

DATE: 5 July 2018

I.T.L. (PRODUCT TESTING) LTD. FCC Radio Test Report

for

Itamar Medical Ltd.

Equipment under test:

WatchPAT ONE Device

WatchPAT ONE/myPAT*

*See customer declaration on page 6

Tested by:

M. Zohar

Approved by:

D. Shidlowsky

This report must not be reproduced, except in full, without the written permission of I.T.L. (Product Testing) Ltd.

This report relates only to items tested.

Measurement/Technical Report for Itamar Medical Ltd.

WatchPAT ONE Device

WatchPAT ONE/myPAT

FCC ID: 2APUBWPONE

This report concerns: Original Grant: X

Class I Change: Class II Change:

Equipment type: Digital Transmission System

Limits used: 47CFR15 Section 15.247

Measurement procedure used is KDB 558074 D01 v04 and ANSI C63.4-2014

Application for Certification Applicant for this device:

prepared by: (different from "prepared by")

R. Pinchuck Itamar Medical Ltd.

ITL (Product Testing) Ltd. Orit Kelner

1 Bat Sheva St. 9 Halamish St., PO Box 3579 Lod 7116002 Caesarea, 3088900, Israel

e-mail Rpinchuck@itl.co.il Tel: +972-4-6177000

Fax: +972-4-6275598

E-mail: okelner@itamar-medical.com

TABLE OF CONTENTS

_			_
1.	_	NFORMATION	_
		Administrative Information	
		ist of Accreditations	
	1.3 F	Product Description	8
		Test Methodology	
		Fest Facility	
		Measurement Uncertainty	
•		•	
2.		ST CONFIGURATION	
		lustification	
		EUT Exercise Software	
	2.3	Special Accessories	9
		Equipment Modifications	
	2.5	Configuration of Tested System	10
3.	RADIATED	MEASUREMENT TEST SET-UP PHOTOS	11
4.		UM BANDWIDTH	
٦.	-	Test Specification	
		Fest Procedure	
		Fest Limit	
		Fest Results	
		Test Equipment Used; 6dB Bandwidth	
5.	MAXIMUM 7	FRANSMITTED PEAK POWER OUTPUT	17
	5.1 T	Fest Specification	17
		est Procedure	
		Fest Limit	
		Fest Results	
		Sest Equipment Used; Maximum Peak Power Output	
6.		E SPECTRUM	
0.		est Specification	_
		est Specification	
		Fest Limit	
		Fest Results	
		Fest Equipment Used; Band Edge Spectrum	
7.		IN NON-RESTRICTED FREQUENCY BANDS	
		Fest Specification	
		Fest Procedure	
	7.0	Fest Limit	
		Fest Results	26
		Test Instrumentation Used, Emission in Non Restricted Frequency	
		Bands	
	7.6 F	Field Strength Calculation	28
8.	EMISSIONS	IN RESTRICTED FREQUENCY BANDS	29
		Fest Specification	
		Test Procedure	
		Fest Limit	
		Test Results	
		Test Instrumentation Used; Emissions in Restricted Frequency Bands	
9.	TRANSMITT	TED POWER DENSITY	33
٠.	_	Test Specification	
		Fest Procedure	
		Fest Limit	
		Fest Results	
		Set Results Fest Equipment Used; Transmitted Power Density	
		• •	
10.		GAIN/INFORMATION	
11.	R.F EXPOS	URE/SAFETY	38

12.	APPENDI	X A - CORRECTION FACTORS	39
	12.1	Correction factors for RF OATS Cable 35m ITL #1879	39
	12.2	Correction factor for RF CABLE for Semi Anechoic Chamber	40
	12.3	Correction factors for Active Loop Antenna	41
	12.4	Correction factors for biconical antenna – ITL # 1356	42
	12.5	Correction factors for log periodic antenna – ITL # 1349	43
	12.6	Correction factors for Double -Ridged Waveguide Horn ANTENNA	44
	12.7	Correction factors for Horn Antenna	45

1. General Information

1.1 Administrative Information

Manufacturer: Itamar Medical Ltd.

Manufacturer's Address: 9 Halamish St.,

PO Box 3579

Caesarea, 3088900, Israel

Tel: +972-4-6177000 Fax: +972-4-6275598

Manufacturer's Representative: Orit Kelner

Equipment Under Test (E.U.T): WatchPAT ONE Device

Equipment Model No.: WatchPAT ONE/myPAT*

Equipment Serial No.: 1000

Date of Receipt of E.U.T: April 15, 2018

Start of Test: April 15, 2018

End of Test: April 22, 2018

Test Laboratory Location: I.T.L (Product Testing) Ltd.

1 Batsheva St.,

Lod

ISRAEL 7120101

Test Specifications: FCC Part 15, Subpart C

^{*}See customer declaration on following page

TO WHOM IT MAY CONCERN

This is to declare that the name WatchPATMONE has been assigned as the commercial name to a product that is being developed by Itamar Medical.

Do note that the product has been initially developed under a project name as myPAT. The myPAT and the WatchPAT[™]ONE names refer to the exact same product and may be used interchangeably.

Orit Kelner
QA Manager
Itamar- Medical Ltd.

Sunday, April 15, 2018

Itamar Medical Ltd.

9 Halamish St. P.O Box 3579, Caesarea 3088900, Israel | T: +972-4-617-7000 | F: +972-4-627-5598 US Toll Free: 1-800-206-6952 | www.itamar-medical.com

1.2 List of Accreditations

The EMC laboratory of I.T.L. is accredited by the following bodies:

- 1. The American Association for Laboratory Accreditation (A2LA) (U.S.A.), Certificate No. 1152.01.
- 2. The Federal Communications Commission (FCC) (U.S.A.), FCC Designation No. IL1005.
- 3. The Israel Ministry of the Environment (Israel), Registration No. 1104/01.
- 4. Industry Canada (Canada), IC File No.: 46405-4025; Site Nos. IC 4025A-1, IC 4025A-2.

