TEST REPORT No. I18Z61384-WMD03 for LG Electronics USA, Inc. # Multi-band GSM/WCDMA/LTE phone with Bluetooth, WLAN Model Name: LM-X410YC, LMX410YC, X410YC FCC ID: ZNFX410YC with Hardware Version: Rev.1.0 **Software Version: V09p** Issued Date: 2018-08-27 #### Note: The test results in this test report relate only to the devices specified in this report. This report shall not be reproduced except in full without the written approval of CTTL. The report must not be used by the client to claim product certification, approval, or endorsement by NVLAP, NIST, or any agency of the U.S.Government. #### **Test Laboratory:** CTTL, Telecommunication Technology Labs, CAICT No. 52, Huayuan North Road, Haidian District, Beijing, P. R. China 100191. Tel:+86(0)10-62304633-2512, Fax:+86(0)10-62304633-2504 Email: cttl terminals@caict.ac.cn, website: www.caict.ac.cn # **REPORT HISTORY** | Report Number | Revision | Description | Issue Date | |-----------------|----------|-------------------------|------------| | I18Z61384-WMD03 | Rev.0 | 1 st edition | 2018-08-27 | # **CONTENTS** | 1. | TEST LABORATORY | 4 | |--------------|------------------------------------|----| | 1.1. | TESTING LOCATION | 4 | | 1.2. | TESTING ENVIRONMENT | 4 | | 1.3. | PROJECT DATA | 4 | | 1.4. | SIGNATURE | 4 | | 2. | CLIENT INFORMATION | 5 | | 2.1. | | | | 2.2. | MANUFACTURER INFORMATION | 5 | | | | | | 3.1. | | | | 3.2. | | | | 3.2.
3.3. | | | | | | | | 3.4. | | | | 4. | | | | 4.1. | REFERENCE DOCUMENTS FOR TESTING | 7 | | 5. | LABORATORY ENVIRONMENT | 8 | | 6. | SUMMARY OF TEST RESULTS | 9 | | 6.1. | SUMMARY OF TEST RESULTS | 9 | | 6.2. | STATEMENTS | 11 | | 6.3. | EXPLANATION OF RE-USE OF TEST DATA | 11 | | 7. | TEST EQUIPMENTS UTILIZED | 12 | | ANN | NEX A: MEASUREMENT RESULTS | 13 | | A | .1 OUTPUT POWER | 13 | | A | .2 EMISSION LIMIT | 27 | | Α | .3 FREQUENCY STABILITY | 36 | | Α | .4 OCCUPIED BANDWIDTH | 39 | | A | .5 EMISSION BANDWIDTH | 52 | | | .6 BAND EDGE COMPLIANCE | | | | .7 CONDUCTED SPURIOUS EMISSION | | | A | .8 PEAK-TO-AVERAGE POWER RATIO | 80 | | ΔΝΝ | NEX B. ACCREDITATION CERTIFICATE | 81 | # 1. Test Laboratory ### 1.1. Testing Location Location 1: CTTL(huayuan North Road) Address: No. 52, Huayuan North Road, Haidian District, Beijing, P. R. China 100191 Location 2: CTTL(Shouxiang) Address: No. 51 Shouxiang Science Building, Xueyuan Road, Haidian District, Beijing, P. R. China 100191 ### 1.2. Testing Environment Normal Temperature: $15-35^{\circ}$ C Relative Humidity: 20-75% 1.3. Project data Testing Start Date: 2018-03-11 Testing End Date: 2018-08-23 1.4. Signature **Dong Yuan** (Prepared this test report) 12 J Zhou Yu (Reviewed this test report) Zhao Hui Lin **Deputy Director of the laboratory** (Approved this test report) # 2. Client Information ### 2.1. Applicant Information Company Name: LG Electronics USA, Inc. Address /Post: 1000 Sylvan Avenue, Englewood Cliffs NJ 07632 Contact: \ Email: \ Telephone: \ ### 2.2. Manufacturer Information Company Name: LG Electronics Inc. LG Twin Tower 20, Yeouido-dong, Yeongdeungpo-gu Seoul, Korea Address /Post: 150-721 Contact: \ Email: \ Telephone: \ ### 3. Equipment Under Test (EUT) and Ancillary Equipment (AE) ### 3.1. About EUT Description Multi-band GSM/WCDMA/LTE phone with Bluetooth, WLAN Model Name LM-X410YC, LMX410YC, X410YC FCC ID ZNFX410YC Antenna Embedded Output power 24.77dBm maximum EIRP measured for Band 2 Extreme vol. Limits 3.6VDC to 4.2VDC (nominal: 3.8VDC) Extreme temp. Tolerance -10°C to +55 Note: Components list, please refer to documents of the manufacturer; it is also included in the original test record of CTTL, Telecommunication Technology Labs, Academy of Telecommunication Research, CAICT ### 3.2. Internal Identification of EUT used during the test | EUT ID* | IMEI | HW Version | SW Version | Date of receipt | |---------|-----------------|-------------------|------------|-----------------| | UT02a | 359419090000661 | Rev.1.0 | V09p | 2018-08-01 | | UT03a | 359419090001552 | Rev.1.0 | V09p | 2018-08-01 | ^{*}EUT ID: is used to identify the test sample in the lab internally. ### 3.3. Internal Identification of AE used during the test # AE ID* Description AE1 Battery AE2 Battery AE3 Charger AE1 Model BL-T36 Manufacturer Shenzhen BYD Lithium Battery Company Limited Capacitance 3000mAh AE2 Model BL-T36 Manufacturer TOCAD Capacitance 3000mAh AE3 Model EAY62768908 Manufacturer Sunlin Electronics Co.,Ltd. *AE ID: is used to identify the test sample in the lab internally. #### 3.4. General Description The Equipment Under Test (EUT) is a model of LM-X410YC, LMX410YC, X410YC with embedded antenna. Manual and specifications of the EUT were provided to fulfil the test. # 4. Reference Documents # 4.1. Reference Documents for testing The following documents listed in this section are referred for testing. | Ü | | | |----------------|--|---------| | Reference | Title | Version | | FCC Part 22 | PUBLIC MOBILE SERVICES | 10-1-17 | | | | Edition | | FCC Part 27 | MISCELLANEOUS WIRELESS COMMUNICATIONS | 10-1-17 | | | SERVICES | Edition | | ANSI/TIA-603-E | Land Mobile FM or PM Communications Equipment | 2016 | | | Measurement and Performance Standards | | | TIA-102.CAAA-E | DIGITAL C4FMCQPSK TRANSCEIVER MEASUREMENT | 2016 | | | METHODS | | | ANSI C63.26 | American National Standard for Compliance Testing of | 2015 | | | Transmitters Used in Licensed Radio Services | | | KDB 971168 D01 | MEASUREMENT GUIDANCE FOR CERTIFICATION OF | v03 | | | LICENSED DIGITAL TRANSMITTERS | | # 5. LABORATORY ENVIRONMENT Control room / conducted chamber did not exceed following limits along the EMC testing: | | <u> </u> | |--------------------------|----------------------------| | Temperature | Min. = 15 °C, Max. = 35 °C | | Relative humidity | Min. =20 %, Max. = 80 % | | Shielding effectiveness | > 110 dB | | Electrical insulation | >2 MΩ | | Ground system resistance | < 0.5 Ω | **Fully-anechoic chamber 2** (8.6 meters × 6.1 meters × 3.85 meters) did not exceed following limits along the EMC testing: | Temperature | Min. = 15 °C, Max. = 30 °C | |---|---| | Relative humidity | Min. = 35 %, Max. = 60 % | | Shielding effectiveness | > 110 dB | | Electrical insulation | >2 MΩ | | Ground system resistance | <1 Ω | | Site voltage standing-wave ratio (S _{VSWR}) | Between 0 and 6 dB, from 1GHz to 18GHz | | Uniformity of field strength | Between 0 and 6 dB, from 80 to 4000 MHz | **Semi-anechoic chamber 2 / Fully-anechoic chamber 3** (10 meters × 6.7 meters × 6.15 meters) did not exceed following limits along the EMC testing: | Temperature | Min. = 15 °C, Max. = 30 °C | |---|---| | Relative humidity | Min. = 35 %, Max. = 60 % | | Shielding effectiveness | > 100 dB | | Electrical insulation | >2 MΩ | | Ground system resistance | < 0.5 Ω | | Normalised site attenuation (NSA) | <±3.5 dB, 3 m distance | | Site voltage standing-wave ratio (S_{VSWR}) | Between 0 and 6 dB, from 1GHz to 18GHz | | Uniformity of field strength | Between 0 and 6 dB, from 80 to 3000 MHz | # 6. SUMMARY OF TEST RESULTS # 6.1. Summary of test results ### LTE Band 5 | Items | Test Name | Clause in FCC rules | Section in this report | Verdict | |-------|--------------------------------|--------------------------|------------------------|---------| | 1 | Output Power | §2.1046(a),
22.913(a) | A.1 | BR | | 2 | Emission Limit | 22.917,
2.1051 | A.2 | BR | | 3 | Frequency Stability | 22.235,
2.1055 | A.3 | BR | | 4 | Occupied Bandwidth | 2.1049(h)(i) | A.4 | BR | | 5 | Emission Bandwidth | 22.917(b) | A.5 | BR | | 6 | Band Edge
Compliance | 22.917(b) | A.6 | BR | | 7 | Conducted Spurious
Emission | 22.917,
2.1057 | A.7 | BR | ### LTE Band 7 | <i>a 1</i> | | | | | | |-----------------|-----------------------------|---------------------|-------------|---------|--| | Items Test Name | | Clause in | Section in | Verdict | | | | | FCC rules | this report | | | | 1 | Output Power | 27.50(h)(2) | A.1 | BR | | | 2 | Emission Limit | 27.53(m),
2.1051 | A.2 | BR | | | 3 | Frequency Stability | 27.54, 2.1055 | A.3 | BR | | | 4 | Occupied Bandwidth | 2.1049(h)(i) | A.4 | BR | | | 5 | Emission Bandwidth | 27.53(m) | A.5 | BR | | | 6 | Band Edge
Compliance | 27.53(m) | A.6 | BR | | | 7 | Conducted Spurious Emission | 27.53(m),
2.1057 | A.7 | BR | | | 8 | Peak to Average Power Ratio | 27.50(a) | A.8 | BR | | ### LTE Band 38 | Items | Test Name | Clause in FCC rules | Section in this report | Verdict | |-------|--------------------------------|---------------------|------------------------|---------| | 1 | Output Power | 27.50(h)(2) | A.1 | P | | l | Output Power | (/ (/ | A.I | Г | | 2 | Emission Limit | 27.53(m),
2.1051 | A.2 | Р | | 3 | Frequency Stability | 27.54, 2.1055 | A.3 | Р | | 4 | Occupied Bandwidth | 2.1049(h)(i) | A.4 | Р | | 5 | Emission Bandwidth | 27.53(m) | A.5 | Р | | 6 | Band Edge Compliance | 27.53(m) | A.6 | Р | | 7 | Conducted Spurious
Emission | 27.53(m),
2.1057 | A.7 | Р | | 8 | Peak to Average Power Ratio | 27.50(a) | A.8 | Р | ### Terms used in Verdict column | Р | Pass, The EUT complies with the essential requirements in the standard. | | | | |----|---|--|--|--| | NP | Not Perform, The test was not performed by CTTL | | | | | NA | Not Applicable, The test was not applicable | | | | | BR | Re-use test data from basic model report. | | | | | F | Fail, The EUT does not comply with the essential requirements in the | | | | | | standard | | | | #### 6.2. Statements The test cases listed in section 6.1 of this report for the EUT specified in section 3 were performed by CTTL according to the standards or reference documents in section 4.1 The EUT met all applicable requirements of
the standards or reference documents in section 4.1. This report only deals with the LTE functions among the features described in section 3. ### 6.3. Explanation of re-use of test data The Equipment Under Test (EUT) model LM-X410YC, LMX410YC, X410YC(FCC ID: ZNFX410YC) is a variant product of LM-X410HC,LMX410HC,X410HC;LM-X410RC,LMX410RC,X410RC (FCC ID: ZNFX410HC), according to the declaration of changes provided by the applicant and FCC KDB publication 484596 D01, only band 38 is tested, the other test results are derived from test report No.I18Z60356-WMD03. For detail differences between two models please refer the Declaration of Changes document. # 7. Test Equipments Utilized | NO. | Description | TYPE | series
