Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland C Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Glossary: TSL tissue simulating liquid ConvF sensitivity in TSL / NORM x,y,z N/A not applicable or not measured Calibration is Performed According to the Following Standards: - a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013 - b) IEC 62209-1, "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from hand-held and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016 - c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010 - d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz" #### Additional Documentation: e) DASY4/5 System Handbook #### Methods Applied and Interpretation of Parameters: - Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. - Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis. - Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required. - Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required. - SAR measured: SAR measured at the stated antenna input power. - SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector. - SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result. The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%. #### **Measurement Conditions** DASY system configuration, as far as not given on page 1. | DASY Version | DASY5 | V52.10.4 | |------------------------------|------------------------|-------------| | Extrapolation | Advanced Extrapolation | | | Phantom | Modular Flat Phantom | | | Distance Dipole Center - TSL | 10 mm | with Spacer | | Zoom Scan Resolution | dx, dy, dz = 5 mm | | | Frequency | 2450 MHz ± 1 MHz | | Head TSL parameters The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 39.2 | 1.80 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 38.9 ± 6 % | 1.84 mho/m ± 6 % | | Head TSL temperature change during test | < 0.5 °C | (#114) | 221 | ### SAR result with Head TSL | SAR averaged over 1 cm3 (1 g) of Head TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 13.0 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 51.4 W/kg ± 17.0 % (k=2) | | SAR averaged over 10 cm3 (10 g) of Head TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 6.04 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 24.0 W/kg ± 16.5 % (k=2) | ### Appendix (Additional assessments outside the scope of SCS 0108) #### Antenna Parameters with Head TSL | Impedance, transformed to feed point | 53.9 Ω + 7.2 jΩ | |--------------------------------------|-----------------| | Return Loss | - 22.1 dB | #### General Antenna Parameters and Design | Electrical Delay (one direction) | 1.155 ns | |----------------------------------|----------| After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged. #### Additional EUT Data | Manufactured by | SPEAG | |-----------------|-------| Certificate No: D2450V2-924_Sep20 Page 4 of 6 #### DASY5 Validation Report for Head TSL Date: 02.09.2020 Test Laboratory: SPEAG, Zurich, Switzerland DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN:924 Communication System: UID 0 - CW; Frequency: 2450 MHz Medium parameters used: f = 2450 MHz; $\sigma = 1.84 \text{ S/m}$; $\epsilon_r = 38.9$; $\rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section Measurement Standard; DASY5 (IEEE/IEC/ANSI C63.19-2011) #### DASY52 Configuration: Probe: EX3DV4 - SN7349; ConvF(7.74, 7.74, 7.74) @ 2450 MHz; Calibrated: 29.06.2020 Sensor-Surface: L4mm (Mechanical Surface Detection) Electronics; DAE4 Sn601; Calibrated; 27.12.2019 Phantom: Flat Phantom 5.0 (front); Type: QD 000 PS0 AA; Serial: 1001 DASY52 52.10.4(1527); SEMCAD X 14.6.14(7483) ### Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 115.2 V/m; Power Drift = -0.05 dB Peak SAR (extrapolated) = 25.4 W/kg SAR(1 g) = 13.0 W/kg; SAR(10 g) = 6.04 W/kg Smallest distance from peaks to all points 3 dB below = 9 mm Ratio of SAR at M2 to SAR at M1 = 51% Maximum value of SAR (measured) = 21.2 W/kg 0 dB = 21.2 W/kg = 13.26 dBW/kg ### Impedance Measurement Plot for Head TSL ### D2450V2, Serial No. 924 Extended Dipole Calibrations Referring to KDB 865664 D01, if dipoles are verified in return loss (<-20dB, within 20% of prior calibration), and in impedance (within 5 ohm of prior calibration), the annual calibration is not necessary and the calibration interval can be extended. | | | | | | D2450V2 - | serial no | . 924 | | | | |------------------------|---------------------|--------------|----------------------------|----------------|---------------------------|----------------|-------|--|--|--| | 2450 Head | | | | | | | | | | | | Date of
Measurement | Return-Loss
(dB) | Delta
(%) | Real
Impedance
(ohm) | Delta
(ohm) | Imaginary Impedance (ohm) | Delta
