

Report No: JYTSZ-R12-2200110

FCC REPORT

Applicant:	Aratek Biometrics Co., Ltd.
Address of Applicant:	2F, T2-A Building, ShenZhen Software Park South Area, Hi- Tech Park
Equipment Under Test (E	EUT)
Product Name:	Automated Election Device
Model No.:	VC33, BD1300
Trade mark:	Aratek
FCC ID:	2AGUJ-VC331
Applicable standards:	FCC CFR Title 47 Part 15 Subpart C Section 15.247
Date of sample receipt:	12 Jan., 2022
Date of Test:	13 Jan., to 13 Feb., 2022
Date of report issued:	22 Feb., 2022
Test Result:	PASS *

* In the configuration tested, the EUT complied with the standards specified above.

Authorized Signature:

Bruce Zhang Laboratory Manager

This report details the results of the testing carried out on one sample. The results contained in this test report do not relate to other samples of the same product and does not permit the use of the JYT product certification mark. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report.

This report may only be reproduced and distributed in full. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards.

This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only.

Version 2

Version No.	Date	Description
00	14 Feb., 2022	Original
01	22 Feb., 2022	add model

Tested by:

Mike.DU Test Engineer

Date: 22 Feb., 2022

Winner Thang

Reviewed by:

Project Engineer

22 Feb., 2022 Date:

Project No.: JYTSZR2201027

3 Contents

			Page
1	COV	ER PAGE	1
2	VER	SION	2
3	CON	TENTS	2
		T SUMMARY	_
4	_		
5	GEN	ERAL INFORMATION	5
	5.1	CLIENT INFORMATION	-
	5.2	GENERAL DESCRIPTION OF E.U.T.	
	5.3 5.4	TEST ENVIRONMENT AND MODE	
	5.4 5.5	MEASUREMENT UNCERTAINTY	-
	5.6	ADDITIONS TO, DEVIATIONS, OR EXCLUSIONS FROM THE METHOD	
	5.7	LABORATORY FACILITY.	
	5.8		
	5.9	TEST INSTRUMENTS LIST	7
6	TES	T RESULTS AND MEASUREMENT DATA	9
	6.1	ANTENNA REQUIREMENT:	9
	6.2	CONDUCTED EMISSION	10
	6.3	CONDUCTED OUTPUT POWER	
	6.4 6.5	OCCUPY BANDWIDTH POWER SPECTRAL DENSITY	
	6.6	BAND EDGE	
	6.6.1		
	6.6.2	Radiated Emission Method	17
	6.7	SPURIOUS EMISSION	-
	6.7.1 6.7.2		-
	0		
7	TES	Т SETUP PHOTO	
8	EUT	CONSTRUCTIONAL DETAILS	

4 Test Summary

Test Items	Section in CFR 47	Test Data	Result		
Antenna requirement	15.203 & 15.247 (b)	See Section 6.1	Pass		
AC Power Line Conducted Emission	15.207	See Section 6.2	Pass		
Conducted Peak Output Power	15.247 (b)(3)	Appendix A - BLE	Pass		
6dB Emission Bandwidth 99% Occupied Bandwidth	15.247 (a)(2)	Appendix A - BLE	Pass		
Power Spectral Density	15.247 (e)	Appendix A - BLE	Pass		
Conducted Band Edge	1E 047 (d)	Appendix A - BLE	Pass		
Radiated Band Edge	15.247 (d)	See Section 6.6.2	Pass		
Conducted Spurious Emission		Appendix A - BLE	Pass		
Radiated Spurious Emission	15.205 & 15.209	See Section 6.7.2	Pass		
 <i>Remark:</i> 1. Pass: The EUT complies with the essential requirements in the standard. 2. The cable insertion loss used by "RF Output Power" and other conduction measurement items is 0.5dB (provided by 					

the customer).

Test	Method:
1631	metriou.

ANSI C63.10-2013 KDB 558074 D01 15.247 Meas Guidance v05r02

5 General Information

5.1 Client Information

Applicant:	Aratek Biometrics Co., Ltd.
Address:	2F, T2-A Building, ShenZhen Software Park South Area, Hi-Tech Park
Manufacturer:	Aratek Biometrics Co., Ltd.
Address:	2F, T2-A Building, ShenZhen Software Park South Area, Hi-Tech Park
Factory:	Aratek Biometrics Co., Ltd.
Address:	Block 4, 1st Industrial Park of Nan Gang, 1029# Song Bai Road of Bai Mang, Nan Shan District, Shenzhen 518055, China.

5.2 General Description of E.U.T.

Product Name:	Automated Election Device
Model No.:	VC33, BD1300
Operation Frequency:	2402-2480 MHz
Channel numbers:	40
Channel separation:	2 MHz
Modulation technology:	GFSK
Data speed :	1Mbps & 2Mbps
Antenna Type:	Internal Antenna
Antenna gain:	1.3 dBi
Power supply:	Rechargeable Li-ion Battery DC11.1V, 13Ah
AC adapter:	Model: AK120WG-2400500W2
	Input: AC100-240V, 50/60Hz, 2.0A Output: DC 24.0V, 5.0A
Remark:	Model No.: VC331, BD1300 were identical inside, the electrical circuit design, layout, components used and internal wiring, with only difference being model name.
Test Sample Condition:	The test samples were provided in good working order with no visible defects.

Operation Frequency each of channel							
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
0	2402MHz	10	2422MHz	20	2442MHz	30	2462MHz
1	2404MHz	11	2424MHz	21	2444MHz	31	2464MHz
2	2406MHz	12	2426MHz	22	2446MHz	32	2466MHz
3	2408MHz	13	2428MHz	23	2448MHz	33	2468MHz
4	2410MHz	14	2430MHz	24	2450MHz	34	2470MHz
5	2412MHz	15	2432MHz	25	2452MHz	35	2472MHz
6	2414MHz	16	2434MHz	26	2454MHz	36	2474MHz
7	2416MHz	17	2436MHz	27	2456MHz	37	2476MHz
8	2418MHz	18	2438MHz	28	2458MHz	38	2478MHz
9	2420MHz	19	2440MHz	29	2460MHz	39	2480MHz

Note:

In section 15.31(*m*), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test. Channel No. 0, 20 & 39 were selected as Lowest, Middle and Highest channel.

5.3 Test environment and mode

Operating Environment:

Operating Environment.	
Temperature:	24.0 °C
Humidity:	54 % RH
Atmospheric Pressure:	1010 mbar
Test mode:	
Transmitting mode	Keep the EUT in continuous transmitting with modulation

Radiated Emission: The sample was placed 0.8m (below 1GHz)/1.5m (above 1GHz) above the ground plane of 3m chamber. Measurements in both horizontal and vertical polarities were performed. During the test, each emission was maximized by: having the EUT continuously working, investigated all operating modes, rotated about all 3 axis (X, Y & Z) and considered typical configuration to obtain worst position, manipulating interconnecting cables, rotating the turntable, varying antenna height from 1m to 4m in both horizontal and vertical polarizations. The emissions worst-case are shown in Test Results of the following pages. Duty cycle setting during the transmission is 100% with maximum power setting for all modulations.

5.4 Description of Support Units

The EUT has been tested as an independent unit.

5.5 Measurement Uncertainty

Parameter	Expanded Uncertainty (Confidence of 95%)
Conducted Emission (9kHz ~ 150KHz) for V-AMN	3.11 dB
Conducted Emission (150kHz ~ 30MHz) for V-AMN	2.62 dB
Radiated Emission (9kHz ~ 30MHz electric field) for 3m SAC	3.13 dB
Radiated Emission (9kHz ~ 30MHz magnetic field) for 3m SAC	3.13 dB
Radiated Emission (30MHz ~ 1GHz) for 3m SAC	4.45 dB
Radiated Emission (1GHz ~ 18GHz) for 3m SAC	5.34 dB
Radiated Emission (18GHz ~ 40GHz) for 3m SAC	5.34 dB
Radiated Emission (30MHz ~ 1GHz) for 10m SAC	4.32 dB

5.6 Additions to, deviations, or exclusions from the method

No

5.7 Laboratory Facility

The test facility is recognized, certified, or accredited by the following organizations:

• FCC - Designation No.: CN1211

JianYan Testing Group Shenzhen Co., Ltd. has been accredited as a testing laboratory by FCC(Federal Communications Commission). The test firm Registration No. is 727551.

• ISED – CAB identifier.: CN0021

The 3m Semi-anechoic chamber and 10m Semi-anechoic chamber of JianYan Testing Group Shenzhen Co., Ltd. has been Registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 10106A-1.

• CNAS - Registration No.: CNAS L15527

JianYan Testing Group Shenzhen Co., Ltd. is accredited to ISO/IEC 17025:2017 General Requirements for the Competence of Testing and Calibration laboratories for the competence of testing. The Registration No. is CNAS L15527.

• A2LA - Registration No.: 4346.01

This laboratory is accredited in accordance with the recognized International Standard ISO/IEC 17025:2017 General requirements for the competence of testing and calibration laboratories. The test scope can be found as below link: <u>https://portal.a2la.org/scopepdf/4346-01.pdf</u>

5.8 Laboratory Location

JianYan Testing Group Shenzhen Co., Ltd.