number | MANUFACTURE | CAL DUE
DATE | Calibration interval | |-----|--|----------|------------------|--------------|-----------------|----------------------| | 1 | Test Receiver | ESU26 | 100235 | R&S | 2019-03-31 | 1 year | | 2 | Test Receiver | ESU26 | 100376 | R&S | 2018-12-27 | 1 year | | 3 | EMI Antenna | 3117 | 00058889 | ETS-Lindgren | 2020-05-27 | 3 year | | 4 | Universal Radio
Communication
Tester | CMU200 | 108646 | R&S | 2019-01-05 | 1 year | | 5 | Universal Radio
Communication
Tester | CMW500 | 159082 | R&S | 2019-01-05 | 1 year | | 6 | Spectrum
Analyzer | FSU26 | 200030 | R&S | 2019-06-04 | 1 year | | 7 | EMI Antenna | VULB9163 | 9163-235 | Schwarzbeck | 2019-05-10 | 3 year | | 8 | Signal Generator | SMF100A | 101295 | R&S | 2018-12-23 | 1 year | | 9 | Climate chamber | SH-242 | 93008556 | ESPEC | 2019-12-21 | 2 year | | 10 | Loop Antenna | HFH2-Z2 | 829324/007 | R&S | 2018-12-14 | 3 year | # **ANNEX A: MEASUREMENT RESULTS** ### **A.1 OUTPUT POWER** #### A.1.1 Summary During the process of testing, the EUT was controlled via Rhode & Schwarz Digital Radio Communication tester (CMW500) to ensure max power transmission and proper modulation. In all cases, output power is within the specified limits. #### A.1.2 Conducted #### A.1.2.1 Method of Measurements The EUT was set up for the max output power with pseudo random data modulation. These measurements were done at 3 frequencies (bottom, middle and top of operational frequency range) for each bandwidth. #### A.1.2.2 Measurement result #### LTE band 5 | Pandwidth | RB size/offset | Fraguanay (MUz) | Powe | r(dBm) | |-----------|----------------|-----------------|-------|--------| | Bandwidth | RB Size/Offset | Frequency (MHz) | QPSK | 16QAM | | | | 848.3 | 24.17 | 23.48 | | | 1 RB high | 836.5 | 24.26 | 23.40 | | | | 824.7 | 24.26 | 23.61 | | | | 848.3 | 24.20 | 23.48 | | | 1 RB low | 836.5 | 24.27 | 23.27 | | 1.4MHz | | 824.7 | 24.26 | 23.61 | | 1.4IVITZ | | 848.3 | 24.13 | 23.33 | | | 50% RB mid | 836.5 | 24.30 | 23.37 | | | | 824.7 | 24.23 | 23.47 | | | | 848.3 | 23.23 | 22.07 | | | 100% RB | 836.5 | 23.28 | 22.35 | | | | 824.7 | 23.28 | 22.13 | | | | 847.5 | 24.16 | 22.96 | | | 1 RB high | 836.5 | 24.33 | 23.60 | | | | 825.5 | 24.28 | 23.25 | | | | 847.5 | 24.16 | 23.01 | | 3MHz | 1 RB low | 836.5 | 24.32 | 23.60 | | SIVITZ | | 825.5 | 24.25 | 23.25 | | | | 847.5 | 23.31 | 22.37 | | | 50% RB mid | 836.5 | 23.41 | 22.44 | | | | 825.5 | 23.41 | 22.41 | | | 100% RB | 847.5 | 23.26 | 22.25 | | | | 836.5 | 23.36 | 22.38 | |--------|------------|-------|-------|-------| | | | 825.5 | 23.37 | 22.31 | | | | 846.5 | 24.22 | 23.22 | | | 1 RB high | 836.5 | 24.25 | 23.70 | | | | 826.5 | 24.31 | 23.34 | | | | 846.5 | 24.25 | 23.27 | | | 1 RB low | 836.5 | 24.26 | 23.69 | | 5MHz | | 826.5 | 24.26 | 23.27 | | SIVITZ | | 846.5 | 23.22 | 22.23 | | | 50% RB mid | 836.5 | 23.31 | 22.41 | | | | 826.5 | 23.33 | 22.32 | | | | 846.5 | 23.20 | 22.16 | | | 100% RB | 836.5 | 23.29 | 22.33 | | | | 826.5 | 23.32 | 22.23 | | | | 844.0 | 24.30 | 23.53 | | | 1 RB high | 836.5 | 24.35 | 23.29 | | | | 829.0 | 24.40 | 23.26 | | | | 844.0 | 24.35 | 23.61 | | | 1 RB low | 836.5 | 24.32 | 23.29 | | 10MHz | | 829.0 | 24.31 | 23.16 | | TOME | | 844.0 | 23.24 | 22.25 | | | 50% RB mid | 836.5 | 23.30 | 22.38 | | | | 829.0 | 23.29 | 22.31 | | | | 844.0 | 23.24 | 22.23 | | | 100% RB | 836.5 | 23.29 | 22.30 | | | | 829.0 | 23.34 | 22.29 | | | | | | | # LTE band 7 | Pandwidth | DD size/effect | Fragues 24 (MIII-) | Power | r(dBm) | |-----------|----------------|--------------------|-------|--------| | Bandwidth | RB size/offset | Frequency (MHz) | QPSK | 16QAM | | | | 2567.5 | 21.83 | 20.90 | | | 1 RB high | 2535 | 21.77 | 21.32 | | | | 2502.5 | 21.92 | 20.93 | | | | 2567.5 | 21.81 | 20.83 | | | 1 RB low | 2535 | 21.73 | 21.25 | | 5MHz | | 2502.5 | 21.91 | 20.92 | | SIVIFIZ | | 2567.5 | 20.84 | 19.96 | | | 50% RB mid | 2535 | 20.88 | 20.05 | | | | 2502.5 | 20.97 | 19.99 | | | | 2567.5 | 20.82 | 19.87 | | | 100% RB | 2535 | 20.88 | 19.97 | | | | 2502.5 | 20.97 | 19.92 | | | | 2565 | 21.90 | 20.81 | | | 1 RB high | 2535 | 21.94 | 21.34 | | | | 2505 | 22.02 | 20.98 | | | | 2565 | 21.79 | 20.63 | | | 1 RB low | 2535 | 21.78 | 21.14 | | 10MHz | | 2505 | 21.97 | 20.91 | | IUIVIMZ | | 2565 | 20.81 | 19.87 | | | 50% RB mid | 2535 | 20.90 | 19.97 | | | | 2505 | 20.97 | 20.07 | | | | 2565 | 20.80 | 19.84 | | | 100% RB | 2535 | 20.91 | 19.96 | | | | 2505 | 21.00 | 20.02 | | | | 2562.5 | 21.83 | 20.77 | | | 1 RB high | 2535 | 21.98 | 21.33 | | | | 2507.5 | 22.01 | 21.29 | | | | 2562.5 | 21.86 | 20.73 | | | 1 RB low | 2535 | 21.91 | 21.20 | | | | 2507.5 | 22.07 | 21.34 | | 15MHz | | 2562.5 | 20.85 | 19.83 | | | 50% RB mid | 2535 | 20.90 | 19.97 | | | 22,01.21110 | 2507.5 | 20.98 | 19.93 | | | | 2562.5 | 20.79 | 19.80 | | | 100% DD | | | | | | 100% RB | 2535 | 20.96 | 19.95 | | 621.11. | 4.557 | 2507.5 | 21.02 | 20.02 | | 20MHz | 1 RB high | 2560 | 21.88 | 21.34 | ©Copyright. All rights reserved by CTTL. | | 2535 | 21.99 | 21.41 | |------------|------|-------|-------| | | 2510 | 21.99 | 21.49 | | | 2560 | 21.92 | 21.38 | | 1 RB low | 2535 | 21.93 | 21.26 | | | 2510 | 22.04 | 21.33 | | | 2560 | 20.79 | 19.86 | | 50% RB mid | 2535 | 20.90 | 19.94 | | | 2510 | 20.94 | 20.02 | | | 2560 | 20.69 | 19.73 | | 100% RB | 2535 | 20.99 | 20.03 | | | 2510 | 21.02 | 20.08 | ### LTE band 38 | Pondwidth | DD size/effect | Fragues av (MIII-) | Power | (dBm) | |-----------|----------------|--------------------|-------------------------------|-------| | Bandwidth | RB size/offset | Frequency (MHz) | QPSK | 16QAM | | | | 2617.5 | 23.26 | 22.39 | | | 1 RB high | 2595.0 | 23.31 | 22.46 | | | | 2572.5 | 23.26 | 22.53 | | | | 2617.5 | 23.26 | 22.38 | | | 1 RB low | 2595.0 | 23.29 | 22.44 | | 5MHz | | 2572.5 | 23.26 | 22.53 | | SIVII IZ | | 2617.5 | 22.28 | 21.28 | | | 50% RB mid | 2595.0 | 22.27 | 21.22 | | | | 2572.5 | 22.23 | 21.29 | | | | 2617.5 | 22.29 | 21.25 | | | 100% RB | 2595.0 | 22.28 | 21.28 | | | | 2572.5 | 22.23 | 21.23 | | | | 2615.0 | 23.41 | 22.62 | | | 1 RB high | 2595.0 | 23.55 | 22.80 | | | | 2575.0 | 23.42 | 22.72 | | | | 2615.0 | 23.27 | 22.50 | | | 1 RB low | 2595.0 | 23.43 | 22.69 | | 10MHz | | 2575.0 | 23.34 | 22.63 | | TOWNIZ | | 2615.0 | 22.29 | 21.26 | | | 50% RB mid | 2595.0 | 22.30 | 21.27 | | | | 2575.0 | 22.24 | 21.24 | | | | 2615.0 | 22.27 | 21.25 | | | 100% RB | 2595.0 | 22.28 | 21.27 | | | | 2575.0 | 22.22 | 21.25 | | | | 2612.5 | 23.46 | 22.62 | | | 1 RB high | 2595.0 | 23.53 | 22.80 | | | | 2577.5 | 23.40 | 22.68 | | | | 2612.5 | 23.50 | 22.65 | | | 1 RB low | 2595.0 | 23.50 | 22.79 | | | | 2577.5 | 23.40 | 22.69 | | 15MHz | | 2612.5 | 22.35 | 21.28 | | | 50% RB mid | 2595.0 | 22.35 | 21.28 | | | 5576 RB IIIIG | 2577.5 | 22.31 | 21.26 | | | | + | | 21.32 | | | 4000/ DD | 2612.5 | 22.37 | | | | 100% RB | 2595.0 | 22.39 | 21.33 | | | | 2577.5 | 22.34 | 21.26 | | 20MHz | 1 RB high | 2610.0 | 23.74
©Copyright All right | 22.66 | ©Copyright. All rights reserved by CTTL. | | 2595.0 | 23.71 | 22.98 | |------------|--------|-------|-------| | | 2580.0 | 23.61 | 22.81 | | | 2610.0 | 23.71 | 22.65 | | 1 RB low | 2595.0 | 23.63 | 22.92 | | | 2580.0 | 23.56 | 22.77 | | | 2610.0 | 22.33 | 21.28 | | 50% RB mid | 2595.0 | 22.36 | 21.34 | | | 2580.0 | 22.30 | 21.25 | | | 2610.0 | 22.41 | 21.37 | | 100% RB | 2595.0 | 22.42 | 21.38 | | | 2580.0 | 22.35 | 21.32 | #### A.1.3 Radiated #### A.1.3.1 Description This is the test for the maximum radiated power from the EUT. Rule Part 22.913(a) specifies "Mobile stations are limited to 2.0 watts EIRP.". Rule Part 27.50(h)(2) specifies "Mobile stations are limited to 2.0 watts EIRP.". Rule Part 27.50(c) specifies "Portable stations (hand-held de-vices) are limited to 3 watts ERP.". Rule Part 27.50(a)(3) specifies "For mobile and portable stations transmitting in the 2305–2315 MHz band or the 2350–2360 MHz band, the average EIRP must not exceed 50 milliwatts within any 1 megahertz of authorized bandwidth, except that for mobile and portable stations compliant with 3GPP LTE standards or another advanced mobile broadband protocol that avoids concentrating energy at the edge of the operating band the average EIRP must not exceed 250 milliwatts within any 5 megahertz of authorized bandwidth but may exceed 50 milliwatts within any 1 megahertz of authorized bandwidth." #### A.1.3.2 Method of Measurement The measurements procedures in TIA-603E-2016 are used. 1. EUT was placed on a 1.5 meter high non-conductive stand at a 3 meter test distance from the receive antenna. A receiving antenna was placed on the antenna mast 3 meters from the EUT for emission measurements. The height of receiving antenna is 1.5m. The test setup refers to figure below. Detected emissions were maximized at each frequency by rotating the EUT through 360° and adjusting the receiving antenna polarization. The radiated emission measurements of all transmit frequencies in three channels (High, Middle, Low) were measured with peak detector. - 2. The EUT is then put into continuously transmitting mode at its maximum power level during the test. And the maximum value of the receiver should be recorded as (Pr). - 3. The EUT shall be
