

RF TEST REPORT

Applicant	Alliedstar Medical Equipment Co., Ltd.
-----------	--

FCC ID 2A8SG-S300W

Product Intraoral Scanner

Brand AlliedStar

Model S300W

Report No. R2403A0226-R1V1

Issue Date October 14, 2024

Eurofins TA Technology (Shanghai) Co., Ltd. tested the above equipment in accordance with the requirements in **FCC CFR47 Part 15E (2023)**. The test results show that the equipment tested is capable of demonstrating compliance with the requirements as documented in this report.

Prepared by: Xu Ying

Approved by: Xu Kai

Eurofins TA Technology (Shanghai) Co., Ltd.

Building 3, No.145, Jintang Rd, Pudong Shanghai, P.R.China TEL: +86-021-50791141/2/3 FAX: +86-021-50791141/2/3-8000

TABLE OF CONTENT

1. Tes	st Laboratory	5
1.1.	Notes of the test report	5
1.2.	Test facility	5
1.3.	Testing Location	5
2. Ger	neral Description of Equipment under Test	6
2.1.	Applicant and Manufacturer Information	6
2.2.	General information	6
3. App	blied Standards	8
4. Tes	st Configuration	9
5. Tes	st Case Results	11
5.1.	Occupied Bandwidth	11
5.2.	Average Power Output	34
5.3.	Frequency Stability	
5.4.	Power Spectral Density	42
5.5.	Unwanted Emission	59
5.6.	Conducted Emission	103
6. Mai	in Test Instruments	106
ANNEX	A: The EUT Appearance	107
ANNEX	B: Test Setup Photos	108

Version	Revision Description	Issue Date		
Rev.0	Initial issue of report.	August 28, 2024		
Rev.1	Updated information. October 14, 2024			
Note: This revised report (Report No.: R2403A0226-R1V1) supersedes and replaces the				
previously issued report (Report No.: R2403A0226-R1). Please discard or destroy the				
previously issued report and dispose of it accordingly.				

Number	Test Case	Clause in FCC rules	Verdict		
1	Average output power	15.407(a)	PASS		
2	Occupied bandwidth	15.407(e)	PASS		
3	Frequency stability	15.407(g)	PASS		
4	Power spectral density	15.407(a)	PASS		
5	Unwanted Emissions	15.407(b)	PASS		
6	Conducted Emissions	15.207	PASS		
Date of Testing: March 25, 2024 ~ June 28, 2024					
Date of Sample Received: March 11, 2024					
Note: PASS: The EUT complies with the essential requirements in the standard.					

Summary of measurement results

FAIL: The EUT does not comply with the essential requirements in the standard. All indications of Pass/Fail in this report are opinions expressed by Eurofins TA Technology (Shanghai) Co., Ltd. based on interpretations and/or observations of test results. Measurement Uncertainties were not taken into account and are published for informational purposes only.

1. Test Laboratory

1.1. Notes of the test report

This report shall not be reproduced in full or partial, without the written approval of **Eurofins TA Technology (Shanghai) Co., Ltd.** The results documented in this report apply only to the tested sample, under the conditions and modes of operation as described herein. Measurement Uncertainties were not taken into account and are published for informational purposes only. This

report is written to support regulatory compliance of the applicable standards stated above.

1.2. Test facility

FCC (Designation number: CN1179, Test Firm Registration Number: 446626)

Eurofins TA Technology (Shanghai) Co., Ltd. has been listed on the US Federal Communications Commission list of test facilities recognized to perform electromagnetic emissions measurements.

A2LA (Certificate Number: 3857.01)

Eurofins TA Technology (Shanghai) Co., Ltd. has been listed by American Association for Laboratory Accreditation to perform electromagnetic emission measurement.

1.3. Testing Location

Company:	Eurofins TA Technology (Shanghai) Co., Ltd.
Address:	Building 3, No.145, Jintang Rd, Pudong Shanghai, P.R.China
City:	Shanghai
Post code:	201201
Country:	P. R. China
Contact:	Xu Kai
Telephone:	+86-021-50791141/2/3
Fax:	+86-021-50791141/2/3-8000
Website:	https://www.eurofins.com/electrical-and-electronics
E-mail:	Kain.Xu@cpt.eurofinscn.com

2. General Description of Equipment under Test

Applicant	Alliedstar Medical Equipment Co., Ltd.			
Applicant address	No.222, West Section 3, Waihuan Rd, Yanjiang District, Ziyang, P.R.			
Applicant address	China			
Manufacturer	Alliedstar Medical Equipment Co., Ltd.			
Manufacturer address	No.222, West Section 3, Waihuan Rd, Yanjiang District, Ziyang, P.R.			
Manufacturer address	China			

2.1. Applicant and Manufacturer Information

2.2. General information

EUT Description			
Model	S300W		
Lab internal SN	R2403A0226/S01		
Hardware Version	C		
Software Version	1.0		
Power Supply	Battery / AC adapter		
Antenna Type	Internal Antenna		
Antonna Connector	A permanently attached antenna (meet with the standard FCC Part		
Antenna Connector	15.203 requirement)		
Antonna Cain	U-NII-1: 6.4 dBi		
Antenna Gain	U-NII-3: 5.8 dBi		
Directional Gain	NA		
Operating Frequency Bango(a)	U-NII-1: 5150MHz-5250MHz		
Operating Frequency Range(s)	U-NII-3: 5725MHz -5850MHz		
	802.11a: OFDM		
Modulation Type	802.11n (HT20/HT40): OFDM		
	802.11ac (VHT20/VHT40/VHT80): OFDM		
Max. Output Power	14.23 dBm		
Operating temperature range	15° C to 30° C		
Operating voltage range	3.3V to 4.2 V		
Testing temperature range	-30 ° C to 50° C		
Testing voltage range	3.3 V – 3.6 V – 4.2 V		
State DC voltage	3.6V		
	EUT Accessory		
Adaptar	Manufacturer: DONGGUAN SHILONG FUHUA ELECTRONIC CO., LTD.		
Adapter	Model: UES24LCP-120200SPA		
Potton/	Manufacturer: Shenzhen Ryder Electronics Co., Ltd.		
Battery	Model: Li-18650-3.6V 3400mAh -PCM-NTC		
Note:			
1. The EUT is sent from the app	licant to Eurofins TA and the information of the EUT is declared by the		
applicant.			