Address: No.101, Building 8, Innovation Wisdom Port, No.155 Hongtian Road, Huangpu Community, Xinqiao Street, Bao'an District, Shenzhen, Guangdong, People's Republic of China. Tel: +86-755-23118282, Fax: +86-755-23116366

Email: info-JYTee@lets.com, Website: http://jyt.lets.com

5.9 Test Instruments list

Radiated Emission(Above 1GHz):							
Test Equipment	Manufacturer	Model No.	Serial No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)		
3m SAC	ETS	RFD-100	Q1984	04-14-2021	04-13-2024		
BiConiLog Antenna	SCHWARZBECK	VULB9163	9163-1246	03-07-2021	03-06-2022		
Biconical Antenna	SCHWARZBECK	VUBA 9117	9117#359	06-17-2021	06-17-2022		
Horn Antenna	SCHWARZBECK	BBHA9120D	912D-916	03-07-2021	03-06-2022		
Broad-Band Horn Antenna	SCHWARZBECK	BBHA9170	1067	04-02-2021	04-01-2022		
Broad-Band Horn Antenna	SCHWARZBECK	BBHA9170	1068	04-02-2021	04-01-2022		
EMI Test Receiver	Rohde & Schwarz	ESRP7	101070	03-03-2021	03-02-2022		
Spectrum analyzer	Rohde & Schwarz	FSP30	101454	03-03-2021	03-02-2022		
Spectrum analyzer	Keysight	N9010B	MY60240202	10-27-2021	10-26-2022		
Low Pre-amplifier	SCHWARZBECK	BBV9743B	00305	03-07-2021	03-06-2022		
High Pre-amplifier	SKET	LNPA_0118G-50	MF280208233	03-07-2021	03-06-2022		
Cable	Qualwave	JYT3M-1G-NN-8M	JYT3M-1	03-07-2021	03-06-2022		
Cable	Qualwave	JYT3M-18G-NN-8M	JYT3M-2	03-07-2021	03-06-2022		
Cable	Qualwave	JYT3M-1G-BB-5M	JYT3M-3	03-07-2021	03-06-2022		
Cable	Bost	JYT3M-40G-SS-8M	JYT3M-4	04-02-2021	04-01-2022		
EMI Test Software	Tonscend	TS+	Version:3.0.0.1				

Radiated Emission(Below 1GHz):							
Test Equipment	Manufacturer	Manufacturer Model No.	Serial No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)		
10m SAC	ETS	RFSD-100-F/A	Q2005	04-28-2021	04-27-2024		
BiConiLog Antenna	SCHWARZBECK	VULB 9168	1249	04-02-2021	04-01-2022		
BiConiLog Antenna	SCHWARZBECK	VULB 9168	1250	04-02-2021	04-01-2022		
EMI Test Receiver	R&S	ESR 3	102800	04-08-2021	04-07-2022		
EMI Test Receiver	R&S	ESR 3	102802	04-08-2021	04-07-2022		
Low Pre-amplifier	Bost	LNA 0920N	2016	04-06-2021	04-05-2022		
Low Pre-amplifier	Bost	LNA 0920N	2019	04-06-2021	04-05-2022		
Cable	Bost	JYT10M-1G-NN-10M	JYT10M-1	04-02-2021	04-01-2022		
Cable	Bost	JYT10M-1G-NN-10M	JYT10M-2	04-02-2021	04-01-2022		
Test Software	R&S	EMC32	Version: 10.50.40				

Conducted Emission:					
Test Equipment	Manufacturer	Model No.	Serial No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)
EMI Test Receiver	Rohde & Schwarz	ESCI 3	101189	03-03-2021	03-02-2022
LISN	Schwarzbeck	NSLK 8127	QCJ001-13	03-18-2021	03-17-2022
LISN	Rohde & Schwarz	ESH3-Z5	843862/010	06-18-2020	06-17-2022
RF Switch	TOP PRECISION	RSU0301	N/A	03-03-2021	03-02-2022
Cable	Bost	JYTCE-1G-NN-2M	JYTCE-1	03-03-2021	03-02-2022
Cable	Bost	JYTCE-1G-BN-3M	JYTCE-2	03-03-2021	03-02-2022
EMI Test Software	AUDIX	E3	V	ersion: 6.110919	b

Conducted method:					
Test Equipment	Manufacturer	Model No.	Serial No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)
Spectrum Analyzer	Keysight	N9010B	MY60240202	10-27-2021	10-26-2022
Vector Signal Generator	Keysight	N5182B	MY59101009	10-27-2021	10-26-2022
Analog Signal Generator	Keysight	N5173B	MY59100765	10-27-2021	10-26-2022
Power Detector Box	MWRF-test	MW100-PSB	MW201020JYT	11-19-2021	11-18-2022
Simulated Station	Rohde & Schwarz	CMW270	102335	10-27-2021	10-26-2022
RF Control Box	MWRF-test	MW100-RFCB	MW200927JYT	N/A	N/A
PDU	MWRF-test	XY-G10	N/A	N/A	N/A
DC Power Supply	Keysight	E3642A	MY60296194	11-27-2020	11-26-2023
Temperature Humidity Chamber	Deli	8840	N/A	03-08-2021	03-07-2022
Test Software	MWRF-tes	MTS 8310	N N	Version: 2.0.0.0	

6 Test results and Measurement Data

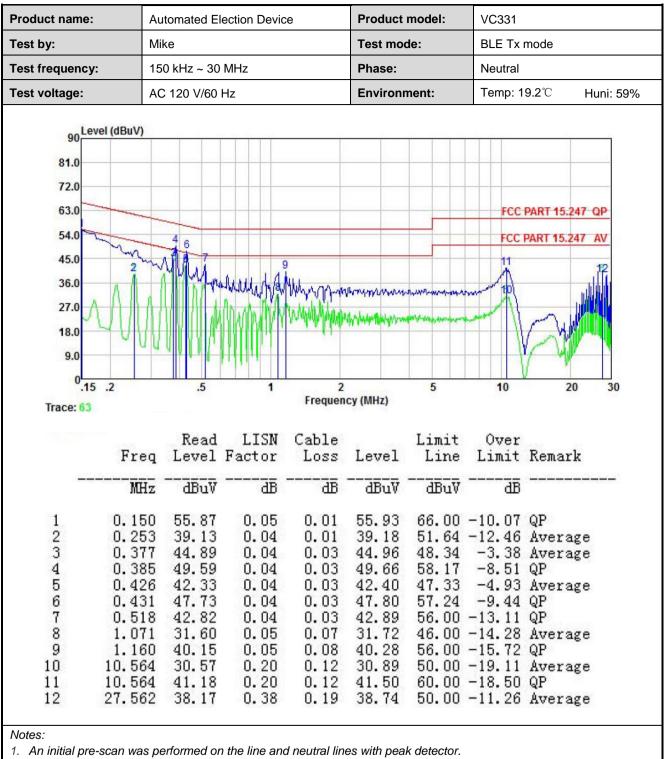
6.1 Antenna requirement:

Standard requirement:	FCC Part 15 C Section 15.203 /247(b)
responsible party shall be us antenna that uses a unique of so that a broken antenna can electrical connector is prohib 15.247(b) (4) requirement: (4) The conducted output po antennas with directional gai section, if transmitting antenna power from the intentional ra	be designed to ensure that no antenna other than that furnished by the sed with the device. The use of a permanently attached antenna or of an coupling to the intentional radiator, the manufacturer may design the unit in be replaced by the user, but the use of a standard antenna jack or bited. wer limit specified in paragraph (b) of this section is based on the use of ins that do not exceed 6 dBi. Except as shown in paragraph (c) of this nas of directional gain greater than 6 dBi are used, the conducted output adiator shall be reduced below the stated values in paragraphs (b)(1), ion, as appropriate, by the amount in dB that the directional gain of the
E.U.T Antenna:	
The BLE antenna is an Intern antenna is 1.3dBi.	al antenna which cannot replace by end-user, the best-case gain of the

6.2 Conducted Emission

Test Requirement:	FCC Part 15 C Section 15.207	7	
Test Frequency Range:	150 kHz to 30 MHz		
Class / Severity:	Class B		
Receiver setup:	RBW=9kHz, VBW=30kHz		
Limit:	Frequency range (MHz)	Limit (dBuV)
	· · · · · · · · · · · · · · · · · · ·	Quasi-peak	Average
	0.15-0.5	66 to 56*	56 to 46*
	0.5-5	56	46
	5-30	60	50
	* Decreases with the logarithm		
Test procedure:	 The E.U.T and simulators line impedance stabilizati 50ohm/50uH coupling implication The peripheral devices and LISN that provides a 50ol termination. (Please refer photographs). Both sides of A.C. line and interference. In order to fi positions of equipment and according to ANSI C63.10 	on network (L.I.S.N.), wh pedance for the measuring re also connected to the hm/50uH coupling imped to the block diagram of the checked for maximum and the maximum emission and all of the interface cab	nich provides a ng equipment. main power through a lance with 50ohm the test setup and conducted on, the relative les must be changed
Test setup:	Reference	80cm Filter EMI Receiver	– AC power
Test Instruments:	Refer to section 5.9 for details		
Test mode:	Refer to section 5.3 for details		
Test results:	Passed		