replaced by a substitution antenna. The test setup refers to figure below. In the chamber, a substitution antenna for the frequency band of interest is placed at the reference point of the chamber. An RF signal source for the frequency band of interest is connected to the substitution antenna with a cable that has been constructed to not interfere with the radiation pattern of the antenna. A power (P_{Mea}) is applied to the input of the substitution antenna. Adjust the level of the signal generator output until the value of the receiver reaches the previously recorded (P_{r}). The power of signal source (P_{Mea}) is recorded. The test should be performed by rotating the test item and adjusting the receiving antenna polarization. - 4. An amplifier should be connected to the Signal Source output port. And the cable should be connected between the amplifier and the substitution antenna. - The cable loss (P_{cl}) , the substitution antenna Gain (G_a) and the amplifier Gain (P_{Ag}) should be recorded after test. The measurement results are obtained as described below: Power (EIRP) = $$P_{Mea} - P_{Aq} - P_{cl} - G_a$$ - 5. This value is EIRP since the measurement is calibrated using an antenna of known gain (unit dBi) and known input power. - 6. ERP can be calculated from EIRP by subtracting the gain of the dipole, ERP = EIRP -2.15. ### A.1.3.3 Measurement result LTE Band 5- ERP 22.913(a) Limits: ≤38.45dBm (7W) LTE Band 5_1.4MHz_QPSK | Frequency(MHz) | P _{Mea} (dBm) | P _{cl} (dB) | P _{Ag} (dB) | Ga Antenna
Gain(dBi) | Correction (dB) | ERP(dBm) | Limit(dBm) | Margin(dB) | Polarization | |----------------|------------------------|----------------------|----------------------|-------------------------|-----------------|----------|------------|------------|--------------| | 824.70 | -29.30 | 2.26 | 45.79 | 0.95 | 2.15 | 21.85 | 38.45 | 16.60 | Н | | 836.50 | -28.53 | 2.26 | 45.66 | 0.82 | 2.15 | 22.36 | 38.45 | 16.09 | Н | | 848.30 | -29.22 | 2.27 | 45.55 | 0.80 | 2.15 | 21.55 | 38.45 | 16.90 | Н | ### LTE Band 5_3MHz_QPSK | Frequency(MHz) | P _{Mea} (dBm) | P _{cl} (dB) | P _{Ag} (dB) | Ga Antenna
Gain(dBi) | Correction (dB) | ERP(dBm) | Limit(dBm) | Margin(dB) | Polarization | |----------------|------------------------|----------------------|----------------------|-------------------------|-----------------|----------|------------|------------|--------------| | 825.50 | -29.32 | 2.26 | 45.79 | 0.94 | 2.15 | 21.82 | 38.45 | 16.63 | Н | | 836.50 | -28.55 | 2.26 | 45.66 | 0.82 | 2.15 | 22.34 | 38.45 | 16.11 | Н | | 847.50 | -29.20 | 2.27 | 45.56 | 0.81 | 2.15 | 21.59 | 38.45 | 16.86 | Н | ### LTE Band 5_5MHz_QPSK | Frequency(MHz) | P _{Mea} (dBm) | P _{cl} (dB) | P _{Ag} (dB) | Ga Antenna
Gain(dBi) | Correction (dB) | ERP(dBm) | Limit(dBm) | Margin(dB) | Polarization | |----------------|------------------------|----------------------|----------------------|-------------------------|-----------------|----------|------------|------------|--------------| | 826.50 | -29.21 | 2.25 | 45.77 | 0.93 | 2.15 | 21.89 | 38.45 | 16.56 | Н | | 836.50 | -28.59 | 2.26 | 45.66 | 0.82 | 2.15 | 22.30 | 38.45 | 16.15 | Н | | 846.50 | -29.18 | 2.26 | 45.56 | 0.82 | 2.15 | 21.61 | 38.45 | 16.84 | Н | #### LTE Band 5_10MHz_QPSK | Frequency(MHz) | P _{Mea} (dBm) | P _{cl} (dB) | P _{Ag} (dB) | Ga Antenna
Gain(dBi) | Correction
(dB) | ERP(dBm) | Limit(dBm) | Margin(dB) | Polarization | |----------------|------------------------|----------------------|----------------------|-------------------------|--------------------|----------|------------|------------|--------------| | 829.00 | -28.84 | 2.13 | 45.74 | 0.90 | 2.15 | 22.08 | 38.45 | 16.37 | Н | | 836.50 | -28.48 | 2.26 | 45.66 | 0.82 | 2.15 | 22.41 | 38.45 | 16.04 | Н | | 844.00 | -28.97 | 2.26 | 45.59 | 0.82 | 2.15 | 21.85 | 38.45 | 16.60 | Н | ### LTE Band 5_1.4MHz_16QAM | Frequency(MHz) P _{Mea} (dBm) | D (dDm) | Mea(dBm) P _{cl} (dB) | D (4D) D (4D) | Ga Antenna | Correction | ERP(dBm) | dBm) Limit(dBm) | Margin(dB) | Polarization | |---------------------------------------|----------------------|-------------------------------|---------------|------------|------------|---------------|-----------------|-------------|--------------| | | F _{cl} (ub) | P _{Ag} (dB) | Gain(dBi) | (dB) | EKF(UBIII) | Lillit(dBill) | Wargin(ub) | Folanzation | | | 824.70 | -30.20 | 2.26 | 45.79 | 0.95 | 2.15 | 20.95 | 38.45 | 17.50 | Н | | 836.50 | -29.40 | 2.26 | 45.66 | 0.82 | 2.15 | 21.49 | 38.45 | 16.96 | Н | | 848.30 | -30.30 | 2.27 | 45.55 | 0.80 | 2.15 | 20.47 | 38.45 | 17.98 | Н | # LTE Band 5_3MHz_16QAM | Frequency(MHz) | P _{Mea} (dBm) | P _{cl} (dB) | P _{Ag} (dB) | Ga Antenna
Gain(dBi) | Correction (dB) | ERP(dBm) | Limit(dBm) | Margin(dB) | Polarization | |----------------|------------------------|----------------------|----------------------|-------------------------|-----------------|----------|------------|------------|--------------| | 825.50 | -30.22 | 2.26 | 45.79 | 0.94 | 2.15 | 20.92 | 38.45 | 17.53 | Н | | 836.50 | -29.45 | 2.26 | 45.66 | 0.82 | 2.15 | 21.44 | 38.45 | 17.01 | Н | | 847.50 | -30.29 | 2.27 | 45.56 | 0.81 | 2.15 | 20.50 | 38.45 | 17.95 | Н | ### LTE Band 5_5MHz_16QAM | Frequency(MHz) | P _{Mea} (dBm) | P _{cl} (dB) | P _{Ag} (dB) | Ga Antenna
Gain(dBi) | Correction (dB) | ERP(dBm) | Limit(dBm) | Margin(dB) | Polarization | |----------------|------------------------|----------------------|----------------------|-------------------------|-----------------|----------|------------|------------|--------------| | 826.50 | -30.01 | 2.25 | 45.77 | 0.93 | 2.15 | 21.09 | 38.45 | 17.36 | Н | | 836.50 | -29.55 | 2.26 | 45.66 | 0.82 | 2.15 | 21.34 | 38.45 | 17.11 | Н | | 846.50 | -30.09 | 2.26 | 45.56 | 0.82 | 2.15 | 20.70 | 38.45 | 17.75 | Н | ### LTE Band 5_10MHz_16QAM | Frequency(MHz) | P _{Mea} (dBm) | P _{cl} (dB) | P _{Ag} (dB) | Ga Antenna
Gain(dBi) | Correction (dB) | ERP(dBm) | Limit(dBm) | Margin(dB) | Polarization | |----------------|------------------------|----------------------|----------------------|-------------------------|-----------------|----------|------------|------------|--------------| | 829.00 | -29.76 | 2.13 | 45.74 | 0.90 | 2.15 | 21.16 | 38.45 | 17.29 | Н | | 836.50 | -29.38 | 2.26 | 45.66 | 0.82 | 2.15 | 21.51 | 38.45 | 16.94 | Н | | 844.00 | -29.99 | 2.26 | 45.59 | 0.82 | 2.15 | 20.83 | 38.45 | 17.62 | Н | ### LTE Band 7- EIRP 27.50(h)(2) **Limits:** ≤33 dBm (2W) # LTE Band 7_5MHz_QPSK | Frequency(MHz) | P _{Mea} (dBm) | P _{cl} (dB) | P _{Ag} (dB) | Ga Antenna Gain(dBi) | EIRP(dBm) | Limit(dBm) | Margin(dB) | Polarization | |----------------|------------------------|----------------------|----------------------|----------------------|-----------|------------|------------|--------------| | 2502.50 | -36.08 | 3.58 | 45.68 | 6.10 | 19.28 | 33.00 | 13.72 | Н | | 2535.00 | -34.41 | 3.63 | 44.82 | 6.16 | 20.20 | 33.00 | 12.80 | Н | | 2567.50 | -34.90 | 3.65 | 44.92 | 6.22 | 19.89 | 33.00 | 13.11 | Н | ### LTE Band 7_10MHz_QPSK | Frequency(MHz) | P _{Mea} (dBm) | P _{cl} (dB) | P _{Ag} (dB) | Ga Antenna Gain(dBi) | EIRP(dBm) | Limit(dBm) | Margin(dB) | Polarization | |----------------|------------------------|----------------------|----------------------|----------------------|-----------|------------|------------|--------------| | 2505.00 | -35.84 | 3.59 | 45.64 | 6.11 | 19.50 | 33.00 | 13.50 | Н | | 2535.00 | -34.29 | 3.63 | 44.82 | 6.16 | 20.32 | 33.00 | 12.68 | Н | | 2565.00 | -34.76 | 3.65 | 44.97 | 6.22 | 20.08 | 33.00 | 12.92 | Н | ### LTE Band 7_15MHz_QPSK | Frequency(MHz) | P _{Mea} (dBm) | P _{cl} (dB) | P _{Ag} (dB) | Ga Antenna Gain(dBi) | EIRP(dBm) | Limit(dBm) | Margin(dB) | Polarization | |----------------|------------------------|----------------------|----------------------|----------------------|-----------|------------|------------|--------------| | 2507.50 | -34.98 | 3.59 | 44.92 | 6.11 | 19.64 | 33.00 | 13.36 | Н | | 2535.00 | -34.30 | 3.63 | 44.82 | 6.16 | 20.31 | 33.00 | 12.69 | Н | | 2562.50 | -35.36 | 3.65 | 45.67 | 6.21 | 20.17 | 33.00 | 12.83 | Н | ### LTE Band 7_20MHz_QPSK | Frequency(MHz) | P _{Mea} (dBm) | P _{cl} (dB) | P _{Ag} (dB) | Ga Antenna Gain(dBi) | EIRP(dBm) | Limit(dBm) | Margin(dB) | Polarization | |----------------|------------------------|----------------------|----------------------|----------------------|-----------|------------|------------|--------------| | 2510.00 | -35.28 | 3.58 | 45.36 | 6.12 | 19.78 | 33.00 | 13.22 | Н | | 2535.00 | -34.28 | 3.63 | 44.82 | 6.16 | 20.33 | 33.00 | 12.67 | Н | | 2560.00 | -35.64 | 3.64 | 45.98 | 6.21 | 20.19 | 33.00 | 12.81 | Н | ### LTE Band 7_5MHz_16QAM | Frequency(MHz) | P _{Mea} (dBm) | P _{cl} (dB) | P _{Ag} (dB) | Ga Antenna Gain(dBi) | EIRP(dBm) | Limit(dBm) | Margin(dB) | Polarization | |----------------|------------------------|----------------------|----------------------|----------------------|-----------|------------|------------|--------------| | 2502.50 | -36.92 | 3.58 | 45.68 | 6.10 | 18.44 | 33.00 | 14.56 | Н | | 2535.00 | -35.19 | 3.63 | 44.82 | 6.16 | 19.42 | 33.00 | 13.58 | Н | | 2567.50 | -35.88 | 3.65 | 44.92 | 6.22 | 18.91 | 33.00 | 14.09 | Н | # LTE Band 7_10MHz_16QAM | Frequency(MHz) | P _{Mea} (dBm) | P _{cl} (dB) | P _{Ag} (dB) | Ga Antenna Gain(dBi) | EIRP(dBm) | Limit(dBm) | Margin(dB) | Polarization | |----------------|------------------------|----------------------|----------------------|----------------------|-----------|------------|------------|--------------| | 2505.00 | -36.76 | 3.59 | 45.64 | 6.11 | 18.58 | 33.00 | 14.42 | Н | | 2535.00 | -35.17 | 3.63 | 44.82 | 6.16 | 19.44 | 33.00 | 13.56 | Н | | 2565.00 | -35.86 | 3.65 | 44.97 | 6.22 | 18.98 | 33.00 | 14.02 | Н | # LTE Band 7_15MHz_16QAM | Frequency(MHz) | P _{Mea} (dBm) | P _{cl} (dB) | P _{Ag} (dB) | Ga Antenna Gain(dBi) | EIRP(dBm) | Limit(dBm) | Margin(dB) | Polarization | |----------------|------------------------
