.3314 26.89 11.74 38.63 43.50 -4.87 QP 100 131.2734 21.95 9.80 31.75 43.50 -11.75 QP 100	Mk. Freq. Level Factor ment Limit Margin Height Degree MHz dBuV dBuV dBuV/m dBuV/m dB Detector cm degree 71.6057 23.73 10.24 33.97 40.00 -6.03 QP 100 217 95.4605 23.41 12.49 35.90 43.50 -7.60 QP 100 71 107.4912 23.25 12.98 36.23 43.50 -7.27 QP 100 92 * 119.3314 26.89 11.74 38.63 43.50 -4.87 QP 100 113 131.2734 21.95 9.80 31.75 43.50 -11.75 QP 100 82

Page 25 of 42 Report No.: EED32Q81668001

Radiated Spurious Emission above 1GHz:

During the test, the Radiated Spurious Emission from above 1GHz was performed in all modes, only the worst case BLE 1M was recorded in the report.

100	Mode	:		BL	E GFSK Trar	nsmitting		Channel:		2402 MHz	
-	NO	Freq. [MHz]	Factor	r	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
Ī	1	1149.615	10.40		37.21	47.61	74.00	26.39	Pass	Н	PK
	2	1963.2963	16.32		35.28	51.60	74.00	22.40	Pass	Н	PK
Ī	3	4506.1004	-8.64		49.74	41.10	74.00	32.90	Pass	Н	PK
	4	6119.2079	-6.05		48.60	42.55	74.00	31.45	Pass	Н	PK
	5	7204.2803	-5.22		51.38	46.16	74.00	27.84	Pass	Н	PK
	6	15892.8595	13.45		38.74	52.19	74.00	21.81	Pass	Н	PK
à	7	1145.2145	10.26		37.68	47.94	74.00	26.06	Pass	V	PK
•	8	1956.4956	16.70		35.31	52.01	74.00	21.99	Pass	V	PK
	9	3990.066	-12.44		54.74	42.30	74.00	31.70	Pass	V	PK
	10	6099.2066	-5.78		47.81	42.03	74.00	31.97	Pass	V	PK
	11	9798.4532	3.35		45.14	48.49	74.00	25.51	Pass	V	PK
Ī	12	14251.7501	12.73		39.11	51.84	74.00	22.16	Pass	V	PK

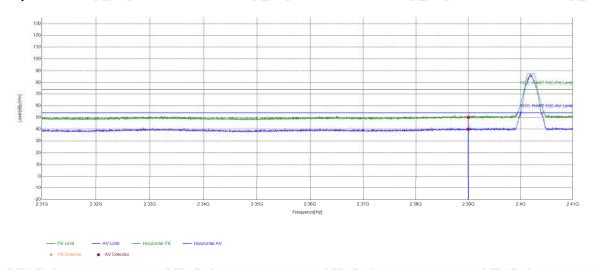
Mode	:		BLE GFSK Trai	nsmitting		Channel:		2440 MHz	2
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	1145.8146	10.28	37.43	47.71	74.00	26.29	Pass	Н	PK
2	1944.0944	16.89	35.14	52.03	74.00	21.97	Pass	Н	PK
3	3984.0656	-12.29	55.96	43.67	74.00	30.33	Pass	Н	PK
4	7375.2917	-4.37	50.88	46.51	74.00	27.49	Pass	Н	PK
5	9787.4525	3.01	45.29	48.30	74.00	25.70	Pass	Н	PK
6	15894.8597	13.52	38.29	51.81	74.00	22.19	Pass	Н	PK
7	1154.8155	10.25	37.36	47.61	74.00	26.39	Pass	V	PK
8	1958.2958	16.60	35.45	52.05	74.00	21.95	Pass	V	PK
9	3993.0662	-12.52	55.36	42.84	74.00	31.16	Pass	V	PK
10	7375.2917	-4.37	49.96	45.59	74.00	28.41	Pass	V	PK
11	9454.4303	2.49	45.29	47.78	74.00	26.22	Pass	V	PK
12	15242.8162	13.47	38.34	51.81	74.00	22.19	Pass	V	PK

Report No.: EED32Q81668001 Page 26 of 42

	100		1000				100	0.5	
Мс	de:		BLE GFSK Trai	nsmitting		Channel:		2480 MHz	Z
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	1155.2155	10.24	37.70	47.94	74.00	26.06	Pass	Н	PK
2	1951.0951	17.02	34.82	51.84	74.00	22.16	Pass	Н	PK
3	3987.0658	-12.36	57.16	44.80	74.00	29.20	Pass	Н	PK
4	7441.2961	-4.56	50.07	45.51	74.00	28.49	Pass	Н	PK
5	11240.5494	5.60	44.60	50.20	74.00	23.80	Pass	Н	PK
6	15107.8072	12.08	39.82	51.90	74.00	22.10	Pass	Н	PK
7	1153.0153	10.31	37.92	48.23	74.00	25.77	Pass	V	PK
8	1932.4932	16.51	35.61	52.12	74.00	21.88	Pass	V	PK
9	3983.0655	-12.26	57.93	45.67	74.00	28.33	Pass	V	PK
10	6098.2065	-5.81	47.66	41.85	74.00	32.15	Pass	V	PK
1′	7438.2959	-4.55	52.08	47.53	74.00	26.47	Pass	V	PK
12	15890.8594	13.37	39.16	52.53	74.00	21.47	Pass	V	PK

Remark:

- 1) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:
 - Final Test Level =Receiver Reading + Antenna Factor + Cable Factor Preamplifier Factor
- 2) Scan from 9kHz to 25GHz, the disturbance above 10GHz and below 30MHz was very low. As shown in this section, for frequencies above 1GHz, the field strength limits are based on average limits. However, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation. So, only the peak measurements were shown in the report.


