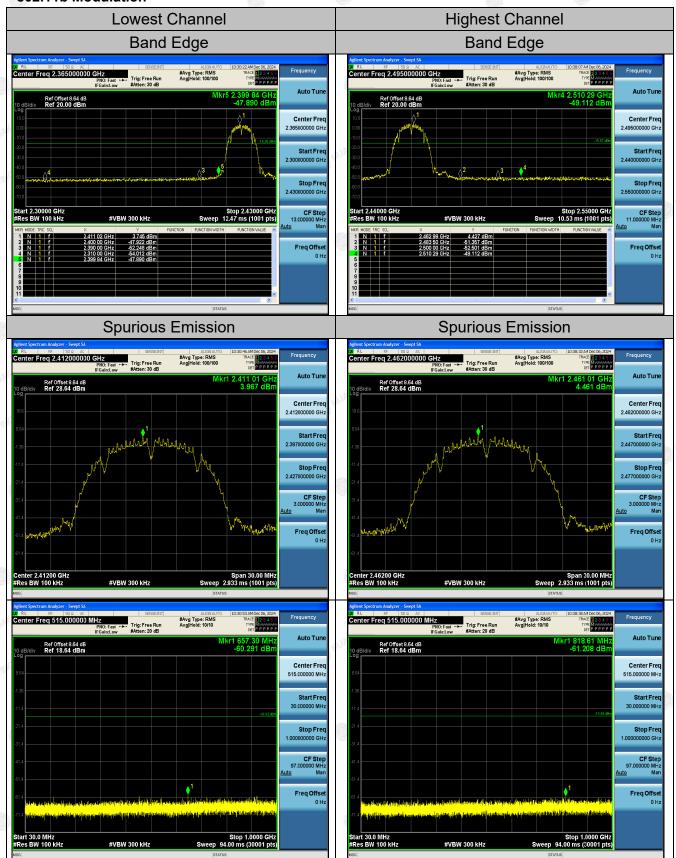


4.6. Conducted Band Edge and Spurious Emission Measurement

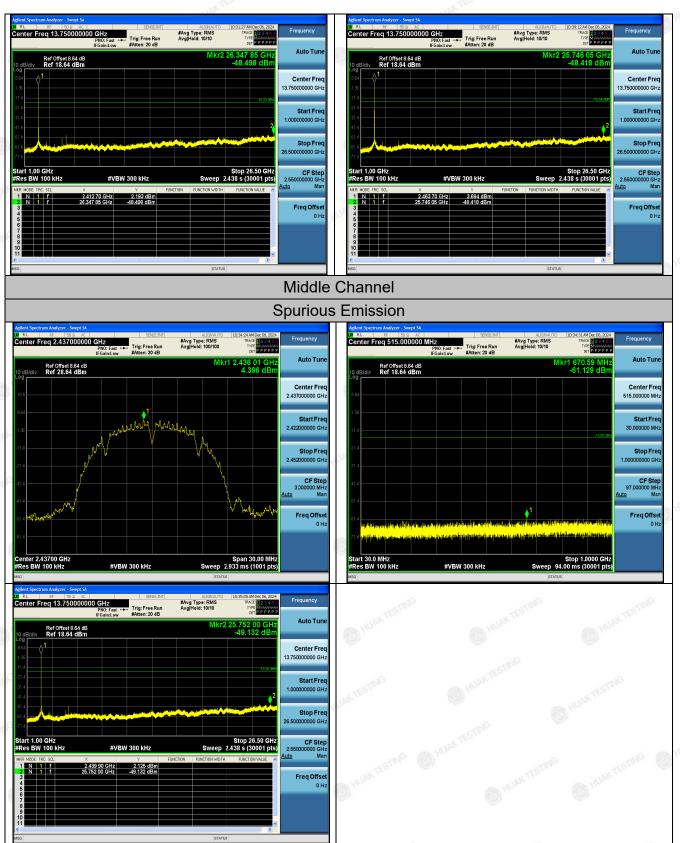
Test Specification

Test Requirement:	FCC Part15 C Section 15.247 (d)
Test Method:	KDB 558074 D01 15.247 Meas Guidance v05r02
Limit:	In any 100 kHz bandwidth outside of the authorized frequency band, the emissions which fall in the non-restricted bands shall be attenuated at least 20 dB / 30dB relative to the maximum PSD level in 100 kHz by RF conducted measurement and radiated emissions which fall in the restricted bands, as defined in Section 15.205(a), must also comply with the radiated emission limits specified in Section 15.209(a).
Test Setup:	Spectrum Analyzer EUT
Test Mode:	Transmitting mode with modulation
Test Procedure:	 The testing follows FCC KDB Publication 558074 D01 15.247 Meas Guidance v05r02. The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. Set RBW = 100 kHz, VBW=300 kHz, Peak Detector. Unwanted Emissions measured in any 100 kHz bandwidth outside of the authorized frequency band shall be attenuated by at least 20 dB relative to the maximum in-band peak PSD level in 100 kHz when maximum peak conducted output power procedure is used. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, the attenuation required under this paragraph shall be 30 dB instead of 20 dB per 15.247(d). Measure and record the results in the test report. The RF fundamental frequency should be excluded against the limit line in the operating frequency band.
Test Result:	PASS

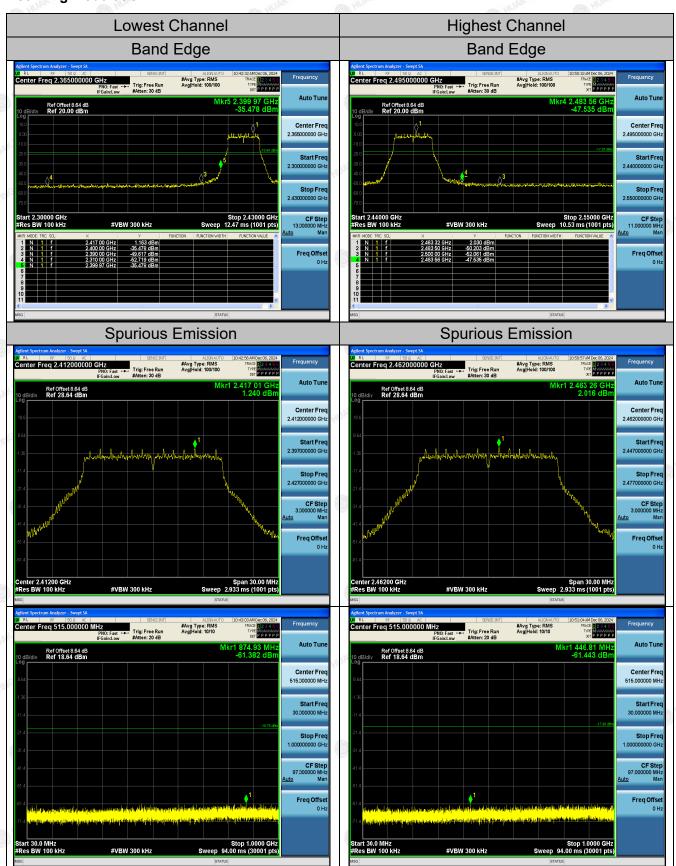
The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