(ohm) | | | | | | 2020.9.2 | -22.1 | | 53.9 | | 7.2 | | | | | | | 2021.9.1 | -22.1 | 0.0 | 51.2 | 2.7 | 7.4 | -0.2 | | | | | | | | | | | | | | | | | #### <Justification of the extended calibration> The return loss is < -20dB, within 20% of prior calibration; the impedance is within 5 ohm of prior calibration. Therefore the verification result should support extended calibration. ### Dipole Verification Data> D2450V2, serial no. 924 #### 2450MHz - Head----2021.9.1 # S P E A G CALIBRATION LABORATORY Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 http://www.chinattl.cn Client Sporton **Certificate No:** Z18-60537 ### CALIBRATION GERTIFICATIE Object D2600V2 - SN: 1070 Calibration Procedure(s) FF-Z11-003-01 Calibration Procedures for dipole validation kits Calibration date: December 7, 2018 This calibration Certificate documents the traceability to national standards, which realize the physical units of measurements(SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature(22±3) $^{\circ}$ C and humidity<70%. Calibration Equipment used (M&TE critical for calibration) | Primary Standards | ID# | Cal Date(Calibrated by, Certificate No.) | Scheduled Calibration | |-------------------------|------------|--|-----------------------| | Power Meter NRVD | 102196 | 07-Mar-18 (CTTL, No.J18X01510) | Mar-19 | | Power sensor NRV-Z5 | 100596 | 07-Mar-18 (CTTL, No.J18X01510) | Mar-19 | | Reference Probe EX3DV4 | SN 7514 | 27-Aug-18(SPEAG,No.EX3-7514_Aug18) | Aug-19 | | DAE4 | SN 1555 | 20-Aug-18(SPEAG,No.DAE4-1555_Aug18) | Aug-19 | | Secondary Standards | ID# | Cal Date(Calibrated by, Certificate No.) | Scheduled Calibration | | Signal Generator E4438C | MY49071430 | 23-Jan-18 (CTTL, No.J18X00560) | Jan-19 | | Network Analyzer E5071C | MY46110673 | 24-Jan-18 (CTTL, No.J18X00561) | Jan-19 | | | | | ·. | Name **Function** Calibrated by: Zhao Jing **SAR Test Engineer** Reviewed by: Lin Hao SAR Test Engineer Approved by: Qi Dianyuan SAR Project Leader Issued: December 10, 2018 Signature This calibration certificate shall not be reproduced except in full without written approval of the laboratory. Certificate No: Z18-60537 Page 1 of 8 CALIBRATION LABORATORY Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 E-mail: cttl@chinattl.com Fax:
+86-10-62304633-2504 http://www.chinattl.cn Glossary: TSL ConvF tissue simulating liquid sensitivity in TSL / NORMx, v, z N/A not applicable or not measured ### Calibration is Performed According to the Following Standards: - a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013 - b) IEC 62209-1, "Measurement procedure for assessment of specific absorption rate of human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices- Part 1: Device used next to the ear (Frequency range of 300MHz to 6GHz)", July 2016 - c) IEC 62209-2, "Procedure to measure the Specific Absorption Rate (SAR) For wireless communication devices used in close proximity to the human body (frequency range of 30MHz to 6GHz)", March 2010 - d) KDB865664, SAR Measurement Requirements for 100 MHz to 6 GHz #### Additional Documentation: e) DASY4/5 System Handbook ### Methods Applied and Interpretation of Parameters: - Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. - Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis. - Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required. - Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required. - SAR measured: SAR measured at the stated antenna input power. - SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector. - SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result. The reported uncertainty of measurement is stated as the standard uncertainty of Measurement multiplied by the coverage factor k=2, which for a normal distribution Corresponds to a coverage probability of approximately 95%. Certificate No: Z18-60537 #### **CALIBRATION LABORATORY** Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 E-mail: cttl@chinattl.com Fax: +86-10-62304633-2504 http://www.chinattl.cn #### **Measurement Conditions** DASY system configuration, as far as not given on page 1 | DASY Version | DASY52 | 52.10.2.1495 | |------------------------------|--------------------------|--------------| | Extrapolation | Advanced Extrapolation | | | Phantom | Triple Flat Phantom 5.1C | | | Distance Dipole Center - TSL | 10 mm | with Spacer | | Zoom Scan Resolution | dx, dy, dz = 5 mm | | | Frequency | 2600 MHz ± 1 MHz | | #### **Head TSL parameters** The following parameters and calculations were applied | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 39.0 | 1.96 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 39.1 ± 6 % | 1.93 mho/m ± 6 % | | Head TSL temperature change during test | <1.0 °C | | | #### SAR result with Head TSL | SAR averaged over 1 cm ³ (1 g) of Head TSL | Condition | | |---|--------------------|---------------------------| | SAR measured | 250 mW input power | 14.4 mW / g | | SAR for nominal Head TSL parameters | normalized to 1W | 58.1 mW /g ± 18.8 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Head TSL | Condition | | | SAR measured | 250 mW input power | 6.50 mW / g | | SAR for nominal Head TSL parameters | normalized to 1W | 26.1 mW /g ± 18.7 % (k=2) | #### **Body TSL parameters** The following parameters and calculations were applied. | Temperature | Permittivity | Conductivity | |-----------------|----------------------------|--| | 22.0 °C | 52.5 | 2.16 mho/m | | (22.0 ± 0.2) °C | 51.0 ± 6 % | 2.18 mho/m ± 6 % | | <1.0 °C | | | | | 22.0 °C
(22.0 ± 0.2) °C | 22.0 °C 52.5