I.T.L. Product Testing Ltd. is accredited by the American Association for Laboratory Accreditation (A2LA) and the results shown in this test report have been determined in accordance with I.T.L.'s terms of accreditation unless stated otherwise in the report.

1.3 Product Description

Model name	WatchPAT ONE/myPAT
Working voltage	1.5VDC battery operated
Mode of operation	BLE Transceiver
Modulations	GFSK
Assigned Frequency Range	2400.0-2483.5MHz
Operating Frequency Range	2402MHz-2480MHz
Transmit power	~+3.0dBm
Antenna Gain	1.5 dBi
Modulation BW	>500kHz

1.4 Test Methodology

Both conducted and radiated testing was performed according to the procedures in KDB 558074 D01 v04 and ANSI C63.4: 2014. Radiated testing was performed at an antenna to EUT distance of 3 meters.

1.5 Test Facility

Emissions tests were performed at I.T.L.'s testing facility in Lod, Israel. I.T.L.'s EMC Laboratory is accredited by A2LA, certificate No. 1152.01 and its FCC Designation Number is IL1005.

1.6 Measurement Uncertainty

Conducted Emission

(CISPR 11, EN 55011, CISPR 22, EN 55022, ANSI C63.4)

0.15 - 30 MHz:

Expanded Uncertainty (95% Confidence, K=2):

 \pm 3.44 dB

Radiated Emission

Radiated Emission (CISPR 11, EN 55011, CISPR 22, EN 55022, ANSI C63.4) for open site:

30-1000MHz:

Expanded Uncertainty (95% Confidence, K=2):

 $\pm 4.96 \, dB$

1 GHz to 6 GHz

Expanded Uncertainty (95% Confidence, K=2):

±5.19 dB

>6 GHz

Expanded Uncertainty (95% Confidence, K=2):

±5.51 dB

2. System Test Configuration

2.1 Justification

- 1. The E.U.T contains a transceiver IEEE 802.15.1 using standard (BLE).
- 2. The E.U.T was evaluated while transmitting at the low channel (2402MHz), the mid channel (2440MHz) and the high channel (2480MHz) with duty cycle above 98%.
- 3. Exploratory emission testing was performed in 3 orthogonal polarities to determine the "worst case" radiation.
- 4. Per the results in Figure 1 below, the worst case was the Z axis for low and high channels and X axis for mid channel.

Orientation	Frequency	Field Strength	2 rd Harmonic	3 th Harmonic	Band edge
	(MHz)	(dBuV/m)	(dBuV/m)	(dBuV/m)	(dBuV/m)
	2402.0	91.4	64.2	51.2	60.7
X axis	2440.0	93.3	64.1	51.5	-
	2480.0	92.0	63.5	51.3	63.1
	2402.0	88.3	64.0	51.4	62.3
Y axis	2440.0	92.9	64.1	51.1	-
	2480.0	91.8	63.0	51.4	62.5
	2402.0	93.2	64.0	51.7	62.5
Z axis	2440.0	92.2	63.7	51.2	-
	2480.0	94.0	64.2	51.7	63.7

Figure 1. Screening Results

2.2 EUT Exercise Software

No special exercise software was used.

2.3 Special Accessories

No special accessories were needed to achieve compliance.

2.4 Equipment Modifications

No modifications were necessary in order to achieve compliance.

2.5 Configuration of Tested System

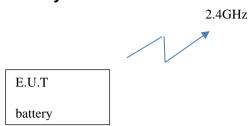


Figure 2. Configuration of Tested System

3. Radiated Measurement Test Set-Up Photos

Figure 3. Radiated Emission Test 0.009-30MHz

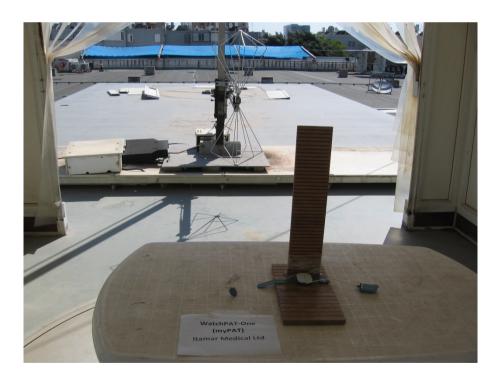


Figure 4. Radiated Emission Test, 30-200MHz

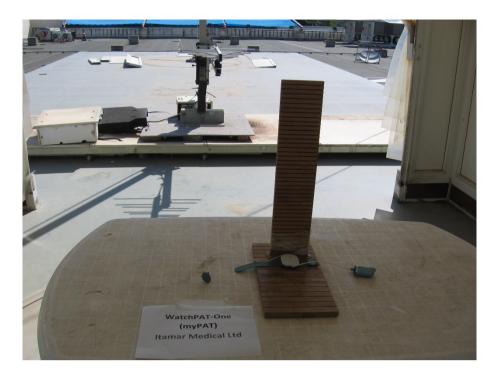


Figure 5. Radiated Emission Test, 200-1000MHz

Figure 6. Radiated Emission Test, 1-18GHz

Figure 7. Radiated Emission Test, 18-26.5GHz

4. 6 dB Minimum Bandwidth

4.1 Test Specification

FCC Part 15, Subpart C, Section 247(a)(2)

4.2 Test Procedure

(Temperature (20°C)/ Humidity (60%RH))

The E.U.T operation mode and test set-up are as described in Section 2 of this report.