🛟 eurofins

RF Test Report

Report No.: R2403A0226-R1V1

2. This device support automatically discontinue transmission, while the device is not transmitting any information, the device can automatically discontinue transmission and become standby mode for power saving. The device can detect the controlling signal of ACK message transmitting from remote device and verify whether it shall resend or discontinue transmission.

3. (a) Manufacturers implements security features in any digitally modulated devices capable of operating in any of the U-NII bands, so that third parties are not able to reprogram the device to operate outside the parameters for which the device was certified. The software prevents the user from operating the transmitter with operating frequencies, output power, modulation types or other radio frequency parameters outside those that were approved for the device. Manufacturers uses means including, but not limited to the use of a private network that allows only authenticated users to download software, electronic signatures in software or coding in hardware that is decoded by software to verify that new software can be legally loaded into a device to meet these requirements and must describe the methods in their application for equipment authorization.

(b) Manufacturers take steps to ensure that DFS functionality cannot be disabled by the operator of the U-NII device.

3. Applied Standards

According to the specifications of the manufacturer, it must comply with the requirements of the following standards:

Test standards:

FCC CFR47 Part 15E (2023) Unlicensed National Information Infrastructure Devices

ANSI C63.10-2013

Reference standard:

KDB 789033 D02 General UNII Test Procedures New Rules v02r01

4. Test Configuration

Test Mode

The EUT has been associated with peripherals and configuration operated in a manner tended to maximize its emission characteristics in a typical application.

The radiated emission was measured in the following position: EUT stand-up position (Z axis), lie-down position (X, Y axis). The worst emission was found in lie-down position (Y axis) and the worst case was recorded.

In order to find the worst case condition, Pre-tests are needed at the presence of different data rate. Preliminary tests have been done on all the configuration for confirming worst case. Data rate below means worst-case rate of each test item.

Mode	Data Rate
802.11a	6 Mbps
802.11n HT20	MCS0
802.11n HT40	MCS0
802.11ac VHT20	MCS0
802.11ac VHT40	MCS0
802.11ac VHT80	MCS0

Worst-case data rates are shown as following table.

Wireless	Technology	Bandwidth	Channel	Frequency
		20 MHz	36	5180MHz
			40	5200MHz
			44	5220MHz
	U-NII-1		48	5240MHz
			38	5190MHz
			46	5230MHz
		80 MHz	42	5210MHz
Wi-Fi	U-NII-3	20 MHz	149	5745MHz
			153	5765MHz
			157	5785MHz
			161	5805MHz
			165	5825MHz
			151	5755MHz
		40 10112	159	5795MHz
		80 MHz	155	5775MHz
Does this device support TPC Function? □Yes ⊠No				

Wireless Technology and Frequency Range

5. Test Case Results

5.1. Occupied Bandwidth

Ambient condition

Temperature	Relative humidity	Pressure
15°C ~ 35°C	20% ~ 80%	86 kPa ~ 106 kPa

Method of Measurement

The EUT was connected to the spectrum analyzer through an external attenuator (20dB) and a known loss cable.

For U-NII-1, set RBW \approx 1% OCB kHz, VBW \geq 3 × RBW, measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 26 dB relative to the maximum level measured in the fundamental emission.

For U-NII-3, Set RBW = 100 kHz, VBW \ge 3 × RBW, measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission.

Note: The automatic bandwidth measurement capability of a spectrum analyzer or EMI receiver may be employed if it implements the functionality described above.

Use the 99 % power bandwidth function of the instrument

Test Setup

Limits

For U-NII-1 No specific occupied bandwidth requirements in Part 15.407. For U-NII-3 Rule FCC Part §15.407(e) Within the 5.725-5.85 GHz band, the minimum 6 dB bandwidth of U-NII devices shall be at least 500 kHz.

Measurement Uncertainty

The assessed measurement uncertainty to ensure 95% confidence level for the normal distribution is with the coverage factor k = 2, U= 936 Hz.

RF Test Report

Test Results: U-NII-1

Mode	Mode Carrier frequency (MHz)		Minimum 26 dB bandwidth (MHz)	Conclusion
	5180	16.560	20.865	PASS
802.11a	5200	16.551	20.733	PASS
	5240	16.584	20.967	PASS
	5180	17.820	21.367	PASS
802.11n HT20	5200	17.741	21.489	PASS
	5240	17.794	21.454	PASS
902 11p UT40	5190	36.291	39.555	PASS
802.11h H140	5230	36.207	39.897	PASS
	5180	17.732	21.296	PASS
802.11ac VHT20	5200	17.816	21.050	PASS
	5240	17.810	21.294	PASS
802.11ac VHT40	5190	36.299	39.692	PASS
	5230	36.313	39.594	PASS
802.11ac VHT80	5210	75.688	82.391	PASS