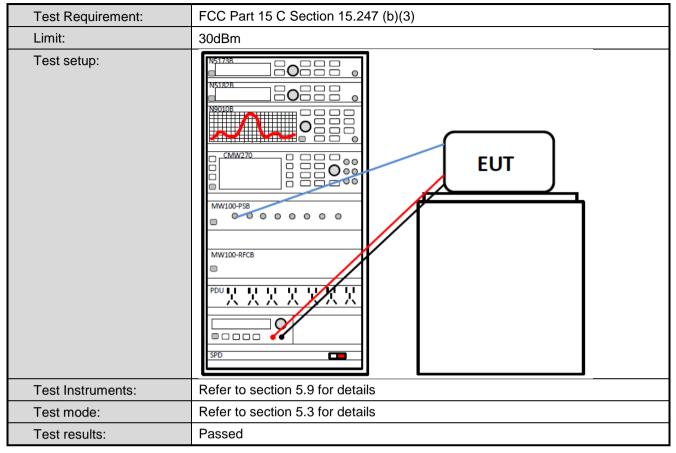
Measurement Data:


Product name:	Auto	omated Ele	ection Device	Э	Product r	model:	VC331	
Test by:	Mike	Э			Test mod	le:	BLE Tx I	mode
Test frequency:	150	kHz ~ 30 l	MHz		Phase:		Line	
Test voltage:	AC	120 V/60 H	łz		Environm	nent:	Temp: 1	9.2℃ Huni: 59%
Lov								
90	el (dBuV)	TTT	TIT					
81.0								
72.0								
63.0							FCC	
							FCCI	PART 15.247 QP
54.0	the am	5					FCCT	PART 15.247 AV
45.0	have	As .	8					12
36.0	1 1	MMM	WHUN				10	
	ALALI		WHY THE WAY	MMAN AMM	mannan	- Here - March	9	1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1
27.0		Mallin	NAMA YA	AM MANAMAN	could make with	-	- A hanne	my little
18.0	4 V (())	10071		. title.				and the second s
9.0	~ u v	111.1						and the second s
0								Y
.15	.2	.5	1	2		5	10	20 30
	and the second se			Eroquono	(BILL)			
Trace: 65				Frequenc	y (MHz)			
Trace: 65			LTCN		cy (MHz)	T :_ : 4	0	
Trace: 65		Read		Cable		Limit Line	Over Limit	Remark
Trace: 65	Freq	Read	LISN Factor	Cable	y (MHz) Level	Limit Line		Remark
Trace: 65		Read		Cable				Remark
Trace: 65 	Freq MHz	Read Level dBuV	Factor dB	Cable Loss dB	Level dBuV	Line dBuV	Limit dB	
	Freq	Read Level	Factor	Cable Loss dB 0.01	Level	Line <u>dBuV</u> 66.00	Limit 	
	Freq MHz 0.150 0.253 0.258	Read Level dBuV 56.07 39.86 49.62	Factor dB 0.04 0.04 0.04	Cable Loss dB 0.01 0.01 0.01	Level dBuV 56.12 39.91 49.67	Line dBuV 66.00 51.64 61.51	Limit 	QP Average QP
	Freq MHz 0.150 0.253 0.258 0.381	Read Level dBuV 56.07 39.86 49.62 45.49	Factor dB 0.04 0.04 0.04 0.04 0.04	Cable Loss dB 0.01 0.01 0.01 0.03	Level dBuV 56.12 39.91 49.67 45.56	Line dBuV 66.00 51.64 61.51 48.25	Limit -9.88 -11.73 -11.84 -2.69	QP Average QP Average
 1 2 3 4 5	Freq MHz 0.150 0.253 0.258 0.381 0.385	Read Level dBuV 56.07 39.86 49.62 45.49 50.18	Factor 	Cable Loss dB 0.01 0.01 0.01 0.03 0.03 0.03	Level dBuV 56.12 39.91 49.67 45.56 50.25	Line dBuV 66.00 51.64 61.51 48.25 58.17	Limit -9.88 -11.73 -11.84 -2.69 -7.92	QP Average QP Average QP
 1 2 3 4 5 6	Freq 0.150 0.253 0.258 0.381 0.385 0.426	Read Level dBuV 56.07 39.86 49.62 45.49 50.18 42.76	Factor dB 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04	Cable Loss dB 0.01 0.01 0.03 0.03 0.03 0.03	Level dBuV 56.12 39.91 49.67 45.56 50.25 42.83	Line dBuV 66.00 51.64 61.51 48.25 58.17 47.33	Limit -9.88 -11.73 -11.84 -2.69 -7.92 -4.50	QP Average QP Average QP Average
	Freq 0.150 0.253 0.258 0.381 0.385 0.426 1.065	Read Level dBuV 56.07 39.86 49.62 45.49 50.18 42.76 31.70	Factor dB 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.05	Cable Loss dB 0.01 0.01 0.03 0.03 0.03 0.03 0.03 0.03	Level dBuV 56.12 39.91 49.67 45.56 50.25 42.83 31.82	Line dBuV 66.00 51.64 61.51 48.25 58.17 47.33 46.00	Limit -9.88 -11.73 -11.84 -2.69 -7.92 -4.50 -14.18	QP Average QP Average QP Average Average
 1 2 3 4 5 6 7 8	Freq MHz 0.150 0.253 0.258 0.381 0.385 0.426 1.065 1.077	Read Level dBuV 56.07 39.86 49.62 45.49 50.18 42.76 31.70 40.95	Factor dB 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.05 0.05	Cable Loss dB 0.01 0.01 0.03 0.03 0.03 0.03 0.07 0.07	Level dBuV 56.12 39.91 49.67 45.56 50.25 42.83 31.82 41.07	Line dBuV 66.00 51.64 61.51 48.25 58.17 47.33 46.00 56.00	Limit -9.88 -11.73 -11.84 -2.69 -7.92 -4.50 -14.18 -14.93	QP Average QP Average QP Average Average QP
 1 2 3 4 5 6 7	Freq MHz 0.150 0.253 0.258 0.381 0.385 0.426 1.065 1.077 9.966	Read Level dBuV 56.07 39.86 49.62 45.49 50.18 42.76 31.70	Factor dB 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.05 0.05 0.21	Cable Loss dB 0.01 0.01 0.03 0.03 0.03 0.03 0.03 0.03	Level dBuV 56.12 39.91 49.67 45.56 50.25 42.83 31.82	Line dBuV 66.00 51.64 61.51 48.25 58.17 47.33 46.00 56.00 50.00	Limit -9.88 -11.73 -11.84 -2.69 -7.92 -4.50 -14.18 -14.93	QP Average QP Average QP Average Average QP Average QP Average
 1 2 3 4 5 6 7 8 9	Freq MHz 0.150 0.253 0.258 0.381 0.385 0.426 1.065 1.077 9.966 10.508	Read Level dBuV 56.07 39.86 49.62 45.49 50.18 42.76 31.70 40.95 27.05	Factor dB 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.05 0.05 0.21	Cable Loss dB 0.01 0.01 0.03 0.03 0.03 0.03 0.03 0.07 0.07 0.13	Level dBuV 56.12 39.91 49.67 45.56 50.25 42.83 31.82 41.07 27.39	Line dBuV 66.00 51.64 61.51 48.25 58.17 47.33 46.00 50.00 50.00 50.00	Limit -9.88 -11.73 -11.84 -2.69 -7.92 -4.50 -14.18 -14.93 -22.61 -23.42	QP Average QP Average QP Average Average QP Average QP Average QP

1. An initial pre-scan was performed on the line and neutral lines with peak detector.

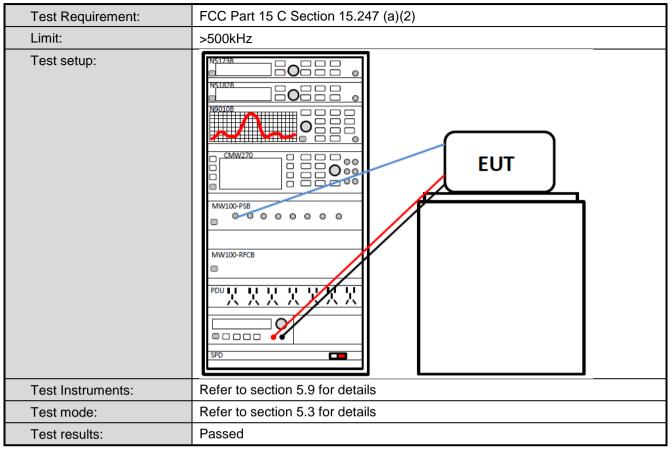
2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.