The E.U.T was tested in the chamber, and placed on a remote-controlled turntable. The E.U.T was placed on a non-metallic table, 1.5 meters above the ground. The emissions were measured at a distance of 3 meters.

The spectrum bandwidth of the E.U.T. at the point of 6 dB below maximum peak power was measured and recorded. The RBW was set to 100 kHz.

4.3 Test Limit

Systems using digital modulation techniques may operate in the 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz bands. The minimum 6 dB bandwidth shall be at least 500 kHz.

4.4 Test Results

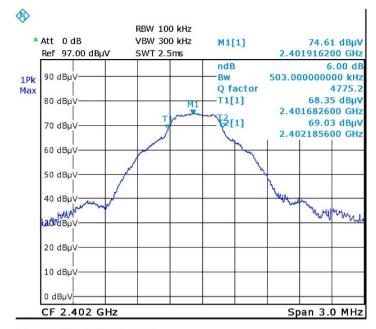
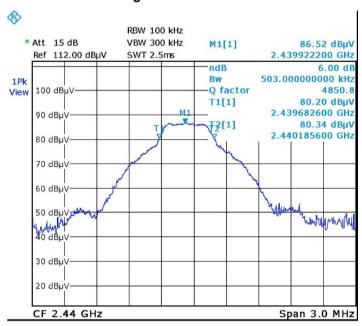
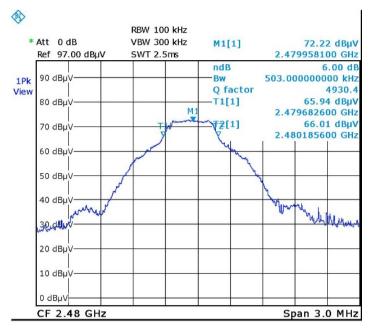

Operation	Reading	Specification
Frequency		
(MHz)	(kHz)	(kHz)
2402.0	503.0	≥500.0
2440.0	503.0	≥500.0
2480.0	503.0	≥500.0

Figure 8 6 dB Minimum Bandwidth

JUDGEMENT: Passed


For additional information see Figure 9 to Figure 11.

Date: 15.APR.2018 10:30:15


Figure 9. 2402.0 MHz

Date: 15.APR.2018 10:34:52

Figure 10. 2440.0 MHz

Date: 15.APR.2018 10:26:07

Figure 11. 2480.0 MHz

4.5 Test Equipment Used; 6dB Bandwidth

Instrument	Manufacturer	Model	Serial No.	Last Calibration Date	Next Calibration Due
Spectrum Analyzer	R&S	FSL6	100194	February 19, 2018	February 19, 2019
Horn Antenna	ETS	3115	6142	May 19, 2015	May 19, 2018
RF Cable	Commscope ORS	0623 WBC- 400	G020132	October 1, 2017	October 1, 2018
Semi Anechoic Civil Chamber	ETS	S81	SL 11643	NCR	NCR

Figure 12 Test Equipment Used

5. Maximum Transmitted Peak Power Output

5.1 Test Specification

FCC, Part 15, Subpart C, Section 247(b)(3)

5.2 Test Procedure

(Temperature (22°C)/ Humidity (60%RH))

The E.U.T operation mode and test set-up are as described in Section 2 of this report.

The E.U.T was tested in the chamber, and placed on a remote-controlled turntable. The E.U.T was placed on a non-metallic table, 1.5 meters above the ground. The readings were maximized by the turntable azimuth between 0-360°, and the antenna polarization.

The emissions were measured at a distance of 3 meters.

Radiated output power levels were measured at selected operation frequencies and the results were converted to power level according to the formula as shown below:

$$P = \frac{(E_{V/m} \times d)^2}{(30 \times G)}$$
[W]

E - Field Strength (V/m)

d – Distance from transmitter (m)

G – Antenna gain

P – Peak power (W)

5.3 Test Limit

The maximum peak conducted output power of the intentional radiator for systems using digital modulation in the 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz bands: 1 Watt.

5.4 Test Results

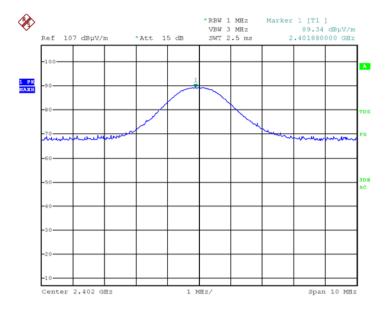
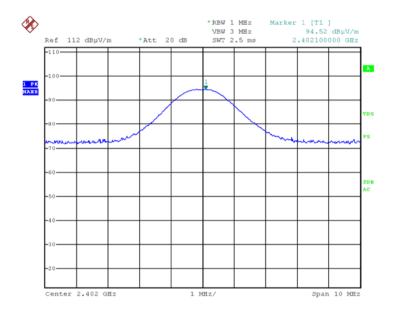
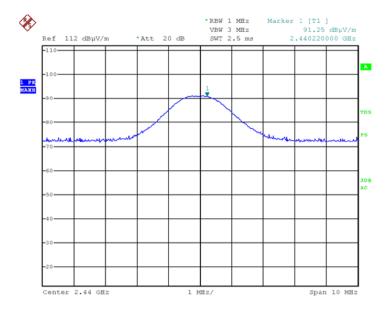