(22.0 ± 0.2) °C 51.0 ± 6 % | SAR result with Body TSL | SAR averaged over 1 cm ³ (1 g) of Body TSL | Condition | | |---|--------------------|---------------------------| | SAR measured | 250 mW input power | 13.8 mW / g | | SAR for nominal Body TSL parameters | normalized to 1W | 54.6 mW /g ± 18.8 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Body TSL | Condition | | | SAR measured | 250 mW input power | 6.18 mW / g | | SAR for nominal Body TSL parameters | normalized to 1W | 24.6 mW /g ± 18.7 % (k=2) | ### Appendix(Additional assessments outside the scope of CNAS L0570) #### **Antenna Parameters with Head TSL** | Impedance, transformed to feed point | 48.6Ω- 6.33jΩ | |--------------------------------------|---------------| | Return Loss | - 23.7dB | #### Antenna Parameters with Body TSL | Impedance, transformed to feed point | 44.8Ω- 5.36jΩ | |--------------------------------------|---------------| | Return Loss | - 22.1dB | #### General Antenna Parameters and Design | Electrical Delay (one direction) | 1.015 ns | |----------------------------------|----------| | | 1.010110 | After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged. #### **Additional EUT Data** | Manufactured by | SPEAG | |-----------------|-------| | | | Certificate No: Z18-60537 CALIBRATION LABORATORY Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 E-mail: cttl@chinattl.com Fax: +86-10-62304633-2504 http://www.chinattl.cn #### **DASY5 Validation Report for Head TSL** Test Laboratory: CTTL, Beijing, China DUT: Dipole 2600 MHz; Type: D2600V2; Serial: D2600V2 - SN: 1070 Communication System: UID 0, CW; Frequency: 2600 MHz; Duty Cycle: 1:1 Medium parameters used: f = 2600 MHz; $\sigma = 1.926$ S/m; $\epsilon_r = 39.1$; $\rho = 1000$ kg/m³ Phantom section: Center Section **DASY5** Configuration: Probe: EX3DV4 - SN7514; ConvF(6.92, 6.92, 6.92) @ 2600 MHz; Calibrated: 8/27/2018 Date: 12.06.2018 - Sensor-Surface: 1.4mm (Mechanical Surface Detection) - Electronics: DAE4 Sn1555; Calibrated: 8/20/2018 - Phantom: MFP_V5.1C; Type: QD 000 P51CA; Serial: 1062 - Measurement SW: DASY52, Version 52.10 (2); SEMCAD X Version 14.6.12 (7450) Dipole Calibration/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 99.07 V/m; Power Drift = 0.01 dB Peak SAR (extrapolated) = 31.1 W/kg SAR(1 g) = 14.4 W/kg; SAR(10 g) = 6.5 W/kg Maximum value of SAR (measured) = 24.7 W/kg 0 dB = 24.7 W/kg = 13.93 dBW/kg #### **CALIBRATION LABORATORY** Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 E-mail: cttl@chinattl.com http://www.chinattl.cn ### Impedance Measurement Plot for Head TSL # S P E A G Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 http://www.chinattl.cn #### **DASY5 Validation Report for Body TSL** Test Laboratory: CTTL, Beijing, China DUT: Dipole 2600 MHz; Type: D2600V2; Serial: D2600V2 - SN: 1070 Communication System: UID 0, CW; Frequency: 2600 MHz; Duty Cycle: 1:1 Medium parameters used: f = 2600 MHz; $\sigma = 2.181$ S/m; $\epsilon_r = 51.03$; $\rho = 1000$ kg/m³ Phantom section: Right Section **DASY5** Configuration: Probe: EX3DV4 - SN7514; ConvF(7.06, 7.06, 7.06) @ 2600 MHz; Calibrated: 8/27/2018 Date: 12.06.2018 - Sensor-Surface: 1.4mm (Mechanical Surface Detection) - Electronics: DAE4 Sn1555; Calibrated: 8/20/2018 - Phantom: MFP_V5.1C; Type: QD 000 P51CA; Serial: 1062 - Measurement SW: DASY52, Version 52.10 (2); SEMCAD X Version 14.6.12 (7450) **Dipole Calibration**/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 87.90 V/m; Power Drift = -0.04 dB Peak SAR (extrapolated) = 29.5 W/kg SAR(1 g) = 13.8 W/kg; SAR(10 g) = 6.18 W/kg Maximum value of SAR (measured) = 23.6 W/kg 0 dB = 23.6 W/kg = 13.73 dBW/kg # S D E A G Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 http://www.chinattl.cn #### Impedance Measurement Plot for Body TSL ### D2600V2, Serial No. 1070 Extended Dipole Calibrations Referring to KDB 865664 D01, if dipoles are verified in return loss (<-20dB, within 20% of priorcalibration), and in impedance (within 5 ohm of prior calibration), the annual calibration is not necessary and the calibration interval can be extended. | | D2600V2 – serial no. 1070 | | | | | | | | | | | | |------------------------|---------------------------|--------------|----------------------------|----------------|---------------------------|----------------|---------------------|--------------|----------------------------|----------------|---------------------------|----------------| | 2600 Head | | | | | 2600 B | ody | | | | | | | | Date of
Measurement | Return-Loss
(dB) |
Delta
(%) | Real
Impedance
(ohm) | Delta
(ohm) | Imaginary Impedance (ohm) | Delta
(ohm) | Return-Loss
(dB) | Delta
(%) | Real
Impedance
(ohm) | Delta
(ohm) | Imaginary Impedance (ohm) | Delta
(ohm) | | 2018.12.7 | -23.7 | | 48.6 | | -6.33 | | -22.1 | | 44.8 | | -5.36 | | | 2019.11.25 | -23.1 | 2.5 | 48.6 | 0 | -6.82 | -0.49 | -22.0 | 0.5 | 45.3 | 0.5 | -4.65 | 0.71 | | 2020.11.25 | -23.5 | 0.8 | 48.8 | 0.2 | -5.93 | 0.4 | -22.0 | 0.5 | 44.5 | -0.3 | -5.04 | 0.32 | #### <Justification of the extended calibration> The return loss is < -20dB, within 20% of prior calibration; the impedance is within 5 ohm of prior calibration. Therefore the verification result should support extended calibration. #### Dipole Verification Data> D2600V2, serial no. 1070 #### 2600MHz - Head----2019.11.25 #### 2600MHz - Body----2019.11.25 #### 2600MHz - Head----2020.11.25 #### 2600MHz - Body----2020.11.25 #### Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Accreditation No.: SCS 0108 Client **Sporton** Certificate No: D3500V2-1076_Apr19 ## CALIBRATION CERTIFICATE Object D3500V2 - SN:1076 Calibration procedure(s) QA CAL-22.v4 Calibration Procedure for SAR Validation Sources between 3-6 GHz Calibration date: Drimon, Ctandordo April 29, 2019 This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3) °C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) | Primary Standards | ID# | Cal Date (Certificate No.) | Scheduled Calibration | |---------------------------------|--------------------|-----------------------------------|------------------------| | Power meter NRP | SN: 104778 | 03-Apr-19 (No. 217-02892/02893) | Apr-20 | | Power sensor NRP-Z91 | SN: 103244 | 03-Apr-19 (No. 217-02892) | Apr-20 | | Power sensor