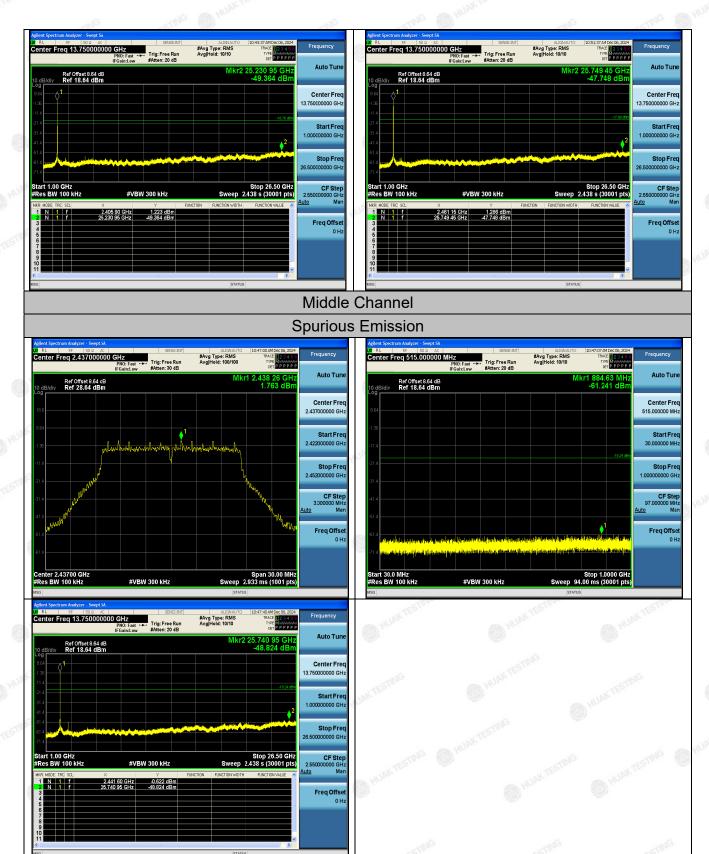

Test Instruments

ATTAL YOU ARRAY		All His	DICTRY .	Alle VI	DOM:				
RF Test Room									
Equipment	Manufacturer	Model	Serial Number	Calibration Date	Calibration Due				
Spectrum analyzer	Agilent	N9020A	HKE-025	Feb. 20, 2024	Feb. 19, 2025				
RF cable	Times	1-40G	HKE-034	Feb. 20, 2024	Feb. 19, 2025				
RF automatic control unit	Tonscend	JS0806-2	HKE-060	Feb. 20, 2024	Feb. 19, 2025				
RF Test Software	Tonscend	JS1120-3 Version 3.5.39	HKE-083	N/A	N/A				

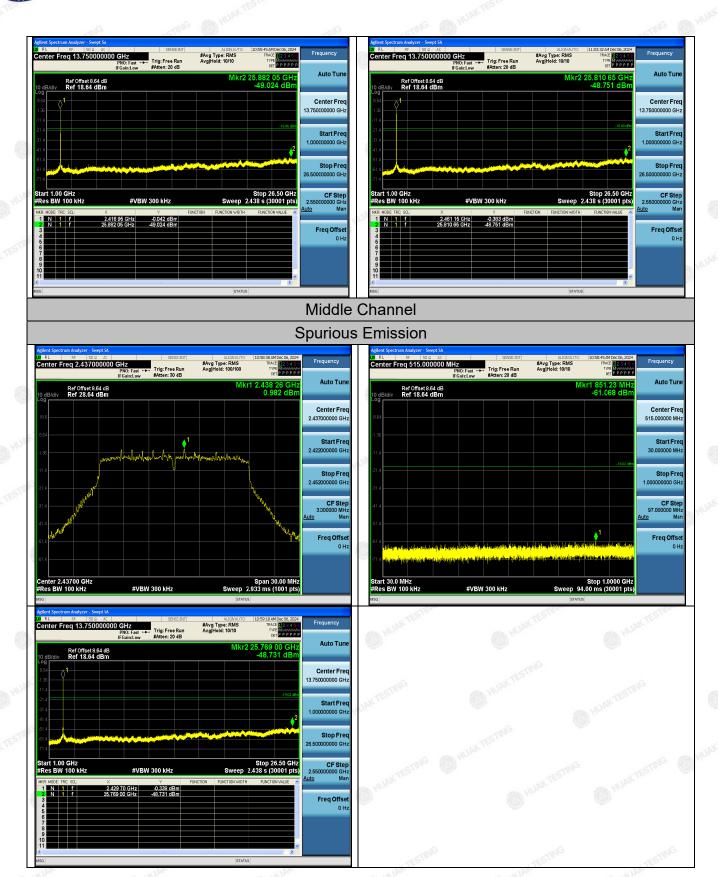

Note: The calibration interval of the above test instruments is 12 months and the calibrations are traceable to international system unit (SI).