U-NII-3

Mode	Carrier frequency (MHz)	99% bandwidth (MHz)	Minimum 6 dB bandwidth (MHz)	Limit (kHz)	Conclusion
	5745	17.792	17.563	500	PASS
802.11a	5785	17.850	17.604	500	PASS
	5825	17.853	17.546	500	PASS
	5745	17.811	17.611	500	PASS
802.11n HT20	5785	17.845	17.676	500	PASS
	5825	17.819	17.661	500	PASS
802.11n HT40	5755	36.296	36.373	500	PASS
	5795	36.248	36.346	500	PASS
	5745	17.756	17.525	500	PASS
802.11ac VHT20	5785	17.816	17.631	500	PASS
	5825	17.774	17.637	500	PASS
802.11ac VHT40	5755	36.257	36.237	500	PASS
	5795	36.278	36.338	500	PASS
802.11ac VHT80	5775	75.795	75.131	500	PASS

RF Test Report

Report No.: R2403A0226-R1V1

99% bandwidth

U-NII-1

OBW 802.11a 5180MHz

OBW 802.11a 5200MHz

OBW 802.11a 5240MHz

OBW 802.11ac(VHT20) 5180MHz

OBW 802.11ac(VHT20) 5200MHz

OBW 802.11ac(VHT20) 5240MHz

OBW 802.11ac(VHT40) 5190MHz

OBW 802.11ac(VHT40) 5230MHz

OBW 802.11ac(VHT80) 5210MHz

OBW 802.11n(HT20) 5180MHz

OBW 802.11n(HT20) 5200MHz

OBW 802.11n(HT20) 5240MHz

OBW 802.11n(HT40) 5190MHz

OBW 802.11n(HT40) 5230MHz

U-NII-3

OBW 802.11a 5785MHz

OBW 802.11a 5825MHz

OBW 802.11ac(VHT20) 5745MHz

OBW 802.11ac(VHT20) 5785MHz

OBW 802.11ac(VHT20) 5825MHz

OBW 802.11ac(VHT40) 5755MHz

OBW 802.11ac(VHT40) 5795MHz

OBW 802.11ac(VHT80) 5775MHz

OBW 802.11n(HT20) 5745MHz

OBW 802.11n(HT20) 5785MHz

OBW 802.11n(HT20) 5825MHz

OBW 802.11n(HT40) 5755MHz

OBW 802.11n(HT40) 5795MHz

RF Test Report

Minimum 6 dB bandwidth U-NII-3

Keysight Spectrum Analyz	rer - Occupied F	RW							
Center Freq 5.74	50 Ω AC 4500000	CORREC 0 GHz #IFC	→ Gain:Low	SENSE:INT Center Fre Trig: Free #Atten: 40	q: 5.74500000 Run dB	0 GHz Avg Hold: 1	00/100	03: Radio St Radio De	52:30 PM May 29, 2024 td: None evice: BTS
Ref C 10 dB/div Ref	Offset 11.25 31.25 dB	dB m						Mkr1 5.7	746248 GHz 3.6334 dBm
21.3 11.3 1.25			handrowley	х dB -6.0 уч ¹ үүүчч ^ү үүүч	BW 1 dB	whenter	- -		
-8.75 -18.8 -28.8 -38.8	www.wh	Alexandrow .					A A A A A A A A A A A A A A A A A A A	Lefter and a start	w.w.w.
-48.8	z								Span 40 MHz
#Res BW 100 kH	z			#VE	SW 300 kH	z			Sweep 4 ms
Occupied B	andwid 1	th 7.626 I	ИНz	Total P	ower	21.4 dE	lm		
Transmit Free	q Error	-27.67	8 kHz	% of O	3W Power	99.00	%		
x dB Bandwid	lth	17.50	6 MHz	x dB		-6.00 (B		
MSG						STATUS			

-6dB Bandwidth 802.11a 5745MHz

-6dB Bandwidth 802.11a 5825MHz

-6dB Bandwidth 802.11ac(VHT20) 5745MHz

-6dB Bandwidth 802.11ac(VHT20) 5785MHz

-6dB Bandwidth 802.11ac(VHT20) 5825MHz

-6dB Bandwidth 802.11ac(VHT40) 5755MHz

-6dB Bandwidth 802.11ac(VHT40) 5795MHz

-6dB Bandwidth 802.11ac(VHT80) 5775MHz

-6dB Bandwidth 802.11n(HT20) 5745MHz

-6dB Bandwidth 802.11n(HT20) 5785MHz

-6dB Bandwidth 802.11n(HT20) 5825MHz

-6dB Bandwidth 802.11n(HT40) 5755MHz

-6dB Bandwidth 802.11n(HT40) 5795MHz

5.2. Average Power Output

Ambient condition

Temperature	Relative humidity	Pressure
15°C ~ 35°C	20% ~ 80%	86 kPa ~ 106 kPa

Methods of Measurement

During the process of the testing, The EUT was connected to the average power meter through an external attenuator and a known loss cable. The EUT is max power transmission with proper modulation. We use Maximum average Conducted Output Power Level Method in KDB789033 for this test

Test Setup

Limits

Rule FCC Part 15.407(a)(1) / FCC Part 15.407(a) (3)

(1) For the band 5.15-5.25 GHz.

(i) For an outdoor access point operating in the band 5.15-5.25 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W provided the maximum antenna gain does not exceed 6 dBi. In addition, the maximum power spectral density shall not exceed 17 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi. The maximum e.i.r.p. at any elevation angle above 30 degrees as measured from the horizon must not exceed 125 mW (21 dBm).