3. Final Level =Receiver Read level + LISN Factor + Aux Factor + Cable Loss.

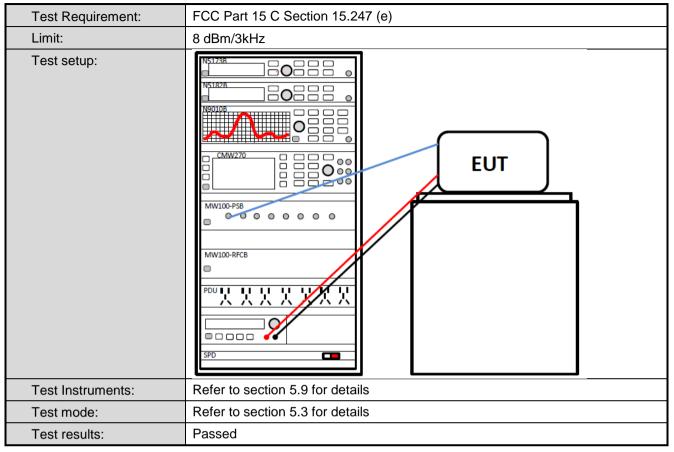


2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.

3. Final Level = Receiver Read level + LISN Factor + Aux Factor + Cable Loss.



6.3 Conducted Output Power



6.4 Occupy Bandwidth

6.5 Power Spectral Density

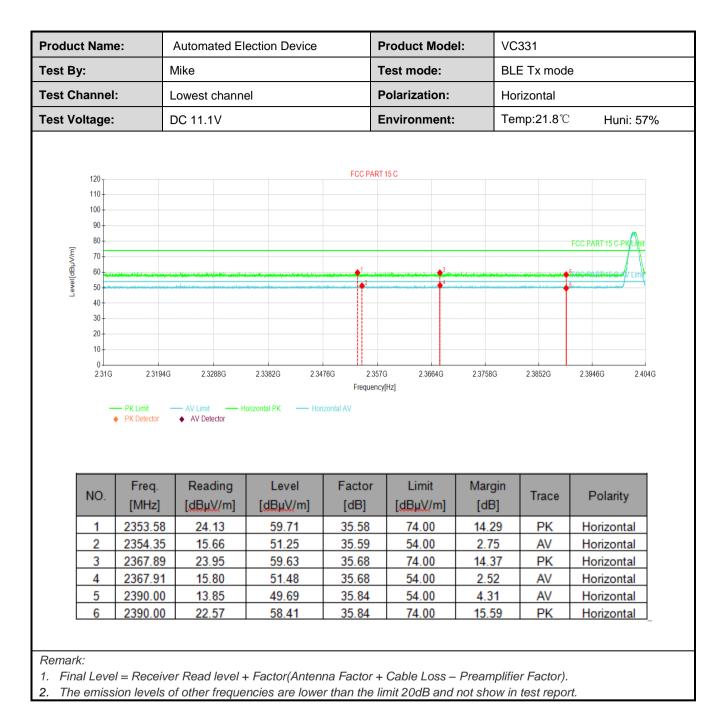
6.6 Band Edge

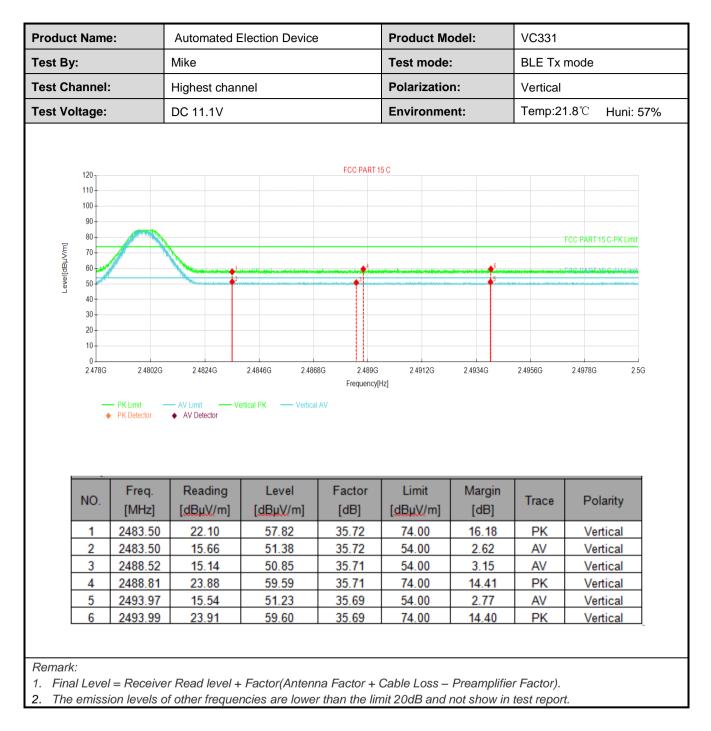
6.6.1 Conducted Emission Method

Test Requirement:	FCC Part 15 C Section 15.247 (d)
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.
Test setup:	
Test Instruments:	Refer to section 5.9 for details
Test mode:	Refer to section 5.3 for details
Test results:	Passed

6.6.2 Radiated Emission Method

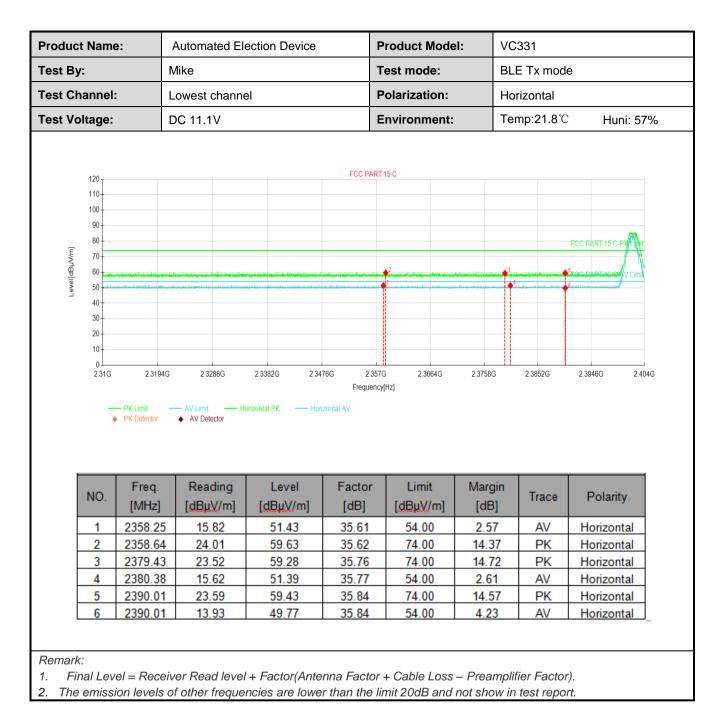
Test Requirement:	FCC Part 15 C	Section 15	205 and 15.20	9		
Test Frequency Range:	2310 MHz to 2	390 MHz ar	d 2483.5MHz	o 2500	MHz	
Test Distance:	3m					
Receiver setup:	Frequency	Detector	RBW	\	/BW	Remark
· ·	Above 1GHz	Peak	1MHz		MHz	Peak Value
		RMS	1MHz		MHz	Average Value
Limit:	Frequen	icy	Limit (dBuV/m 54.00	@3m)	Δ	Remark verage Value
	Above 10	GHz –	74.00			Peak Value
Test Procedure:	 the groun to determ 2. The EUT antenna, tower. 3. The anter the groun Both horiz make the 4. For each case and meters ar to find the 5. The test-r Specified 6. If the emist the limit s of the EU have 10 c 	d at a 3 met ine the posit was set 3 m which was m and height is d to determine contal and ver measureme suspected e then the ant d the rota ta e maximum r receiver syst Bandwidth v ssion level o pecified, the T would be r	er camber. The ion of the highe eters away from nounted on the varied from or ne the maximu ertical polarizat nt. mission, the El enna was tune ble was turned eading. em was set to the EUT in per n testing could eported. Other	e table w est radia n the int top of a e meter m value ions of t JT was d to heig from 0 Peak De Hold Mod be stop wise the ed one b	as rotate tion. erference variable to four r of the fi he anter arranged ghts fron degrees etect Fur de. e was 10 ped and e emission y one us	e-height antenna meters above eld strength. nna are set to d to its worst n 1 meter to 4 to 360 degrees nction and 0 dB lower than the peak values ons that did not sing peak, quasi-
Test setup:		LEUT urntable) Gn Test Receiv	Horn Antenna Morn Antenna 3m 3m ound Reference Plane er	Antenna T	ower	
Test Instruments:	Refer to section	on 5.9 for det	ails			
Test mode:	Refer to section	on 5.3 for det	ails			
Test results:	Passed					