Test Data


802.11b Modulation

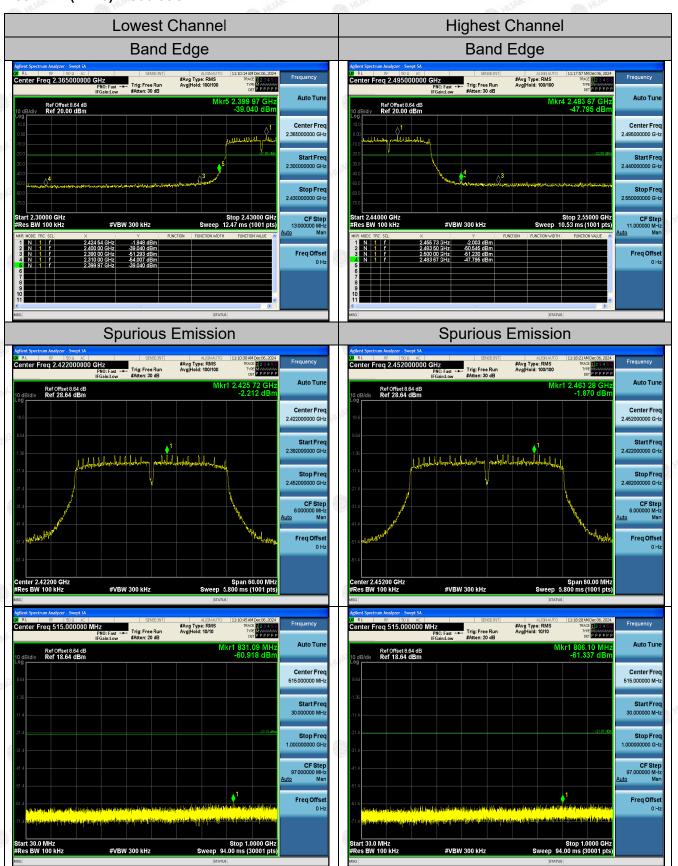


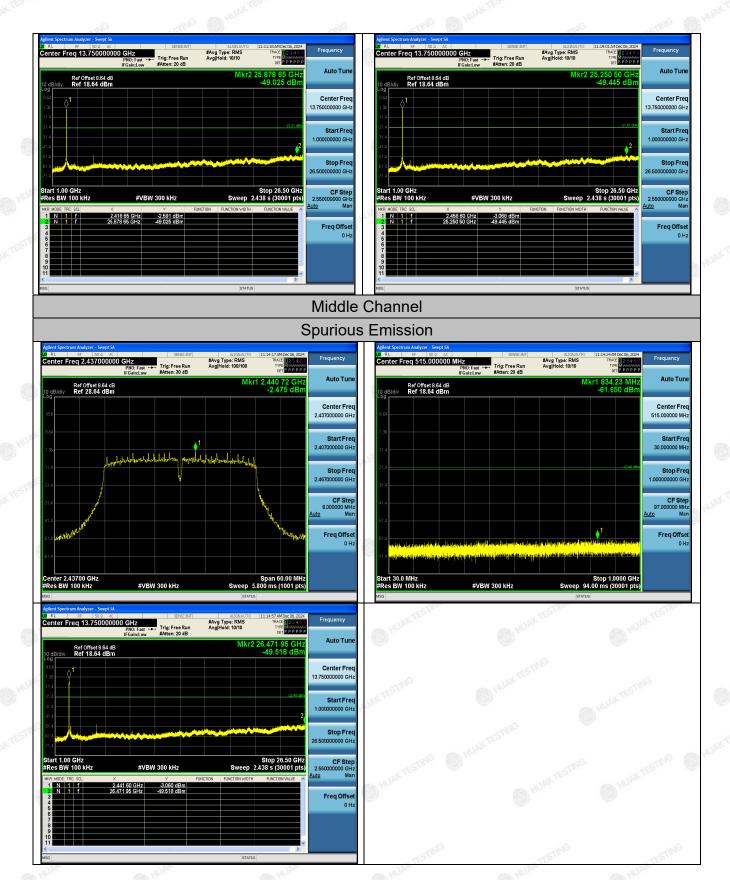
802.11g Modulation



The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

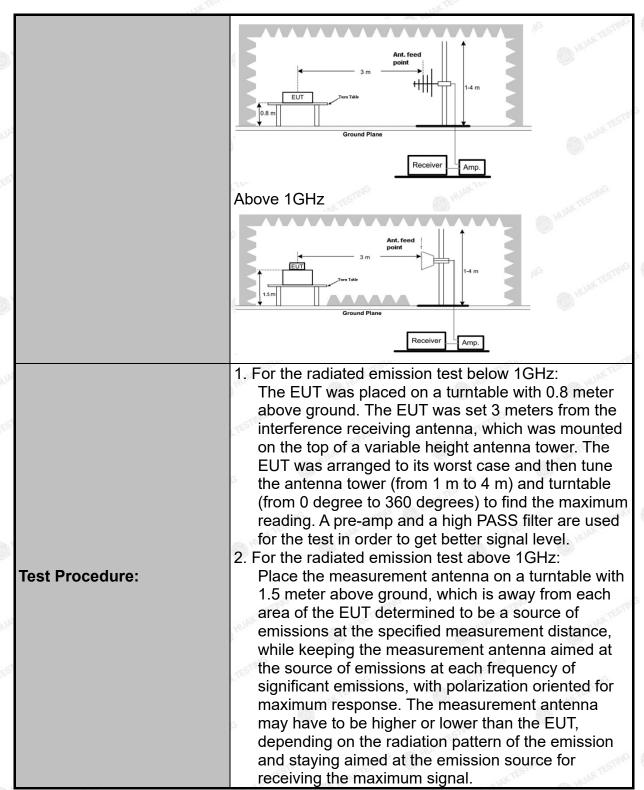
802.11n (HT20) Modulation

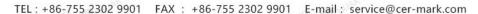




TESTING TESTING

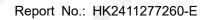
802.11n (HT40) Modulation


4.7. Radiated Spurious Emission Measurement


Test Specification

ISI C63.10 Hz to 25 (m			HIM		- MAIN			
10.	GHz		ANSI C63.10: 2013					
n	J. 12		-cTING					
••	TESTING	W. H.	AKTE		TESTING			
rizontal &	Vertical			0	IUAA			
ansmitting	mode w	ith modulat	ion					
Frequency	Detecto	r RBW	VBW	STING	Remark			
Hz- 150kHz	Quasi-pea	ak 200Hz	1kHz	Quas	i-peak Value			
150kHz- Quasi-peak		ak 9kHz	30kHz	Quas	i-peak Value			
MHz-1GHz	Quasi-pea	ak 120KHz	300KHz	Quas	i-peak Value			
boyo 1CHz	Peak	1MHz	3MHz	Pe	eak Value			
Above IGHZ Pe		1MHz	10Hz	Ave	rage Value			
Frequency		(microvolts	/meter)	Measurement Distance (meters)				
.40				300				
		· · · · · · · · · · · · · · · · · · ·		30				
				30				
		- 14		3				
11.5		1000000		3 75				
17.75	102		17.0	3				
1.5010 000								
Frequency		-	ıth eter) Distan		Detector			
Al 4011-	TO HUAK TE	500	WAK 13		Average			
Above 1GHz	- 60	5000	3		Peak			
	Frequency 150kHz 150kHz 150kHz 30MHz 0MHz-1GHz bove 1GHz Frequen 0.009-0.4 0.490-1.7 1.705-3 30-88 88-216 216-96 Above 9	Prequency	Prequency Detector RBW RHz- 150kHz Quasi-peak 200Hz 150kHz Quasi-peak 9kHz 200Hz 200Hz	Pequency	Pequency Detector RBW VBW Investment Investme			