NRP-Z91 | SN: 103245 | 03-Apr-19 (No. 217-02893) | Apr-20 | | Reference 20 dB Attenuator | SN: 5058 (20k) | 04-Apr-19 (No. 217-02894) | Apr-20 | | Type-N mismatch combination | SN: 5047.2 / 06327 | 04-Apr-19 (No. 217-02895) | Apr-20 | | Reference Probe EX3DV4 | SN: 3503 | 25-Mar-19 (No. EX3-3503_Mar19) | Mar-20 | | DAE4 | SN: 601 | 04-Oct-18 (No. DAE4-601_Oct18) | Oct-19 | | Secondary Standards | ID# | Check Date (in house) | Scheduled Check | | Power meter E4419B | SN: GB39512475 | 07-Oct-15 (in house check Feb-19) | In house check: Oct-20 | | Power sensor HP 8481A | SN: US37292783 | 07-Oct-15 (in house check Oct-18) | In house check: Oct-20 | | Power sensor HP 8481A | SN: MY41092317 | 07-Oct-15 (in house check Oct-18) | In house check: Oct-20 | | RF generator R&S SMT-06 | SN: 100972 | 15-Jun-15 (in house check Oct-18) | In house check: Oct-20 | | Network Analyzer Agilent E8358A | SN: US41080477 | 31-Mar-14 (in house check Oct-18) | In house check: Oct-19 | | | Name | Function | Signature | | Calibrated by: | Michael Weber | Laboratory Technician | | | | | | 1111020 | | Approved by: | Katja Pokovic | Technical Manager | MIII | | | | | XXVIII- | Issued: April 29, 2019 This calibration certificate shall not be reproduced except in full without written approval of the laboratory. Certificate No: D3500V2-1076_Apr19 #### **Calibration Laboratory of** Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates #### Glossary: TSL tissue simulating liquid ConvF sensitivity in TSL / NORM x,y,z N/A not applicable or not measured ### Calibration is Performed According to the Following Standards: - a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013 - b) IEC 62209-1, "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from hand-held and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016 - c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010 - d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz" #### **Additional Documentation:** e) DASY4/5 System Handbook #### **Methods Applied and Interpretation of Parameters:** - Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. - Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis. - Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required. - Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required. - SAR measured: SAR measured at the stated antenna input power. - SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector. - SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result. The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%. Certificate No: D3500V2-1076_Apr19 Page 2 of 6 ### **Measurement Conditions** DASY system configuration, as far as not given on page 1. | DASY Version | DASY5 | V52.10.2 | |------------------------------|------------------------------|----------------------------------| | Extrapolation | Advanced Extrapolation | | | Phantom | Modular Flat Phantom | | | Distance Dipole Center - TSL | 10 mm | with Spacer | | Zoom Scan Resolution | dx, dy = 4 mm, dz = 1.4 mm | Graded Ratio = 1.4 (Z direction) | | Frequency | 3500 MHz ± 1 MHz | | ### **Head TSL parameters** The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 37.9 | 2.91 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 37.4 ± 6 % | 2.90 mho/m ± 6 % | | Head TSL temperature change during test | < 0.5 °C | | | ### **SAR** result with Head TSL | SAR averaged over 1 cm ³ (1 g) of Head TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 100 mW input power | 6.80 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 67.9 W/kg ± 19.9 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Head TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 100 mW input power | 2.54 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 25.3 W/kg ± 19.5 % (k=2) | Certificate No: D3500V2-1076_Apr19 ### Appendix (Additional assessments outside the scope of SCS 0108) #### **Antenna Parameters with Head TSL** | Impedance, transformed to feed point | 54.7 Ω - 5.8 jΩ | |--------------------------------------|-----------------| | Return Loss | - 23.0 dB | #### **General Antenna Parameters and Design** | Electrical Delay (one direction) | 1.143 ns | |----------------------------------|----------| | | | After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged. #### **Additional EUT Data** | Manufactured by SPI | EAG | |---------------------|-----| Certificate No: D3500V2-1076_Apr19 Page 4 of 6 #### **DASY5 Validation Report for Head TSL** Date: 29.04.2019 Test Laboratory: SPEAG, Zurich, Switzerland ### DUT: Dipole 3500 MHz; Type: D3500V2; Serial: D3500V2 - SN:1076 Communication System: UID 0 - CW; Frequency: 3500 MHz Medium parameters used: f = 3500 MHz; $\sigma = 2.9 \text{ S/m}$; $\epsilon_r = 37.4$; $\rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011) #### **DASY52 Configuration:** Probe: EX3DV4 - SN3503; ConvF(7.75, 7.75, 7.75)
@ 3500 MHz; Calibrated: 25.03.2019 Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn601; Calibrated: 04.10.2018 Phantom: Flat Phantom 5.0 (front); Type: QD 000 P50 AA; Serial: 1001 DASY52 52.10.2(1495); SEMCAD X 14.6.12(7450) ### Dipole Calibration for Head Tissue/Pin=100 mW, d=10mm/Zoom Scan, dist=1.4mm (8x8x8)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 72.24 V/m; Power Drift = -0.02 dB Peak SAR (extrapolated) = 18.6 W/kg SAR(1 g) = 6.8 W/kg; SAR(10 g) = 2.54 W/kg Maximum value of SAR (measured) = 12.8 W/kg 0 dB = 12.8 W/kg = 11.07 dBW/kg Certificate No: D3500V2-1076_Apr19 ### Impedance Measurement Plot for Head TSL ### D3500V2, Serial No. 1076 Extended Dipole Calibrations Referring to KDB 865664 D01, if dipoles are verified in return loss (<-20dB, within 20% of priorcalibration), and in impedance (within 5 ohm of prior calibration), the annual calibration is not necessary and the calibration interval can be extended. | | | D35 | 500V2 – serial no. 1 | 1076 | | | |------------------------|--|------|----------------------|------|------|-------------| | | 3500 Head | | | | | | | Date of