Project No.: JYTSZR2201027


PHY: 1MHz

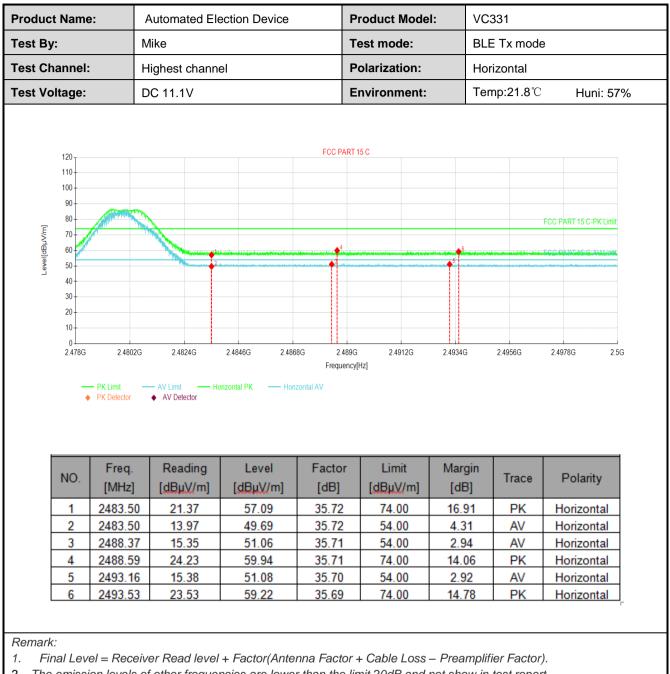
	t Name	e :	Automated E	Election Device		Product Mo	odel:	VC331		
Test By	/:		Mike			Test mode:	:	BLE Tx	mode	
Test Ch	annel:	:	Lowest chan	nel		Polarizatio	n:	Vertical	Vertical	
Test Vo	ltage:		DC 11.1V			Environme	nt:	Temp:2 ⁻	1.8℃ Huni:	57%
	120				FCC PART 1	5 C				
	120									
	100									
	90									
Έ	80								FCC PART 15 C-PK Limit	t
BµWi	70 60				_ 1		4	5		
Level[dBµV/m]	50	landa gina dal galito da Propinsi Basard () di Kon Dina la gala antida ya Anna adala da matana kana sa	dessen antification of a local policity of antificity of a state of a sta	6	1944 - 1964 - 1964 - 1967 - 1967 - 1967 - 1967 - 1967 - 1967 - 1967 - 1967 - 1967 - 1967 - 1967 - 1967 - 1967 - 1944 - 1967 - 1967 - 1967 - 1967 - 1967 - 1967 - 1967 - 1967 - 1967 - 1967 - 1967 - 1967 - 1967 - 1967 - 1967 -		hann 🔶 shina an an Anna Anna Anna Anna Anna Anna	alatekse en stalen tin oan de seren en stalen en stalen stalen stalen stalen stalen stalen stalen stalen stalen		
_	40									
	30									
	20									
	20 10 0									
	10	2.3194G	2.3288G	2.3382G 2.347	6G 2.357G Frequency[2.3758G	2.3852G	2.3946G 2.4	04G
I	10 0 2.31G	PK Limit PK Detector	AV Limit Ve	2 3382G 2 347 ertical PK — Vertical	Frequency[I	1z]		2.3852G		.04G
	10 0 2.31G	— PK Limit —	— AV Limit — Ve	artical PK — Vertical	Frequency[2.3758G Margin [dB]	2.3852G	2.3946G 2.4 Polarity	.04G
	10 0 2.31G	PK Limit - PK Detector - Freq.	AV Limit Ve AV Detector Ve Reading [dBµV/m] 23.83	ertical PK Vertical	Frequency[AV Factor	Limit	Margin			04G
	10 0 2316 NO. 1 2	Freq. [MHz] 2354.50 2355.00	AV Limit → Ve AV Detector ← Ve Reading [dBµV/m] 23.83 15.99	Level [dBµV/m] 59.42 51.58	Frequency(AV Factor [dB] 35.59 35.59	Limit [dBµV/m] 74.00 54.00	Margin [dB] 14.58 2.42	Trace PK AV	Polarity Vertical Vertical	.04G
	10 0 2316 NO. 1 2 3	PK Limit PK Detector [MHz] 2354.50 2355.00 2372.87	AV Limit Ve	Level [dBµV/m] 59.42 51.58 51.17	Frequency(AV Factor [dB] 35.59 35.59 35.72	Limit [dBµV/m] 74.00 54.00 54.00	Margin [dB] 14.58 2.42 2.83	Trace PK AV AV	Polarity Vertical Vertical Vertical	004G
	10 0 2316 NO. 1 2 3 4	PK Limit PK Detector [MHz] 2354.50 2355.00 2372.87 2373.62	AV Limit Ve AV Detector Ve Reading [dBµV/m] 23.83 15.99 15.45 24.06	Level [dBµV/m] 59.42 51.58 51.17 59.78	Frequency(AV Factor [dB] 35.59 35.59 35.72 35.72	Limit [dBµV/m] 74.00 54.00 54.00 74.00	Margin [dB] 14.58 2.42 2.83 14.22	Trace PK AV AV PK	Polarity Vertical Vertical Vertical Vertical	046
	10 0 2316 NO. 1 2 3	PK Limit PK Detector [MHz] 2354.50 2355.00 2372.87	AV Limit Ve	Level [dBµV/m] 59.42 51.58 51.17	Frequency(AV Factor [dB] 35.59 35.59 35.72	Limit [dBµV/m] 74.00 54.00 54.00	Margin [dB] 14.58 2.42 2.83	Trace PK AV AV	Polarity Vertical Vertical Vertical	046



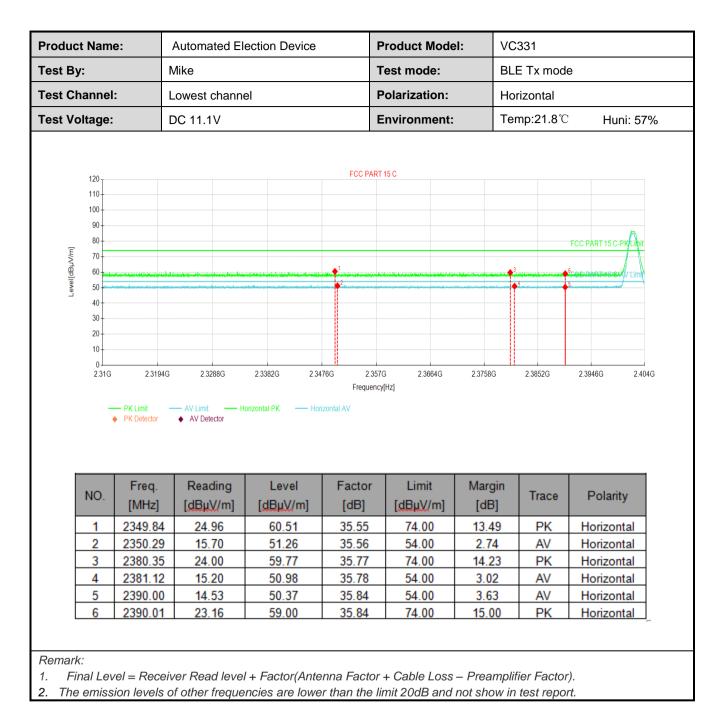


PHY: 2MHz

oduci	t Name	e:	Automated E	Election Device)	Product Mo	odel:	VC331	
est By	:		Mike			Test mode		BLE Tx	mode
est Ch	annel	:	Lowest chan	nel		Polarizatio	n:	Vertical	
est Vo	Itage:		DC 11.1V			Environme	nt:	Temp:2	1.8℃ Huni: 5
Ē	120 110 100 90 80				FCC PART 1	5 C			FCC PART 15 C-PK
Level[dBµV/m]	70 60	la decidence abole activity			•1		→ ³	an lan bidalina di 🌢	San Charles of Vitime
Level	50	talitan talitan mata anti-atal dara ta		in la de la desta de la des	Nadilai, estant, en alguna a significat et	2		an sha she at i a san a sa s	5
	40								
			0.00000		700 00570			0.00500	
	20	2.3194G PK Limit PK Detector	2.3288G AV Limit Ve AV Detector	2.3382G 2.347 ertical PK — Vertical	Frequency[2 3758G	2.3852G	2.3946G 2.404
	20 10 0	— PK Limit —	— AV Limit — Ve		Frequency[2.3758G Margin [dB]	23852G	2 3946G 2 404 Polarity
	20 10 2.31G	PK Limit - PK Detector -	AV Limit Ve AV Detector	ertical PK Vertical	Frequency[Hz]	Margin		
	20 10 0 2.31G	PK Limit PK Detector Freq. [MHz]	AV Limit Ve AV Detector Ve Reading [dBµV/m]	Level	Frequency[AV Factor [dB]	Limit [dBµV/m]	Margin [dB]	Trace	Polarity
	20 10 231G NO.	Freq. [MHz] 2357.41	AV Limit AV Detector Reading [dBµV/m] 24.20	Level [dBµV/m] 59.81	Frequency AV Factor [dB] 35.61	Limit [dBµV/m] 74.00	Margin [dB] 14.19	Trace	Polarity Vertical
	20 10 231G NO. 1 2	PK Limit PK Detector Freq. [MHz] 2357.41 2358.23	AV Limit → Ve AV Detector ← Ve Reading [dBµV/m] 24.20 15.57	Level [dBµV/m] 59.81 51.18	Frequency AV Factor [dB] 35.61 35.61	Limit [dBμV/m] 74.00 54.00	Margin [dB] 14.19 2.82	Trace PK AV	Polarity Vertical Vertical
	20 10 0 231G NO. 1 2 3	PK Limit PK Detector [MHz] 2357.41 2358.23 2374.48	AV Limit Ver AV Detector Ver Reading [dBµV/m] 24.20 15.57 23.79	Level [dBµV/m] 59.81 51.18 59.52	Frequency AV Factor [dB] 35.61 35.61 35.73	Limit [dBµV/m] 74.00 54.00 74.00	Margin [dB] 14.19 2.82 14.48	Trace PK AV PK	Polarity Vertical Vertical Vertical