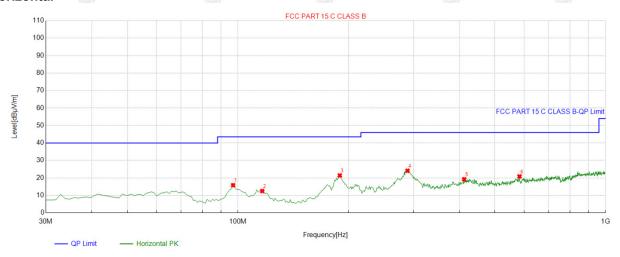
The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannon be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.


LAK TE	TAKE
	The final measurement antenna elevation shall be that which maximizes the emissions. The measurement antenna elevation for maximum emissions shall be restricted to a range of heights of from 1 m to 4 m above the ground or reference ground plane. 3. Corrected Reading: Antenna Factor + Cable Loss + Read Level - Preamp Factor = Level 4. For measurement below 1GHz, If the emission level of the EUT measured by the peak detector is 3 dB lower than the applicable limit, the peak emission level will be reported. Otherwise, the emission measurement will be repeated using the quasi-peak detector and reported. 5. Use the following spectrum analyzer settings: (1) Span shall wide enough to fully capture the emission being measured; (2) Set RBW=120 kHz for f < 1 GHz; VBW ≥RBW; Sweep = auto; Detector function = peak; Trace = max hold; (3) Set RBW = 1 MHz, VBW= 3MHz for f > 1 GHz for peak measurement. 6. For average measurement: VBW = 10 Hz, when duty cycle is no less than 98 percent. VBW ≥ 1/T, when duty cycle is less than 98 percent where T is the minimum transmission duration over which the transmitter is on and is transmitting at its maximum power control level for the tested mode of operation.
Test results:	PASS

Test Instruments

	Rad	iated Emission	Test Site (960	6)		
Name of Equipment	Manufacturer	Model	Serial Number	Calibration Date	Calibration Due	
Spectrum analyzer	Agilent	N9020A	HKE-025	Feb. 20, 2024	Feb. 19, 2025	
Spectrum analyzer	R&S	FSV3044	HKE-126	Feb. 20, 2024	Feb. 19, 2025	
Preamplifier	EMCI	EMC051845S	HKE-006	Feb. 20, 2024	Feb. 19, 2025	
Preamplifier	Schwarzbeck	BBV 9743	HKE-016	Feb. 20, 2024	Feb. 19, 2025	
Preamplifier	A.H. Systems	SAS-574	HKE-182	Feb. 20, 2024	Feb. 19, 2025	
6dB Attenuator	Pasternack	6db	HKE-184	Feb. 20, 2024	Feb. 19, 2025	
EMI Test Receiver	Rohde & Schwarz	ESR-7	HKE-010	Feb. 20, 2024	Feb. 19, 2025	
Broadband Antenna	Schwarzbeck	VULB9168	HKE-167	Feb. 21, 2024	Feb. 20, 2026	
Loop Antenna	COM-POWER	AL-130R	HKE-014	Feb. 21, 2024	Feb. 20, 2026	
Horn Antenna	Schwarzbeck	9120D	HKE-013	Feb. 21, 2024	Feb. 20, 2026	
EMI Test Software	Tonscend	JS32-RE 5.0.0	HKE-082	N/A	N/A	
RSE Test Software	Tonscend	JS36-RSE 5.0 .0	HKE-184	N/A	N/A	

Note: The calibration interval of the above test instruments is 12 months and the calibrations are traceable to international system unit (SI).


Test Data

HUAK TESTING

All the test modes completed for test. only the worst result of (802.11b at 2412MHz) was reported as below:

Below 1GHz


Horizontal

Suspe	Suspected List											
	Freq.	Factor	Reading	Level	Limit	Margin	Height	Angle				
NO.	[MHz]	[dB]	[dBµV/m]	[dBµV/m]	[dBµV/m]	[dB]	[cm]	[°]	Polarity			
1	96.996997	-14.95	30.81	15.86	43.50	27.64	100	27	Horizontal			
2	116.41641	-15.95	28.47	12.52	43.50	30.98	100	38	Horizontal			
3	189.23923	-15.52	36.92	21.40	43.50	22.10	100	127	Horizontal			
4	289.24924	-12.10	36.22	24.12	46.00	21.88	100	356	Horizontal			
5	412.56256	-9.45	28.71	19.26	46.00	26.74	100	78	Horizontal			
6	583.45345	-5.58	26.45	20.87	46.00	25.13	100	191	Horizontal			

Remark: Factor = Cable loss + Antenna factor + Attenuator – Preamplifier; Level = Reading + Factor; Margin = Limit - Level

Vertical

Suspected List Freq. Factor Reading Level Limit Margin Height Angle NO. **Polarity** [MHz] [dB] [dBµV/m] $[dB\mu V/m]$ [dBµV/m] [dB] [°] [cm] -16.89 40.76 100 69.80981 23.87 40.00 16.13 99 Vertical 2 96.996997 -14.95 37.81 22.86 43.50 20.64 100 194 Vertical 183.41341 -15.63 32.19 16.56 43.50 26.94 100 Vertical 3 79 4 298.95895 -11.75 27.58 15.83 46.00 30.17 100 118 Vertical 423.24324 -8.96 31.26 22.30 46.00 23.70 100 189 Vertical 519.36936 -7.52 30.44 46.00 23.08 100 134 Vertical 22.92

Remark: Factor = Cable loss + Antenna factor + Attenuator – Preamplifier; Level = Reading + Factor; Margin = Limit - Level

Harmonics and Spurious Emissions

Frequency Range (9kHz-30MHz)

Frequency (MHz)	Level@3m (dBµV/m)	Limit@3m (dBµV/m)
"TETING	HI AN TESTING	HUAN TESTING
HUAD	10 10 10 10 10 10 10 10 10 10 10 10 10 1	HUAN
	S MG	-STING
war		e Jak L

Note: 1. Emission Level=Reading+ Cable loss-Antenna factor-Amp factor.