----------------------|----------------------|----------------------|-----------|------------|------------|--------------| | 2507.50 | -35.87 | 3.59 | 44.92 | 6.11 | 18.75 | 33.00 | 14.25 | Н | | 2535.00 | -35.15 | 3.63 | 44.82 | 6.16 | 19.46 | 33.00 | 13.54 | Н | | 2562.50 | -36.49 | 3.65 | 45.67 | 6.21 | 19.04 | 33.00 | 13.96 | Н | # LTE Band 7_20MHz_16QAM | Frequency(MHz) | P _{Mea} (dBm) | P _{cl} (dB) | P _{Ag} (dB) | Ga Antenna Gain(dBi) | EIRP(dBm) | Limit(dBm) | Margin(dB) | Polarization | |----------------|------------------------|----------------------|----------------------|----------------------|-----------|------------|------------|--------------| | 2510.00 | -36.30 | 3.58 | 45.36 | 6.12 | 18.76 | 33.00 | 14.24 | Н | | 2535.00 | -35.13 | 3.63 | 44.82 | 6.16 | 19.48 | 33.00 | 13.52 | Н | | 2560.00 | -36.75 | 3.64 | 45.98 | 6.21 | 19.08 | 33.00 | 13.92 | Н | ### LTE Band 38- EIRP Part 27.50(h)(2) **Limits:** ≤33dBm (2W) ### LTE Band 38_5MHz_QPSK | Frequency(MH: | P _{Mea} (dBm) | P _{cl} (dB) | P _{Ag} (dB) | Ga Antenna Gain(dBi) | EIRP(dBm) | Limit(dBm) | Margin(dB) | Polarization | |---------------|------------------------|----------------------|----------------------|----------------------|-----------|------------|------------|--------------| | 2572.50 | -29.54 | 3.66 | 44.92 | 6.23 | 17.95 | 33.00 | 15.05 | Н | | 2595.00 | -30.05 | 3.68 | 44.91 | 6.27 | 17.45 | 33.00 | 15.55 | Н | | 2617.50 | -31.18 | 3.68 | 44.94 | 6.31 | 16.39 | 33.00 | 16.61 | Н | ### LTE Band 38_10MHz_QPSK | Frequency(MHz) | P _{Mea} (dBm) | P _{cl} (dB) | P _{Ag} (dB) | Ga Antenna Gain(dBi) | EIRP(dBm) | Limit(dBm) | Margin(dB) | Polarization | |----------------|------------------------|----------------------|----------------------|----------------------|-----------|------------|------------|--------------| | 2575.00 | -29.54 | 3.66 | 44.92 | 6.23 | 17.95 | 33.00 | 15.05 | Н | | 2595.00 | -29.90 | 3.68 | 44.91 | 6.27 | 17.60 | 33.00 | 15.40 | Н | | 2615.00 | -30.92 | 3.68 | 44.94 | 6.31 | 16.65 | 33.00 | 16.35 | Н | ### LTE Band 38_15MHz_QPSK | Frequency(MHz) | P _{Mea} (dBm) | P _{cl} (dB) | P _{Ag} (dB) | Ga Antenna Gain(dBi) | EIRP(dBm) | Limit(dBm) | Margin(dB) | Polarization | |----------------|------------------------|----------------------|----------------------|----------------------|-----------|------------|------------|--------------| | 2577.50 | -29.52 | 3.66 | 44.92 | 6.23 | 17.97 | 33.00 | 15.03 | Н | | 2595.00 | -29.88 | 3.68 | 44.91 | 6.27 | 17.62 | 33.00 | 15.38 | Н | | 2612.50 | -30.65 | 3.68 | 44.94 | 6.30 | 16.91 | 33.00 | 16.09 | Н | #### LTE Band 38_20MHz_QPSK | Frequency(MHz) | P _{Mea} (dBm) | P _{cl} (dB) | P _{Ag} (dB) | Ga Antenna Gain(dBi) | EIRP(dBm) | Limit(dBm) | Margin(dB) | Polarization | |----------------|------------------------|----------------------|----------------------|----------------------|-----------|------------|------------|--------------| | 2580.00 | -29.62 | 3.67 | 44.92 | 6.24 | 17.87 | 33.00 | 15.13 | Н | | 2595.00 | -29.86 | 3.68 | 44.91 | 6.27 | 17.64 | 33.00 | 15.36 | Н | | 2610.00 | -30.69 | 3.68 | 44.94 | 6.30 | 16.87 | 33.00 | 16.13 | Н | #### LTE Band 38_5MHz_16QAM | Frequency(MHz) | P _{Mea} (dBm) | P _{cl} (dB) | P _{Ag} (dB) | Ga Antenna Gain(dBi) | EIRP(dBm) | Limit(dBm) | Margin(dB) | Polarization | |----------------|------------------------|----------------------|----------------------|----------------------|-----------|------------|------------|--------------| | 2572.50 | -30.41 | 3.66 | 44.92 | 6.23 | 17.08 | 33.00 | 15.92 | Н | | 2595.00 | -30.91 | 3.68 | 44.91 | 6.27 | 16.59 | 33.00 | 16.41 | Н | | 2617.50 | -32.24 | 3.68 | 44.94 | 6.31 | 15.33 | 33.00 | 17.67 | Н | ### LTE Band 38_10MHz_16QAM | Frequency(MHz) | P _{Mea} (dBm) | P _{cl} (dB) | P _{Ag} (dB) | Ga Antenna Gain(dBi) | EIRP(dBm) | Limit(dBm) | Margin(dB) | Polarization | |----------------|------------------------|----------------------|----------------------|----------------------|-----------|------------|------------|--------------| | 2575.00 | -30.50 | 3.66 | 44.92 | 6.23 | 16.99 | 33.00 | 16.01 | Н | | 2595.00 | -30.89 | 3.68 | 44.91 | 6.27 | 16.61 | 33.00 | 16.39 | Н | | 2615.00 | -31.95 | 3.68 | 44.94 | 6.31 | 15.62 | 33.00 | 17.38 | Н | ### LTE Band 38_15MHz_16QAM | Frequency(MHz) | P _{Mea} (dBm) | P _{cl} (dB) | P _{Ag} (dB) | Ga Antenna Gain(dBi) | EIRP(dBm) | Limit(dBm) | Margin(dB) | Polarization | |----------------|------------------------|----------------------|----------------------|----------------------|-----------|------------|------------|--------------| | 2577.50 | -30.44 | 3.66 | 44.92 | 6.23 | 17.05 | 33.00 | 15.95 | Н | | 2595.00 | -30.85 | 3.68 | 44.91 | 6.27 | 16.65 | 33.00 | 16.35 | Н | | 2612.50 | -31.71 | 3.68 | 44.94 | 6.30 | 15.85 | 33.00 | 17.15 | Н | #### LTE Band 38_20MHz_16QAM | Frequency(MHz) | P _{Mea} (dBm) | P _{cl} (dB) | P _{Ag} (dB) | Ga Antenna Gain(dBi) | EIRP(dBm) | Limit(dBm) | Margin(dB) | Polarization | |----------------|------------------------|----------------------|----------------------|----------------------|-----------|------------|------------|--------------| | 2580.00 | -30.63 | 3.67 | 44.92 | 6.24 | 16.86 | 33.00 | 16.14 | Н | | 2595.00 | -30.72 | 3.68 | 44.91 | 6.27 | 16.78 | 33.00 | 16.22 | Н | | 2610.00 | -31.71 | 3.68 | 44.94 | 6.30 | 15.85 | 33.00 | 17.15 | Н | Peak ERP(dBm)= P_{Mea} (-26.65dBm)- P_{cl} (2.85dB)- P_{Ag} (-43.75dB)- G_a (-4.82dBi)-2.15dB=24.77 dBm **ANALYZER SETTINGS**: RBW = VBW = 8MHz for occupied bandwdiths equal to or less than 5MHz. RBW = VBW = 20MHz for occupied bandwidths equal to or greater than 10MHz. Note: Expanded measurement uncertainty is U = 0.96 dB, k = 2. ### A.2 EMISSION LIMIT #### A.2.1 Measurement Method The measurements procedures in TIA-603E-2016 are used. This measurement is carried out in fully-anechoic chamber FAC-3. The spectrum was scanned from 30 MHz to the 10th harmonic of the highest frequency generated within the equipment, which is the transmitted carrier. The resolution bandwidth is set 1MHz. The spectrum was scanned with the mobile station transmitting at carrier frequencies that pertain to low, mid and high channels of the LTE Bands 5 7 38 . #### The procedure of radiated spurious emissions is as follows: 1. EUT was placed on a 1.5 meter high non-conductive stand at a 3 meter test distance from the receive antenna. A receiving antenna was placed on the antenna mast 3 meters from the EUT for emission measurements. The height of receiving antenna is 1.5m. The test setup refers to figure below. Detected emissions were maximized at each frequency by rotating the EUT through 360° and adjusting the receiving antenna polarization. The radiated emission measurements of all non-harmonic and harmonics of the transmit frequency through the 10th harmonic were measured with peak detector. - 2. The EUT is then put into continuously transmitting mode at its maximum power level during the test. And the maximum value of the receiver should be recorded as (Pr). - 3. The EUT shall be replaced by a substitution antenna. The test setup refers to figure below. In the chamber, an substitution antenna for the frequency band of interest is placed at the reference point of the chamber. An RF Signal source for the frequency band of interest is connected to the substitution antenna with a cable that has been constructed to not interfere with the radiation pattern of the antenna. A power (P_{Mea}) is applied to the input of the substitution antenna. Adjust the level of the signal generator output until the value of the receiver reaches the previously recorded (P_r). The power of signal source (P_{Mea}) is recorded. The test should be performed by rotating the test item and adjusting the receiving antenna polarization. - 4. The Path loss (P_{pl}) between the Signal Source with the Substitution Antenna and the Substitution Antenna Gain (G_a) should be recorded after test. - An amplifier should be connected in for the test. - The Path loss (P_{pl}) is the summation of the cable loss and the gain of the amplifier. - The measurement results are obtained as described below: - Power (EIRP)= $P_{Mea} + P_{pl} + G_a$ - 5. This value is EIRP since the measurement is calibrated using an antenna of known gain (unit: dBi) and known input power. - 6. ERP can be calculated from EIRP by subtracting the gain of the dipole, ERP = EIRP -2.15dB. #### A.2.2 Measurement Limit Part 22.917, Part 27.53(g), Part 27.53(h) specify that the power of any emission outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least 43 + 10 log(P) dB. The specification that emissions shall be attenuated below the transmitter power (P) by at least 43 + 10 log (P) dB, translates in the relevant power range (1 to 0.001 W) to -13 dBm. At 1 W the specified minimum attenuation becomes 43 dB and relative to a 30 dBm (1 W) carrier becomes a limit of -13 dBm. At 0.001 W (0 dBm) the minimum attenuation is 13 dB, which again yields a limit of -13 dBm. In this way a translation of the specification from relative to absolute terms is carried out. Part 27.53(a) states for mobile and portable stations operating in the 2305–2315 MHz and 2350–2360 MHz bands: By a factor of not less than: 43 +10 log (P) dB on all frequencies between 2305 and 2320 MHz and on all frequencies between 2345 and 2360 MHz that are outside the licensed band(s) of operation, not less than 55 + 10 log (P) dB on all frequencies between 2320 and 2324 MHz and on all frequencies between 2341 and 2345 MHz, not less than 61 + 10 log (P) dB on all frequencies between 2324 and 2328 MHz and on all frequencies between 2337 and 2341 MHz, and not less than 67 + 10 log (P) dB onall frequencies between 2328 and 2337MHz; By a factor of not less than 43 + 10 log (P) dB on all frequencies between 2300 and 2305 MHz, 55 + 10 log (P) dB on all frequencies between 2296 and 2300MHz, 61 + 10 log (P) dB on all frequencies between 2292