Operation	Polarization	Field	Power	Power	Limit	Margin
Frequency		Strength				
(MHz)	(V/H)	(dBuV/m)	(dBm)	(mW)	(mW)	(mW)
2402.0	V	89.3	-5.9	0.257	1000.0	-999.743
2402.0	Н	94.5	-0.7	0.851	1000.0	-999.149
2440.0	V	91.3	-3.9	0.407	1000.0	-999.593
	Н	89.8	-5.4	0.288	1000.0	-999.712
2480.0	V	94.0	-1.2	0.759	1000.0	-999.241
	Н	96.6	1.4	1.38	1000.0	-998.62

Figure 13 Maximum Peak Power Output

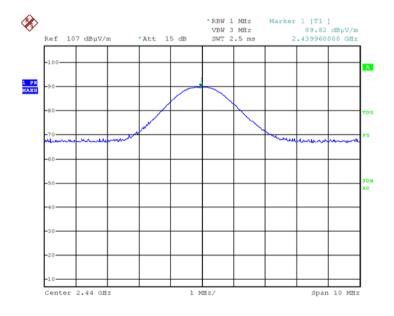
JUDGEMENT: Passed by 998.62 mW


For additional information see Figure 14 to Figure 19.

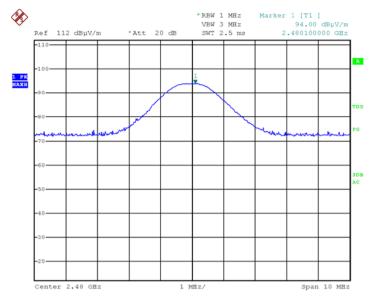
Date: 18.APR.2018 11:41:57


Figure 14 2402.0 MHz - Vertical

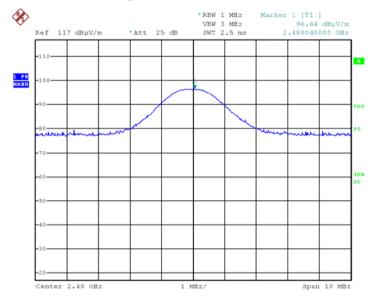
Date: 18.APR.2018 11:45:02


Figure 15 2402.0 MHz - Horizontal

Date: 18.APR.2018 11:54:22


Figure 16 2440.0 MHz - Vertical

Date: 18.APR.2018 11:57:42


Figure 17 2440.0 MHz - Horizontal

Date: 18.APR.2018 12:07:18

Figure 18 2480.0 MHz - Vertical

Date: 18.APR.2018 12:01:22

Figure 19 2480.0 MHz - Horizontal

5.5 Test Equipment Used; Maximum Peak Power Output

Instrument	Manufacturer	Model	Serial No.	Last Calibration Date	Next Calibration Due
EMI Receiver	R&S	ESCI7	100724	February 19, 2018	February 19, 2019
Horn Antenna	ETS	3115	6142	May 19, 2015	May 19, 2018
RF Cable	Commscope ORS	0623 WBC-400	G020132	October 1, 2017	October 1, 2018
Semi Anechoic Civil Chamber	ETS	S81	SL 11643	NCR	NCR

Figure 20 Test Equipment Used

6. Band Edge Spectrum

6.1 Test Specification

FCC, Part 15, Subpart C, Section 247(d)

6.2 Test Procedure

(Temperature (20°C)/ Humidity (60%RH))

The E.U.T operation mode and test set-up are as described in Section 2 of this report.

The E.U.T was tested in the chamber, and placed on a remote-controlled turntable. The E.U.T was placed on a non-metallic table, 1.5 meters above the ground. The readings were maximized by the turntable azimuth between 0-360°, and the antenna polarization.

The emissions were measured at a distance of 3 meters.

The RBW was set to 100 kHz.

6.3 Test Limit

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power.

6.4 Test Results

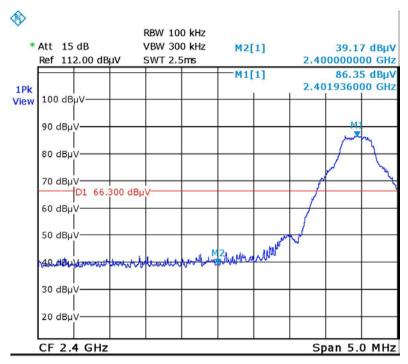
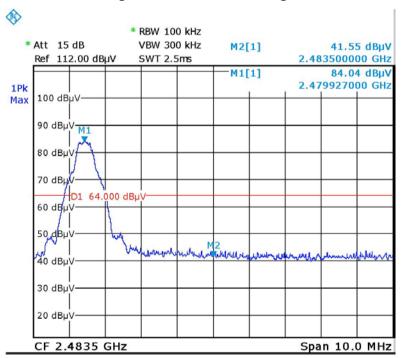

Operation	Operation Band Edge		Limit	Margin
Frequency	Frequency	Level		
(MHz)	(MHz)	(dBuV/m)	(dBuV/m)	(dB)
Low	Low 2400.0		66.3	-27.1
High	High 2483.5		64.0	-22.4

Figure 21 Band Edge Spectrum

JUDGEMENT: Passed by 22.4 dB


For additional information see *Figure 22* and *Figure 23*.

Date: 15.APR.2018 10:43:21

Figure 22 —Lower Band Edge

Date: 15.APR.2018 10:46:20

Figure 23 —Upper Band Edge

6.5 Test Equipment Used; Band Edge Spectrum

Instrument	Manufacturer	Model	Serial No.	Last Calibration Date	Next Calibration Due
Spectrum Analyzer	R&S	FSL6	100194	February 19, 2018	February 19, 2019
Horn Antenna	ETS	3115	6142	May 19, 2015	May 19, 2018
RF Cable	Commscope ORS	0623 WBC- 400	G020132	October 1, 2017	October 1, 2018
Semi Anechoic Civil Chamber	ETS	S81	SL 11643	NCR	NCR

Figure 24 Test Equipment Used

7. Emissions in Non-Restricted Frequency Bands

7.1 Test Specification

FCC, Part 15, Subpart C, Section 247(d)

7.2 Test Procedure

(Temperature (22°C)/ Humidity (58%RH))

The E.U.T. operation mode and test set-up are as described in Section 2 of this report.