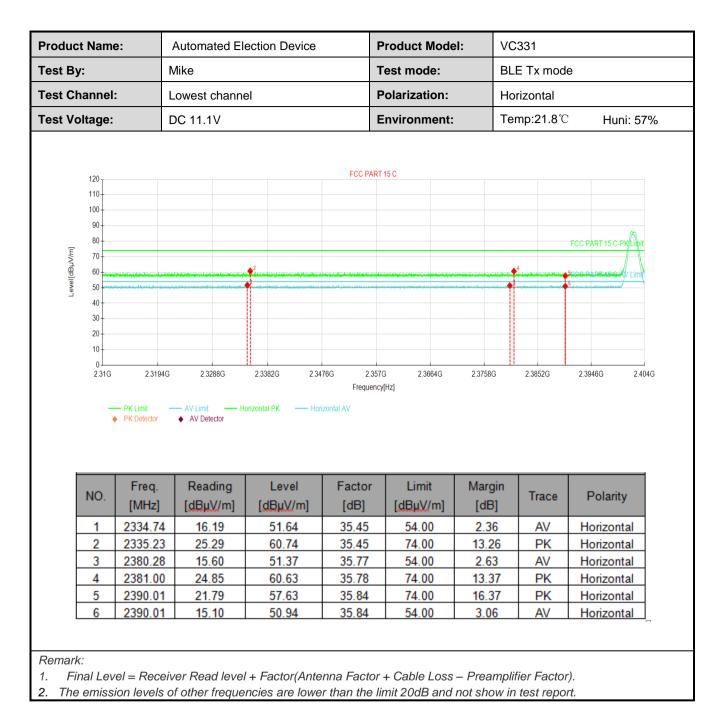
		/ atomateu E	Election Device	•	Product Me	odel:	VC331		
Test By:		Mike			Test mode	:	BLE Tx	mode	
Test Channe	:	Highest chan	inel		Polarizatio	n:	Vertical		
Test Voltage	:	DC 11.1V			Environme	ent:	Temp:2	1.8℃ Huni:	57%
120 110 100 90 80 70 60 60 50				FCC PART 1	5 C	• • •		FCC PART 15 C-PK Limi	
50 40 30 20 10 2.4780	÷ 2.4802G PK Limit → PK Detector	2.4824G AV Limit Ve AV Detector	2.4846G 2.486 ertical PK — Vertical	Frequency[2.4912G Hz]	2.4934G	2.4956G	2.4978G 2.	5G
40 30 20 10	— PK Limit —	— AV Limit — Ve		Frequency[2.4934G	2.4956G Trace	2.4978G 2. Polarity	.5G
	PK Limit → PK Defector → Freq.	AV Limit Ve AV Detector	ertical PK — Vertical	Frequency AV Factor	Hz]	Margin			56
40 30 20 10 2.4780 NO. 1 2	 PK Limit PK Detector PK Detector Freq. [MHz] 2483.50 2483.50 	AV Limit Ve AV Detector Ve Reading [dBµV/m] 22.16 14.12	Level [dBµV/m] 57.88 49.84	Frequency AV Factor [dB] 35.72 35.72	Limit [dBµV/m] 74.00 54.00	Margin [dB] 16.12 4.16	Trace PK AV	Polarity Vertical Vertical	56
40 30 20 10 2.4780 NO. 1 2 3	 ▶ PK Limit ▶ PK Detector ▶ PK Detector ▶ Freq. [MHz] ▶ 2483.50 ▶ 2483.50 ▶ 2488.26 	AV Limit Ve AV Detector Ve Reading [dBµV/m] 22.16 14.12 23.62	Level [dBµV/m] 57.88 49.84 59.33	Frequency AV Factor [dB] 35.72 35.72 35.71	Limit [dBµV/m] 74.00 54.00 74.00	Margin [dB] 16.12 4.16 14.67	Trace PK AV PK	Polarity Vertical Vertical Vertical	56
40 30 20 10 2.4780 NO. 1 2 3 4	 PK Limit PK Detector Freq. [MHz] 2483.50 2483.50 2488.26 2488.41 	AV Limit	Level [dBµV/m] 57.88 49.84 59.33 51.44	Frequency AV Factor [dB] 35.72 35.72 35.71 35.71	Limit [dBµV/m] 74.00 54.00 74.00 54.00	Margin [dB] 16.12 4.16 14.67 2.56	Trace PK AV PK AV	Polarity Vertical Vertical Vertical Vertical	56
40 30 20 10 2.4780 NO. 1 2 3	 ▶ PK Limit ▶ PK Detector ▶ PK Detector ▶ Freq. [MHz] ▶ 2483.50 ▶ 2483.50 ▶ 2488.26 	AV Limit Ve AV Detector Ve Reading [dBµV/m] 22.16 14.12 23.62	Level [dBµV/m] 57.88 49.84 59.33	Frequency AV Factor [dB] 35.72 35.72 35.71	Limit [dBµV/m] 74.00 54.00 74.00	Margin [dB] 16.12 4.16 14.67	Trace PK AV PK	Polarity Vertical Vertical Vertical	56



Coded PHY, S=2

roduct Nam	ne:	Automated I	Election Device	e	Product M	odel:	VC331	
est By:		Mike			Test mode	:	BLE Tx	mode
est Channe	d:	Lowest chan	nel		Polarizatio	n:	Vertical	
est Voltage	:	DC 11.1V			Environme	ent:	Temp:2	1.8℃ Huni: 57%
120				FCC PART	15 C			
100 90 80 100 80 70 60 50 40			All & A State of the second synchronization of the second synchronization of the second synchronization of the		Canada da Santa da S	3		FCC PART 15 C-PK(Limit
30 20 10 0 231G	G 2.3194G → PK Limit - ◆ PK Detector	2.3288G AV Limit V AV Detector	2.3382G 2.34 ertical PK — Vertica	Frequency		2.3758G	2.3852G	2.3946G 2.404G
NO.	Freq. [MHz]	Reading [dBµV/m]	Level [dBµV/m]	Factor [dB]	Limit [dBµV/m]	Margin [dB]	Trace	Polarity
1	2355.01	15.60	51.19	35.59	54.00	2.81	AV	Vertical
2	2355.39	24.52	60.11	35.59	74.00	13.89	PK	Vertical
3	2379.92	24.56	60.33	35.77	74.00	13.67	PK	Vertical
4	2380.71	15.61	51.38	35.77	54.00	2.62	AV	Vertical
5	2390.01 2390.01	22.94 14.00	58.78 49.84	35.84 35.84	74.00 54.00	15.22 4.16	PK AV	Vertical Vertical
	2000.01	14.00	40.04	55.04	J 4 .00	4.10		venuea

	ie:	Automated	Election Device	•	Product Mo	odel:	VC331		
Fest By:		Mike			Test mode	:	BLE Tx	mode	
Fest Channe	l:	Highest chan	inel		Polarizatio	n:	Vertical		
Fest Voltage	:	DC 11.1V		Environment:		Temp:21.8℃ Huni: 57%			
120 110 100 90 80 70				FCC PART 1	5 C	45		FCC PART 15 C-PK Limit	
	 ≥ 2.4802G → PK Limit → PK Detector 	2.4824G	2.4846G 2.486 ertical PK — Vertical	Frequency[2.4912G 12]	2.4934G	2 4956G	2.4978G 2.5	5G
40 30 20 10	- PK Limit -	— AV Limit — Ve		Frequency[24934G	2.4956G	24978G 2.5	3G
	PK Limit - PK Detector -	AV Limit Ve AV Detector Ve	ertical PK — Vertical	Frequency(AV Factor	Limit	Margin			56
40 30 20 10 0 2.4780	PK Limit → PK Detector → Freq. [MHz]	AV Limit Va AV Detector Va Reading [dBµV/m]	ertical PK — Vertical Level [dBµV/m]	Frequency AV Factor [dB]	Limit [dBµV/m]	Margin [dB]	Trace	Polarity	56
40 30 20 10 0 2.4780 NO.	Freq. [MHz] 2483.50	AV Limit Va AV Detector Va Reading [dBµV/m] 22.43	Level [dBµV/m] 58.15	Frequency AV Factor [dB] 35.72	Limit [dBµV/m] 74.00	Margin [dB] 15.85	Trace	Polarity Vertical	5G
40 30 20 10 0 2.4780 NO. 1 2	 PK Limit PK Detector Freq. [MHz] 2483.50 2483.50 	AV Limit	ertical PK — Vertical Level [dBµV/m] 58.15 49.98	Frequency AV Factor [dB] 35.72 35.72	Limit [dBµV/m] 74.00 54.00	Margin [dB] 15.85 4.02	Trace PK AV	Polarity Vertical Vertical	5G
40 30 20 10 2.4780 NO. 1 2 3	 PK Limit PK Detector Freq. [MHz] 2483.50 2483.50 2487.08 	AV Limit Ve AV Detector Ve Reading [dBµV/m] 22.43 14.26 15.41	ertical PK — Vertical Level [dBµV/m] 58.15 49.98 51.12	Frequency AV Factor [dB] 35.72 35.72 35.71	Limit [dBµV/m] 74.00 54.00 54.00	Margin [dB] 15.85 4.02 2.88	Trace PK AV AV	Polarity Vertical Vertical Vertical	5G