Measurement | Return-Loss (dB) Real Imaginary Impedance Delta (ohm) Impedance Ohm) Impedance Ohm) | | | | | Delta (ohm) | | 2019.4.29 | -23 | | 54.7 | | -5.8 | | | 2020.4.15 | -22.9 | 0.4 | 55.7 | 1 | -4.9 | 0.9 | | 2021.4.15 | -23.5 | -2.2 | 54.0 | -0.7 | -5.7 | 0.1 | #### <Justification of the extended calibration> The return loss is < -20dB, within 20% of prior calibration; the impedance is within 5 ohm of prior calibration. Therefore the verification result should support extended calibration. ### Dipole Verification Data> D3500V2, serial no. 1076 #### 3500MHz - Head----2020.4.15 #### 3500MHz - Head----2021.4.15 #### Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Client Sporton Certificate No: D5GHzV2-1113 Sep19 # **CALIBRATION CERTIFICATE** Object D5GHzV2 - SN:1113 Calibration procedure(s) QA CAL-22.V4 Calibration Procedure for SAR Validation Sources between 3-6 GHz Calibration date: September 24, 2019 This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3) °C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) | Primary Standards | ID# | Cal Date (Certificate No.) | Scheduled Calibration | |---------------------------------|--------------------|-----------------------------------|------------------------| | Power meter NRP | SN: 104778 | 03-Apr-19 (No. 217-02892/02893) | Apr-20 | | Power sensor NRP-Z91 | SN: 103244 | 03-Apr-19 (No. 217-02892) | Apr-20 | | Power sensor NRP-Z91 | SN: 103245 | 03-Apr-19 (No. 217-02893) | Apr-20 | | Fleference 20 dB Attenuator | SN: 5058 (20k) | 04-Apr-19 (No. 217-02894) | Apr-20 | | Type-N mismatch combination | SN: 5047.2 / 06327 | 04-Apr-19 (No. 217-02895) | Apr-20 | | Reference Probe EX3DV4 | SN: 3503 | 25-Mar-19 (No. EX3-3503_Mar19) | Mar-20 | | DAE4 | SN: 601 | 30-Apr-19 (No. DAE4-601_Apr19) | Apr-20 | | Secondary Standards | ID # | Check Date (in house) | Scheduled Check | | Power meter E4419B | SN: GB39512475 | 30-Oct-14 (in house check Feb-19) | In house check: Oct-20 | | Power sensor HP 8481A | SN: US37292783 | 07-Oct-15 (in house check Oct-18) | In house check: Oct-20 | | Power sensor HP 8481A | SN: MY41092317 | 07-Oct-15 (in house check Oct-18) | In house check: Oct-20 | | RF generator R&S SMT-06 | SN: 100972 | 15-Jun-15 (in house check Oct-18) | In house check: Oct-20 | | Network Analyzer Agilent E8358A | SN: US41080477 | 31-Mar-14 (in house check Oct-18) | In house check: Oct-19 | | | Name | Function | Signature | | Calibrated by: | Jeton Kastrati | Laboratory Technician | 2/12 | | Approved by: | Katja Pokovic | Technical Manager | ma | Issued: September 25, 2019 This calibration certificate shall not be reproduced except in full without written approval of the laboratory. ### Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S S Schweizerischer Kalibrierdienst C Service suisse d'étalonnage Servizio svizzero di taratura Servizio svizzero di taratur Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates #### Glossary: TSL tissue simulating liquid ConvF sensitivity in TSL / NORM x,y,z not applicable or not measured N/A Calibration is Performed According to the Following Standards: a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013 IEC 62209-1, "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from hand-held and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016 c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010 d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz" #### Additional Documentation: e) DASY4/5 System Handbook ### Methods Applied and Interpretation of Parameters: - Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. - Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis. - Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required. - Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required. - SAR measured: SAR measured at the stated antenna input power. - SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector. - SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result. The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%. #### Measurement Conditions DASY system configuration, as far as not given on page 1. | DASY Version | DASY5 | V52.10.2 | |------------------------------|--|----------------------------------| | Extrapolation | Advanced Extrapolation | | | Phantom | Modular Flat Phantom V5.0 | | | Distance Dipole Center - TSL | 10 mm | with Spacer | | Zoom Scan Resolution | dx, dy = 4.0 mm, dz = 1.4 mm | Graded Ratio = 1.4 (Z direction) | | Frequency | 5250 MHz ± 1 MHz
5600 MHz ± 1 MHz