For measurements between 0.009MHz-30MHz:

The E.U.T was tested inside the shielded room and placed on a non-metallic table, 0.8 meters above the ground. The emissions were measured at a distance of 3 meters. The readings were maximized by the turntable azimuth between 0-360°, and the antenna polarization.

The frequency range 0.009MHz-30MHz was scanned.

For measurements between 30.0MHz-1.0GHz:

A preliminary measurement to characterize the E.U.T was performed inside the shielded room at a distance of 3 meters, using peak detection mode and broadband antennas. The preliminary measurements produced a list of the highest emissions. The E.U.T was then transferred to the open site, and placed on a remote-controlled turntable. The E.U.T was placed on a non-metallic table, 0.8 meters above the ground. The emissions were measured at a distance of 3 meters. The readings were maximized by adjusting the antenna height between 1-4 meters, the turntable azimuth between 0-360°, and the antenna polarization. The frequency range 30.0MHz -1.0GHz was scanned and the list of the highest emissions was verified and updated accordingly.

For measurements between 1.0GHz-25.0GHz:

The E.U.T was tested inside the shielded room and placed on a non-metallic table, 1.5 meters above the ground. The emissions were measured at a distance of 3 meters. The readings were maximized by the turntable azimuth between 0-360°, and the antenna polarization.

The frequency range 1.0GHz -25.0GHz was scanned.

RBW was set to 100kHz, detector set to max peak and trace to "max hold".

7.3 Test Limit

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power.

7.4 Test Results

JUDGEMENT: Passed

All detected emissions were greater than 20dBc below the fundamental level.

The EUT met the requirements of the F.C.C. Part 15, Subpart C, Section 247(d) specification.

7.5 Test Instrumentation Used, Emission in Non Restricted Frequency Bands

Instrument	Manufacturer	Model	Serial No.	Last Calibration Date	Next Calibration Due
EMI Receiver	R&S	ESCI7	100724	February 19, 2018	February 19, 2019
Spectrum Analyzer	НР	8592L	3826A01204	February 19, 2018	February 19, 2019
EMI Receiver	НР	8542E	3906A00276	February 19, 2018	February 19, 2019
RF Filter Section	НР	85420E	3705A00248	February 19, 2018	February 19, 2019
Spectrum Analyzer	НР	8564E	3442A00275	February 28, 2018	February 28, 2019
Biconical Antenna	EMCO	3110B	9912-3337	May 15, 2017	May 15, 2019
Log Periodic Antenna	EMCO	3146	9505-4081	May 15, 2017	May 15, 2018
Horn Antenna	ETS	3115	29845	May 19, 2015	May 19, 2018
Horn Antenna	ARA	SWH-28	1007	December 13, 2017	December 13, 2020
Active Loop Antenna	EMCO	6502	9506-2950	October 19, 2017	October 19, 2018
MicroWave System Amplifier	НР	83006A	3104A00589	October 1, 2017	October 1, 2018
Low noise amplifier 1GHz- 18GHz	Miteq	AFSX4- 02001800-50-8P	-	October 1, 2017	October 1, 2018
Spectrum Analyzer	НР	8593EM	3536A00120 ADI	February 20, 2018	February 20, 2019
RF Cable	Commscope ORS	0623 WBC-400	G020132	October 1, 2017	October 1, 2018
RF Cable (OATS)	EIM	RG214- 11N(X2)		August 13, 2017	August 13, 2018
Semi Anechoic Civil Chamber	ETS	S81	SL 11643	NCR	NCR
Antenna Mast	ETS	2070-2	9608-1497	NCR	NCR
Turntable	ETS	2087	-	NCR	NCR
Mast & Table Controller	ETS/EMCO	2090	9608-1456	NCR	NCR

Figure 25 Test Equipment Used

7.6 Field Strength Calculation

The field strength is calculated directly by the EMI Receiver software, and a "Correction Factors", using the following equation:

$$FS = RA + AF + CF$$

FS: Field Strength [dBµv/m]

RA: Receiver Amplitude [dBµv]

AF: Receiving Antenna Correction Factor [dB/m]

CF: Cable Attenuation Factor [dB]

Example: $FS = 30.7 \text{ dB}\mu\text{V}$ (RA) + 14.0 dB (AF) + 0.9 dB (CF) = 45.6 dB μV

No external pre-amplifiers are used.

8. Emissions in Restricted Frequency Bands

8.1 Test Specification

FCC Part 15, Subpart C, Sections 15.209, 15.205, 15.247(d)

8.2 Test Procedure

(Temperature (23°C)/ Humidity (65%RH))

The E.U.T. operation mode and test set-up are as described in Section 2 of this report.

For measurements between 0.009-30MHz:

The E.U.T was tested inside the shielded room and placed on a non-metallic table, 0.8 meters above the ground. The emissions were measured at a distance of 3 meters. The readings were maximized by the turntable azimuth between 0-360°, and the antenna polarization.

The frequency range 0.009MHz-30MHz was scanned.