Coded PHY, S=8

Product Name:			Automated Election Device			Product Me	odel:	VC331		
est By:			Mike			Test mode:		BLE Tx mode		
est Ch	annel	:	Lowest chan	nel		Polarizatio	Polarization: Vertical			
est Vo	Itage:	tage: DC 11.1V Environment: Temp:21.8°C				1.8℃ Huni: 579				
					FCC PART 1	5.0				
Level[dBµV/m]	120 110 100 90 80 70 60 50 40 30					2			FCC PART 15 C-PKUppt	
	20 10 0 2.31G	2.3194G PK Limit - PK Detector	2.3288G — AV Limit — Ve ♦ AV Detector	2.3382G 2.347 ertical PK — Vertical	Frequency[2.3758G	2.3852G	2.3946G 2.404G	
[20 10 0 2.31G	— PK Limit —	— AV Limit — Ve		Frequency[23758G Margin [dB]	2.3852G	2.3946G 2.404G	
	20 10 0 2.31G	PK Limit - PK Detector -	AV Limit Va AV Detector Va	ertical PK — Vertical Level	Frequency[AV Factor	Hz] Limit	Margin			
	20 10 2.31G	PK Limit PK Detector Freq. [MHz]	AV Limit Va AV Detector Va Reading [dBµV/m]	Level	Frequency[AV Factor [dB]	Limit [dBµV/m]	Margin [dB]	Trace	Polarity	
	20 10 2.31G NO.	Freq. [MHz] 2359.46	AV Limit AV Detector Reading [dBµV/m] 15.97	Level [dBµV/m] 51.59	Frequency AV Factor [dB] 35.62	Limit [dBµV/m] 54.00	Margin [dB] 2.41	Trace	Polarity Vertical	
	20 10 2.316 NO. 1 2	Freq. [MHz] 2359.46 2359.52	AV Limit → AV Detector Reading [dBµV/m] 15.97 24.58	Level [dBµV/m] 51.59 60.20	Frequency AV Factor [dB] 35.62 35.62	Limit [dBµV/m] 54.00 74.00	Margin [dB] 2.41 13.80	Trace AV PK	Polarity Vertical Vertical	
	20 10 2.31G NO. 1 2 3	PK Limit PK Detector Freq. [MHz] 2359.46 2359.52 2376.45	AV Limit	Level [dBµV/m] 51.59 60.20 51.45	Frequency[AV Factor [dB] 35.62 35.62 35.74	Limit [dBµV/m] 54.00 74.00 54.00	Margin [dB] 2.41 13.80 2.55	Trace AV PK AV	Polarity Vertical Vertical Vertical	

	Mike Highest chan DC 11.1V	nel		Test mode	:	BLE Tx	mode	
	-	nel					mouo	
	DC 11.1V		nnel: Highest channel Polarization: Vertical					
				Environme	nt:	Temp:21.8°C Huni: 5		
			Frequency[2.4912G	2.4934G	2.4956G	FCC PART 15 C-PK Limit	
Freq. [MHz]	Reading [dBµV/m]	Level [dBµV/m]	Factor [dB]	Limit [dBµV/m]	Margin [dB]	Trace	Polarity	
[MHz] 483.50	-		[dB] 35.72	[dBµV/m] 74.00	[dB] 16.15	Trace PK	Polarity Vertical	
[MHz] 2483.50 2483.50	[dBµV/m] 22.13 14.58	[dBµV/m] 57.85 50.30	[dB] 35.72 35.72	[dBµV/m] 74.00 54.00	[dB] 16.15 3.70	PK AV	Vertical Vertical	
[MHz] 2483.50 2483.50 2488.80	[dBµV/m] 22.13 14.58 23.95	[dBµV/m] 57.85 50.30 59.66	[dB] 35.72 35.72 35.71	[dBµV/m] 74.00 54.00 74.00	[dB] 16.15 3.70 14.34	PK AV PK	Vertical Vertical Vertical	
[MHz] 2483.50 2483.50	[dBµV/m] 22.13 14.58	[dBµV/m] 57.85 50.30	[dB] 35.72 35.72	[dBµV/m] 74.00 54.00	[dB] 16.15 3.70	PK AV	Vertical Vertical	
	Limit —	Limit — AV Limit — Ve	Limit — AV Limit — Vertical PK — Vertical	Frequency[Frequency[Hz]	Frequency[Hz] Limit — Vertical PK — Vertical AV	2 4802G 2 4824G 2 4846G 2 4868G 2 489G 2 4912G 2 4934G 2 4956G Frequency[Hz]	

6.7 Spurious Emission

6.7.1 Conducted Emission Method

Test Requirement:	FCC Part 15 C Section 15.247 (d)
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.
Test setup:	
Test Instruments:	Refer to section 5.9 for details
Test mode:	Refer to section 5.3 for details
Test results:	Passed

6.7.2 Radiated Emission Method

Test Requirement:	FCC Part 15 C	Section 15.	.205	and 15.209			
Test Frequency Range:	9kHz to 25GHz						
Test Distance:	3m or 10m						
	Frequency	Detector		RBW	VB	۱ ۸ /	Remark
Receiver setup:	30MHz-1GHz	Quasi-pea		120KHz	300ł		Quasi-peak Value
		Peak		1MHz	3M		Peak Value
	Above 1GHz	RMS		1MHz	3M		Average Value
Limit:	Frequency	/	Limit	t (dBuV/m @ [.]	10m)		Remark
	30MHz-88M	Hz		30.0		G	luasi-peak Value
	88MHz-216M	1Hz		33.5			uasi-peak Value
	216MHz-960			36.0			uasi-peak Value
	960MHz-1G			44.0		G	luasi-peak Value
	Frequency	/	Lim	iit (dBuV/m @	3m)		Remark
	Above 1GF	lz		54.0 74.0			Average Value Peak Value
Test Procedure:	 1GHz)/1.5r (below 1G rotated 36 radiation. The EUT w away from on the top of The antenr the ground Both horize make the n For each s case and t meters and to find the r The test-re Specified E If the emiss the limit sp of the EUT have 10 dE 	n(above 16 Hz)or 3 m 0 degrees vas set 10 r the interfe of a variable a height is 1 to determ ontal and v neasuremen suspected of hen the an 1 the rota ta maximum re eceiver sys andwidth w sion level o ecified, then would be 3 margin wo	GHz) neter s to meter erence le-he s va nine evertice ent. emisistem able readii stem with I of the en tes repoould	n the top of above the r chamber(a determine ers(below 10 ce-receiving eight antenna iried from or the maximu cal polarizat ssion, the E ma was tune was turned ing. n was set f Maximum H e EUT in per sting could b orted. Other be re-tested	grounc above the p GHz) or antenia tower ne met um valu ions of UT wa d to he from 0 to Pea old Moo ak moo be stop wise th I one b	I at a 1GHz oosition 3 me na, wh er to f ue of the a as arra eights degre k Det de. de was ped ar e emis y one	table 0.8m(below 10 meter chamber). The table was n of the highest eters(above 1GHz) nich was mounted four meters above the field strength. antenna are set to anged to its worst from 1 meter to 4 es to 360 degrees tect Function and a 10 dB lower than nd the peak values ssions that did not using peak, quasi- reported in a data
Test setup:		10m <			S A RF	Antenna To earch intenna Test ceiver —	Swer

Project No.: JYTSZR2201027

	Above 1GHz
	AE EUT Horn Artenna Tower Horn Artenna Tower Ground Reference Plane Test Receiver Free Controller
Test Instruments:	Refer to section 5.9 for details
Test mode:	Refer to section 5.3 for details
Test results:	Passed
Remark:	 Pre-scan all kind of the place mode (X-axis, Y-axis, Z-axis), and found the Y-axis is the worst case. 9 kHz to 30MHz is lower than the limit 20dB, so only shows the data of above 30MHz in this report.