5750 MHz ± 1 MHz | | ### Head TSL parameters at 5250 MHz The following parameters and calculations were applied. | to rollering percentage | Temperature | Permittivity | Conductivity | |---|-----------------|--------------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 35.9 | 4.71 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 35.1 ± 6 % | 4.53 mho/m ± 6 % | | Head TSL temperature change during test | < 0.5 °C | 5 1.000 | 2.000 | #### SAR result with Head TSL at 5250 MHz | SAR averaged over 1 cm3 (1 g) of Head TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 100 mW input power | 8.09 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 80.5 W/kg ± 19.9 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Head TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 100 mW input power | 2.33 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 23.1 W/kg ± 19.5 % (k≃2) | ### Head TSL parameters at 5600 MHz The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|----------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 35.5 | 5.07 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 34.6 ± 6 % | 4.88 mho/m ± 6 % | | Head TSL temperature change during test | < 0.5 °C | 211 | | #### SAR result with Head TSL at 5600 MHz | SAR averaged over 1 cm3 (1 g) of Head TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 100 mW input power | 8.40 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 83.4 W/kg ± 19.9 % (k=2) | | SAR averaged over 10 cm3 (10 g) of Head TSL | condition | | |---
--------------------|--------------------------| | SAR measured | 100 mW input power | 2,40 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 23.8 W/kg ± 19.5 % (k=2) | Certificate No: D5GHzV2-1113_Sep19 # Head TSL parameters at 5750 MHz The following parameters and calculations were applied. | he following parameters and calculations were appli | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 35.4 | 5.22 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 34.4 ± 6 % | 5.03 mho/m ± 6 % | | Head TSL temperature change during test | < 0.5 °C | •••• | 2000 | ### SAR result with Head TSL at 5750 MHz | SAR averaged over 1 cm3 (1 g) of Head TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 100 mW input power | 8.06 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 80.0 W/kg ± 19.9 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Head TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 100 mW input power | 2.30 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 22.8 W/kg ± 19.5 % (k=2) | Certificate No: D5GHzV2-1113_Sep19 ### Appendix (Additional assessments outside the scope of SCS 0108) #### Antenna Parameters with Head TSL at 5250 MHz | Impedance, transformed to feed point | 51.7 Ω - 6.2 μΩ | | | |--------------------------------------|-----------------|--|--| | Return Loss | - 24.0 dB | | | ### Antenna Parameters with Head TSL at 5600 MHz | Impedance, transformed to feed point | 56.0 Ω - 2.7 ΙΩ | | | |--------------------------------------|-----------------|--|--| | Return Loss | - 24.1 dB | | | ### Antenna Parameters with Head TSL at 5750 MHz | Impedance, transformed to feed point | 56.7 Ω - 1.0 jΩ | | | |--------------------------------------|-----------------|--|--| | Return Loss | - 23.9 dB | | | ### General Antenna Parameters and Design | Electrical Delay (one direction) | 1.195 ns | |----------------------------------|----------| |----------------------------------|----------| After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged. #### Additional EUT Data | Manufactured by | SPEAG | |-----------------|-------| #### DASY5 Validation Report for Head TSL Date: 24.09.2019 Test Laboratory: SPEAG, Zurich, Switzerland DUT: Dipole D5GHzV2; Type: D5GHzV2; Serial: D5GHzV2 - SN:1113 Communication System: UID 0 - CW; Frequency: 5250 MHz, Frequency: 5600 MHz, Frequency: 5750 MHz Medium parameters used: f = 5250 MHz; $\sigma = 4.53$ S/m; $\epsilon_r = 35.1$; $\rho = 1000$ kg/m³, Medium parameters used: f = 5600 MHz; $\sigma = 4.88$ S/m; $\epsilon_r = 34.6$; $\rho = 1000$ kg/m³, Medium parameters used: f = 5750 MHz; $\sigma = 5.03$ S/m; $\epsilon_r = 34.4$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011) #### DASY52 Configuration: - Probe: EX3DV4 SN3503; ConvF(5.4, 5.4, 5.4) @ 5250 MHz, ConvF(4.95, 4.95, 4.95) @ 5600 MHz, ConvF(4.98, 4.98, 4.98) @ 5750 MHz; Calibrated: 25.03.2019 - Sensor-Surface: 1.4mm (Mechanical Surface Detection) - Electronics: DAE4 Sn601; Calibrated: 30.04.2019 - Phantom: Flat Phantom 5.0 (front); Type: QD 000 P50 AA; Serial: 1001 - DASY52 52.10.2(1504); SEMCAD X 14.6.12(7470) ### Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5250 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 78.54 V/m; Power Drift = 0.01 dB Peak SAR (extrapolated) = 27.9 W/kg SAR(1 g) = 8.09 W/kg; SAR(10 g) = 2.33 W/kg Maximum value of SAR (measured) = 18.1 W/kg # Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5600 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 78.00 V/m; Power Drift = 0.02 dB Peak SAR (extrapolated) = 31.1 W/kg SAR(1 g) = 8.40 W/kg; SAR(10 g) = 2.40 W/kg Maximum value of SAR (measured) = 19.4 W/kg ## Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5750 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 75.13 V/m; Power Drift = 0.03 dB Peak SAR (extrapolated) = 31.8 W/kg SAR(1 g) = 8.06 W/kg; SAR(10 g) = 2.30 W/kg Maximum value of SAR (measured) = 19.0 W/kg 0 dB = 18.1 W/kg = 12.58 dBW/kg ### Impedance Measurement Plot for Head TSL ## D5GHzV2, Serial No. 1113 Extended Dipole Calibrations Referring to KDB 865664 D01, if dipoles are verified in return loss (<-20dB, within 20% of priorcalibration), and in impedance (within 5 ohm of prior calibration), the annual calibration is not necessary and the calibration interval can be extended. | D5GHzV2 – serial no. 1113 | | | | | | | |---------------------------|---------------------|--------------|----------------------|----------------|---------------------------|----------------| | | 5250 Head | | | | | | | Date of