For measurements between 30-1000MHz:

A preliminary measurement to characterize the E.U.T was performed inside the shielded room at a distance of 3 meters, using peak detection mode and broadband antennas. The preliminary measurements produced a list of the highest emissions. The E.U.T was then transferred to the open site, and placed on a remote-controlled turntable. The E.U.T was placed on a non-metallic table, 0.8 meters above the ground. The emissions were measured at a distance of 3 meters. The readings were maximized by adjusting the antenna height between 1-4 meters, the turntable azimuth between 0-360°, and the antenna polarization. The frequency range 30MHz -1000MHz was scanned and the list of the highest emissions was verified and updated accordingly.

For measurements between 1GHz-25GHz:

The E.U.T was tested inside the shielded room and placed on a non-metallic table, 1.5 meters above the ground. The emissions were measured at a distance of 3 meters. The readings were maximized by the turntable azimuth between 0-360°, and the antenna polarization.

The frequency range 1GHz -25GHz was scanned.

The levels of the emissions within the frequency ranges of the restricted bands (Section 15.205 of FCC Part 15) were compared to the limits of the table in Section 15.209 (a), General Requirements.

8.3 Test Limit

Radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).

Frequency (MHz)	Field strength (microvolts/meter)	Measurement distance (meters)	Field strength* (dBµV/m)	Field strength* (dBµV/m)@3m
0.009-0.490	2400/F(kHz)	300	48.5-13.8	128.5-73.8
0.490-1.705	24000/F(kHz)	30	33.8-23.0	73.8-63.0
1.705-30.0	30	30	29.5	69.5
30-88	100	3	40.0	40.0
88-216	150	3	43.5	43.5
216-960	200	3	46.0	46.0
Above 960	500	3	54.0	54.0

^{*}The emission limits shown in the above table are based on measurements employing a CISPR quasi-peak detector except for the frequency bands 9-90 kHz, 110-490 kHz and above 1000 MHz. Radiated emission limits in these three bands are based on measurements employing an average detector. For average radiated emission measurements above 1000 MHz, there is also a limit corresponding to 20 dB above the indicated values in the table is specified when measuring with peak detector function.

Figure 26 Table of Limits

8.4 Test Results

JUDGEMENT: Passed by 0.2 dB

For the operation frequency of 2402 MHz, the margin between the emission level and the specification limit is in the worst case 9.7dB at the frequency of 2390.0 MHz, horizontal polarization.

For the operation frequency of 2440 MHz, the margin between the emission level and the specification limit is in the worst case 22.3 dB at the frequency of 7320.0 MHz, horizontal polarization.

For the operation frequency of 2480 MHz, the margin between the emission level and the specification limit is in the worst case 0.2 dB at the frequency of 2483.5 MHz, horizontal polarization.

The EUT met the requirements of the F.C.C. Part 15, Subpart C Sections 15.209, 15.205, 15.247(d) specifications.

The details of the highest emissions are given in *Figure 27*.

Radiated Emission

E.U.T Description WatchPAT ONE Device
Type WatchPAT ONE/myPAT

Serial Number: 1000

Specification: FCC, Part 15, Subpart C, Sections 15.209, 15.205, 15.247(d)

Antenna Polarization: Horizontal/Vertical Frequency Range: 9 kHz to 25.0 GHz

Protocol type: BLE Detector: Peak ,Average

Operation Frequency	Freq.	Pol	Peak Reading	Peak Limit	Peak Margin	Average Reading	Average Limit	Average Margin
(MHz)	(MHz)	(H/V)	$(dB\mu V/m)$	(dBµV/m)	(dB)	(dBµV/m)	(dBµV/m)	(dB)
	2390.0	V	53.3	74.0	-20.7	44.1	54.0	-9.9
2402.0	2390.0	Н	53.7	74.0	-20.3	44.3	54.0	-9.7
2402.0	4804.0	V	52.0	74.0	-22.0	1	54.0	-
	4804.0	Н	48.8	74.0	-25.2	-	54.0	-
	4880.0	V	49.9	74.0	-24.1	-	54.0	-
21100	4880.0	Н	50.8	74.0	-23.2	-	54.0	-
2440.0	7320.0	V	51.6	74.0	-22.4	-	54.0	-
	7320.0	Н	51.7	74.0	-22.3	-	54.0	-
	4960.0	V	47.1	74.0	-26.9	-	54.0	-
2400.0	4960.0	Н	44.2	74.0	-29.8	-	54.0	-
2480.0	2483.5	V	56.8	74.0	-17.2	50.6	54.0	-3.4
	2483.5	Н	63.2	74.0	-10.8	53.8	54.0	-0.2

Figure 27. Radiated Emission Results

Margin refers to the test results obtained minus specified requirement; thus a positive number indicates failure, and a negative result indicates that the product passes the test.

[&]quot;Peak Amp" includes correction factor.

^{* &}quot;Correction Factor" = Antenna Factor + Cable Loss- Low Noise Amplifier Gain

