Frequency Response of E-Field (TEM-Cell: ifi110 EXX, Waveguide: R22) Uncertainty of Frequency Response of E-field: ±7.4% (k=2) Certificate No:Z20-60421 Page 5 of 9 # Receiving Pattern (Φ), θ=0° # f=600 MHz, TEM # f=1800 MHz, R22 Uncertainty of Axial Isotropy Assessment: ±1.2% (k=2) Certificate No:Z20-60421 Page 6 of 9 # Dynamic Range f(SAR_{head}) (TEM cell, f = 900 MHz) Uncertainty of Linearity Assessment: ±0.9% (k=2) Certificate No:Z20-60421 Page 7 of 9 # **Conversion Factor Assessment** ### f=750 MHz,WGLS R9(H_convF) ### f=1750 MHz,WGLS R22(H_convF) # **Deviation from Isotropy in Liquid** Uncertainty of Spherical Isotropy Assessment: ±3.2% (k=2) Certificate No:Z20-60421 Page 8 of 9 Page 210 of 325 ### DASY/EASY - Parameters of Probe: EX3DV4 - SN:7600 #### **Other Probe Parameters** | Sensor Arrangement | Triangular | |---|------------| | Connector Angle (°) | 40.7 | | Mechanical Surface Detection Mode | enabled | | Optical Surface Detection Mode | disable | | Probe Overall Length | 337mm | | Probe Body Diameter | 10mm | | Tip Length | 10mm | | Tip Diameter | 2.5mm | | Probe Tip to Sensor X Calibration Point | 1mm | | Probe Tip to Sensor Y Calibration Point | 1mm | | Probe Tip to Sensor Z Calibration Point | 1mm | | Recommended Measurement Distance from Surface | 1.4mm | Certificate No:Z20-60421 Page 9 of 9 ### No.I21Z70098-SEM01 Collaboration with ALIBRATION LABORATORY Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2512 Fax: +86-10-62304633-2504 Http://www.chinattl.cn 中国认可 国际互认 校准 CALIBRATION CNAS L0570 Client CTTL Certificate No: Z20-60472 #### **CALIBRATION CERTIFICATE** Object EX3DV4 - SN: 7464 Calibration Procedure(s) FF-Z11-004-02 Calibration Procedures for Dosimetric E-field Probes Calibration date: December 18, 2020 This calibration Certificate documents the traceability to national standards, which realize the physical units of measurements(SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature(22 ± 3) $^{\circ}$ C and humidity<70%. Calibration Equipment used (M&TE critical for calibration) | | 0.10.40.00.4.11.0.00.00.4.11.1 | | |---------------------------------------|--|---| | ID# | Cal Date(Calibrated by, Certificate No.) | Scheduled Calibration | | 101919 | 16-Jun-20(CTTL, No.J20X04344) | Jun-21 | | 101547 | 16-Jun-20(CTTL, No.J20X04344) | Jun-21 | | 101548 | 16-Jun-20(CTTL, No.J20X04344) | Jun-21 | | 18N50W-10dB | 10-Feb-20(CTTL, No.J20X00525) | Feb-22 | | 18N50W-20dB | 10-Feb-20(CTTL, No.J20X00526) | Feb-22 | | SN 7307 | 29-May-20(SPEAG, No.EX3-7307_May | 20) May-21 | | SN 1556 | 4-Feb-20(SPEAG, No.DAE4-1556_Feb. | 20) Feb-21 | | ID# | Cal Date(Calibrated by, Certificate No.) | Scheduled Calibration | | 6201052605 | 23-Jun-20(CTTL, No.J20X04343) | Jun-21 | | MY46110673 | 10-Feb-20(CTTL, No.J20X00515) | Feb-21 | | lame | Function | Signature | | Yu Zongying | SAR Test Engineer | | | Lin Hao | SAR Test Engineer | THE 18 | | Qi Dianyuan | SAR Project Leader | Sign | | ֡֡֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜ | 101547
101548
18N50W-10dB
18N50W-20dB
SN 7307
SN 1556