and 2296 MHz, 67 + 10 log (P) dB on all frequencies between 2288 and 2292 MHz, and 70 + 10 log (P) dB below 2288 MHz; By a factor of not less than 43 + 10 log (P) dB on all frequencies between 2360 and 2365 MHz, and not less than 70 + 10 log (P) dB above 2365 MHz. #### A.2.3 Measurement Results Radiated emissions measurements were made only at the upper, middle, and lower carrier frequencies of the LTE Bands 5 7 38. It was decided that measurements at these three carrier frequencies would be sufficient to demonstrate compliance with emissions limits because it was seen that all the significant spurs occur well outside the band and no radiation was seen from a carrier in one block of the LTE Bands 5 7 38 into any of the other blocks. The equipment must still, however, meet emissions requirements with the carrier at all frequencies over which it is capable of operating and it is the manufacturer's responsibility to verify this. The evaluated frequency range is from 30MHz to 26GHz. ### LTE Band 5, 1.4MHz, QPSK, Channel 20407 | Frequency(MHz) P _{Mea} (dBi | D (dDm) | Path | Antenna | Correction | Peak | Limit | Morgin(dD) | Polarization | |--------------------------------------|--------------------------|------|---------|------------|--------|----------|------------|--------------| | | P _{Mea} (ubiii) | Loss | Loss | Gain | (dB) | ERP(dBm) | (dBm) | Margin(dB) | | 1650.01 | -46.92 | 3.57 | 5.23 | 2.15 | -47.41 | -13.00 | 34.41 | Н | | 2474.00 | -46.86 | 4.60 | 6.02 | 2.15 | -47.59 | -13.00 | 34.59 | Н | | 3299.02 | -38.25 | 5.29 | 7.72 | 2.15 | -37.97 | -13.00 | 24.97 | V | | 4129.02 | -43.92 | 6.05 | 9.03 | 2.15 | -43.09 | -13.00 | 30.09 | Н | | 4963.01 | -56.03 | 6.67 | 9.86 | 2.15 | -54.99 | -13.00 | 41.99 | Н | | 5765.01 | -54.99 | 7.24 | 10.55 | 2.15 | -53.83 | -13.00 | 40.83 | Н | ### LTE Band 5, 1.4MHz, QPSK, Channel 20525 | Frequency(MHz) P _{Mea} (dBm) | D (dBm) | Path | Antenna | Correction | Peak | Limit | Margin(dB) | Polarization | |---------------------------------------|--------------------------|------|---------|------------|----------|--------|------------|--------------| | | r _{Mea} (ubiii) | Loss | Gain | (dB) | ERP(dBm) | (dBm) | Margin(db) | Folalization | | 1673.01 | -46.44 | 3.58 | 5.19 | 2.15 | -46.98 | -13.00 | 33.98 | Н | | 2510.00 | -47.16 | 4.63 | 6.12 | 2.15 | -47.82 | -13.00 | 34.82 | Н | | 3347.02 | -37.77 | 5.32 | 7.83 | 2.15 | -37.41 | -13.00 | 24.41 | V | | 4189.02 | -49.72 | 6.18 | 9.09 | 2.15 | -48.96 | -13.00 | 35.96 | Н | | 5006.01 | -55.85 | 6.59 | 9.91 | 2.15 | -54.68 | -13.00 | 41.68 | Н | | 5855.01 | -54.00 | 7.25 | 10.53 | 2.15 | -52.87 | -13.00 | 39.87 | Н | # LTE Band 5, 1.4MHz, QPSK, Channel 20643 | Fragues (MHz) | D (dDm) | Path | Antenna | Correction | Peak | Limit | Margin(dD) | Polarization | | |---------------------------------------|------------------------|------|---------|------------|----------|--------|------------|--------------|--| | Frequency(MHz) P _{Mea} (dBm) | P _{Mea} (dBm) | Loss | Gain | (dB) | ERP(dBm) | (dBm) | Margin(dB) | Polanzation | | | 1697.01 | -47.45 | 3.60 | 5.15 | 2.15 | -48.05 | -13.00 | 35.05 | Н | | | 2545.00 | -43.87 | 4.66 | 6.18 | 2.15 | -44.50 | -13.00 | 31.50 | Н | | | 3394.02 | -33.62 | 5.36 | 7.95 | 2.15 | -33.18 | -13.00 | 20.18 | Н | | | 4248.02 | -44.08 | 6.24 | 9.15 | 2.15 | -43.32 | -13.00 | 30.32 | Н | | | 5090.01 | -50.18 | 6.74 | 10.03 | 2.15 | -49.04 | -13.00 | 36.04 | V | | | 5935.01 | -52.83 | 7.47 | 10.51 | 2.15 | -51.94 | -13.00 | 38.94 | Н | | ### LTE Band 5, 1.4MHz, 16QAM, Channel 20407 | Frequency(MHz) P _{Mea} (dE | D (dDm) | Path | Antenna | Correction | Peak | Limit | Morgin(dD) | Polarization | |-------------------------------------|--------------------------|------|---------|------------|----------|--------|------------|--------------| | | P _{Mea} (dbiii) | Loss | Gain | (dB) | ERP(dBm) | (dBm) | Margin(dB) | Polarization | | 1650.01 | -45.72 | 3.57 | 5.23 | 2.15 | -46.21 | -13.00 | 33.21 | Н | | 2474.00 | -52.09 | 4.60 | 6.02 | 2.15 | -52.82 | -13.00 | 39.82 | V | | 3303.02 | -55.19 | 5.29 | 7.73 | 2.15 | -54.90 | -13.00 | 41.90 | Н | | 4109.02 | -56.28 | 6.04 | 9.01 | 2.15 | -55.46 | -13.00 | 42.46 | Н | | 4942.01 | -55.42 | 6.70 | 9.84 | 2.15 | -54.43 | -13.00 | 41.43 | Н | | 5774.01 | -54.00 | 7.23 | 10.55 | 2.15 | -52.83 | -13.00 | 39.83 | Н | ### LTE Band 5, 1.4MHz, 16QAM, Channel 20525 | Frequency(MHz) | P _{Mea} (dBm) | Path
Loss | Antenna
Gain | Correction (dB) | Peak
ERP(dBm) | Limit
(dBm) | Margin(dB) | Polarization | |----------------|------------------------|--------------|-----------------|-----------------|------------------|----------------|------------|--------------| | 1673.01 | -46.02 | 3.58 | 5.19 | 2.15 | -46.56 | -13.00 | 33.56 | Н | | 2504.00 | -52.63 | 4.63 | 6.11 | 2.15 | -53.30 | -13.00 | 40.30 | V | | 3347.02 | -55.16 | 5.32 | 7.83 | 2.15 | -54.80 | -13.00 | 41.80 | Н | | 4176.02 | -55.65 | 6.15 | 9.08 | 2.15 | -54.87 | -13.00 | 41.87 | Н | | 5007.01 | -55.05 | 6.59 | 9.91 | 2.15 | -53.88 | -13.00 | 40.88 | V | | 5865.01 | -53.77 | 7.28 | 10.53 | 2.15 | -52.67 | -13.00 | 39.67 | V | # LTE Band 5, 1.4MHz, 16QAM, Channel 20643 | Fragues (MHz) | D (dDm) | Path | Antenna | Correction | Peak | Limit | Margin(dD) | Polarization | |----------------|------------------------|------|---------|------------|----------|--------|------------|--------------| | Frequency(MHz) | P _{Mea} (dBm) | Loss | Gain | (dB) | ERP(dBm) | (dBm) | Margin(dB) | Polarization | | 1697.01 | -46.46 | 3.60 | 5.15 | 2.15 | -47.06 | -13.00 | 34.06 | Н | | 2545.00 | -50.78 | 4.66 | 6.18 | 2.15 | -51.41 | -13.00 | 38.41 | Н | | 3393.02 | -55.84 | 5.36 | 7.94 | 2.15 | -55.41 | -13.00 | 42.41 | V | | 4248.02 | -55.90 | 6.24 | 9.15 | 2.15 | -55.14 | -13.00 | 42.14 | Н | | 5092.01 | -55.60 | 6.75 | 10.03 | 2.15 | -54.47 | -13.00 | 41.47 | Н | | 5939.01 | -53.25 | 7.47 | 10.51 | 2.15 | -52.36 | -13.00 | 39.36 | V | ### LTE Band 7, 5 MHz, QPSK, Channel 20775 | Frequency(M
Hz) | P _{Mea} (dBm) | Path
Loss | Antenn
a Gain | Peak
EIRP(dBm
) | Limit
(dBm) | Margin(dB | Polarizatio
n | |--------------------|------------------------|--------------|------------------|-----------------------|----------------|-----------|------------------| | 5006.02 | -50.23 | 6.59 | 9.91 | -46.91 | -13.00 | 33.91 | H | | 7506.01 | -54.59 | 8.37 | 12.20 | -50.76 | -13.00 | 37.76 | Н | | 10014.01 | -52.86 | 9.22 | 12.91 | -49.17 | -13.00 | 36.17 | H | | 12506.01 | -49.14 | 10.19 | 13.20 | -46.13 | -13.00 | 33.13 | H | | 15027.00 | -46.00 | 11.25 | 13.98 | -43.27 | -13.00 | 30.27 | V | | 17527.00 | -42.86 | 12.83 | 14.94 | -40.75 | -13.00 | 27.75 | Н | ### LTE Band 7, 5 MHz, QPSK, Channel 21100 | Frequency(M
Hz) | P _{Mea} (dBm) | Path
Loss | Antenn
a Gain | Peak
EIRP(dBm
) | Limit
(dBm) | Margin(dB | Polarizatio
n | |--------------------|------------------------|--------------|------------------|-----------------------|----------------|-----------|------------------| | 5071.02 | -52.70 | 6.69 | 10.00 | -49.39 | -13.00 | 36.39 | Н | | 7599.01 | -54.89 | 7.98 | 12.28 | -50.59 | -13.00 | 37.59 | Н | | 10124.01 | -52.74 | 9.42 | 12.95 | -49.21 | -13.00 | 36.21 | H | | 12675.01 | -49.56 | 10.34 | 13.31 | -46.59 | -13.00 | 33.59 | V | | 15199.00 | -45.67 | 11.40 | 13.88 | -43.19 | -13.00 | 30.19 | Н | | 17740.00 | -43.44 | 12.40 | 15.24 | -40.60 | -13.00 | 27.60 | Н | # LTE Band 7, 5 MHz, QPSK, Channel 21425 | Frequency(M
Hz) | P _{Mea} (dBm) | Path
Loss | Antenn
a Gain | Peak
EIRP(dBm
) | Limit
(dBm) | Margin(dB | Polarizatio
n | |--------------------|------------------------|--------------|------------------|-----------------------|----------------|-----------|------------------| | 5140.02 | -55.18 | 6.87 | 10.10 | -51.95 | -13.00 | 38.95 | Н | | 7703.01 | -48.52 | 8.42 | 12.36 | -44.58 | -13.00 | 31.58 | V | | 10283.01 | -49.49 | 9.58 | 13.01 | -46.06 | -13.00 | 33.06 | Н | | 12825.01 | -48.37 | 10.70 | 13.40 | -45.67 | -13.00 | 32.67 | V | | 15415.00 | -45.85 | 11.41 | 13.75 | -43.51 | -13.00 | 30.51 | Н | | 17970.00 | -43.35 | 12.89 | 15.56 | -40.68 | -13.00 | 27.68 | Н | ### LTE Band 7, 5 MHz, 16QAM, Channel 20775 | Frequency(
MHz) | P _{Mea} (dBm) | Path
Loss | Antenna
Gain | Peak
EIRP(dBm
) | Limit
(dBm) | Margin(dB | Polarization | |--------------------|------------------------|--------------|-----------------|-----------------------|----------------|-----------|--------------| | 5011.02 | -53.51 | 6.58 | 9.92 | -50.17 | -13.00 | 37.17 | Н | | 7508.01 | -47.83 | 8.36 | 12.21 | -43.98 | -13.00 | 30.98 | V | | 10001.01 | -53.06 | 9.18 | 12.90 | -49.34 | -13.00 | 36.34 | Н | | 12491.01 | -49.89 | 10.20 | 13.20 | -46.89 | -13.00 | 33.89 | Н | | 14999.00 | -45.62 | 11.21 | 14.00 | -42.83 | -13.00 | 29.83 | V | | 17482.00 | -43.43 | 12.68 | 14.86 | -41.25 | -13.00 | 28.25 | Н | ### **LTE Band 7, 5 MHz, 16QAM, Channel 21100** | Frequency(
MHz) | P _{Mea} (dBm) | Path
Loss | Antenn
a Gain | Peak
EIRP(dBm
) | Limit
(dBm) | Margin(dB | Polarizatio
n | |--------------------|------------------------|--------------|------------------|-----------------------|----------------|-----------|------------------| | 5075.02 | -54.15 | 6.70 | 10.01 | -50.84 | -13.00 | 37.84 | Н | | 7605.01 | -49.61 | 8.00 | 12.28 | -45.33 | -13.00 | 32.33 | V | | 10141.01 | -52.43 | 9.40 | 12.96 | -48.87 | -13.00 | 35.87 | Ι | | 12658.01 | -49.48 | 10.37 | 13.29 | -46.56 | -13.00 | 33.56 | V | | 15218.00 | -46.52 | 11.38 | 13.87 | -44.03 | -13.00 | 31.03 | Н | | 17739.00 | -43.37 | 12.40 | 15.23 | -40.54 | -13.00 | 27.54 | Н | ### LTE Band 7, 5 MHz, 16QAM, Channel 21425 | Frequency(
MHz) | P _{Mea} (dBm) | Path
Loss | Antenn
a Gain | Peak
EIRP(dBm
) | Limit
(dBm) | Margin(dB | Polarizatio
n | |--------------------|------------------------|--------------|------------------|-----------------------|----------------|-----------|------------------| |