8.5 Test Instrumentation Used; Emissions in Restricted Frequency Bands

Instrument	Manufacturer	Model	Serial No.	Last Calibration Date	Next Calibration Due
EMI Receiver	R&S	ESCI7	100724	February 19, 2018	February 19, 2019
Spectrum Analyzer	НР	8592L	3826A01204	February 19, 2018	February 19, 2019
EMI Receiver	НР	8542E	3906A00276	February 19, 2018	February 19, 2019
RF Filter Section	НР	85420E	3705A00248	February 19, 2018	February 19, 2019
Spectrum Analyzer	НР	8564E	3442A00275	February 28, 2018	February 28, 2019
Biconical Antenna	EMCO	3110B	9912-3337	May 15, 2017	May 15, 2019
Log Periodic Antenna	EMCO	3146	9505-4081	May 15, 2017	May 15, 2018
Horn Antenna	ETS	3115	29845	May 19, 2015	May 19, 2018
Horn Antenna	ARA	SWH-28	1007	December 13, 2017	December 13, 2020
Active Loop Antenna	EMCO	6502	9506-2950	October 19, 2017	October 19, 2018
MicroWave System Amplifier	НР	83006A	3104A00589	October 1, 2017	October 1, 2018
Low noise amplifier 1GHz- 18GHz	Miteq	AFSX4- 02001800-50-8P	-	October 1, 2017	October 1, 2018
Spectrum Analyzer	НР	8593EM	3536A00120 ADI	February 20, 2018	February 20, 2019
RF Cable	Commscope ORS	0623 WBC-400	G020132	October 1, 2017	October 1, 2018
RF Cable (OATS)	EIM	RG214- 11N(X2)		August 13, 2017	August 13, 2018
Semi Anechoic Civil Chamber	ETS	S81	SL 11643	NCR	NCR
Antenna Mast	ETS	2070-2	9608-1497	NCR	NCR
Turntable	ETS	2087	-	NCR	NCR
Mast & Table Controller	ETS/EMCO	2090	9608-1456	NCR	NCR

Figure 28 Test Equipment Used

9. Transmitted Power Density

9.1 Test Specification

FCC, Part 15, Subpart C, Section 247(e)

9.2 Test Procedure

(Temperature (22°C)/ Humidity (60%RH))

The E.U.T operation mode and test set-up are as described in Section 2 of this report.

The E.U.T was tested in the chamber, and placed on a remote-controlled turntable.

The E.U.T was placed on a non-metallic table, 1.5 meters above the ground.

The readings were maximized by the turntable azimuth between 0-360°, and the antenna polarization.

The emissions were measured at a distance of 3 meters.

The spectrum analyzer was set to 3 kHz RBW and VBW to 10 kHz.

Radiated output power levels were measured at selected operation frequencies and the results were converted to power level according to the formula as shown below:

$$P = \frac{(E_{V/m} \times d)^2}{(30 \times G)}$$
 [W]

E - Field Strength (V/m)

d – Distance from transmitter (m)

G – Antenna gain

P – Peak power (W)

9.3 Test Limit

For digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission.

9.4 Test Results

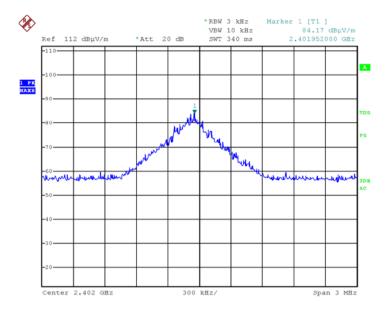
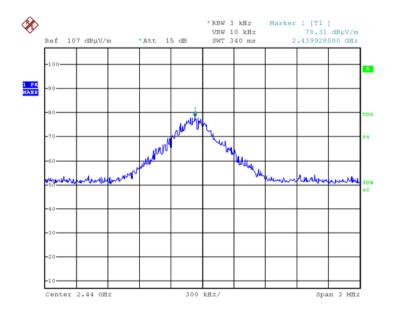
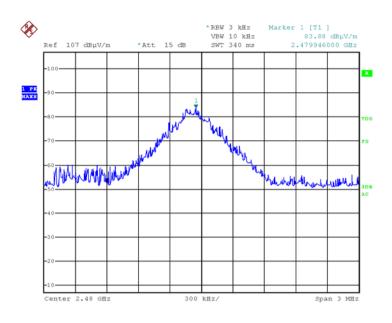

Operation Frequency	Reading Spectrum Analyzer	Reading Spectrum Analyzer	Limit	Margin
(MHz)	(dBµV/m)	(dBm)	(dBm)	(dB)
2402.0	84.2	-11.0	8.0	-19.0
2440.0	78.3	-16.9	8.0	-24.9
2480.0	83.9	-11.3	8.0	-19.3

Figure 29 Test Results

JUDGEMENT: Passed by 19.0 dB


For additional information see Figure 30 to Figure 32.

Date: 18.APR.2018 11:47:52


Figure 30 — 2402.0 MHz

Date: 18.APR.2018 11:52:31

Figure 31 — 2440.0 MHz

Date: 18.APR.2018 12:03:42

Figure 32 — 2480.0 MHz

9.5 Test Equipment Used; Transmitted Power Density

Instrument	Manufacturer	Model	Serial No.	Last Calibration Date	Next Calibration Due
EMI Receiver	R&S	ESCI7	100120	February 19, 2018	February 19, 2019
Horn Antenna	ETS	3115	29845	May 19, 2015	May 19, 2018
RF Cable	Commscope ORS	0623 WBC-400	G020132	October 1, 2017	October 1, 2018
Semi Anechoic Civil Chamber	ETS	S81	SL 11643	NCR	NCR

Figure 33 Test Equipment Used

10. Antenna Gain/Information

The antenna gain is 1.5 dBi, printed.

11. R.F Exposure/Safety

Typical use of the E.U.T. is as a diagnostic device for patients suspected of having sleep breathing disorders.

The typical placement of the E.U.T. is on the patient's wrist (like a watch). The typical distance between the E.U.T. and the user is 0.5cm

SAR Testing Exclusion Based on Section 4.3.1 and Appendix A of KDB 447498 D01 V05 Requirements

Section 4.3.1 and Appendix A of KDB447498 D01 V05 was used as the guidance as follows:

Peak power output = 96.6 dBuV/m (Peak) = 1.4 dBm = 1.38 mW.