ID # | 101919 16-Jun-20(CTTL, No.J20X04344) 101547 16-Jun-20(CTTL, No.J20X04344) 101548 16-Jun-20(CTTL, No.J20X04344) 18N50W-10dB 10-Feb-20(CTTL, No.J20X00525) 18N50W-20dB 10-Feb-20(CTTL, No.J20X00526) SN 7307 29-May-20(SPEAG, No.EX3-7307_May SN 1556 4-Feb-20(SPEAG, No.DAE4-1556_Feb) ID # Cal Date(Calibrated by, Certificate No.) A 6201052605 23-Jun-20(CTTL, No.J20X04343) MY46110673 10-Feb-20(CTTL, No.J20X00515) Idame Function Yu Zongying SAR Test Engineer | Certificate No: Z20-60472 Page 1 of 9 This calibration certificate shall not be reproduced except in full without written approval of the laboratory. Issued: December 20, 2020 Glossary: TSL tissue simulating liquid NORMx,y,z sensitivity in free space ConvF sensitivity in TSL / NORMx,y,z DCP diode compression point CF crest factor (1/duty_cycle) of the RF signal A.B.C.D modulation dependent linearization parameters Polarization Φ rotation around probe axis Polarization θ θ rotation around an axis that is in the plane normal to probe axis (at measurement center), i θ =0 is normal to probe axis Connector Angle information used in DASY system to align probe sensor X to the robot coordinate system Calibration is Performed According to the Following Standards: a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013 b) IEC 62209-1, "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from hand-held and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016 c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010 d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz" #### Methods Applied and Interpretation of Parameters: - NORMx,y,z: Assessed for E-field polarization θ=0 (f≤900MHz in TEM-cell; f>1800MHz: waveguide). NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not effect the E²-field uncertainty inside TSL (see below ConvF). - NORM(f)x,y,z = NORMx,y,z* frequency_response (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of ConvF. - DCPx, y, z: DCP are numerical linearization parameters assessed based on the data of power sweep (no uncertainty required). DCP does not depend on frequency nor media. - PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics. - Ax,y,z; Bx,y,z; Cx,y,z; VRx,y,z:A,B,C are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode. - ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f≤800MHz) and inside waveguide using analytical field distributions based on power measurements for f >800MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty valued are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z* ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from±50MHz to±100MHz. - Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna. - Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required. - Connector Angle: The angle is assessed using the information gained by determining the NORMx (no uncertainty required). Certificate No:Z20-60472 Page 2 of 9 ### DASY/EASY – Parameters of Probe: EX3DV4 – SN:7464 #### **Basic Calibration Parameters** | | Sensor X | Sensor Y | Sensor Z | Unc (k=2) | |-------------------------|----------|----------|----------|-----------| | $Norm(\mu V/(V/m)^2)^A$ | 0.47 | 0.44 | 0.46 | ±10.0% | | DCP(mV) ^B | 100.2 | 103.5 | 100.6 | | #### **Modulation Calibration Parameters** | UID | Communication
System Name | | A
dB | B
dB√uV | С | D
dB | VR