2. The emission levels are 20 dB below the limit value, which are not reported. It is deemed to comply with the requirement.

Above 1GHz

Radiated Emission Test

LOW CH1 (802.11b Mode)/2412

Horizontal:

Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
4824	53.66	-3.64	50.02	74	-23.98	peak
4824	42.09	-3.64	38.45	54	-15.55	AVG
7236	50.38	-0.95	49.43	74	-24.57	peak
7236	41.72	-0.95	40.77	54	-13.23	AVG

Remark: Factor = Cable loss + Antenna factor + Attenuator – Preamplifier; Level = Reading + Factor; Margin = Level-Limit.

Vertical:

Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
4824	54.32	-3.64	50.68	74	-23.32	peak
4824	43.39	-3.64	39.75	54	-14.25	AVG
7236	52.17	-0.95	51.22	74	-22.78	peak
7236	40.66	-0.95	39.71	54	-14.29	AVG

Remark: Factor = Cable loss + Antenna factor + Attenuator – Preamplifier; Level = Reading + Factor; Margin = Level-Limit.

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

MID CH6 (802.11b Mode)/2437

Horizontal:

Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB)	(dBµV/m) (dBµV/m)	(dB)	Type	
4874	54.72	-3.51	51.21	74	-22.79	peak
4874	42.37	-3.51	38.86	54	-15.14	AVG
7311	52.88	-0.82	52.06	74	-21.94	peak
7311	40.72	-0.82	39.9	54	· -14.1	AVG

Remark: Factor = Cable loss + Antenna factor + Attenuator – Preamplifier; Level = Reading + Factor; Margin = Level-Limit.

Vertical:

Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
4874	53.97	-3.51	50.46	74	-23.54	peak
4874	45.02	-3.51	41.51	54	-12.49	AVG
7311	51.22	-0.82	50.4	74	-23.6	peak
7311	42.41	-0.82	41.59	54	··· -12.41	AVG

Remark: Factor = Cable loss + Antenna factor + Attenuator – Preamplifier; Level = Reading + Factor; Margin = Level-Limit.

A FICATION

HIGH CH11 (802.11b Mode)/2462

Horizontal:

Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
4924	53.73	-3.43	50.3	74	-23.7	peak
6 4924	43.01	-3.43	39.58	54	-14.42	AVG
7386	52.07	-0.75	51.32	74	-22.68	peak
7386	40.33	-0.75	39.58	54	-14.42	AVG

Remark: Factor = Cable loss + Antenna factor + Attenuator – Preamplifier; Level = Reading + Factor; Margin = Level-Limit.

Vertical:

			PD5565			6652342	1000
	Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector
ľ	(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Type
3	4924	55.27	-3.43	51.84	74	-22.16	peak
	4924	42.96	-3.43	39.53	54	-14.47	AVG
100	7386	51.96	-0.75	51.21	74	-22.79	peak
	7386	40.69	-0.75	39.94	54	-14.06	AVG

Remark: Factor = Cable loss + Antenna factor + Attenuator – Preamplifier; Level = Reading + Factor; Margin = Level-Limit.

Remark

- (1) Measuring frequencies from 1 GHz to the 25 GHz.
- (2) "F" denotes fundamental frequency; "H" denotes spurious frequency; "E" denotes band edge frequency.
- (3) * denotes emission frequency which appearing within the Restricted Bands specified in provision of 15.205, then the general radiated emission limits in 15.209 apply.
- (4) The emissions are attenuated more than 20dB below the permissible limits are not recorded in the report.
- (5) The IF bandwidth of EMI Test Receiver between 30MHz to 1GHz was 120KHz, 1 MHz for measuring above 1 GHz, below 30MHz was 10KHz.
- (6) When the test results of Peak Detected below the limits of Average Detected, the Average Detected is not need completed. For example: Top Channel at Fundamental73.16dBuV/m(PK Value) <93.98(AV Limit), at harmonic 53.20 dBuV/m(PK Value) <54dBuV/m(AV Limit), the Average Detected not need to completed.

LOW CH1 (802.11g Mode)/2412

Horizontal:

Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
4824	53.43	-3.64	49.79	74	-24.21	peak
4824	42.85	-3.64	39.21	54	-14.79	AVG
7236	51.24	-0.95	50.29	74	-23.71	peak
7236	40.69	-0.95	39.74	54	-14.26	AVG

Remark: Factor = Cable loss + Antenna factor + Attenuator – Preamplifier; Level = Reading + Factor; Margin = Level-Limit.

Vertical:

Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
4824	54.53	-3.64	50.89	74	-23.11	peak
4824	45.29	-3.64	41.65	54	-12.35	AVG
7236	51.71	-0.95	50.76	74	-23.24	peak
7236	42.43	-0.95	41.48	54	-12.52	AVG

Remark: Factor = Cable loss + Antenna factor + Attenuator – Preamplifier; Level = Reading + Factor; Margin = Level-Limit.

MID CH6 (802.11g Mode)/2437

Horizontal:

Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
4874	54.39	-3.51	50.88	74	-23.12	peak
4874	43.68	-3.51	40.17	54	-13.83	AVG
7311	50.58	-0.82	49.76	74	-24.24	peak
7311	42.01	-0.82	41.19	54	-12.81	AVG

Remark: Factor = Cable loss + Antenna factor + Attenuator – Preamplifier; Level = Reading + Factor; Margin = Level-Limit.

Vertical:

Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector	
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре	
4874	52.12	-3.51	48.61	74	-25.39	peak	
4874	41.25	-3.51	37.74	54	-16.26	AVG	
7311	51.94	-0.82	51.12	74	-22.88	peak	
7311	40.36	-0.82	39.54	54	-14.46	AVG	

Remark: Factor = Cable loss + Antenna factor + Attenuator – Preamplifier; Level = Reading + Factor; Margin = Level-Limit.

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

HIGH CH11 (802.11g Mode)/2462

Horizontal:

Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Type
4924	55.32	-3.43	51.89	74	-22.11	peak
4924	43.19	-3.43	39.76	54	-14.24	AVG
7386	50.71	-0.75	49.96	74 AUA	-24.04	peak
7386	41.59	-0.75	40.84	54	-13.16	AVG

Remark: Factor = Cable loss + Antenna factor + Attenuator – Preamplifier; Level = Reading + Factor; Margin = Level-Limit

Vertical:

Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
4924	52.37	-3.43	48.94	74	-25.06	peak
4924	43.81	-3.43	40.38	54	-13.62	AVG
7386	50.38	-0.75	49.63	74	-24.37	peak
7386	42.89	-0.75	42.14	54	-11.86	AVG

Remark: Factor = Cable loss + Antenna factor + Attenuator – Preamplifier; Level = Reading + Factor; Margin = Level-Limit.