(ii) For an indoor access point operating in the band 5.15-5.25 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W provided the maximum antenna gain does not exceed 6 dBi. In addition, the maximum power spectral density shall not exceed 17 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.
(iii) For fixed point-to-point access points operating in the band 5.15-5.25 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W. In addition, the maximum power spectral density shall not exceed 17 dBm in any 1 megahertz band. Fixed point-to-point U-NII devices may employ antennas with directional gain up to 23 dBi without any corresponding reduction in the maximum conducted output power or maximum power spectral density. For fixed point-to-point transmitters that employ a directional antenna gain greater than 23 dBi, a 1 dB reduction in maximum conducted output power and maximum power spectral density is required for each 1 dB of antenna gain in excess of 23 dBi. Fixed, point-to-point operations exclude

🔅 eurofins

RF Test Report

Report No.: R2403A0226-R1V1

the use of point-to-multipoint systems, omnidirectional applications, and multiple collocated transmitters transmitting the same information. The operator of the U-NII device, or if the equipment is professionally installed, the installer, is responsible for ensuring that systems employing high gain directional antennas are used exclusively for fixed, point-to-point operations.

(iv) For client devices in the 5.15-5.25 GHz band, the maximum conducted output power over the frequency band of operation shall not exceed 250 mW provided the maximum antenna gain does not exceed 6 dBi. In addition, the maximum power spectral density shall not exceed 11 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

(3)For the band 5.725-5.85 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W. In addition, the maximum power spectral density shall not exceed 30 dBm in any 500-kHz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

Measurement Uncertainty

The assessed measurement uncertainty to ensure 95% confidence level for the normal distribution is with the coverage factor k = 2, U = 0.44 dB.

Report No.: R2403A0226-R1V1

Test Results

Mode	Duty cycle	Duty cycle correction Factor (dB)				
802.11a	0.920	0.36				
802.11n HT20	0.766	1.16				
802.11n HT40	0.558	2.53				
802.11ac VHT20	0.663	1.78				
802.11ac VHT40	0.525	2.80				
802.11ac VHT80	0.819	0.86				
Note: when Duty cycle	Note: when Duty cycle≥0.98, Duty cycle correction Factor not required.					

Power Index								
Channel	802.11a	802.11n HT20	802.11ac VHT20	Channel	802.11n HT40	802.11ac VHT40	Channel	802.11ac VHT80
CH36	12	13	14	CH38	14	12	CH42	13
CH40	13	14	14	CH46	14	12	/	/
CH48	13	14	14	/	/	/	/	/
CH149	16	15	14	CH151	13	12	CH155	12
CH157	16	15	14	CH159	13	12	/	/
CH165	16	14	14	/	/	/	/	/

RF Test Report U-NII-1

Test Mode	Channel/ Frequency (MHz)	Average Power Measured (dBm)	Average Power with duty factor (dBm)	Limit (dBm)	Conclusion
	36/5180	10.91	11.27	23.60	PASS
802.11a	40/5200	11.80	12.16	23.60	PASS
	48/5240	11.76	12.12	23.60	PASS
	36/5180	10.79	11.95	23.60	PASS
802.11n HT20	40/5200	11.60	12.76	23.60	PASS
	48/5240	11.72	12.88	23.60	PASS
	38/5190	10.58	13.11	23.60	PASS
002.1111日140	46/5230	10.71	13.24	23.60	PASS
	36/5180	11.13	12.91	23.60	PASS
802.11ac VHT20	40/5200	10.95	12.73	23.60	PASS
	48/5240	10.93	12.71	23.60	PASS
802 11cc \/UT40	38/5190	8.65	11.45	23.60	PASS
802.11ac VH140	46/5230	8.55	11.35	23.60	PASS
802.11ac VHT80	42/5210	11.31	12.17	23.60	PASS
Noto:					

ole:

1. Average Power with duty factor = Average Power Measured +Duty cycle correction factor 2. Antenna Gain=6.4 dBi, So the power limit is 23.6 dBm.

RF Test Report

Test Mode	Channel/ Frequency (MHz)	Average Power Measured (dBm)	Average Power with duty factor (dBm)	Limit (dBm)	Conclusion
	149/5745	13.66	14.02	30.00	PASS
802.11a	157/5785	13.75	14.11	30.00	PASS
	165/5825	13.64	14.00	30.00	PASS
	149/5745	12.96	14.12	30.00	PASS
802.11n HT20	157/5785	13.07	14.23	30.00	PASS
	165/5825	12.00	13.16	30.00	PASS
000 44. 11740	151/5755	10.31	12.84	30.00	PASS
о02.1111 П140	159/5795	10.10	12.63	30.00	PASS
	149/5745	11.69	13.47	30.00	PASS
802.11ac VHT20	157/5785	11.43	13.21	30.00	PASS
	165/5825	11.18	12.96	30.00	PASS
902 11cc \/\\\\\T40	151/5755	8.98	11.78	30.00	PASS
602.11aC VH140	159/5795	8.90	11.70	30.00	PASS
802.11ac VHT80	155/5775	10.77	11.63	30.00	PASS
Note: Average Pow	er with duty facto	r = Average Power	Measured +Duty c	ycle correct	tion factor

5.3. Frequency Stability

Ambient condition

Temperature	Relative humidity	Pressure
15°C ~ 35°C	20% ~ 80%	86 kPa ~ 106 kPa

Method of Measurement

1. Frequency stability with respect to ambient temperature

a) Supply the EUT with a nominal ac voltage or install a new or fully charged battery in the EUT. If possible, a dummy load shall be connected to the EUT because an antenna near the metallic walls of an environmental test chamber could affect the output frequency of the EUT. If the EUT is equipped with a permanently attached, adjustable-length antenna, then the EUT shall be placed in the center of the chamber with the antenna adjusted to the shortest length possible. Turn ON the EUT and tune it to one of the number of frequencies shown in 5.6.