Report No.: EED32Q81668001 Page 27 of 42

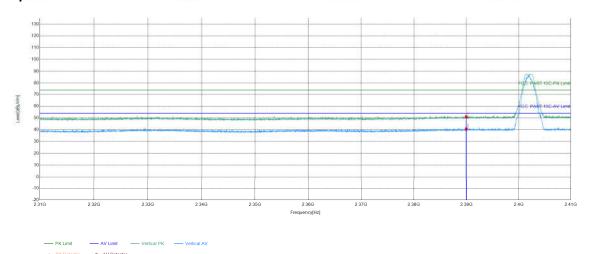
Restricted bands:

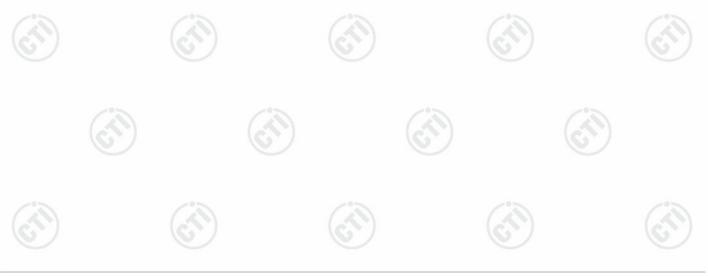
Test plot as follows:

Only the worst case BLE 2M was recorded in the report.

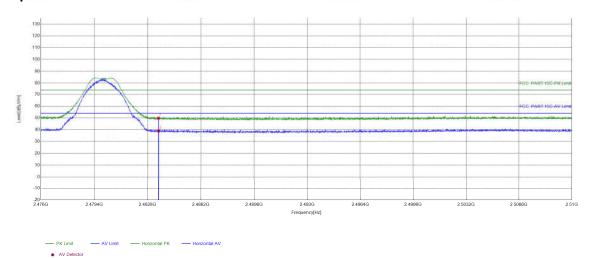
EUT_Name	0	Test_Model	
Test_Mode	BLE 2M GFSK Transmitting	Test_Frequency	2402MHz
Tset_Engineer	chenjun	Test_Date	2024/11/18
Remark	21.8°C59.9%\		

	Suspecte	d List								
0.1	NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
6	1	2390	15.31	34.77	50.08	74.00	23.92	PASS	Horizontal	PK
	2	2390	15.31	24.76	40.07	54.00	13.93	PASS	Horizontal	AV





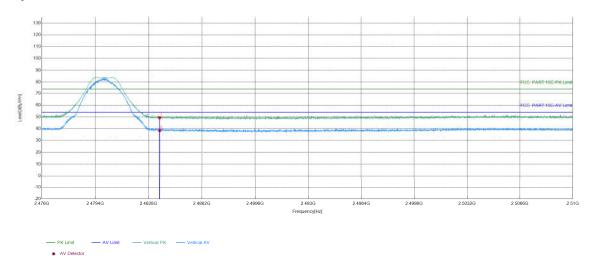
6.0	(65)	(6.2	167
EUT_Name		Test_Model	
Test_Mode	BLE 2M GFSK Transmitting	Test_Frequency	2402MHz
Tset_Engineer	chenjun	Test_Date	2024/11/18
Remark	21.8°C59.9%\		


Suspecte	d List								
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	2390	15.31	35.58	50.89	74.00	23.11	PASS	Vertical	PK
2	2390	15.31	25.39	40.70	54.00	13.30	PASS	Vertical	AV



EUT_Name		Test_Model	
Test_Mode	BLE 2M GFSK Transmitting	Test_Frequency	2480MHz
Tset_Engineer	chenjun	Test_Date	2024/11/18
Remark	21.8°C59.9%\		Ci)

Suspecte	d List								
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	2483.5	15.16	34.66	49.82	74.00	24.18	PASS	Horizontal	PK
2	2483.5	15.16	23.77	38.93	54.00	15.07	PASS	Horizontal	AV



EUT_Name		Test_Model	2480MHz 2024/11/18		
Test_Mode	BLE 2M GFSK Transmitting	Test_Frequency			
Tset_Engineer	chenjun	Test_Date			
Remark	21.8°C59.9%\		Ci)		

Test Graph

Suspected List											
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark		
1	2483.5	15.16	34.29	49.45	74.00	24.55	PASS	Vertical	PK		
2	2483.5	15.16	23.36	38.52	54.00	15.48	PASS	Vertical	AV		

Note:

The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level =Receiver Reading -Correct Factor

Correct Factor = Preamplifier Factor - Antenna Factor - Cable Factor

Appendix Bluetooth LE

Refer to Appendix: Bluetooth LE of EED32Q81668001