Remark:

- (1) Measuring frequencies from 1 GHz to the 25 GHz.
- (2) "F" denotes fundamental frequency; "H" denotes spurious frequency; "E" denotes band edge frequency.
- (3) * denotes emission frequency which appearing within the Restricted Bands specified in provision of 15.205, then the general radiated emission limits in 15.209 apply.
- (4) The emissions are attenuated more than 20dB below the permissible limits are not recorded in the report.
- (5) The IF bandwidth of EMI Test Receiver between 30MHz to 1GHz was 120KHz, 1 MHz for measuring above 1 GHz, below 30MHz was 10KHz.
- (6) When the test results of Peak Detected below the limits of Average Detected, the Average Detected is not need completed. For example: Top Channel at Fundamental73.16dBuV/m(PK Value) <93.98(AV Limit), at harmonic 53.20 dBuV/m(PK Value) <54dBuV/m(AV Limit), the Average Detected not need to completed.

LOW CH1 (802.11n/HT20 Mode)/2412

Horizontal:

Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
4824	53.97	-3.64	50.33	74	-23.67	peak
4824	45.36	-3.64	41.72	54	-12.28	AVG
7236	52.04	-0.95	51.09	74 HUAL	-22.91	peak
7236	43.74	-0.95	42.79	54	-11.21	AVG

Remark: Factor = Cable loss + Antenna factor + Attenuator – Preamplifier; Level = Reading + Factor; Margin = Level-Limit.

Vertical:

Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
4824	53.12	-3.64	49.48	74	-24.52	peak
4824	41.06	-3.64	37.42	54	-16.58	AVG
7236	51.19	-0.95	50.24	74	-23.76	peak
7236	40.28	-0.95	39.33	54	-14.67	AVG

Remark: Factor = Cable loss + Antenna factor + Attenuator – Preamplifier; Level = Reading + Factor; Margin = Level-Limit.

MID CH6 (802.11n/HT20 Mode)/2437

Horizontal:

Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector	
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре	
4874	53.85	-3.51	50.34	74.00	-23.66	peak	
4874	44.05	-3.51	40.54	54.00	-13.46	AVG	
7311	51.68	-0.82	50.86	74.00	-23.14	peak	
7311	42.16	-0.82	41.34	54.00	-12.66	AVG	

Remark: Factor = Cable loss + Antenna factor + Attenuator – Preamplifier; Level = Reading + Factor; Margin = Level-Limit.

Vertical:

Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
4874	54.34	-3.51	50.83	74.00	-23.17	peak
4874	42.67	-3.51	39.16	54.00	-14.84	AVG
7311	51.71	-0.82	50.89	74.00	-23.11	peak
7311	41.94	-0.82	41.12	54.00	-12.88	AVG

Remark: Factor = Cable loss + Antenna factor + Attenuator – Preamplifier; Level = Reading + Factor; Margin = Level-Limit.

AFICATION.

HIGH CH11 (802.11n/HT20 Mode)/2462

Horizontal:

Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Data stay Turk
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
4924	54.02	-3.43	50.59	74	-23.41	peak
4924	42.76	-3.43	39.33	54	-14.67	AVG
7386	51.42	-0.75	50.67	74	-23.33	peak
7386	41.64	-0.75	40.89	54	-13.11	AVG

Remark: Factor = Cable loss + Antenna factor + Attenuator – Preamplifier; Level = Reading + Factor; Margin = Level-Limit.

Vertical:

Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Data et a Tam
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
4924	53.76	-3.43	50.33	74	-23.67	peak
4924	44.35	-3.43	40.92	54	-13.08	AVG
7386	52.27	-0.75	51.52	74	-22.48	peak
7386	41.35	-0.75	40.6	54	«° -13.4	AVG

Remark: Factor = Cable loss + Antenna factor + Attenuator – Preamplifier; Level = Reading + Factor; Margin = Level-Limit.

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannon be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

LOW CH3 (802.11n/HT40 Mode)/2422

Horizontal:

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
4844	54.26	-3.63	50.63	74	-23.37	peak
4844	42.74	-3.63	39.11	54	-14.89	AVG
7266	52.33	-0.94	51.39	74	-22.61	peak
7266	40.78	-0.94	39.84	54	-14.16	AVG

Remark: Factor = Cable loss + Antenna factor + Attenuator – Preamplifier; Level = Reading + Factor; Margin = Level-Limit.

Vertical:

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
4844	54.27	-3.63	50.64	74	-23.36	peak
4844	45.21	-3.63	41.58	54	-12.42	AVG
7266	52.83	-0.94	51.89	74	-22.11	peak
7266	40.23	-0.94	39.29	54	-14.71	AVG

Remark: Factor = Cable loss + Antenna factor + Attenuator – Preamplifier; Level = Reading + Factor; Margin = Level-Limit.

MID CH6 (802.11n/HT40 Mode)/2437

Horizontal:

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector Tyre
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	- Detector Type
4874	53.28	-3.51	49.77	74	-24.23	peak
4874	43.44	-3.51	39.93	54	-14.07	AVG
7311	51.23	-0.82	50.41	74	-23.59	peak
7311	42.15	-0.82	41.33	54 _m (15 ⁵)	-12.67	AVG

Remark: Factor = Cable loss + Antenna factor + Attenuator – Preamplifier; Level = Reading + Factor; Margin = Level-Limit.

Vertical:

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector Time
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
4874	52.69	-3.51	49.18	74	-24.82	peak
4874	41.48	-3.51	37.97	54	-16.03	AVG
7311	51.69	-0.82	50.87	74	-23.13	peak
7311	40.22	-0.82	39.4	54	-14.6	AVG

Remark: Factor = Cable loss + Antenna factor + Attenuator – Preamplifier; Level = Reading + Factor; Margin = Level-Limit.

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

HIGH CH9 (802.11n/HT40 Mode)/2452

Horizontal:

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector Tyre
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
4904	52.84	-3.43	49.41	74	-24.59	peak
4904	42.74	-3.43	39.31	54	-14.69	AVG
7356	51.21	-0.75	50.46	74	-23.54	peak
7356	41.14	-0.75	40.39	54	-13.61	AVG

Remark: Factor = Cable loss + Antenna factor + Attenuator – Preamplifier; Level = Reading + Factor; Margin = Level-Limit.