b) Couple the unlicensed wireless device output to the measuring instrument by connecting an antenna to the measuring instrument with a suitable length of coaxial cable and placing the measuring antenna near the EUT (e.g., 15 cm away), or by connecting a dummy load to the measuring instrument, through an attenuator if necessary.

c) Adjust the location of the measurement antenna and the controls on the measurement instrument to obtain a suitable signal level (i.e., a level that will not overload the measurement instrument but is strong enough to allow measurement of the operating or fundamental frequency of the EUT).

d) Turn the EUT OFF and place it inside the environmental temperature chamber. For devices that have oscillator heaters, energize only the heater circuit.

e) Set the temperature control on the chamber to the highest specified in the regulatory requirements for the type of device and allow the oscillator heater and the chamber temperature to stabilize.

f) While maintaining a constant temperature inside the environmental chamber, turn the EUT ON and record the operating frequency at startup, and at 2 minutes, 5 minutes, and 10 minutes after the EUT is energized. Four measurements in total are made.

g) Measure the frequency at each of frequencies specified in 5.6.

h) Switch OFF the EUT but do not switch OFF the oscillator heater.

i) Lower the chamber temperature by not more that 10°C, and allow the temperature inside the chamber to stabilize.

j) Repeat step f) through step i) down to the lowest specified temperature.

2. Frequency stability when varying supply voltage

Unless otherwise specified, these tests shall be made at ambient room temperature (+15°C to +25 °C). An antenna shall be connected to the antenna output terminals of the EUT if possible. If the EUT is equipped with or uses an adjustable-length antenna, then it shall be fully extended.

a) Supply the EUT with nominal voltage or install a new or fully charged battery in the EUT. Turn ON the EUT and couple its output to a frequency counter or other frequency-measuring instrument.

🔅 eurofins

RF Test Report

Report No.: R2403A0226-R1V1

b) Tune the EUT to one of the number of frequencies required in 5.6. Adjust the location of the measurement antenna and the controls on the measurement instrument to obtain a suitable signal level (i.e., a level that will not overload the measurement instrument but is strong enough to allow measurement of the operating or fundamental frequency of the EUT).

c) Measure the frequency at each of the frequencies specified in 5.6.

d) Repeat the above procedure at 85% and 115% of the nominal supply voltage.

Limit

Manufacturers of U-NII devices are responsible for ensuring frequency stability such that an emission is maintained within the band of operation under all conditions of normal operation as specified in the users manual.

Measurement Uncertainty

The assessed measurement uncertainty to ensure 95% confidence level for the normal distribution is with the coverage factor k = 2, U = 936Hz

RF Test Report

Test Results

Voltoria	Tanananatura	U-NII-1 Test Results						
(V) (°	remperature	5200MHz						
	(0)	1min	2min	5min	10min			
3.6	-30	5200.008922	5200.000165	5199.994329	5199.991938			
3.6	-20	5199.999652	5199.994681	5199.992792	5199.991098			
3.6	-10	5200.007179	5199.991322	5199.990635	5199.983398			
3.6	0	5199.991225	5199.989620	5199.986366	5199.986578			
3.6	10	5199.981983	5199.980295	5199.983468	5199.985045			
3.6	20	5199.976212	5199.973426	5199.976399	5199.982028			
3.6	30	5199.969588	5199.965220	5199.971232	5199.978595			
3.6	40	5199.961271	5199.963582	5199.969981	5199.973893			
3.6	50	5199.958849	5199.962242	5199.963752	5199.966257			
3.3	20	5199.954132	5199.961427	5199.962948	5199.958284			
4.2	20	5199.952906	5199.960237	5199.961695	5199.951815			
Ma	x. ΔMHz	-0.047094	-0.039763	-0.038305	-0.048185			
	PPM	-9.056538	-7.646731	-7.366346	-9.266346			

	τ	U-NII-3 Test Results					
		5785MHz					
(V)	(0)	1min	2min	5min	10min		
3.6	-30	5784.996630	5784.990118	5784.983159	5784.982511		
3.6	-20	5784.991740	5784.986888	5784.981055	5784.978513		
3.6	-10	5784.982044	5784.977514	5784.979292	5784.978211		
3.6	0	5784.983184	5784.982976	5784.980430	5784.968774		
3.6	10	5784.979933	5784.974882	5784.977989	5784.965562		
3.6	20	5784.976009	5784.965771	5784.976819	5784.959618		
3.6	30	5784.968913	5784.964869	5784.972018	5784.959033		
3.6	40	5784.961282	5784.963445	5784.967269	5784.952055		
3.6	50	5784.959717	5784.961655	5784.960670	5784.946880		
3.3	20	5784.956682	5784.952434	5784.957896	5784.942592		
4.2	20	5784.948335	5784.948249	5784.951120	5784.935705		
Ma	x. ΔMHz	-0.051665	-0.051751	-0.048880	-0.064295		
	PPM	-8.930856	-8.945722	-8.449438	-11.114088		

5.4. Power Spectral Density

Ambient condition

Temperature	Relative humidity	Pressure
15°C ~ 35°C	20% ~ 80%	86 kPa ~ 106 kPa

Method of Measurement

The EUT was connected to the spectrum analyzer through an external attenuator (20dB) and a known loss cable.