[(max. power of channel, including tune-up tolerance, mW)/(min. test separation distance, mm)] * $\cdot [\sqrt{f(GHz)}]$

=1.38/5 * 1.55=0.4278 this value is less than 3.0 for 1-g SAR and \leq 7.5 for 10-g extremity SAR.

The SAR measurement is not necessary.

RF Exposure Calculation Based on Section 1.1310 Requirements

(a) FCC limits at 2480 MHz is:

$$1\frac{mW}{cm^2}$$

Using table 1 of Section 1.1310 limit for general population/uncontrolled exposures, the above level is an average over 30 minutes.

(b) The power density produced by the E.U.T. is

$$S = \frac{P_t G_t}{4\pi R^2}$$

P_t- Transmitted Power 96.6 dBuV/m (Peak) =1.38 mW (includes antenna gain)

G_T- Antenna Gain, 1.5 dBi

R- Distance from Transmitter using 0.5cm worst case

(c) The peak power density is:

$$S = 1.38/4\pi(0.5)^2 = 0.439 \text{ mW/cm}^2$$

(d) This is below the FCC limit.

12. APPENDIX A - CORRECTION FACTORS

12.1 Correction factors for

RF OATS Cable 35m ITL #1879

Frequency	Cable loss
(MHz)	
	(dB)
30.0	111
50.0	1.1
100.0	1.7
150.0	2.1
200.0	2.5
250.0	2.7
300.0	2.9
350.0	3.1
400.0	3.5
450.0	3.7
500.0	3.9
550.0	4.0
600.0	4.2
650.0	4.4
700.0	4.9
750.0	5.0
800.0	5.0
850.0	4.9
900.0	5.0
950.0	5.1
1000.0	5.4

12.2 Correction factor for RF CABLE for Semi Anechoic Chamber

ITL # 1841

FREQ	LOSS
(MHz)	(dB)
1000.0	1.5
2000.0	2.1
3000.0	2.7
4000.0	3.1
5000.0	3.5
6000.0	4.1
7000.0	4.6
8000.0	4.9
9000.0	5.7
10000.0	5.7
11000.0	6.1
12000.0	6.1
13000.0	6.2
14000.0	6.7
15000.0	7.4
16000.0	7.5
17000.0	7.9
18000.0	8.1
19000.0	8.8
20000.0	9.1

NOTES:

- 1. The cable is manufactured by Commscope
- 2. The cable type is 0623 WBC-400, serial # G020132 and 10m long

12.3 Correction factors for Active Loop Antenna Model 6502 S/N 9506-2950 ITL # 1075:

f(MHz)	MAF(dBs/m)	AF(dB/m)
0.01	-33.1	18.4
0.02	-37.2	14.3
0.03	-38.2	13.3
0.05	-39.8	11.7
0.1	-40.1	11.4
0.2	-40.3	11.2
0.3	-40.3	11.2
0.5	-40.3	11.2
0.7	-40.3	11.2
1	-40.1	11.4
2	-40	11.5
3	-40	11.5
4	-40.1	11.4
5	-40.2	11.3
6	-40.4	11.1
7	-40.4	11.1
8	-40.4	11.1
9	-40.5	11
10	-40.5	11
20	-41.5	10
30	-43.5	8

12.4 Correction factors for biconical a

biconical antenna – ITL # 1356

Model: EMCO 3110B Serial No.:9912-3337

Frequency	ITL 1356 AF
[MHz]	[dB/m]
30	13.00
35	10.89
40	10.59
45	10.63
50	10.12
60	9.26
70	7.74
80	6.63
90	8.23
100	11.12
120	13.16
140	13.07
160	14.80
180	16.95
200	17.17

12.5 Correction factors for log periodic antenna – ITL # 1349

Model: EMCO 3146 Serial No.:9505-4081

Frequency	ITL 1349 AF
[MHz]	[dB/m]
200	11.58
250	12.04
300	14.76
400	15.55
500	17.85
600	18.66
700	20.87
800	21.15
900	22.32
1000	24.22

12.6 Correction factors for Double –Ridged Waveguide Horn ANTENNA

Model: 3115 Serial number:29845 3 meter range; ITL # 1352

FREQUENCY	AFE		FREQUENCY	AFE
(GHz)	(dB/m)	Ī	(GHz)	(dB/m)
0.75	25		9.5	38
1.0	23.5		10.0	38.5
1.5	26.0		10.5	38.5
2.0	29.0		11.0	38.5
2.5	27.5		11.5	38.5
3.0	30.0		12.0	38.0
3.5	31.5		12.5	38.5
4.0	32.5		13.0	40.0
4.5	32.5		13.5	41.0
5.0	33.0		14.0	40.0
5.5	35.0		14.5	39.0
6.0	36.5		15.0	38.0
6.5	36.5		15.5	37.5
7.0	37.5		16.0	37.5
7.5	37.5		16.5	39.0
8.0	37.5		17.0	40.0
8.5	38.0		17.5	42.0
9.0	37.5		18.0	42.5

12.7 Correction factors for

Horn Antenna Model: SWH-28 at 3 meter range. ITL #:1353

CALIBRATION DATA

3 m distance

Frequency, Mitz	Measpred anténna factor, dB/m ⁽¹⁾
18000	32.4
18500	32.0
19000	32.3
19500	32.4
20000	32.3
20500	32.8
21000	32.8
21500	32.7
22000	33.1
22500	33.0
23000	33.1
23500	33.8
24000	33.5
24500	33.5
25000	33.8
25500	33.9
26000	34.2
26500	. 34.7

 $^{^{1)}}$ The antenna factor shall be added to receiver reading in $dB\mu V$ to obtain field strength in $dB\mu V/m$