mV | Unc ^E (<i>k</i> =2) | |-----|------------------------------|---|---------|------------|-----|---------|----------|---------------------------------| | 0 | cw | Х | 0.0 | 0.0 | 1.0 | 0.00 | 164.9 | ±3.3% | | | | Υ | 0.0 | 0.0 | 1.0 | | 154.1 | | | | | Z | 0.0 | 0.0 | 1.0 | | 156.0 | | The reported uncertainty of measurement is stated as the standard uncertainty of Measurement multiplied by the coverage factor k=2, which for a normal distribution Corresponds to a coverage probability of approximately 95%. A The uncertainties of Norm X, Y, Z do not affect the E2-field uncertainty inside TSL (see Page 4). ^B Numerical linearization parameter: uncertainty not required. ^E Uncertainly is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the field value. ### DASY/EASY – Parameters of Probe: EX3DV4 – SN:7464 #### Calibration Parameter Determined in Head Tissue Simulating Media | f [MHz] ^C | Relative | Conductivity | ConvF X | ConvF Y | ConvF Z | Alpha ^G | Depth ^G | Unct. | |----------------------|----------------|--------------------|---------|---------|---------|--------------------|--------------------|--------| | | Permittivity F | (S/m) ^F | | | | | (mm) | (k=2) | | 750 | 41.9 | 0.89 | 10.43 | 10.43 | 10.43 | 0.40 | 0.75 | ±12.1% | | 900 | 41.5 | 0.97 | 9.79 | 9.79 | 9.79 | 0.17 | 1.28 | ±12.1% | | 1450 | 40.5 | 1.20 | 8.81 | 8.81 | 8.81 | 0.10 | 1.38 | ±12.1% | | 1640 | 40.3 | 1.29 | 8.70 | 8.70 | 8.70 | 0.31 | 0.88 | ±12.1% | | 1750 | 40.1 | 1.37 | 8.60 | 8.60 | 8.60 | 0.27 | 0.98 | ±12.1% | | 1900 | 40.0 | 1.40 | 8.15 | 8.15 | 8.15 | 0.23 | 1.12 | ±12.1% | | 2100 | 39.8 | 1.49 | 8.23 | 8.23 | 8.23 | 0.23 | 1.11 | ±12.1% | | 2300 | 39.5 | 1.67 | 8.12 | 8.12 | 8.12 | 0.61 | 0.68 | ±12.1% | | 2450 | 39.2 | 1.80 | 7.75 | 7.75 | 7.75 | 0.63 | 0.67 | ±12.1% | | 2600 | 39.0 | 1.96 | 7.47 | 7.47 | 7.47 | 0.44 | 0.89 | ±12.19 | | 3300 | 38.2 | 2.71 | 7.25 | 7.25 | 7.25 | 0.38 | 1.02 | ±13.3% | | 3500 | 37.9 | 2.91 | 7.02 | 7.02 | 7.02 | 0.47 | 0.90 | ±13.3% | | 3700 | 37.7 | 3.12 | 6.68 | 6.68 | 6.68 | 0.38 | 1.07 | ±13.3% | | 3900 | 37.5 | 3.32 | 6.68 | 6.68 | 6.68 | 0.35 | 1.42 | ±13.3% | | 4100 | 37.2 | 3.53 | 6.65 | 6.65 | 6.65 | 0.40 | 1.15 | ±13.3% | | 4200 | 37.1 | 3.63 | 6.52 | 6.52 | 6.52 | 0.35 | 1.35 | ±13.3% | | 4400 | 36.9 | 3.84 | 6.41 | 6.41 | 6.41 | 0.30 | 1.50 | ±13.3% | | 4600 | 36.7 | 4.04 | 6.24 | 6.24 | 6.24 | 0.40 | 1.35 | ±13.3% | | 4800 | 36.4 | 4.25 | 6.15 | 6.15 | 6.15 | 0.40 | 1.45 | ±13.3% | | 4950 | 36.3 | 4.40 | 5.85 | 5.85 | 5.85 | 0.40 | 1.42 | ±13.3% | | 5250 | 35.9 | 4.71 | 5.55 | 5.55 | 5.55 | 0.40 | 1.40 | ±13.3% | | 5600 | 35.5 | 5.07 | 4.89 | 4.89 | 4.89 | 0.55 | 1.22 | ±13.3% | | 5750 | 35.4 | 5.22 | 4.99 | 4.99 | 4.99 | 0.55 | 1.21 | ±13.3% | ^c Frequency validity above 300 MHz of ±100MHz only applies for DASY v4.4 and higher (Page 2), else it is restricted to ±50MHz. The uncertainty is the RSS of ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ± 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Above 5 GHz frequency validity can be extended to ± 110 MHz. Certificate No:Z20-60472 Page 4 of 9 F At frequency below 3 GHz, the validity of tissue parameters (ϵ and σ) can be relaxed to ±10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ϵ and σ) is restricted to ±5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters. ^G Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than \pm 1% for frequencies below 3 GHz and below \pm 