Set RBW = 1MHz, VBW =3MHz for the band 5.150-5.250GHz. Set RBW = 470kHz, VBW =1.5MHz for the band 5.725-5.850GHz

The conducted PSD is measured at each antenna port. The measured results at the various antenna ports are then summed mathematically.

Test setup

Limits

Rule FCC Part 15.407(a)(1)/ / FCC Part 15.407(a)(3)

For an indoor access point operating in the band 5.15-5.25 GHz, the maximum power spectral density shall not exceed 17 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

For client devices in the 5.15-5.25 GHz band, the maximum conducted output power over the frequency band of operation shall not exceed 250 mW provided the maximum antenna gain does not exceed 6 dBi. In addition, the maximum power spectral density shall not exceed 11 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

For the band 5.725-5.85 GHz, the maximum power spectral density shall not exceed 30 dBm in any 500kHz band. If transmittingantennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

Frequency Bands/GHz	Limits
5.15-5.25	11dBm/MHz
5.725-5.85	30dBm/500kHz

Measurement Uncertainty

The assessed measurement uncertainty to ensure 95% confidence level for the normal distribution is with the coverage factor k = 2, U = 0.75dB.

RF Test Report

Test Results: U-NII-1

Mode	Channel/ Frequency (MHz)	Read Value (dBm /MHz)	Power Spectral Density (dBm /MHz)	Limit (dBm /MHz)	Conclusion
	36/5180	1.54	1.90	10.60	PASS
802.11a	40/5200	2.49	2.85	10.60	PASS
	48/5240	2.63	2.99	10.60	PASS
902.11	36/5180	1.14	2.30	10.60	PASS
802.11h HT20	40/5200	2.04	3.20	10.60	PASS
	48/5240	2.31	3.47	10.60	PASS
802.11n	38/5190	-1.92	0.61	10.60	PASS
HT40	46/5230	-1.66	0.87	10.60	PASS
000 11	36/5180	1.53	3.31	10.60	PASS
802.11ac	40/5200	1.50	3.28	10.60	PASS
VH120	48/5240	1.53	3.31	10.60	PASS
802.11ac	38/5190	-3.27	-0.47	10.60	PASS
VHT40	46/5230	-4.02	-1.22	10.60	PASS
802.11ac VHT80	42/5210	-3.93	-3.07	10.60	PASS
Note:					

1. Power Spectral Density =Read Value+Duty cycle correction factor

2. Antenna Gain=6.4dBi, so the PSD Limit is 10.6 dBm

U-NII-3

Mode	Channel /Frequency (MHz)	Read Value (dBm/470kHz)	Power Spectral Density (dBm/500kHz)	Limit (dBm/500kHz)	Conclusion			
	149/5745	0.74	1.37	30.00	PASS			
802.11a	157/5785	1.13	1.76	30.00	PASS			
	165/5825	0.64	1.27	30.00	PASS			
000 11-	149/5745	0.28	1.71	30.00	PASS			
802.11h	157/5785	0.42	1.85	30.00	PASS			
HI20	165/5825	-0.93	0.50	30.00	PASS			
802.11n	151/5755	-5.17	-2.37	30.00	PASS			
HT40	159/5795	-5.63	-2.83	30.00	PASS			
802.11ac VHT20	149/5745	-0.88	1.17	30.00	PASS			
	157/5785	-1.75	0.30	30.00	PASS			
	165/5825	-1.25	0.80	30.00	PASS			
802.11ac	151/5755	-6.54	-3.47	30.00	PASS			
VHT40	159/5795	-6.70	-3.63	30.00	PASS			
802.11ac VHT80	155/5775	-7.78	-6.65	30.00	PASS			
Note: PSD=Read Value+Duty cycle correction factor +10*log(500/470)								

 Eurofins TA Technology (Shanghai) Co., Ltd.
 TA-MB-04-006R
 F

 This report shall not be reproduced except in full, without the written approval of Eurofins TA Technology (Shanghai) Co., Ltd.
 F
 Page 44 of 108

U-NII-1

PSD 802.11a 5200MHz

PSD 802.11a 5240MHz

PSD 802.11ac(VHT20) 5180MHz

PSD 802.11ac(VHT20) 5200MHz

PSD 802.11ac(VHT20) 5240MHz

PSD 802.11ac(VHT40) 5190MHz

PSD 802.11ac(VHT40) 5230MHz

PSD 802.11ac(VHT80) 5210MHz

PSD 802.11n(HT20) 5180MHz

PSD 802.11n(HT20) 5200MHz

PSD 802.11n(HT20) 5240MHz

PSD 802.11n(HT40) 5190MHz

PSD 802.11n(HT40) 5230MHz

U-NII-3

PSD 802.11a 5785MHz

PSD 802.11a 5825MHz

PSD 802.11ac(VHT20) 5745MHz

PSD 802.11ac(VHT20) 5785MHz

PSD 802.11ac(VHT20) 5825MHz

PSD 802.11ac(VHT40) 5755MHz

PSD 802.11ac(VHT40) 5795MHz

PSD 802.11ac(VHT80) 5775MHz

PSD 802.11n(HT20) 5745MHz

PSD 802.11n(HT20) 5785MHz

PSD 802.11n(HT20) 5825MHz

PSD 802.11n(HT40) 5755MHz

PSD 802.11n(HT40) 5795MHz

5.5. Unwanted Emission

Ambient condition

Temperature Relative humidity		Pressure		
15°C ~ 35°C	20% ~ 80%	86 kPa ~ 106 kPa		

Method of Measurement

The test set-up was made in accordance to the general provisions of ANSI C63.10. The Equipment Under Test (EUT) was set up on a non-conductive table in the semi-anechoic chamber. The test was performed at the distance of 3 m between the EUT and the receiving antenna. The radiated emissions measurements were made in a typical installation configuration.