5141.02 | -54.98 | 6.87 | 10.10 | -51.75 | -13.00 | 38.75 | Н | | 7703.01 | -47.59 | 8.42 | 12.36 | -43.65 | -13.00 | 30.65 | V | | 10271.01 | -50.41 | 9.54 | 13.01 | -46.94 | -13.00 | 33.94 | Н | | 12831.01 | -49.40 | 10.69 | 13.40 | -46.69 | -13.00 | 33.69 | V | | 15419.00 | -46.52 | 11.42 | 13.75 | -44.19 | -13.00 | 31.19 | V | | 17982.00 | -43.83 | 12.90 | 15.57 | -41.16 | -13.00 | 28.16 | Н | ### LTE Band 38, 5MHz, QPSK, Channel 37775 | Eroguanay/MUz) | D (dDm) | Path | Antenna | Peak | Limit | Margin(dD) | Polarization | |---------------------------------------|---------|-------|-----------|--------|------------|--------------|--------------| | Frequency(MHz) P _{Mea} (dBm) | Loss | Gain | EIRP(dBm) | (dBm) | Margin(dB) | Polarization | | | 5150.02 | -56.76 | 6.88 | 10.11 | -53.53 | -13.00 | 40.53 | Н | | 7723.01 | -49.93 | 8.39 | 12.38 | -45.94 | -13.00 | 32.94 | Н | | 10306.01 | -47.75 | 9.65 | 13.02 | -44.38 | -13.00 | 31.38 | Н | | 12889.01 | -49.46 | 10.54 | 13.43 | -46.57 | -13.00 | 33.57 | Н | | 15443.00 | -45.97 | 11.45 | 13.73 | -43.69 | -13.00 | 30.69 | Н | | 17994.00 | -43.43 | 12.90 | 15.59 | -40.74 | -13.00 | 27.74 | V | ### LTE Band 38, 5MHz, QPSK, Channel 38000 | Frequency(MHz) | z) P _{Mea} (dBm) | Path | Antenna | Peak | Limit | Margin(dB) | Polarization | |---------------------|---------------------------|-------|---------|-----------|--------|--------------|---------------| | 1 requeriey(wir 12) | i Mea(GDIII) | Loss | Gain | EIRP(dBm) | (dBm) | iviargin(ab) | 1 Glarization | | 5193.02 | -52.90 | 6.95 | 10.17 | -49.68 | -13.00 | 36.68 | V | | 9063.01 | -53.66 | 9.03 | 13.14 | -49.55 | -13.00 | 36.55 | Н | | 11706.01 | -51.02 | 9.64 | 13.06 | -47.60 | -13.00 | 34.60 | Н | | 14279.00 | -46.49 | 10.95 | 14.44 | -43.00 | -13.00 | 30.00 | Н | | 15558.00 | -44.78 | 11.50 | 13.70 | -42.58 | -13.00 | 29.58 | V | | 16870.00 | -42.18 | 12.03 | 13.75 | -40.46 | -13.00 | 27.46 | Н | # LTE Band 38, 5MHz, QPSK, Channel 38225 | | P _{Mea} (dBm) | Path | Antenna | Peak | Limit | Margin (dD) | Dolorization | |----------------|--------------------------|-------|---------|-----------|--------|-------------|--------------| | Frequency(MHz) | P _{Mea} (dBIII) | Loss | Gain | EIRP(dBm) | (dBm) | Margin(dB) | Polarization | | 6553.02 | -55.90 | 7.61 | 11.06 | -52.45 | -13.00 | 39.45 | Н | | 9170.01 | -54.22 | 8.93 | 13.20 | -49.95 | -13.00 | 36.95 | H | | 11747.01 | -50.22 | 9.85 | 13.05 | -47.02 | -13.00 | 34.02 | Ι | | 14426.00 | -46.57 | 11.01 | 14.41 | -43.17 | -13.00 | 30.17 | H | | 15677.00 | -46.34 | 11.58 | 13.70 | -44.22 | -13.00 | 31.22 | V | | 16989.00 | -42.69 | 12.33 | 13.80 | -41.22 | -13.00 | 28.22 | V | ### LTE Band 38, 5MHz, 16QAM, Channel 37775 | Eroguanay/MUz) | D (dDm) | Path | Antenna | Peak | Limit | Margin(dD) | Polarization | |--------------------------------------|------------------------|-------|---------|-----------|--------|------------|---------------| | Frequency(MHz) P _{Mea} (dBm | P _{Mea} (dBm) | Loss | Gain | EIRP(dBm) | (dBm) | Margin(dB) | 1 Glarization | | 5172.02 | -56.22 | 6.92 | 10.14 | -53.00 | -13.00 | 40.00 | Н | | 7701.01 | -54.76 | 8.43 | 12.36 | -50.83 | -13.00 | 37.83 | Н | | 10275.01 | -52.37 | 9.56 | 13.01 | -48.92 | -13.00 | 35.92 | Н | | 12849.01 | -49.13 | 10.64 | 13.41 | -46.36 | -13.00 | 33.36 | V | | 15435.00 | -45.62 | 11.44 | 13.74 | -43.32 | -13.00 | 30.32 | Н | | 17990.00 | -42.60 | 12.90 | 15.59 | -39.91 | -13.00 | 26.91 | Н | ### LTE Band 38, 5MHz, 16QAM, Channel 38000 | Frequency(MHz) | ency(MHz) P _{Mea} (dBm) | Path | Antenna | Peak | Limit | Margin(dB) | Polarization | |--------------------|----------------------------------|-------|---------|-----------|--------|------------|------------------| | 1104001107(111112) | · Mea(GDIII) | Loss | Gain | EIRP(dBm) | (dBm) | margin(ab) | 1 old i zatioi i | | 5194.02 | -51.70 | 6.95 | 10.17 | -48.48 | -13.00 | 35.48 | V | | 9050.01 | -53.90 | 9.07 | 13.13 | -49.84 | -13.00 | 36.84 | Н | | 11696.01 | -50.53 | 9.62 | 13.06 | -47.09 | -13.00 | 34.09 | H | | 14262.00 | -46.38 | 10.94 | 14.45 | -42.87 | -13.00 | 29.87 | H | | 15547.00 | -45.12 | 11.51 | 13.70 | -42.93 | -13.00 | 29.93 | V | | 16838.00 | -42.15 | 12.07 | 13.74 | -40.48 | -13.00 | 27.48 | Н | # LTE Band 38, 5MHz, 16QAM, Channel 38225 | | P _{Mea} (dBm) | Path | Antenna | Peak | Limit | Margin (dD) | Delegization | |----------------|------------------------|-------|---------|-----------|--------|-------------|--------------| | Frequency(MHz) | P _{Mea} (dBm) | Loss | Gain | EIRP(dBm) | (dBm) | Margin(dB) | Polarization | | 6523.02 | -55.90 | 7.50 | 11.03 | -52.37 | -13.00 | 39.37 | V | | 9129.01 | -54.03 | 8.93 | 13.18 | -49.78 | -13.00 | 36.78 | Н | | 11806.01 | -49.72 | 10.14 | 13.04 | -46.82 | -13.00 | 33.82 | Н | | 14405.00 | -46.37 | 11.04 | 14.42 | -42.99 | -13.00 | 29.99 | Н | | 15739.00 | -45.98 | 11.63 | 13.70 | -43.91 | -13.00 | 30.91 | V | | 16992.00 | -42.64 | 12.34 | 13.80 | -41.18 | -13.00 | 28.18 | Н | Note: The maximum value of expanded measurement uncertainty for this test item is U = 4.2 dB, k = 2. ### A.3 FREQUENCY STABILITY #### A.3.1 Method of Measurement In order to measure the carrier frequency under the condition of AFC lock, it is necessary to make measurements with the EUT in a "call mode". This is accomplished with the use of R&S CMW500 DIGITAL RADIO COMMUNICATION TESTER. - 1. Measure the carrier frequency at room temperature. - 2. Subject the EUT to overnight soak at -10°C. - 3. With the EUT, powered via nominal voltage, connected to the CMW500 and in a simulated call on middle channel for LTE band 5 7 38, measure the carrier frequency. These measurements should be made within 2 minutes of Powering up the EUT, to prevent significant self-warming. - 4. Repeat the above measurements at 10°C increments from -10°C to +50°C. Allow at least 1.5 hours at each temperature, unpowered, before making measurements. - 5. Re-measure carrier frequency at room temperature with nominal voltage. Vary supply voltage from minimum voltage to maximum voltage, in 0.1Volt increments re-measuring carrier frequency at each voltage. Pause at nominal voltage for 1.5 hours unpowered, to allow any self-heating to stabilize, before continuing. - 6. Subject the EUT to overnight soak at $+50^{\circ}$ C. - 7. With the EUT, powered via nominal voltage, connected to the CMW500 and in a simulated call on the centre channel, measure the carrier frequency. These measurements should be made within 2 minutes of Powering up the EUT, to prevent significant self-warming. - 8. Repeat the above measurements at 10 °C increments from -10 °C to +50 °C. Allow at least 1.5 hours at each temperature, unpowered, before making measurements. - 9. At all temperature levels hold the temperature to +/- 0.5°C during the measurement procedure. #### A.3.2 Measurement Limit The frequency stability shall be sufficient to ensure that the fundamental emission stays within the authorized frequency block. As this transceiver is considered "Hand carried, battery powered equipment" Section 2.1055(d) (2) applies. This requires that the lower voltage for frequency stability testing be specified by the manufacturer. This transceiver is specified to operate with an input voltage of between 3.6VDC and 4.2VDC, with a nominal voltage of 3.8VDC. Operation above or below these voltage limits is prohibited by transceiver software in order to prevent improper operation as well as to protect components from overstress. These voltages represent a tolerance from -5.4% to 10.8%. For the purposes of measuring frequency stability these voltage limits are to be used. #### A.3.3 Measurement results ## LTE Band 5, 1.4MHz bandwidth (worst case of all bandwidths) ## Frequency Error vs Voltage | Voltage | Frequency error (Hz) | | Frequency | error (ppm) | |---------|----------------------|-------|-----------|-------------| | (V) | QPSK | 16QAM | QPSK | 16QAM | | 3.6 | -1 | 20 | 0.002 | 0.024 | | 3.8 | -3 | 19 | 0.004 | 0.023 | | 4.2 | 1 | 16 | 0.001 | 0.019 | ## **Frequency Error vs Temperature** | Temperature | Frequency error (Hz) | | Frequency e | error (ppm) | |-------------|----------------------|-------|-------------|-------------| | (℃) | QPSK | 16QAM | QPSK | 16QAM | | 50 | 1 | 21 | 0.001 | 0.026 | | 40 | 2 | 19 | 0.002 | 0.023 | | 30 | -3 | 16 | 0.004 | 0.019 | | 20 | 4 | 18 | 0.004 | 0.022 | | 10 | 2 | 20 | 0.003 | 0.023 | | 0 | -3 | 18 | 0.003 | 0.021 | | -10 | -2 | 19 | 0.003 | 0.022 | ## LTE Band 7, 10MHz bandwidth (worst case of all bandwidths) ## **Frequency Error vs Voltage** | Voltage | Frequency error (Hz) | | Frequency | error (ppm) | |---------|----------------------|-------|-----------|-------------| | (V) | QPSK | 16QAM | QPSK | 16QAM | | 3.6 | 0 | 8 | 0.000 | 0.003 | | 3.8 | 4 | 12 | 0.001 | 0.005 | | 4.2 | 5 | 8 | 0.002 | 0.003 | ## **Frequency Error vs Temperature** | Temperature | Frequency error (Hz) | | emperature Frequency error (Hz) | | Frequency e | error (ppm) | |-------------|----------------------|-------|---------------------------------|-------|-------------|-------------| | (℃) | QPSK | 16QAM | QPSK | 16QAM | | | | 50 | -2 | 7 | 0.001 | 0.003 | | | | 40 | 6 | 7 | 0.002 | 0.003 | | | | 30 | 7 | 6 | 0.003 | 0.002 | | | | 20 | 4 | 3 | 0.002 | 0.001 | | | | 10 | 6 | 1 | 0.002 | 0.001 | | | | 0 | 5 | 11 | 0.002 | 0.004 | | | | -10 | 9 | 8 | 0.004 | 0.003 | | | # LTE Band 38, 5MHz bandwidth (worst case of all bandwidths) ## **Frequency Error vs Voltage** | Voltage | Frequency error (Hz) | | Frequency | error (ppm) | |---------|----------------------|--------|-----------|-------------| | (V) | QPSK | 16QAM | QPSK | 16QAM | | 3.6 | -2.47 | -8.78 | 0.001 | 0.003 | | 3.85 | -3.09 | -9.77 | 0.001 | 0.004 | | 4.35 | -4.45 | -10.84 | 0.002 | 0.004 | # Frequency Error vs Temperature | Temperature | Frequency error (Hz) | | Frequency e | error (ppm) | |-------------|----------------------|--------|-------------|-------------| | (℃) | QPSK | 16QAM | QPSK | 16QAM | | 50 | 1.32 | -9.54