Measurement | Return-Loss
(dB) | Delta
(%) | Real Impedance (ohm) | Delta
(ohm) | Imaginary Impedance (ohm) | Delta
(ohm) | | 2019.9.24 | -24.05 | | 51.71 | | -6.16 | | | 2020.9.23 | -24.80 | -0.03 | 50.56 | 1.15 | -5.94 | -0.22 | | 2021.9.23 | -23.93 | 0.01 | 51.89 | -0.18 | -6.28 | 0.12 | | D5GHzV2 – serial no. 1113 | | | | | | | |---------------------------|---------------------|--------------|----------------------------|----------------|---------------------------|----------------| | | 5600 Head | | | | | | | Date of
Measurement | Return-Loss
(dB) | Delta
(%) | Real
Impedance
(ohm) | Delta
(ohm) | Imaginary Impedance (ohm) | Delta
(ohm) | | 2019.9.24 | -24.09 | | 56.04 | | -2.71 | | | 2020.9.23 | -23.95 | 0.01 | 57.70 | -1.66 | -2.85 | 0.14 | | 2021.9.23 | -24.99 | -0.04 | 56.04 | 0.01 | -2.69 | -0.02 | | D5GHzV2 – serial no. 1113 | | | | | | | |---------------------------|---------------------|--------------|----------------------|----------------|---------------------------|----------------| | | 5750 Head | | | | | | | Date of
Measurement | Return-Loss
(dB) | Delta
(%) | Real Impedance (ohm) | Delta
(ohm) | Imaginary Impedance (ohm) | Delta
(ohm) | | 2019.9.24 | -23.94 | | 56.70 | | -1.04 | | | 2020.9.23 | -21.92 | 0.08 | 58.56 | -1.86 | -1.58 | 0.54 | | 2021.9.23 | -22.90 | 0.04 | 57.64 | -0.94 | -1.04 | 0.00 | #### <Justification of the extended calibration> The return loss is < -20dB, within 20% of prior calibration; the impedance is within 5 ohm of prior calibration. Therefore the verification result should support extended calibration. #### Dipole Verification Data> D5GHzV2, Serial No. 1113 **5250MHz - Head**----2020. 9. 23 **5600MHz - Head**----2020. 9. 23 #### **5750MHz - Head**----2020. 9. 23 #### **5250MHz – Head**----2021. 9. 23 **5600MHz - Head**----2021. 9. 23 **5750MHz - Head**----2021. 9. 23 Client AUDEN **Certificate No:** Z20-60430 ### **CALIBRATION CERTIFICATE** Object D5GHzV2 - SN: 1145 Calibration Procedure(s) FF-Z11-003-01 Calibration Procedures for dipole validation kits Calibration date: November 9, 2020 This calibration Certificate documents the traceability to national standards, which realize the physical units of measurements(SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature(22 ± 3) $^{\circ}$ C and humidity<70%. Calibration Equipment used (M&TE critical for calibration) | Primary Standards | ID# | Cal Date(Calibrated by, Certificate No.) | Scheduled Calibration | |------------------------------------|------------|--|-----------------------| | Power Meter NRP2 | 106276 | 12-May-20 (CTTL, No.J20X02965) | May-21 | | Power sensor NRP6A | 101369 | 12-May-20 (CTTL, No.J20X02965) | May-21 | | ReferenceProbe EX3DV4 | SN 3617 | 30-Jan-20(SPEAG,No.EX3-3617_Jan20) | Jan-21 | | DAE4 | SN 771 | 10-Feb-20(CTTL-SPEAG,No.Z20-60017) | Feb-21 | | Secondary Standards ID # | | Cal Date(Calibrated by, Certificate No.) | Scheduled Calibration | | Signal Generator E4438C MY49071430 | | 25-Feb-20 (CTTL, No.J20X00516) | Feb-21 | | NetworkAnalyzerE5071C | MY46110673 | 10-Feb-20 (CTTL, No.J20X00515) | Feb-21 | | | | | | | | Name | Function | Signature | |----------------|-------------|--------------------|-----------| | Calibrated by: | Zhao Jing | SAR Test Engineer | | | Reviewed by: | Lin Hao | SAR Test Engineer | H AL | | Approved by: | Qi Dianyuan | SAR Project Leader | 20 | Issued: November 19, 2020 This calibration certificate shall not be reproduced except in full without written approval of the laboratory. Certificate No: Z20-60430 Glossary: TSL tissue simulating liquid ConvF sensitivity in TSL / NORMx,y,z N/A not applicable or not measured #### Calibration is Performed According to the Following Standards: - a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013 - b) IEC 62209-1, "Measurement
procedure for assessment of specific absorption rate of human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices- Part 1: Device used next to the ear (Frequency range of 300MHz to 6GHz)", July 2016 - c) IEC 62209-2, "Procedure to measure the Specific Absorption Rate (SAR) For wireless communication devices used in close proximity to the human body (frequency range of 30MHz to 6GHz)", March 2010 - d) KDB865664, SAR Measurement Requirements for 100 MHz to 6 GHz #### Additional Documentation: e) DASY4/5 System Handbook #### Methods Applied and Interpretation of Parameters: - Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. - Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis. - Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required. - Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required. - SAR measured: SAR measured at the stated antenna input power. - SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector. - SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result. The reported uncertainty of measurement is stated as the standard uncertainty of Measurement multiplied by the coverage factor k=2, which for a normal distribution Corresponds to a coverage probability of approximately 95%. Certificate No: Z20-60430 #### **Measurement Conditions** DASY system configuration, as far as not given on page 1. | DASY Version | DASY52 | V52.10.4 | |------------------------------|--|----------------------------------| | Extrapolation | Advanced Extrapolation | | | Phantom | Triple Flat Phantom 5.1C | | | Distance Dipole Center - TSL | 10 mm | with Spacer | | Zoom Scan Resolution | dx, dy = 4 mm, dz = 1.4 mm | Graded Ratio = 1.4 (Z direction) | | Frequency | 5250 MHz ± 1 MHz