Sweep the whole frequency band range from 9kHz to the 10th harmonic of the carrier, and the emissions less than 20 dB below the permissible value are reported.

During the test, the height of receive antenna shall be moved from 1 to 4 meters, and the antenna shall be performed under horizontal and vertical polarization. The turntable shall be rotated from 0 to 360 degrees for detecting the maximum of radiated spurious signal level. The measurements shall be repeated with orthogonal polarization of the test antenna. The data of cable loss and antenna factor has been calibrated in full testing frequency range before the testing.

Set the spectrum analyzer in the following:

9kHz~150 kHz

RBW=200Hz, VBW=1kHz/ Sweep=AUTO

150 kHz~30MHz

RBW=9kHz, VBW=30kHz,/ Sweep=AUTO

Below 1GHz

RBW=100kHz / VBW=300kHz / Sweep=AUTO

a) Peak emission levels are measured by setting the instrument as follows:

Above 1GHz

PEAK: RBW=1MHz VBW=3MHz/ Sweep=AUTO

b) Average emission levels are measured by setting the instrument as follows:

Above 1GHz

AVERAGE: RBW=1MHz / VBW=3MHz / Sweep=AUTO

c) Detector: The measurements employing a CISPR quasi-peak detector except for the frequency bands 9-90 kHz, 110-490 kHz and above 1000 MHz. Radiated emission limits in these three bands are based on measurements employing an average detector.

d) Averaging type = power (i.e., rms) (As an alternative, the detector and averaging type may be set for linear voltage averaging. Some instruments require linear display mode to use linear voltage averaging. Log or dB averaging shall not be used.)

e) Sweep time = auto.

f) Perform a trace average of at least 100 traces if the transmission is continuous. If the transmission is not continuous, then the number of traces shall be increased by a factor of 1 / D, where D is the duty cycle. For example, with 50% duty cycle, at least 200 traces shall be averaged. (If a specific emission is demonstrated to be continuous—i.e., 100% duty cycle—then rather than turning ON and

🛟 eurofins

RF Test Report

OFF with the transmit cycle, at least 100 traces shall be averaged.)

g) If tests are performed with the EUT transmitting at a duty cycle less than 98%, then a correction factor shall be added to the measurement results prior to comparing with the emission limit, to compute the emission level that would have been measured had the test been performed at 100% duty cycle. The correction factor is computed as follows:

1) If power averaging (rms) mode was used in the preceding step e), then the correction factor is [10 $\log (1 / D)$], where D is the duty cycle. For example, if the transmit duty cycle was 50%, then 3 dB shall be added to the measured emission levels.

2) If linear voltage averaging mode was used in the preceding step e), then the correction factor is [20 $\log (1 / D)$], where D is the duty cycle. For example, if the transmit duty cycle was 50%, then 6 dB shall be added to the measured emission levels.

3) If a specific emission is demonstrated to be continuous (100% duty cycle) rather than turning ON and OFF with the transmit cycle, then no duty cycle correction is required for that emission.

Reduce the video bandwidth until no significant variations in the displayed signal are observed in subsequent traces, provided the video bandwidth is no less than 1 Hz. For regulatory requirements that specify averaging only over the transmit duration (e.g., digital transmission system [DTS] and Unlicensed National Information Infrastructure [U-NII]), the video bandwidth shall be greater than [1 / (minimum transmitter on time)] and no less than 1 Hz.

The field strength of spurious emission was measured in the following position: EUT stand-up position (Z axis), lie-down position (X, Y axis). The worst emission was found in stand-up position (Z axis) and the loop antenna is vertical, others antenna are vertical and horizontal.

The test is in transmitting mode.

Test setup

30MHz~ 1GHz

Above 1GHz

Note: Area side:2.4mX3.6m

Limits

- (1) For transmitters operating in the 5725-5850 MHz band: All emissions shall be limited to a level of -27 dBm/MHz at 75 MHz or more above or below the band edge increasing linearly to 10 dBm/MHz at 25 MHz above or below the band edge, and from 25 MHz above or below the band edge increasing linearly to a level of 15.6 dBm/MHz at 5 MHz above or below the band edge, and from 5 MHz above or below the band edge increasing linearly to a level of 27 dBm/MHz at the band edge.
- (2) For transmitters operating in the 5.15-5.25 GHz band: All emissions outside of the 5.15-5.35 GHz band shall not exceed an e.i.r.p. of −27 dBm/MHz(68.2dBµV/m).

Note: the following formula is used to convert the EIRP to field strength

- $1 \le E[dB\mu V/m] = EIRP[dBm] 20 \log(d[meters]) + 104.77$, where E = field strength and
- d = distance at which field strength limit is specified in the rules;
- $2 \in [dB\mu V/m] = EIRP[dBm] + 95.2$, for d = 3 meters
- (3) Unwanted spurious emissions fallen in restricted bands per FCC Part15.205 shall comply with the general field strength limits set forth in § 15.209 as below table.