2% for the frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary. # Frequency Response of E-Field (TEM-Cell: ifi110 EXX, Waveguide: R22) Uncertainty of Frequency Response of E-field: ±7.4% (k=2) Certificate No:Z20-60472 Page 5 of 9 # Receiving Pattern (Φ), θ =0° ### f=600 MHz, TEM ### f=1800 MHz, R22 Uncertainty of Axial Isotropy Assessment: ±1.2% (k=2) Certificate No:Z20-60472 Page 6 of 9 # Dynamic Range f(SAR_{head}) (TEM cell, f = 900 MHz) Uncertainty of Linearity Assessment: ±0.9% (k=2) Certificate No:Z20-60472 Page 7 of 9 ### **Conversion Factor Assessment** ### f=750 MHz,WGLS R9(H_convF) ### f=1750 MHz,WGLS R22(H_convF) # **Deviation from Isotropy in Liquid** Uncertainty of Spherical Isotropy Assessment: ±3.2% (k=2) Certificate No:Z20-60472 Page 8 of 9 ### DASY/EASY - Parameters of Probe: EX3DV4 - SN:7464 ### **Other Probe Parameters** | Sensor Arrangement | Triangular | |---|------------| | Connector Angle (°) | 30.7 | | Mechanical Surface Detection Mode | enabled | | Optical Surface Detection Mode | disable | | Probe Overall Length | 337mm | | Probe Body Diameter | 10mm | | Tip Length | 10mm | | Tip Diameter | 2.5mm | | Probe Tip to Sensor X Calibration Point | 1mm | | Probe Tip to Sensor Y Calibration Point | 1mm | | Probe Tip to Sensor Z Calibration Point | 1mm | | Recommended Measurement Distance from Surface | 1.4mm | Certificate No:Z20-60472 Page 9 of 9 Client CTTL Certificate No: Z21-60001 ### CALIBRATION CERTIFICATE Object EX3DV4 - SN: 7517 Calibration Procedure(s) FF-Z11-004-02 Calibration Procedures for Dosimetric E-field Probes Calibration date: February 03, 2021 This calibration Certificate documents the traceability to national standards, which realize the physical units of measurements(SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 \pm 3) $^{\circ}$ C and humidity<70%. Calibration Equipment used (M&TE critical for calibration) | Primary Standards | ID# | Cal Date(Calibrated by, Certificate No.) | Scheduled Calibration | |-----------------------|------------------|--|-----------------------| | Power Meter NRP2 | 101919 | 16-Jun-20(CTTL, No.J20X04344) | Jun-21 | | Power sensor NRP-Z9 | 1 101547 | 16-Jun-20(CTTL, No.J20X04344) | Jun-21 | | Power sensor NRP-Z9 | 1 101548 | 16-Jun-20(CTTL, No.J20X04344) | Jun-21 | | Reference 10dBAttenu | ator 18N50W-10dB | 10-Feb-20(CTTL, No.J20X00525) | Feb-22 | | Reference 20dBAttenu | ator 18N50W-20dB | 10-Feb-20(CTTL, No.J20X00526) | Feb-22 | | Reference Probe EX3D | OV4 SN 7307 | 29-May-20(SPEAG, No.EX3-7307_May | (20) May-21 | | DAE4 | SN 1556 | 4-Feb-20(SPEAG, No.DAE4-1556_Feb. | 20) Feb-21 | | DAE4 | SN 1555 | 25-Aug-20(SPEAG, No.DAE4-1555_Au | g20) Aug-21 | | Secondary Standards | ID# | Cal Date(Calibrated by, Certificate No.) | Scheduled Calibration | | SignalGenerator MG37 | 00A 6201052605 | 23-Jun-20(CTTL, No.J20X04343) | Jun-21 | | Network Analyzer E507 | '1C MY46110673 | 10-Feb-20(CTTL, No.J20X00515) | Feb-21 | | | Name | Function | Signature | | Calibrated by: | Yu Zongying | SAR Test Engineer | 200 | | Reviewed by: | Lin Hao | SAR Test Engineer | 林格 | | Approved by: | Qi Dianyuan | SAR Project Leader | | | | | | 1 | Issued: February 05, 2021 This calibration certificate shall not be reproduced except in full without written approval of the