Vertical:

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Data at In Trus
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
4904	53.72	-3.43	50.29	74	-23.71	peak
4904	42.85	-3.43	39.42	54	-14.58	AVG
7356	50.79	-0.75	50.04	74	-23.96	peak
7356	41.62	-0.75	40.87	54	-13.13	AVG

Remark: Factor = Cable loss + Antenna factor + Attenuator – Preamplifier; Level = Reading + Factor; Margin = Level-Limit.

Remark:

- (1) Measuring frequencies from 1 GHz to the 25 GHz.
- (2) "F" denotes fundamental frequency; "H" denotes spurious frequency; "E" denotes band edge frequency.
- (3) * denotes emission frequency which appearing within the Restricted Bands specified in provision of 15.205, then the general radiated emission limits in 15.209 apply.
- (4) The emissions are attenuated more than 20dB below the permissible limits are not recorded in the report.
- (5) The IF bandwidth of EMI Test Receiver between 30MHz to 1GHz was 120KHz, 1 MHz for measuring above 1 GHz, below 30MHz was 10KHz.
- (6) When the test results of Peak Detected below the limits of Average Detected, the Average Detected is not need completed. For example: Top Channel at Fundamental 73.16dBuV/m(PK Value) <93.98(AV Limit), at harmonic 53.20 dBuV/m(PK Value) <54 dBuV/m(AV Limit), the Average Detected not need to completed.

Test Result of Radiated Spurious at Band edges

Operation Mode:

802.11b Mode TX CH Low (2412MHz)

Horizontal

170		250			25/25	
Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)]
2310.00	53.01	-5.81	47.2	74	-26.8	peak
2310.00	43.37	-5.81	37.56	54	-16.44	AVG
2390.00	51.47	-5.84	45.63	74	-28.37	peak
2390.00	40.58	-5.84	34.74	54	-19.26	AVG
	-235.76				2353	

Remark: Factor = Cable loss + Antenna factor + Attenuator – Preamplifier; Level = Reading + Factor; Margin = Level-Limit.

Vertical:

		3 C 3 Y	Mar. VVV	- C- 1	ATTAL VIV		of Conf. 1
	Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector Type
ľ	(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	
Ī	2310.00	53.64	-5.81	47.83	74	-26.17	peak
	2310.00	42.37	-5.81	36.56	54	-17.44	AVG
Ī	2390.00	50.98	-5.84	45.14	74	-28.86	peak
2	2390.00	41.35	-5.84	35.51	54	-18.49	AVG

Remark: Factor = Cable loss + Antenna factor + Attenuator – Preamplifier; Level = Reading + Factor; Margin = Level-Limit

•

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannon be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

Operation Mode: TX CH High (2462MHz)

Horizontal

Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	
2483.50	53.08	-5.81	47.27	74	-26.73	peak
2483.50	44.32	-5.81	38.51	54	-15.49	AVG
2500.00	51.43	-6.06	45.37	74	-28.63	peak
2500.00	41.29	-6.06	35.23	54	-18.77	AVG

Remark: Factor = Cable loss + Antenna factor + Attenuator – Preamplifier; Level = Reading + Factor; Margin =

Vertical:

	L MV	and the	and the	ATT IN	CIO.	and the same
Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	TESTING
2483.50	52.18	-5.81	46.37	74	-27.63	peak
2483.50	44.21	-5.81	38.4	54	-15.6	AVG
2500.00	51.42	-6.06	45.36	74	-28.64	peak
2500.00	42.97	-6.06	36.91	54	-17.09	AVG

Remark: Factor = Cable loss + Antenna factor + Attenuator – Preamplifier; Level = Reading + Factor; Margin = Level-Limit.

Remark: All the other emissions not reported were too low to read and deemed to comply with FCC limit.

Operation Mode: 802.11g Mode TX CH Low (2412MHz)

Horizontal

-allo	40/12	Law	0	21/2	-allo	- CILO
Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	, ,
2310.00	54.41	-5.81	48.6	74 HUAY	-25.4	peak
2310.00	43.11	-5.81	37.3	54	-16.7	AVG
2390.00	51.72	-5.84	45.88	74	-28.12	peak
2390.00	40.37	-5.84	34.53	54	-19.47	AVG

Remark: Factor = Cable loss + Antenna factor + Attenuator – Preamplifier; Level = Reading + Factor; Margin = Level-Limit.

Vertical:

119	. 010	100	. 0.10		. 0.00	. 0.10
Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	TING
2310.00	54.04	-5.81	48.23	74	-25.77	peak
2310.00	43.77	-5.81	37.96	54	-16.04	AVG
2390.00	51.67	-5.84	45.83	74	-28.17	peak
2390.00	40.41	-5.84	34.57	54	-19.43	AVG

Remark: Factor = Cable loss + Antenna factor + Attenuator – Preamplifier; Level = Reading + Factor; Margin = Level-Limit.

Operation Mode: TX CH High (2462MHz)

Horizontal

Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	
2483.50	53.26	-5.65	47.61	74	-26.39	peak
2483.50	42.74	-5.65	37.09	54	-16.91	AVG
2500.00	51.37	-5.65	45.72	74	-28.28	peak
2500.00	41.57	-5.65	35.92	54	-18.08	AVG

Remark: Factor = Cable loss + Antenna factor + Attenuator – Preamplifier; Level = Reading + Factor; Margin = Level-Limit.

Vertical:

			-63	11.		- 477
Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)] "
2483.50	53.04	-5.65	47.39	74 HUA	-26.61	peak
2483.50	41.57	-5.65	35.92	54	-18.08	AVG
2500.00	52.82	-5.65	47.17	74	-26.83	peak
2500.00	40.18	-5.65	34.53	54	-19.47	AVG

Remark: Factor = Cable loss + Antenna factor + Attenuator – Preamplifier; Level = Reading + Factor; Margin =

Remark: All the other emissions not reported were too low to read and deemed to comply with FCC limit.

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

Operation Mode: 802.11n/HT20 Mode TX CH Low (2412MHz)

Horizontal

Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	
2310.00	53.46	-5.81	47.65	74	-26.35	peak
2310.00	43.94	-5.81	38.13	54	-15.87	AVG
2390.00	51.59	-5.84	45.75	74	-28.25	peak
2390.00	41.99	-5.84	36.15	54	-17.85	AVG

Remark: Factor = Cable loss + Antenna factor + Attenuator – Preamplifier; Level = Reading + Factor; Margin = Level-Limit.