Frequency of emission (MHz)	Field strength(µV/m)	Field strength(dBµV/m)		
0.009–0.490	2400/F(kHz)	1		
0.490–1.705	24000/F(kHz)	1		
1.705–30.0	30	1		
30-88	100	40		
88-216	150	43.5		
216-960	200	46		
Above960	500	54		

Report No.: R2403A0226-R1V1

MHz	MHz	MHz	GHz
0.090 - 0.110	16.42 - 16.423	399.9 - 410	4.5 - 5.15
¹ 0.495 - 0.505	16.69475 - 16.69525	608 - 614	5.35 - 5.46
2.1735 - 2.1905	16.80425 - 16.80475	960 - 1240	7.25 - 7.75
4.125 - 4.128	25.5 - 25.67	1300 - 1427	8.025 - 8.5
4.17725 - 4.17775	37.5 - 38.25	1435 - 1626.5	9.0 - 9.2
4.20725 - 4.20775	73 - 74.6	1645.5 - 1646.5	9.3 - 9.5
6.215 - 6.218	74.8 - 75.2	1660 - 1710	10.6 - 12.7
6.26775 - 6.26825	108 - 121.94	1718.8 - 1722.2	13.25 - 13.4
6.31175 - 6.31225	123 - 138	2200 - 2300	14.47 - 14.5
8.291 - 8.294	149.9 - 150.05	2310 - 2390	15.35 - 16.2
8.362 - 8.366	156.52475 - 156.52525	2483.5 - 2500	17.7 - 21.4
8.37625 - 8.38675	156.7 - 156.9	2690 - 2900	22.01 - 23.12
8.41425 - 8.41475	162.0125 - 167.17	3260 - 3267	23.6 - 24.0
12.29 - 12.293	167.72 - 173.2	3332 - 3339	31.2 - 31.8
12.51975 - 12.52025	240 - 285	3345.8 - 3358	36.43 - 36.5
12.57675 - 12.57725	322 - 335.4	3600 - 4400	(2)
13.36 - 13.41			

Measurement Uncertainty

The assessed measurement uncertainty to ensure 95% confidence level for the normal distribution is with the coverage factor k = 1.96.

Frequency	Uncertainty (3m)	Uncertainty (10m)
9kHz-30MHz	3.55 dB	
30MHz-200MHz	4.17 dB	
200MHz-1GHz	4.84 dB	
1-18GHz	4.35 dB	6.51 dB
18-26.5GHz	5.90 dB	
26.5GHz~40GHz	5.92 dB	

Test Results:

The following graphs display the maximum values of horizontal and vertical by software. Blue trace uses the peak detection, Green trace uses the average detection.

The modulation and bandwidth are similar for 802.11n mode for 20MHz/40MHz and 802.11ac mode for V20MHz/V40MHz, therefore investigated worst case to representative mode in test report.

A symbol ($^{dB\mathfrak{m}/m}$) in the test plot below means ($^{dB\mu V/m}$)

The signal beyond the limit is carrier.

U-NII-1

U-NII-3

🔅 eurofins

RF Test Report

Result of RE

Test result

Sweep the whole frequency band through the range from 9kHz to the 10th harmonic of the carrier, the Emissions in the frequency 18GHz-40GHz are more than 20dB below the limit are not reported.

During the test, the Radiates Emission from 9kHz to 1GHz was performed in all modes with all channels, 802.11n HT20, Channel 165 are selected as the worst condition. The test data of the worst-case condition was recorded in this report.

Continuous TX mode:

Radiates Emission from 9kHz to 90kHz

Radiates Emission from 90kHz to 110kHz

Radiates Emission from 110kHz to 490kHz

Radiates Emission from 490kHz to 30MHz

Frequency (MHz)	Quasi-Peak (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Height (cm)	Polarization	Azimuth (deg)	Correct Factor (dB)	
50.73	25.49	40.00	14.51	106.0	V	284.00	20	
84.08	25.63	40.00	14.37	217.0	Н	144.00	16	
166.69	26.80	43.50	16.70	210.0	Н	86.00	16	
246.39	38.14	46.00	7.86	123.0	Н	255.00	20	
356.49	34.39	46.00	11.61	103.0	Н	71.00	23	
600.00	44.08	46.00	1.92	101.0	V	98.00	28	

00141-1 400

Remark: 1. Correction Factor = Antenna factor + Insertion loss (cable loss + amplifier gain) 2. Margin = Limit – Quasi-Peak

RF Test Report 802.11a CH36

🛟 eurofins

Note: The signal beyond the limit is carrier. Radiates Emission from 1GHz to 8GHz

Radiates Emission from 8GHz to 18GHz

Frequency (MHz)	MaxPeak (dB µ V/m)	Average (dB µ V/m)	Limit (dB µ V/m)	Margin (dB)	Meas. Time (ms)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB/m)
1006.13		34.63	54.00	19.37	500.00	200.0	Н	237.00	-3
1266.88	43.91		68.20	24.29	500.00	200.0	V	32.00	-2
1677.25		33.59	54.00	20.41	500.00	100.0	V	171.00	0
1951.13	46.82		68.20	21.38	500.00	200.0	V	341.00	1
2660.75	52.63		68.20	15.57	500.00	100.0	V	224.00	4
2794.63		37.41	54.00	16.59	500.00	200.0	V	2.00	4
3149.00	50.43		68.20	17.77	500.00	100.0	V	224.00	5
3994.25		40.25	54.00	13.75	500.00	200.0	V	237.00	6
5146.63		47.60	54.00	6.40	500.00	200.0	V	185.00	10
5634.00	55.39		68.20	12.81	500.00	100.0	V	310.00	11
7734.00		47.65	54.00	6.35	500.00	100.0	V	354.00	17
7846.00	59.07		68.20	9.13	500.00	200.0	V	7.00	17

Remark: 1. Correction Factor = Antenna factor + Insertion loss (cable loss + amplifier gain)

2. Margin = Limit –MAX Peak/ Average