 0.001 | 0.004 | | 40 | -4.36 | -6.17 | 0.002 | 0.002 | | 30 | -0.24 | -8.20 | 0.000 | 0.003 | | 20 | -4.66 | -7.44 | 0.002 | 0.003 | | 10 | -4.42 | -9.33 | 0.002 | 0.004 | | 0 | -3.32 | -15.46 | 0.001 | 0.006 | | - 10 | -4.33 | -5.99 | 0.002 | 0.002 | Expanded measurement uncertainty for this test item is 10 Hz, k = 2. ## A.4 OCCUPIED BANDWIDTH #### A.4.1 Occupied Bandwidth Results Occupied bandwidth measurements are only provided for selected frequencies in order to reduce the amount of submitted data. Data were taken at the extreme and mid frequencies of the US Cellular/PCS frequency bands. The table below lists the measured 99% BW. Spectrum analyzer plots are included on the following pages. The measurement method is from KDB 971168 4.2: - a) The spectrum analyzer center frequency is set to the nominal EUT channel center frequency. The frequency span for the spectrum analyzer shall be set wide enough to capture all modulation products including the emission skirts (i.e., two to five times the OBW). - b) The nominal IF filter bandwidth (3 dB RBW) shall be in the range of 1 to 5 % of the anticipated OBW, and the VBW shall be at least 3 times the RBW. - c) Set the reference level of the instrument as required to keep the signal from exceeding the maximum input mixer level for linear operation. In general, the peak of the spectral envelope must be at least 10log (OBW / RBW) below the reference level. - d) Set the detection mode to peak, and the trace mode to max hold. - e) Use the 99 % power bandwidth function of the spectrum analyzer and report the measured bandwidth. #### LTE band 5, 1.4MHz (99%) | Frequency(MHz) | Occupied Bandwidth (99%)(kHz) | | |----------------|--------------------------------|----------| | 836.5 | QPSK | 16QAM | | | 1089.744 | 1089.744 | #### LTE band 5, 1.4MHz Bandwidth, QPSK (99% BW) Date: 9.APR.2018 11:52:12 ## LTE band 5, 1.4MHz Bandwidth, 16QAM (99% BW) Date: 9.APR.2018 11:52:27 # LTE band 5, 3MHz (99%) | Frequency(MHz) | Occupied Bandwidth (99%)(kHz) | | | |----------------|--------------------------------|----------|--| | 836.5 | QPSK | 16QAM | | | | 2692.308 | 2692.308 | | ## LTE band 5, 3MHz Bandwidth, QPSK (99% BW) Date: 9.APR.2018 11:58:01 ## LTE band 5, 3MHz Bandwidth, 16QAM (99% BW) Date: 9.APR.2018 11:58:16 # LTE band 5, 5MHz (99%) | Frequency(MHz) | Occupied Bandwidth (99%)(kHz) | | | |----------------|--------------------------------|----------|--| | 836.5 | QPSK | 16QAM | | | | 4519.231 | 4495.192 | | ## LTE band 5, 5MHz Bandwidth, QPSK (99% BW) Date: 9.APR.2018 12:03:50 ## LTE band 5, 5MHz Bandwidth,16QAM (99% BW) Date: 9.APR.2018 12:04:05 ## LTE band 5, 10MHz (99%) | Frequency(MHz) | Occupied Bandwidth (99%)(kHz) | | | |----------------|--------------------------------|----------|--| | 836.5 | QPSK | 16QAM | | | | 8942.308 | 8942.308 | | ## LTE band 5, 10MHz Bandwidth, QPSK (99% BW) Date: 9.APR.2018 12:09:38 ## LTE band 5, 10MHz Bandwidth, 16QAM (99% BW) Date: 9.APR.2018 12:09:53 ## LTE band 7, 5MHz (99%) | Frequency(MHz) | Occupied Bandwidth (99%)(kHz) | | | |----------------|--------------------------------|---------|--| | | QPSK | 16QAM | | | 2535.0 | 4495.19 | 4519.23 | | ## LTE band 7, 5MHz Bandwidth, QPSK (99% BW) Date: 9.APR.2018 09:10:17 ## LTE band 7, 5MHz Bandwidth,16QAM (99% BW) Date: 9.APR.2018 09:10:32 ## LTE band 7, 10MHz (99%) | Frequency(MHz) | Occupied Bandwidth (99%)(kHz) | | | |----------------|--------------------------------|---------|--| | 2535.0 | QPSK | 16QAM | | | | 9038.46 | 9038.46 | | ## LTE band 7, 10MHz Bandwidth, QPSK (99% BW) Date: 9.APR.2018 09:16:05 ## LTE band 7, 10MHz Bandwidth, 16QAM (99% BW) Date: 9.APR.2018 09:16:20 ## LTE band 7, 15MHz (99%) | Frequency(MHz) | Occupied Bandwidth (99%)(kHz) | | |----------------|--------------------------------|----------| | 2525.0 | QPSK | 16QAM | | 2535.0 | 13557.69 | 13557.69 | ## LTE band 7, 15MHz Bandwidth, QPSK (99% BW) Date: 9.APR.2018 09:22:31 ## LTE band 7, 15MHz Bandwidth, 16QAM (99% BW) Date: 9.APR.2018 09:22:47 ## LTE band 7, 20MHz (99%) | Frequency(MHz) | Occupied Bandwidth (99%)(kHz) | | |----------------|--------------------------------|----------| | 2525.0 | QPSK | 16QAM | | 2535.0 | 17980.77 | 17980.77 | ## LTE band 7, 20MHz Bandwidth, QPSK (99% BW) Date: 9.APR.2018 09:28:59 ## LTE band 7, 20MHz Bandwidth, 16QAM (99% BW) Date: 9.APR.2018 09:29:14 #### LTE band 38, 5MHz (99%) | Frequency(MHz) | Occupied Bandwidth (99%)(kHz) | | |----------------|--------------------------------|----------| | 2595 | QPSK | 16QAM | | 2333 | 4519.231 | 4471.154 | ## LTE band 38, 5MHz Bandwidth, QPSK (99% BW) Date: 14.AUG.2018 11:07:03 ## LTE band 38, 5MHz Bandwidth,16QAM (99% BW) Date: 14.AUG.2018 11:07:18 ## LTE band 38, 10MHz (99%) | Frequency(MHz) | Occupied Bandwidth (99%)(kHz) | | |----------------|--------------------------------|----------| | 2505 | QPSK | 16QAM | | 2595 | 9038.462 | 9038.462 | ## LTE band 38, 10MHz Bandwidth, QPSK (99% BW) Date: 14.AUG.2018 11:13:58 ## LTE band 38, 10MHz Bandwidth, 16QAM (99% BW) Date: 14.AUG.2018 11:14:14 ## LTE band 38, 15MHz (99%) | Frequency(MHz) | Occupied Bandwidth (99%)(kHz) | | |----------------|--------------------------------|----------| | 2505 | QPSK | 16QAM | | 2595 | 13485.58 | 13557.69 | ## LTE band 38, 15MHz Bandwidth, QPSK (99% BW) Date: 14.AUG.2018 11:21:31 ## LTE band 38, 15MHz Bandwidth, 16QAM (99% BW) Date: 14.AUG.2018 11:21:46 ## LTE band 38, 20MHz (99%) | Frequency(MHz) | Occupied Bandwidth (99%)(kHz) | | |----------------|--------------------------------|----------| | 2505 | QPSK | 16QAM | | 2595 | 18076.92 | 18076.92 | ## LTE band 38, 20MHz Bandwidth, QPSK (99% BW) Date: 14.AUG.2018 11:29:11 # LTE band 38, 20MHz Bandwidth, 16QAM (99% BW) Date: 14.AUG.2018 11:29:26 ## A.5 EMISSION BANDWIDTH #### A.5.1Emission Bandwidth Results The emission bandwidth is defined as the width of the signal between two points, one below the carrier center frequency and one above the carrier center frequency, outside of which all emissions are attenuated at least 26 dB below the transmitter power. Table below lists the measured -26dBc BW. Spectrum analyzer plots are included on the following pages. #### LTE band 5, 1.4MHz (-26dBc) | Frequency(MHz) | Occupied Bandwidth (-26dBc)(kHz) | | |----------------|-----------------------------------|----------| | 836.5 | QPSK | 16QAM | | 636.3 | 1258.013 | 1274.038 | ## LTE band 5, 1.4MHz Bandwidth, QPSK (-26dBc BW) Date: 9.APR.2018 11:53:22 ## LTE band 5, 1.4MHz Bandwidth, 16QAM (-26dBc BW) Date: 9.APR.2018 11:53:39 ## LTE band 5, 3MHz (-26dBc) | Frequency(MHz) | Occupied Bandwidth (-26dBc)(kHz) | | |----------------|-----------------------------------|----------| | 926 5 | QPSK | 16QAM | | 836.5 | 2932.692 | 2948.718 | ## LTE band 5, 3MHz Bandwidth, QPSK (-26dBc BW) Date: 9.APR.2018 11:59:11 ## LTE band 5, 3MHz Bandwidth, 16QAM (-26dBc BW) Date: 9.APR.2018 11:59:28 ## LTE band 5, 5MHz (-26dBc) | Frequency(MHz) | Occupied Bandwidth (-26dBc)(kHz) | | |----------------|-----------------------------------|----------| | 926 5 | QPSK | 16QAM | | 836.5 | 4951.923 | 4975.962 | ## LTE band 5, 5MHz Bandwidth, QPSK (-26dBc BW) Date: 9.APR.2018 12:05:00 ## LTE band 5, 5MHz Bandwidth,16QAM (-26dBc BW) Date: 9.APR.2018 12:05:17 ## LTE band 5, 10MHz (-26dBc) | Frequency(MHz) | Occupied Bandwidth (-26dBc)(kHz) | | |----------------|-----------------------------------|----------| | 836.5 | QPSK | 16QAM | | 636.3 | 9903.846 | 9855.769 | ## LTE band 5, 10MHz Bandwidth, QPSK (-26dBc BW) Date: 9.APR.2018 12:10:48 ## LTE band 5, 10MHz Bandwidth, 16QAM (-26dBc BW) Date: 9.APR.2018 12:11:05 ## LTE band 7, 5MHz (-26dBc) | Frequency(MHz) | Occupied Bandwidth (-26dBc)(kHz) | | |----------------|-----------------------------------|---------| | 2535.0 | QPSK | 16QAM | | 2535.0 | 4951.92 | 4951.92 | ## LTE band 7, 5MHz Bandwidth, QPSK (-26dBc BW) Date: 9.APR.2018 14:14:30 ## LTE band 7, 5MHz Bandwidth,16QAM (-26dBc BW) Date: 9.APR.2018 14:14:47 ## LTE band 7, 10MHz (-26dBc) | Frequency(MHz) | Occupied Bandwidth (-26dBc)(kHz) | | |----------------|-----------------------------------|---------| | 2525.0 | QPSK | 16QAM | | 2535.0 | 9807.69 | 9951.92 | ## LTE band 7, 10MHz Bandwidth, QPSK (-26dBc BW) Date: 9.APR.2018 09:17:15 ## LTE band 7, 10MHz Bandwidth, 16QAM (-26dBc BW) Date: 9.APR.2018 09:17:32 ## LTE band 7, 15MHz (-26dBc) | Frequency(MHz) | Occupied Bandwidth (-26dBc)(kHz) | | |----------------|-----------------------------------|----------| | 2535.0 | QPSK | 16QAM | | | 14855.77 | 14783.65 | ## LTE band 7, 15MHz Bandwidth, QPSK (-26dBc BW) Date: 9.APR.2018 09:23:40 ## LTE band 7, 15MHz Bandwidth, 16QAM (-26dBc BW) Date: 9.APR.2018 09:23:57 ## LTE band 7, 20MHz (-26dBc) | Frequency(MHz) | Occupied Bandwidth (-26dBc)(kHz) | | |----------------|-----------------------------------|----------| | 2525.0 | QPSK | 16QAM | | 2535.0 | 19519.23 | 19423.08 | ## LTE band 7, 20MHz Bandwidth, QPSK (-26dBc BW) Date: 9.APR.2018 09:30:07 ## LTE band 7, 20MHz Bandwidth, 16QAM (-26dBc BW) Date: 9.APR.2018 09:30:24 #### LTE band 38, 5MHz (-26dBc) | Frequency(MHz) | Occupied Bandwidth (-26dBc)(kHz) | | |----------------|-----------------------------------|----------| | 2595 | QPSK | 16QAM | | | 4975.962 | 4927.885 | ## LTE band 38, 5MHz Bandwidth, QPSK (-26dBc BW) Date: 14.AUG.2018 11:08:14 ## LTE band 38, 5MHz Bandwidth,16QAM (-26dBc BW) Date: 14.AUG.2018 11:08:31 #### LTE band 38, 10MHz (-26dBc) | Frequency(MHz) | Occupied Bandwidth (-26dBc)(kHz) | | |----------------|-----------------------------------|----------| | 2595 | QPSK | 16QAM | | | 9807.692 | 9759.615 | ## LTE band 38, 10MHz Bandwidth, QPSK (-26dBc BW) Date: 14.AUG.2018 11:15:09 ## LTE band 38, 10MHz Bandwidth, 16QAM (-26dBc BW) Date: 14.AUG.2018 11:15:26 #### LTE band 38, 15MHz (-26dBc) | Frequency(MHz) | Occupied Bandwidth (-26dBc)(kHz) | | |----------------|-----------------------------------|----------| | 2595 | QPSK | 16QAM | | | 14711.54 | 14783.65 | ## LTE band 38,
15MHz Bandwidth, QPSK (-26dBc BW) Date: 14.AUG.2018 11:22:41 ## LTE band 38, 15MHz Bandwidth, 16QAM (-26dBc BW) Date: 14.AUG.2018 11:22:59 #### LTE band 38, 20MHz (-26dBc) | Frequency(MHz) | Occupied Bandwidth (-26dBc)(kHz) | | |----------------|-----------------------------------|----------| | 2595 | QPSK | 16QAM | | | 19519.23 | 19326.92 | ## LTE band 38, 20MHz Bandwidth, QPSK (-26dBc BW) Date: 14.AUG.2018 11:30:23 # LTE band 38, 20MHz Bandwidth, 16QAM (-26dBc BW) Date: 14.AUG.2018 11:30:40 #### A.6 BAND EDGE COMPLIANCE #### A.6.1 Measurement limit Part 22.917(b), 27.53(h) state that on any frequency outside frequency band of the US Cellular/PCS spectrum, the power of any emission shall be attenuated below the transmitter power (P, in Watts) by at least 43+10Log (P) dB. For all power levels +30 dBm to 0 dBm, this becomes a constant specification limit of -13 dBm. According to KDB 971168 6.0, a relaxation of the reference bandwidth is often provided for measurements within a specified frequency range at the edge of the authorized frequency block/band. This is often implemented by permitting the use of a narrower RBW (typically limited to a minimum RBW of 1% of the OBW) for measuring the out-of-band emissions without a requirement to integrate the result over the full reference bandwidth. Part 27.53(m) states that for mobile digital stations, the attenuation factor shall be not less than 40 + 10 log (P) dB on all frequencies between the channel edge and 5 megahertz from the channel edge, 43 + 10 log (P) dB on all frequencies between 5 megahertz and X megahertz from the channel edge, and 55 + 10 log (P) dB on all frequencies more than X megahertz from the channel edge, where X is the greater of 6 megahertz or the actual emission bandwidth as defined in paragraph (m)(6) of this section. In addition, the attenuation factor shall not be less that 43 + 10 log (P) dB on all frequencies between 2490.5 MHz and 2496 MHz and 55 + 10 log (P) dB at or below 2490.5 MHz. Mobile Satellite Service licensees operating on frequencies below 2495 MHz may also submit a documented interference complaint against BRS licensees operating on channel BRS Channel 1 on the same terms and conditions as adjacent channel BRS or EBS licensees. Part 27.53(a) states for mobile and portable stations operating in the 2305–2315 MHz and 2350–2360 MHz bands: By a factor of not less than: 43 +10 log (P) dB on all frequencies between 2305 and 2320 MHz and on all frequencies between 2345 and 2360 MHz that are outside the licensed band(s) of operation, not less than 55 + 10 log (P) dB on all frequencies between 2320 and 2324 MHz and on all frequencies between 2341 and 2345 MHz, not less than 61 + 10 log (P) dB on all frequencies between 2324 and 2328 MHz and on all frequencies between 2337 and 2341 MHz, and not less than 67 + 10 log (P) dB onall frequencies between 2328 and 2337MHz; By a factor of not less than 43 + 10 log (P) dB on all frequencies between 2300 and 2305 MHz, 55 + 10 log (P) dB on all frequencies between 2292 and 2296 MHz, 67 + 10 log (P) dB on all frequencies between 2288 and 2292 MHz, and 70 + 10 log (P) dB below 2288 MHz; By a factor of not less than 43 + 10 log (P) dB on all frequencies between 2360 and 2365 MHz, and not less than 70 + 10 log (P) dB above 2365 MHz. Part 27.53(c) states for operations in the 746-758 MHz band and the 776-788 MHz band, the power of any emission outside the licensee's frequency band(s) of operation shall be attenuated below the transmitter power (P) within the licensed band(s) of operation, measured in watts, in accordance with the following:(1) On any frequency outside the 746-758 MHz band, the power of any emission shall be attenuated outside the band below the transmitter power (P) by at least 43 + 10 log (P) dB;(2) On any frequency outside the 776-788 MHz band, the power of any emission # No. I18Z61384-WMD03 Page 66 of 81 shall be attenuated outside the band below the transmitter power (P) by at least $43 + 10 \log (P) dB$; (4) On all frequencies between 763-775 MHz and 793-805 MHz, by a factor not less than 65 + $10 \log (P) dB$ in a 6.25 kHz band segment, for mobile and portable stations # A.6.2 Measurement result Only worst case result is given below LTE band 5 OBW: 1RB-low_offset Date: 10.APR.2018 14:07:22 # LOW BAND EDGE BLOCK-1RB-low_offset Date: 10.APR.2018 14:08:08 ## OBW: 1RB-high_offset Date: 10.APR.2018 10:18:53 # HIGH BAND EDGE BLOCK-1RB-high_offset Date: 10.APR.2018 10:19:39 ## LOW BAND EDGE BLOCK-10MHz-100%RB Date: 10.APR.2018 14:21:09 #### HIGH BAND EDGE BLOCK-10MHz-100%RB Date: 10.APR.2018 14:21:55 #### LTE band 7 ## **OBW: 1RB-low_offset** Date: 10.APR.2018 14:03:59 ## LOW BAND EDGE BLOCK-1RB-low_offset Date: 10.APR.2018 14:04:44 ## OBW: 1RB-high_offset Date: 10.APR.2018 10:17:09 ## HIGH BAND EDGE BLOCK-1RB-high_offset Date: 10.APR.2018 10:17:54 ## LOW BAND EDGE BLOCK-20MHz-100%RB Date: 10.APR.2018 14:29:41 #### HIGH BAND EDGE BLOCK-20MHz-100%RB Date: 10.APR.2018 14:30:28 #### LTE band 38 ## **OBW: 1RB-low_offset** Date: 14.AUG.2018 13:49:17 ## LOW BAND EDGE BLOCK-1RB-low_offset Date: 14.AUG.2018 13:50:04 ## OBW: 1RB-high_offset Date: 16.AUG.2018 14:31:13 # HIGH BAND EDGE BLOCK-1RB-high_offset Date: 16.AUG.2018 14:32:58 ## LOW BAND EDGE BLOCK-20MHz-100%RB Date: 14.AUG.2018 13:52:11 #### HIGH BAND EDGE BLOCK-20MHz-100%RB Date: 14.AUG.2018 13:52:57 #### A.7 CONDUCTED SPURIOUS EMISSION #### A.7.1 Measurement Method The following steps outline the procedure used to measure the conducted emissions from the EUT. - Determine frequency range for measurements: From CFR 2.1057 the spectrum should be investigated from the lowest radio frequency generated in the equipment up to at least the 10th harmonic of the carrier frequency. For the mobile station equipment tested, this equates to a frequency range of 13 MHz to 9 GHz, data taken from 10 MHz to 25 GHz. - 2. Determine EUT transmit frequencies: below outlines the band edge frequencies pertinent to conducted emissions testing. - 3. The number of sweep points of spectrum analyzer is set to 30001 which is greater than span/RBW. #### A. 7.2 Measurement Limit Part 22.917 and Part 27.53(h) specify that the power of any emission outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least 43 + 10 log(P) dB. The specification that emissions shall be attenuated below the transmitter power (P) by at least 43 + 10 log (P) dB, translates in the relevant power range (1 to 0.001 W) to -13 dBm. At 1 W the specified minimum attenuation becomes 43 dB and relative to a 30 dBm (1 W) carrier becomes a limit of -13 dBm. At 0.001 W (0 dBm) the minimum attenuation is 13 dB, which again yields a limit of -13 dBm. In this way a translation of the specification from relative to absolute terms is carried out. Part 27.53(m)(4) specifies for mobile digital stations, the attenuation factor shall be not less than 40 + 10 log (P) dB on all frequencies between the channel edge and 5 megahertz from the channel edge, 43 + 10 log (P) dB on all frequencies between 5 megahertz and X megahertz from the channel edge, and 55 + 10 log (P) dB on all frequencies more than X megahertz from the channel edge, where X is the greater of 6 megahertz or the actual emission bandwidth as defined in paragraph (m)(6) of this section. In addition, the attenuation factor shall not be less that 43 + 10 log (P) dB on all frequencies between 2490.5 MHz and 2496 MHz and 55 + 10 log (P) dB at or below 2490.5 MHz. Mobile Satellite Service licensees operating on frequencies below 2495 MHz may also submit a documented interference complaint against BRS licensees operating on channel BRS Channel 1 on the same terms and conditions as adjacent channel BRS or EBS licensees. Part 27.53(a) states for mobile and portable stations operating in the 2305–2315 MHz and 2350–2360 MHz bands: By a factor of not less than: 43 +10 log (P) dB on all frequencies between 2305 and 2320 MHz and on all frequencies between 2345 and 2360 MHz that are outside the licensed band(s) of operation, not less than 55 + 10 log (P) dB on all frequencies between 2320 and 2324 MHz and on all frequencies between 2341 and 2345 MHz, not less than 61 + 10 log (P) dB on all frequencies between 2337 and 2341 MHz, and not less than 67 + 10 log (P) dB onall frequencies between 2328 and 2337MHz; # No. I18Z61384-WMD03 Page 77 of 81 By a factor of not less than 43 + 10 log (P) dB on all frequencies between 2300 and 2305 MHz, 55 + 10 log (P) dB on all frequencies between 2296 and 2300MHz, 61 + 10 log (P) dB on all frequencies between 2292 and 2296 MHz, 67 + 10 log (P) dB on all frequencies between 2288 and 2292 MHz, and 70 + 10 log (P) dB below 2288 MHz; By a factor of not less than 43 + 10 log (P) dB on all frequencies between 2360 and 2365 MHz, and not less than 70 + 10 log (P) dB above 2365 MHz. #### A. 7.3 Measurement result ## Only worst case result is given below ## LTE band 5: 30MHz - 10GHz Spurious emission limit -13dBm. Date: 10.APR.2018 10:00:16 ## LTE band 7: 30MHz - 26GHz Spurious emission limit -13dBm. Date: 10.APR.2018 10:02:49 ## LTE band 38: 30MHz - 20GHz Spurious emission limit -13dBm. Date: 14.AUG.2018 13:54:10 ## A.8 PEAK-TO-AVERAGE POWER RATIO #### Reference FCC: CFR 27.50(a) The peak-to-average power ratio (PAPR) of the transmitter output power must not exceed 13 dB. The PAPR measurements should be made using either an instrument with complementary cumulative distribution function (CCDF) capabilities to determine that PAPR will not exceed 13 dB for more than 0.1 percent of the time or other Commission approved procedure. The measurement must be performed using a signal corresponding to the highest PAPR expected during periods of continuous transmission. According to KDB 971168 5.7.1: - a)Refer to instrument's analyzer instruction manual for details on how to use the power statistics/CCDF function; - b) Set resolution/measurement bandwidth ≥ signal's occupied
bandwidth; - c) Set the number of counts to a value that stabilizes the measured CCDF curve; - d) Set the measurement interval to 1 ms - e)Record the maximum PAPR level associated with a probability of 0.1% #### A.8.1 Measurement limit not exceed 13 dB #### A.8.2 Measurement results #### LTE band 7, 20MHz | Frequency(MHz) | PAPR(dB) | | |----------------|----------|-------| | 2510.0 | QPSK | 16QAM | | | 7.14 | 7.66 | #### LTE band 38, 20MHz | Frequency(MHz) | PAPR(dB) | | |----------------|----------|-------| | 2595.0 | QPSK | 16QAM | | 2595.0 | 8.14 | 8.88 | # **ANNEX B: Accreditation Certificate** United States Department of Commerce National Institute of Standards and Technology ## Certificate of Accreditation to ISO/IEC 17025:2005 NVLAP LAB CODE: 600118-0 ## Telecommunication Technology Labs, CAICT Beijing China is accredited by the National Voluntary Laboratory Accreditation Program for specific services, listed on the Scope of Accreditation, for: #### Electromagnetic Compatibility & Telecommunications This laboratory is accredited in accordance with the recognized International Standard ISO/IEC 17025:2005. This accreditation demonstrates technical competence for a defined scope and the operation of a laboratory quality management system (refer to joint ISO-ILAC-IAF Communique dated January 2009). 2017-08-22 through 2018-09-30 Effective Dates For the National Voluntary Laboratory Accreditation Program ***END OF REPORT***