Vertical:

Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	1
2310.00	54.29	-5.81	48.48	74 HUAN	-25.52	peak
2310.00	45.49	-5.81	39.68	54	-14.32	AVG
2390.00	52.47	-5.84	46.63	74	-27.37	peak
2390.00	41.03	-5.84	35.19	54	-18.81	AVG

Remark: Factor = Cable loss + Antenna factor + Attenuator – Preamplifier; Level = Reading + Factor; Margin = Level-Limit.

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

Operation Mode: TX CH High (2462MHz)

Horizontal

-allo	-all2	llan	3	0112	-allo	- Alla
Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)]
2483.50	53.92	-5.65	48.27	74	-25.73	peak
2483.50	43.29	-5.65	37.64	54	-16.36	AVG
2500.00	52.65	-5.65	47	74	-27	peak
2500.00	41.84	-5.65	36.19	54	-17.81	AVG
ALC: NOTE: N					100	

Remark: Factor = Cable loss + Antenna factor + Attenuator – Preamplifier; Level = Reading + Factor; Margin = Level-Limit.

Vertical:

	11/1/2	-11 //	41/2	2277	- 11 Jr.	47/2
Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	TESTING
2483.50	53.91	-5.65	48.26	74	-25.74	peak
2483.50	41.98	-5.65	36.33	54	-17.67	AVG
2500.00	51.53	-5.65	45.88	74	-28.12	peak
2500.00	40.83	-5.65	35.18	54	-18.82	AVG

Remark: Factor = Cable loss + Antenna factor + Attenuator – Preamplifier; Level = Reading + Factor; Margin = Level-Limit.

Remark: All the other emissions not reported were too low to read and deemed to comply with FCC limit.

Operation Mode: 802.11n/HT40 Mode TX CH Low (2422MHz)

Horizontal

Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	
2310.00	54.26	-5.81	48.45	74	-25.55	peak
2310.00	/ (-5.81	WIND THE STATE OF	54	1	AVG
2390.00	51.77	-5.84	45.93	74	-28.07	peak
2390.00	THE HUA	-5.84	1	54	1	AVG

Remark: Factor = Cable loss + Antenna factor + Attenuator – Preamplifier; Level = Reading + Factor; Margin = Level-Limit.

Vertical:

Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)]
2310.00	55.96	-5.81	50.15	74	-23.85	peak
2310.00	1	-5.81	<i>"</i> /	54	1	AVG
2390.00	53.27	-5.84	47.43	74	-26.57	peak
2390.00	JAK TE	-5.84	MAKTE	54	HUAK TES	AVG

Remark: Factor = Cable loss + Antenna factor + Attenuator – Preamplifier; Level = Reading + Factor; Margin = Level-Limit.

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannon be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

Operation Mode: TX CH High (2452MHz)

Horizontal

	-010	Alan.			-010	Allan .
Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	
2483.50	54.28	-5.65	48.63	74	-25.37	peak
2483.50	1	-5.65	· /	54	1 🔍	AVG
2500.00	51.49	-5.65	45.84	74	-28.16	peak
2500.00	JAK TE	-5.65	ALAKTE	54	HUAK TES	AVG

Remark: Factor = Cable loss + Antenna factor + Attenuator – Preamplifier; Level = Reading + Factor; Margin = Level-Limit.

Vertical:

10.000		PERMAN	PENSIL	192000		PERMA
Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	JAK TESTING
2483.50	56.32	-5.65	50.67	74	-23.33	peak
2483.50	STING WHUA	-5.65	ING / SIN	54	1 mus	AVG
2500.00	53.41	-5.65	47.76	74	-26.24	peak
2500.00	1	-5.65	/	54	1	AVG

Remark: Factor = Cable loss + Antenna factor + Attenuator - Preamplifier; Level = Reading + Factor; Margin = Level-Limit.

Remark: All the other emissions not reported were too low to read and deemed to comply with FCC limit.

- 1. If the PK measured levels comply with average limit, then the average level were deemed to comply with average limit.
- 2. In restricted bands of operation, the spurious emissions below the permissible value more than 20dB.
- 3. The amplitude of spurious emissions which are attenuated by more than 20dB below the permissible value has no need to be reported.

4.8. Antenna Requirement

Standard Applicable

For intentional device, according to FCC 47 CFR Section 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. And according to FCC 47 CFR Section 15.247, if transmitting antennas of directional gain greater than6dBi are used, the power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6dBi.

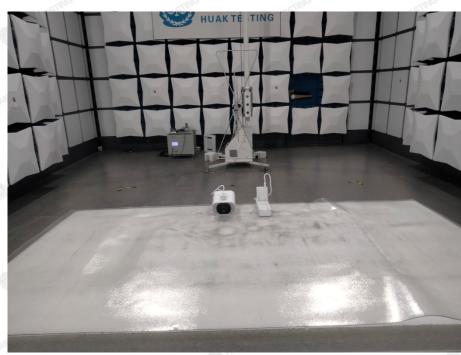
Refer to statement below for compliance.

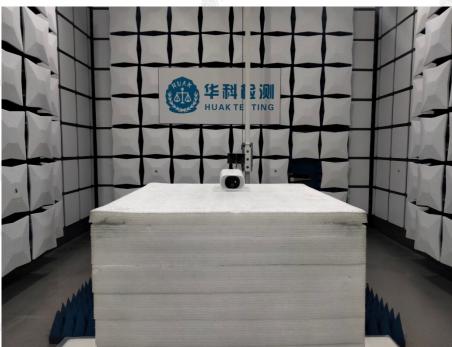
The manufacturer may design the unit so that the user can replace a broken antenna, but the use of a standard antenna jack or electrical connector is prohibited. Further, this requirement does not apply to intentional radiators that must be professionally installed.

Antenna Connected Construction

The antenna used in this product is a Iron sheet antenna, which permanently attached. It conforms to the standard requirements. The directional gains of antenna used for transmitting is 1.94dBi.

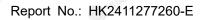
Antenna




The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

5. Photograph of Test

Radiated Emissions



The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

TEL: +86-755 2302 9901 FAX: +86-755 2302 9901 E-mail: service@cer-mark.com

Add: 1-2F., Building B2, Junfeng Zhongcheng Zhizao Innovation Park, Heping Community, Fuhai Street, Bao'an District, Shenzhen, Guangdong, China

Conducted Emission

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannon be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

6. Photos of the EUT

Reference to the report: ANNEX A of external photos and ANNEX B of internal photos.

-----End of test report-----

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannon be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.