laboratory. Certificate No: Z21-60001 Page 1 of 9 Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2512 Fax: +86-10-62304633-2504 +86-10-62304635-2504 +86-10-6230465-2504 Fax: +86-10-625045-2504 Fax: +86-10-625045-2504 Fax: +86-10-625045-2504 Fax: +86-10-625045-2504 Fax: +86-10-6 Glossary: TSL tissue simulating liquid NORMx,y,z sensitivity in free space ConvF sensitivity in TSL / NORMx,y,z DCP diode compression point CF crest factor (1/duty_cycle) of the RF signal A,B,C,D modulation dependent linearization parameters Polarization Φ rotation around probe axis Polarization θ θ rotation around an axis that is in the plane normal to probe axis (at measurement center), i θ =0 is normal to probe axis Connector Angle information used in DASY system to align probe sensor X to the robot coordinate system Calibration is Performed According to the Following Standards: - a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013 - b) IEC 62209-1, "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from hand-held and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016 - c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010 - d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz" #### Methods Applied and Interpretation of Parameters: - NORMx,y,z: Assessed for E-field polarization θ=0 (f≤900MHz in TEM-cell; f>1800MHz: waveguide). NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not effect the E²-field uncertainty inside TSL (see below ConvF). - NORM(f)x,y,z = NORMx,y,z* frequency_response (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of ConvF. - DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep (no uncertainty required). DCP does not depend on frequency nor media. - PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics. - Ax,y,z; Bx,y,z; Cx,y,z; VRx,y,z:A,B,C are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode. - ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f≤800MHz) and inside waveguide using analytical field distributions based on power measurements for f >800MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty valued are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z* ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from±50MHz to±100MHz. - Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna. - Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required. - Connector Angle: The angle is assessed using the information gained by determining the NORMx (no uncertainty required). Certificate No:Z21-60001 Page 2 of 9 ### DASY/EASY – Parameters of Probe: EX3DV4 – SN:7517 #### **Basic Calibration Parameters** | | Sensor X | Sensor Y | Sensor Z | Unc (k=2) | |-------------------------|----------|----------|----------|-----------| | $Norm(\mu V/(V/m)^2)^A$ | 0.48 | 0.50 | 0.54 | ±10.0% | | DCP(mV) ^B | 101.1 | 101.7 | 101.0 | | ### **Modulation Calibration Parameters** | UID | Communication
System Name | | A
dB | B
dBõV | С | D
dB | VR
mV | Unc ^E