Measurement Data (worst case):

Below 1GHz:

	e:	Automated	Election Devi	се	Product I	viodei:	VC331	VC331		
est By:		Mike			Test mod	Test mode:		BLE Tx mode		
Test Frequen	су:	30 MHz ~ 1	GHz		Polarizati	ion:	Vertical &	Horizont	al	
Test Voltage:		DC 11.1V			Environm	nent:	Temp: 20	.9℃ ŀ	luni: 59%	
				Full Spect	rum					
8	30т					Provide the second		1		
	70									
	Ţ									
6	so 									
= 5	50									
Bri							FCC PART 1	15.247 10	m	
, p 4	10+									
vel .	30									
								*	ie.	
						1				
	20						Kanada and a state			
2		*			*					
1	IO - RATALANA		in the graph of the second	11. A.	*					
1			80 100	<u>Mahadalikana</u> M	*	orbite plate (paralas				
1	IO - RATALANA	50 60	80 100		200 ncy in Hz	300 40				
2 1			80 100			orbite plate (paralas	00 500			
2 1 	equency (MHz) 46.975000	50 60 МахРеак (dB н V/m) 10.60	Limit (dB µ V/m) 30.00	Frequer Margin (dB) 19.40	ncy in Hz Height (cm) 100.0	300 40	Azimuth (deg) 91.0	800 Corr. (dB/m)	5.7	
2 1	equency (MHz) 46.975000	50 60 МахРеак (dB н V/m) 10.60 11.13	Limit (dB ዞ V/m) 30.00 33.50	Frequer (dB) 19.40 22.37	Height (cm) 100.0 100.0	300 40	Azimuth (deg) 91.0 176.0	Corr. (dB/m) -1	5.7	
	equency (MHz) 46.975000	50 60 МахРеак (dB н V/m) 10.60	Limit (dB µ V/m) 30.00 33.50 36.00 36.00	Frequer Margin (dB) 19.40	ncy in Hz Height (cm) 100.0	Pol V V V V	Azimuth (deg) 91.0	Corr. (dB/m) -1 -1 -1 -1	5.7	

Above 1GHz

PHY: 1MHz

		Test ch	annel: Lowest ch	nannel		
		Det	tector: Peak Valu	ie		
Frequency (MHz)	Read Level (dBuV)	Factor(dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Margin (dB)	Polarizatior
4804.00	57.64	-9.60	48.04	74.00	25.96	Vertical
4804.00	57.73	-9.60	40.54	74.00	33.46	Horizontal
		Dete	ctor: Average Va	lue		
Frequency (MHz)	Read Level (dBuV)	Factor(dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Margin (dB)	Polarizatio
4804.00	50.14	-9.60	40.54	54.00	13.46	Vertical
4804.00	50.27	-9.60	40.67	54.00	13.33	Horizonta
		T				
			annel: Middle ch			
_		Det	tector: Peak Valu	-		
Frequency (MHz)	Read Level (dBuV)	Factor(dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Margin (dB)	Polarizatio
4884.00	57.97	-9.04	48.93	74.00	25.07	Vertical
4884.00	57.96	-9.04	48.92	74.00	25.08	Horizonta
	-	Dete	ctor: Average Va	lue	-	
Frequency (MHz)	Read Level (dBuV)	Factor(dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Margin (dB)	Polarizatio
4884.00	50.38	-9.04	41.34	54.00	12.66	Vertical
4884.00	50.41	-9.04	41.37	54.00	12.63	Horizonta
		Test sh	analı Highaat al			
			annel: Highest cł tector: Peak Valu			
Fraguanay	Read Level	Del		Limit Line	Margin	
Frequency (MHz)	(dBuV)	Factor(dB)	(dBuV/m)	(dBuV/m)	(dB)	Polarizatio
4960.00	57.87	-8.45	49.42	74.00	24.58	Vertical
4960.00	58.02	-8.45	49.57	74.00	24.43	Horizonta
	T	Dete	ctor: Average Va		T	
Frequency (MHz)	Read Level (dBuV)	Factor(dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Margin (dB)	Polarizatio
4000 00	50.53	-8.45	42.08	54.00	11.92	Vertical
4960.00						

1. Final Level =Receiver Read level + Factor.

PHY: 2MHz

			annel: Lowest ch			
		De	tector: Peak Valu		I	
Frequency (MHz)	Read Level (dBuV)	Factor(dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Margin (dB)	Polarizatio
4804.00	57.34	-9.60	47.74	74.00	26.26	Vertical
4804.00	57.50	-9.60	47.90	74.00	26.10	Horizonta
		Dete	ctor: Average Va	alue		
Frequency (MHz)	Read Level (dBuV)	Factor(dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Margin (dB)	Polarizatio
4804.00	49.98	-9.60	40.38	54.00	13.62	Vertical
4804.00	49.90	-9.60	40.30	54.00	13.70	Horizonta
		Test ch	annel: Middle ch	annel		
		Det	tector: Peak Valu	le		
Frequency (MHz)	Read Level (dBuV)	Factor(dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Margin (dB)	Polarizatio
4884.00	57.56	-9.04	48.52	74.00	25.48	Vertical
4884.00	57.71	-9.04	48.67	74.00	25.33	Horizonta
		Dete	ctor: Average Va	lue		
Frequency (MHz)	Read Level (dBuV)	Factor(dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Margin (dB)	Polarizatio
4884.00	50.24	-9.04	41.20	54.00	12.80	Vertical
4884.00	50.16	-9.04	41.12	54.00	12.88	Horizonta
			annel: Highest cl tector: Peak Valu			
Frequency	Read Level	DC	Level	Limit Line	Margin	
(MHz)	(dBuV)	Factor(dB)	(dBuV/m)	(dBuV/m)	(dB)	Polarizatio
4960.00	57.82	-8.45	49.37	74.00	24.63	Vertical
4960.00	57.67	-8.45	49.22	74.00	24.78	Horizonta
	1	Dete	ctor: Average Va	alue	1	1
Frequency (MHz)	Read Level (dBuV)	Factor(dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Margin (dB)	Polarizatio
4960.00	49.89	-8.45	41.44	54.00	12.56	Vertical
	50.15	-8.45	41.70	54.00	12.30	Horizonta

Coded PHY, S=2

			annel: Lowest ch			
	T	Det	tector: Peak Valu	ie		1
Frequency (MHz)	Read Level (dBuV)	Factor(dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Margin (dB)	Polarizatio
4804.00	56.76	-9.60	47.16	74.00	26.84	Vertical
4804.00	56.64	-9.60	47.04	74.00	26.96	Horizonta
		Dete	ctor: Average Va	llue		
Frequency (MHz)	Read Level (dBuV)	Factor(dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Margin (dB)	Polarizatio
4804.00	48.84	-9.60	39.24	54.00	14.76	Vertical
4804.00	48.11	-9.60	38.51	54.00	15.49	Horizonta
		Test ch	annel: Middle ch	annel		
			ector: Peak Valu			
Frequency	Read Level		Level	Limit Line	Margin	
(MHz)	(dBuV)	Factor(dB)	(dBuV/m)	(dBuV/m)	(dB)	Polarizatio
4884.00	56.97	-9.04	47.93	74.00	26.07	Vertical
4884.00	56.71	-9.04	47.67	74.00	26.33	Horizonta
		Dete	ctor: Average Va	llue		
Frequency (MHz)	Read Level (dBuV)	Factor(dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Margin (dB)	Polarizatio
4884.00	49.13	-9.04	40.09	54.00	13.91	Vertical
4884.00	48.58	-9.04	39.54	54.00	14.46	Horizonta
			annel: Highest ch ector: Peak Valu			
Frequency (MHz)	Read Level (dBuV)	Factor(dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Margin (dB)	Polarizatio
4960.00	57.02	-8.45	48.57	74.00	25.43	Vertical
4960.00	56.86	-8.45	48.41	74.00	25.59	Horizonta
		Dete	ctor: Average Va	llue		•
Frequency (MHz)	Read Level (dBuV)	Factor(dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Margin (dB)	Polarizatio
	48.53	-8.45	40.08	54.00	13.92	Vertical
4960.00		-			1	1

Coded PHY, S=8

			annel: Lowest ch			
		De	tector: Peak Valu			
Frequency (MHz)	Read Level (dBuV)	Factor(dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Margin (dB)	Polarizatio
4804.00	56.29	-9.60	46.69	74.00	27.31	Vertical
4804.00	55.47	-9.60	45.87	74.00	28.13	Horizonta
		Dete	ctor: Average Va	lue		
Frequency (MHz)	Read Level (dBuV)	Factor(dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Margin (dB)	Polarizatio
4804.00	49.10	-9.60	39.50	54.00	14.50	Vertical
4804.00	48.87	-9.60	39.27	54.00	14.73	Horizonta
		Test ch	annel: Middle ch	annel		
		Det	tector: Peak Valu	ie		
Frequency (MHz)	Read Level (dBuV)	Factor(dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Margin (dB)	Polarizatio
4884.00	56.14	-9.04	47.10	74.00	26.90	Vertical
4884.00	55.35	-9.04	46.31	74.00	27.69	Horizonta
		Dete	ctor: Average Va	llue		
Frequency (MHz)	Read Level (dBuV)	Factor(dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Margin (dB)	Polarizatio
4884.00	49.42	-9.04	40.38	54.00	13.62	Vertical
4884.00	48.68	-9.04	39.64	54.00	14.36	Horizonta
			annel: Highest ch tector: Peak Valu			
Frequency (MHz)	Read Level (dBuV)	Factor(dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Margin (dB)	Polarizati
4960.00	56.51	-8.45	48.06	74.00	25.94	Vertical
4960.00	55.29	-8.45	46.84	74.00	27.16	Horizonta
		Dete	ctor: Average Va	lue		
	Read Level (dBuV)	Factor(dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Margin (dB)	Polarizati
Frequency (MHz)	(0		,		. ,	Mantiaal
	49.24	-8.45	40.79	54.00	13.21	Vertical