5600 MHz ± 1 MHz
5750 MHz ± 1 MHz | | #### Head TSL parameters at 5250 MHz The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 35.9 | 4.71 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 35.1 ± 6 % | 4.76 mho/m ± 6 % | | Head TSL temperature change during test | <1.0 °C | | | #### SAR result with Head TSL at 5250 MHz | SAR averaged over 1 cm^3 (1 g) of Head TSL | Condition | | | |--|--------------------|-----------------------------------|--| | SAR measured | 100 mW input power | 7.78 W/kg | | | SAR for nominal Head TSL parameters | normalized to 1W | 77.5 W/kg ± 24.4 % (<i>k</i> =2) | | | SAR averaged over 10 $ cm^3 $ (10 g) of Head TSL | Condition | | | | SAR measured | 100 mW input power | 2.22 W/kg | | | SAR for nominal Head TSL parameters | normalized to 1W | 22.1 W/kg ± 24.2 % (k=2) | | #### Head TSL parameters at 5600 MHz The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 35.5 | 5.07 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 34.5 ± 6 % | 5.14 mho/m ± 6 % | | Head TSL temperature change during test | <1.0 °C | | | #### SAR result with Head TSL at 5600 MHz | SAR averaged over 1 cm^3 (1 g) of Head TSL | Condition | | |--|--------------------|--------------------------| | SAR measured | 100 mW input power | 8.07 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 80.3 W/kg ± 24.4 % (k=2) | | SAR averaged over 10 cm^3 (10 g) of Head TSL | Condition | | | SAR measured | 100 mW input power | 2.30 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 22.9 W/kg ± 24.2 % (k=2) | ### Head TSL parameters at 5750 MHz The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 35.4 | 5.22 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 34.4 ± 6 % | 5.31 mho/m ± 6 % | | Head TSL temperature change during test | <1.0 °C | | | #### SAR result with Head TSL at 5750 MHz | SAR averaged over 1 cm^3 (1 g) of Head TSL | Condition | | |--|--------------------|-----------------------------------| | SAR measured | 100 mW input power | 7.79 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 77.5 W/kg ± 24.4 % (<i>k</i> =2) | | SAR averaged over 10 cm^3 (10 g) of Head TSL | Condition | | | SAR measured | 100 mW input power | 2.22 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 22.1 W/kg ± 24.2 % (k=2) | #### Appendix (Additional assessments outside the scope of CNAS L0570) #### Antenna Parameters with Head TSL at 5250 MHz | Impedance, transformed to feed point | 53.1Ω - 9.17jΩ | | |--------------------------------------|----------------|--| | Return Loss | - 20.6dB | | #### Antenna Parameters with Head TSL at 5600 MHz | Impedance, transformed to feed point | 58.7Ω - 0.77jΩ | | |--------------------------------------|----------------|--| | Return Loss | - 21.9dB | | #### Antenna Parameters with Head TSL at 5750 MHz | Impedance, transformed to feed point | 56.5Ω - 2.83jΩ | | |--------------------------------------|----------------|--| | Return Loss | - 23.5dB | | #### General Antenna Parameters and Design | Electrical Delay (one direction) | 1.067 ns | |----------------------------------|----------| | | | After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged. #### **Additional EUT Data** | Manufactured by | SPEAG | |-----------------|---------| | manadaroa oj | OI E/IO | Page 5 of 8 Certificate No: Z20-60430 #### **DASY5 Validation Report for Head TSL** Test Laboratory: CTTL, Beijing, China DUT: Dipole 5GHz; Type: D5GHzV2; Serial: D5GHzV2 - SN: 1145 Communication System: CW; Frequency: 5250 MHz, Frequency: 5600 MHz, Date: 11.09.2020 Frequency: 5750 MHz, Medium parameters used: f = 5250 MHz; σ = 4.756 S/m; ϵ_r = 35.12; ρ = 1000 kg/m³, Medium parameters used: f = 5600 MHz; σ = 5.14 S/m; ϵ_r = 34.53; ρ = 1000 kg/m³, Medium parameters used: f = 5750 MHz; σ = 5.306 S/m; ϵ_r = 34.41; ρ = 1000 kg/m³. Phantom section: Center Section DASY5 Configuration: - Probe: EX3DV4 SN3617; ConvF(5.39, 5.39, 5.39) @ 5250 MHz; ConvF(4.99, 4.99, 4.99) @ 5600 MHz; ConvF(5.1, 5.1, 5.1) @ 5750 MHz; Calibrated: 2020-01-30 - Sensor-Surface: 1.4mm (Mechanical Surface Detection) - Electronics: DAE4 Sn771; Calibrated: 2020-02-10 - Phantom: MFP_V5.1C (20deg probe tilt); Type: QD 000 P51 Cx; Serial: 1062 - Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483) #### Dipole Calibration /Pin=100mW, d=10mm, f=5250 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 71.55 V/m; Power Drift = -0.01 dB Peak SAR (extrapolated) = 31.1 W/kg SAR(1 g) = 7.78 W/kg; SAR(10 g) = 2.22 W/kg Smallest distance from peaks to all points 3 dB below = 7.2 mm Ratio of SAR at M2 to SAR at M1 = 65.5% Maximum value of SAR (measured) = 17.9 W/kg #### Dipole Calibration /Pin=100mW, d=10mm, f=5600 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 70.50 V/m; Power Drift = -0.08 dB Peak SAR (extrapolated) = 35.7 W/kg SAR(1 g) = 8.07 W/kg; SAR(10 g) = 2.3 W/kg Smallest distance from peaks to all points 3 dB below = 7.2 mm Ratio of SAR at M2 to SAR at M1 = 62% Maximum value of SAR (measured) = 19.6 W/kg Certificate No: Z20-60430 Dipole Calibration /Pin=100mW, d=10mm, f=5750 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 68.32 V/m; Power Drift = 0.00 dB Peak SAR (extrapolated) = 34.7 W/kg SAR(1 g) = 7.79 W/kg; SAR(10 g) = 2.22 W/kg Smallest distance from peaks to all points 3 dB below = 7.4 mm Ratio of SAR at M2 to SAR at M1 = 61.8% Maximum value of SAR (measured) = 19.0 W/kg 0 dB = 19.0 W/kg = 12.79 dBW/kg #### Impedance Measurement Plot for Head TSL