(<i>k</i> =2) | |------|------------------------------|---|---------|-----------|-----|---------|----------|------------------------------------| | 0 CW | cw | Х | 0.0 | 0.0 | 1.0 | 0.00 | 162.5 | ±2.5% | | | | Υ | 0.0 | 0.0 | 1.0 | | 165.5 | | | | | Z | 0.0 | 0.0 | 1.0 | | 170.3 | | The reported uncertainty of measurement is stated as the standard uncertainty of Measurement multiplied by the coverage factor k=2, which for a normal distribution Corresponds to a coverage probability of approximately 95%. Certificate No:Z21-60001 Page 3 of 9 A The uncertainties of Norm X, Y, Z do not affect the E2-field uncertainty inside TSL (see Page 4). ^B Numerical linearization parameter: uncertainty not required. ^E Uncertainly is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the field value. ### DASY/EASY - Parameters of Probe: EX3DV4 - SN:7517 ### Calibration Parameter Determined in Head Tissue Simulating Media | f [MHz] ^C | Relative | Conductivity | ConvF X | ConvF Y | ConvF Z | Alpha ^G | Depth ^G | Unct. | |----------------------|----------------|--------------------|---------|---------|---------|--------------------|--------------------|--------| | . [2] | Permittivity F | (S/m) ^F | | | | 20000 100000 | (mm) | (k=2) | | 750 | 41.9 | 0.89 | 9.81 | 9.81 | 9.81 | 0.40 | 0.80 | ±12.1% | | 900 | 41.5 | 0.97 | 9.40 | 9.40 | 9.40 | 0.19 | 1.27 | ±12.1% | | 1450 | 40.5 | 1.20 | 8.55 | 8.55 | 8.55 | 0.13 | 1.29 | ±12.1% | | 1640 | 40.3 | 1.29 | 8.45 | 8.45 | 8.45 | 0.60 | 0.67 | ±12.1% | | 1750 | 40.1 | 1.37 | 8.22 | 8.22 | 8.22 | 0.25 | 1.03 | ±12.1% | | 1900 | 40.0 | 1.40 | 7.81 | 7.81 | 7.81 | 0.24 | 1.12 | ±12.1% | | 2000 | 40.0 | 1.40 | 7.90 | 7.90 | 7.90 | 0.20 | 1.24 | ±12.1% | | 2300 | 39.5 | 1.67 | 7.58 | 7.58 | 7.58 | 0.65 | 0.66 | ±12.1% | | 2450 | 39.2 | 1.80 | 7.34 | 7.34 | 7.34 | 0.59 | 0.74 | ±12.1% | | 2600 | 39.0 | 1.96 | 7.10 | 7.10 | 7.10 | 0.60 | 0.72 | ±12.1% | | 3300 | 38.2 | 2.71 | 6.90 | 6.90 | 6.90 | 0.44 | 0.94 | ±13.3% | | 3500 | 37.9 | 2.91 | 6.65 | 6.65 | 6.65 | 0.43 | 0.97 | ±13.3% | | 3700 | 37.7 | 3.12 | 6.40 | 6.40 | 6.40 | 0.40 | 1.03 | ±13.3% | | 3900 | 37.5 | 3.32 | 6.36 | 6.36 | 6.36 | 0.40 | 1.25 | ±13.3% | | 4100 | 37.2 | 3.53 | 6.42 | 6.42 | 6.42 | 0.40 | 1.15 | ±13.3% | | 4200 | 37.1 | 3.63 | 6.34 | 6.34 | 6.34 | 0.35 | 1.35 | ±13.3% | | 4400 | 36.9 | 3.84 | 6.22 | 6.22 | 6.22 | 0.35 | 1.35 | ±13.3% | | 4600 | 36.7 | 4.04 | 6.10 | 6.10 | 6.10 | 0.45 | 1.25 | ±13.3% | | 4800 | 36.4 | 4.25 | 6.00 | 6.00 | 6.00 | 0.45 | 1.25 | ±13.3% | | 4950 | 36.3 | 4.40 | 5.70 | 5.70 | 5.70 | 0.45 | 1.25 | ±13.3% | | 5250 | 35.9 | 4.71 | 5.42 | 5.42 | 5.42 | 0.50 | 1.20 | ±13.3% | | 5600 | 35.5 | 5.07 | 4.75 | 4.75 | 4.75 | 0.55 | 1.20 | ±13.39 | | 5750 | 35.4 | 5.22 | 4.82 | 4.82 | 4.82 | 0.55 | 1.20 | ±13.3% | ^c Frequency validity above 300 MHz of ±100MHz only applies for DASY v4.4 and higher (Page 2), else it is restricted to ±50MHz. The uncertainty is the RSS of ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ± 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Above 5 GHz frequency validity can be extended to ± 110 MHz. effect after compensation is always less than \pm 1% for frequencies below 3 GHz and below \pm 2% for the frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary. Certificate No:Z21-60001 Page 4 of 9 F At frequency below 3 GHz, the validity of tissue parameters (ϵ and σ) can be relaxed to ±10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ϵ and σ) is restricted to ±5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters. ^G Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary