

Test Report22-1-0097501T13a

Number of pages: 18 Date of Report: 2023-Oct-09

Testing company: CETECOM GmbH Applicant: Servus Intralogistics GmbH

Im Teelbruch 116 45219 Essen Germany Tel. + 49 (0) 20 54 / 95 19-0 Fax: + 49 (0) 20 54 / 95 19-150

Product: Transport Robot

Model: Transport Robot Generation 5

FCC ID: Contains FCC ID: XF6-M7DB7 IC: Contains IC ID: 8407A-M7DB7

Testing has been carried out in accordance with:

FCC Regulations

Title 47 CFR, Chapter I, Subchapter A, Part 15

Subpart B Unintentional Radiators

§ 15.109 Radiated emission limits

ISED-Regulations

Radio Standards Specification

RSS-Gen, Issue 5

General Requirements for Compliance of Radio Apparatus

ICES-003, Issue 7

Information Technology Equipment (including Digital Apparatus)

Test Results:
☐ The EUT complies with the requirements in respect of all parameters subject to the test.

The test results relate only to devices specified in this document

Signatures:

Wolfgang Markus Lab Manager

W. Mil

Authorization of test report

Hicham Laayouni Test Manager

Responsible of test report

Table of Contents

Га	ble o	f Annex	3			
1	G	General information	4			
	1.1	Disclaimer and Notes	4			
	1.2	Attestation	4			
	1.3	Summary of Test Results	5			
	1.4	Summary of Test Methods	5			
2	А	dministrative Data	6			
	2.1	Identification of the Testing Laboratory	6			
	2.2	General limits for environmental conditions	6			
	2.3	Test Laboratories sub-contracted	6			
	2.4	Organizational Items	6			
	2.5	Applicant's details	6			
	2.6	Manufacturer's details	6			
	2.7	Equipment under Test (EUT)	7			
	2.8	Untested Variant (VAR)	7			
	2.9	Auxiliary Equipment (AE)	7			
	2.10	Connected cables (CAB)	7			
	2.11	Software (SW)	7			
	2.12	EUT set-ups	7			
	2.13	EUT operation modes	7			
3	Е	quipment under test (EUT)	8			
	3.1	General Data of Main EUT as Declared by Applicant	8			
	3.2	Detailed Technical data of Main EUT as Declared by Applicant	8			
	3.3	Modifications on Test sample	8			
4	Ν	Measurements	9			
	4.1	Radiated field strength emissions 30 MHz – 1 GHz	9			
	4.2	Radiated field strength emissions above 1 GHz	12			
5	R	esults from external laboratory	16			
6	О	Ppinions and interpretations	16			
7	Li	ist of abbreviations	16			
8	Ν	Neasurement Uncertainty valid for conducted/radiated measurements	17			
9	V	Versions of test reports (change history)				

	Table of Annex					
Annex No.	Contents	Reference Description	Total Pages			
Annex 1	Test result diagrams	TR22-1-0097501T13a-A1	6			
Annex 2	Internal photographs of EUT					
Annex 3	External photographs of EUT	TR22-1-0097501T13a-A3	2			
Annex 4	Annex 4 Test set-up photographs TR22-1-0097501T13a-A4 3					
The listed attachments are separate documents.						

TR22-1-0097501T13a 3/18

1 General information

1.1 Disclaimer and Notes

The test results of this test report relate exclusively to the test item specified in this test report as specified in chapter 2.7. CETECOM does not assume responsibility for any conclusions and generalizations drawn from the test results with regard to other specimens or samples of the type of the equipment represented by the test item.

The test report may only be reproduced or published in full. Reproduction or publication of extracts from the report requires the prior written approval of CETECOM.

The testing service provided by CETECOM has been rendered under the current "General Terms and Conditions for CETECOM". CETECOM will not be liable for any loss or damage resulting from false, inaccurate, inappropriate or incomplete product information provided by the customer.

Under no circumstances does the CETECOM test report include any endorsement or warranty regarding the functionality, quality or performance of any other product or service provided.

Under no circumstances does the CETECOM test report include or imply any product or service warranties from CETECOM, including, without limitation, any implied warranties of merchantability, fitness for purpose, or non-infringement, all of which are expressly disclaimed by CETECOM.

All rights and remedies regarding vendor's products and services for which CETECOM has prepared this test report shall be provided by the party offering such products or services and not by CETECOM.

In no case this test report can be considered as a Letter of Approval.

This test report is electronically signed and valid without handwritten signature. For verification of the electronic signatures, the public keys can be requested at the testing laboratory.

The test report must always be reproduced in full; reproduction of an excerpt only is subject to written approval of the testing laboratory. The documentation of the testing performed on the tested devices is archived for 10 years at CETECOM.

Also we refer on special conditions which the applicant should fulfill according §2.927 to §2.948, special focus regarding modification of the equipment and availability of sample equipment for market surveillance tests.

1.2 Attestation

I declare that all measurements were performed by me or under my supervision and that all measurements have been performed and are correct to my best knowledge and belief to Industry Canada standards. All of the above requirements are met in accordance with enumerated standards.

TR22-1-0097501T13a 4 / 18

1.3 Summary of Test Results

Test case	Reference	Reference	Reference	Page	Remark	Result
	in FCC 🛛	in ISED 🛮	in RSS-GEN ☑			
Radiated field strength emissions	§15.109	ICES-003,	RSS-Gen., Issue 5			
<u>30 MHz – 1 GHz</u>	§15.33	Issue 7	Chapter 8.9,	10		pass
	§15.35	issue /	Chapter 7.3			
Radiated field strength emissions	§15.109	ICES-003,	RSS-Gen., Issue 5			
above 1 GHz	§15.33	Issue 7	Chapter 8.9,	14		pass
	§15.35	issue /	Chapter 7.3			

PASSED The EUT complies with the essential requirements in the standard.

FAILED The EUT does not comply with the essential requirements in the standard.

N/A Test case does not apply to the test object.

NP The test was not performed by the CETECOM Laboratory.

Decision Rule: CETECOM GmbH follows <u>ILAC G8:2019 chapter 4.2.1 (Simple Acceptance Rule)</u>.

1.4 Summary of Test Methods

1	Test case	Test method
F	Radiated field strength emissions 30 MHz – 1 GHz	ANSI C63.4-2014 chapter 8.2.3
F	Radiated field strength emissions above 1 GHz	ANSI C63.4-2014 chapter 8.3

TR22-1-0097501T13a 5/18

2 Administrative Data

2.1 Identification of the Testing Laboratory

Company name: CETECOM GmbH

Address: Im Teelbruch 116 45219 Essen - Kettwig

Germany

Responsible for testing laboratory: Dipl.-Ing. Ninovic Perez

Accreditation scope: DAkkS Webpage: FCC ISED

IC Lab company No. / CAB ID: 3462D / DE0005

Test location: CETECOM GmbH; Im Teelbruch 116; 45219 Essen - Kettwig

2.2 General limits for environmental conditions

Temperature:	22±2 °C
Relative. humidity:	45±15% rH

2.3 Test Laboratories sub-contracted

Company name: --

2.4 Organizational Items

Responsible test manager: Hicham Laayouni

Receipt of EUT: 2023-Apr-24

Date(s) of test: 2023-Apr-28 to 2023-May-05

Version of template: 22.0901

2.5 Applicant's details

Applicant's name: Servus Intralogistics GmbH

Address: Dr.-Walter-Zumtobelstraße 2

6850 Dornbirn

Austria/Europe

Contact Person: Dominik Kresser

Contact Person's Email: dominik.kresser@servus.info

2.6 Manufacturer's details

Manufacturer's name:

Servus Intralogistics GmbH

Address:

Dr.-Walter-Zumtobelstraße 2
6850 Dornbirn

Austria/Europe

TR22-1-0097501T13a 6/18

2.7 Equipment under Test (EUT)

EUT No.*)	Sample No.	Product	Model	Туре	SN	HW	SW
EUT 1	22-1-00975S08_C01	Transport Robot	Transport Robot Generation 5	N/A		1	2

^{*)} EUT short description is used to simplify the identification of the EUT in this test report.

2.8 Untested Variant (VAR)

VAR	Sample No.	Product	Model	Туре	SN	HW	SW
No.*)							

^{*)} The listed additional untested model variant(s) (VAR) is/are not object of evaluation of compliance. For further information please see Annex 5: Declaration of applicant of model differences.

2.9 Auxiliary Equipment (AE)

AE	Sample No.	Auxiliary Equipment	Model	SN	HW	SW
No.*)						

^{*)} AE short description is used to simplify the identification of the auxiliary equipment in this test report. If the table above does not show any other line than the headline, no AE was used during testing nor was taken into account for evaluation

2.10 Connected cables (CAB)

САВ	Sample No.	Cable Type	Connectors / Details	Length
No.*)				

^{*)} CAB short description is used to simplify the identification of the connected cables in this test report. If the table above does not show any other line than the headline, no cable was used during testing nor was taken into account for evaluation

2.11 Software (SW)

SW	Sample No.	SW Name	Description	SW Status
No.*)				

^{*)} SW short description is used to simplify the identification of the used software in this test report. If the table above does not show any other line than the headline, no SW was used during testing nor was taken into account for evaluation.

2.12 EUT set-ups

set-up no.*)	Combination of EUT and AE	Description
01	EUT 1	Used for Radiated measurements

^{*)} EUT set-up no. is used to simplify the identification of the EUT set-up in this test report.

2.13 EUT operation modes

EUT operating mode no.*)	Operating modes	Additional information
01 EUT in normal operating mode without WLAN function		All radios off

^{*)} EUT operating mode no. is used to simplify the test report.

TR22-1-0097501T13a 7/18

If the table above does not show any other line than the headline, no untested variants are available.

3 Equipment under test (EUT)

3.1 General Data of Main EUT as Declared by Applicant

Firmware	oximes for normal use $oximes$ Special version for test execution				
Power supply	☐ AC Mains	-			
	☐ DC Mains	V DC via Connector			
	⊠ Battery	Lithium Ion battery			
Operational conditions	T _{nom} =20 °C	T _{min} =-25 °C	T _{max} =85 °C		
EUT sample type	Production				
Weight	65 kg				
Size [LxWxH]	88 x 90 x 25 cm				
Interfaces/Ports					
For further details refer Applicants Declaration & following technical documents					

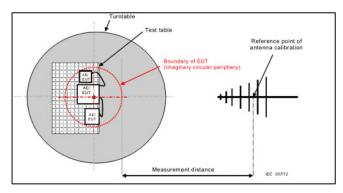
3.2 Detailed Technical data of Main EUT as Declared by Applicant

Typical use	oxtimes portable use $oxtimes$ fixed use	☐ vehicular use		
Equipment mobility	☐ Table-top	☐ Wall-mounted		
	☐ Floor-standing	$oxed{\boxtimes}$ not defined		
Place of use	☐ residential, commercial and light industry			
	oxtimes Industrial environment			
	\square household			
	\square vehicular use			
	☐ railway application			
	☐ medical			
	☐ laboratory environment			
	☐ shielded / screened environment			
Highest internal frequency generated by EUT and	⊠ -> 2,48 GHz			
required upper frequency of radiated disturbance				
measurement				
Typical operating cycle	⊠ < 0,5 sec.	□:		
Is mounting position / usual operating position	⊠ yes			
defined?	□ no			

3.3 Modifications on Test sample

Additions/deviations or exclusions	
------------------------------------	--

TR22-1-0097501T13a 8/18


4 Measurements

4.1 Radiated field strength emissions 30 MHz - 1 GHz

4.1.1 Description of the general test setup and methodology, see below example:

Test site: Measurements between 30 MHz and 1 GHz are performed in the NSA compliant Semi Anechoic Chamber (SAC) according to EMC basic standard. The test site is compliant to CISPR 16-1-4:2019 chap. 5.3 and ANSI C63.4:2014 chap. 5.4.2 to 5.4.4.

Schematic below 1 GHz:

Testing method below 1 GHz:

Step 1:

Pre-measurement, variation of turntable positions: The EUT is set in the worst case operating mode determined. The tests are also carried out as a pre-measurement with peak detector (PK), repetitive scan and max-hold mode. Azimuth step of turntable = 90°, antenna heights = 1.0 m & 1.82 m, both polarisations (H/V). If the mounting/usual operating position is defined, the under and the top side of the EUT/test set-up will not be measured. The results are documented in a diagram. The peak values shown in this graphic are not finally maximized. Peak values closer than 6 dB to the limit line are displayed explicitly in a table. If no critical frequencies are found (margin to limit >6 dB) the final measurement will be omitted.

Step 2:

Based on the exploratory measurements, the most critical frequencies are re-measured by main-taining the EUT's worst-case operation mode, cable position, etc. either on 10 m OATS or 5 m or 3 m semi-anechoic room.

Final measurement: For the critical frequencies a maximum search is done with PK and CISPR QP detectors: First a frequency zoom within +/- 1.2 MHz (= 10*IF-BW) of the critical frequencies, then the EUT/test set-up is rotated continuously (if applicable, the EUT orientation will be changed to measure the under and the top side) and the antenna height changed between 1 m & 4 m in order to find the worst case position. The final measurement with the QP detector is carried out in this position and the values are stored in the final result table, which can be found after the diagram.

Formula:

 $E_C = E_R + AF + C_L + D_F - G_A \quad \text{(1)} \qquad \qquad AF = \text{Antenna factor} \\ C_L = \text{Cable loss} \\ M = L_T - E_C \qquad \text{(2)} \qquad \qquad D_F = \text{Distance correction factor (if used)} \\ E_C = \text{Electrical field} - \text{corrected value} \\ E_R = \text{Receiver reading} \\ G_A = \text{Gain of pre-amplifier (if used)} \\ L_T = \text{Limit} \\ M = \text{Margin}$

All units are dB-units, positive margin means value is below limit.

TR22-1-0097501T13a 9 / 18

4.1.2 Test receiver settings

Detector	Peak	Quasi peak
Min. attenuation	0 dB	0 dB
Resolution bandwidth	120 kHz	120 kHz
Dector Meas-time	10 ms	1 s
Step size	40 kHz	Selected frequencies
Preamp	Off	Off

4.1.3 Sample calculation

Raw- Value [dBuV/m]	Antenna factor	Distance Correction [dB]	Cable Loss	Preamplifier	Resulting correction value [dB]	Final result [dBuV/m]	Remarks
32.7	22.25		3.1		25.35 EMC 32 SW:25.34	58.05	1

Remark: This calculation is based on an example value at 800.4 MHz

4.1.4 Measurement Location

Test site	120901 - SAC - Radiated Emission <1GHz
-----------	--

4.1.5 Limit

Frequency Range	Class B	☐ (3 meters)	Class A	☑ (10 meters)		
[MHz]	Limit	Limit	Limit	Limit	Detector	RBW / VBW
	[μV/m]	[dBµV/m]	[μV/m]	[dBµV/m]		[kHz]
30 - 88	100	40.0	90	39.0	Quasi peak	100 / 300
88 - 216	150	43.5	150	43.5	Quasi peak	100 / 300
216 - 960	200	46.0	210	46.4	Quasi peak	100 / 300
960 - 1000	500	54.0	300	49.5	Quasi peak	100 / 300

4.1.6 Result

Diagram	Set-up	Mode	Maximum Level [dBμV/m] Frequency Range 30 – 1000 MHz	Result
3.01	01	01	QP: 30.28	pass

Remark: for more information and graphical plot see annex A1 TR22-1-0097501T13a-A1

TR22-1-0097501T13a 10/18

4.1.7 Measurement Location and Equipment list

ID	Description	Manufacturer	SerNo	CheckType	Last Check	Interval	Next Check
	120901 - SAC - Radiated Emission <1GHz			calchk	cal: 2015-Jul-21	cal: 10Y	cal: 2025-Jul-21
					chk: 2022-Jul-27	chk: 12M	chk: 2023-Jul-27
20341	Digital Multimeter Fluke 112	Fluke Deutschland GmbH / Glottertal	81650455	cal	cal: 2022-May-18	cal: 24M	cal: 2024-May-18
20442	Semi Anechoic Chamber	ETS-Lindgren Gmbh / Taufkirchen	-	cnn	cal: -	cal: -	cal: -
					chk: -	chk: -	chk: -
20482	filter matrix Filter matrix SAR 1	CETECOM GmbH	-	cnn	cal: -	cal: -	cal: -
					chk: -	chk: -	chk: -
20574	Biconilog Hybrid Antenna BTA-L	Frankonia GmbH / Heideck	980026L	cal	cal: 2022-Jun-15	cal: 36M	cal: 2025-Jun-15
20620	Test Receiver ESU26	Rohde & Schwarz Messgerätebau GmbH /	100362	cal	cal: 2022-Jun-08	cal: 12M	cal: 2023-Jun-08
		Memmingen					
20885	Power Supply EA3632A	Agilent Technologies Deutschland GmbH	75305850	cnn	cal: -	cal: -	cal: -
					chk: -	chk: -	chk: -
25038	Loop Antenna HFH2-Z2	Rohde & Schwarz Messgerätebau GmbH /	879824/13	cal	cal: 2022-Jul-04	cal: 24M	cal: 2024-Jul-04
		Memmingen					

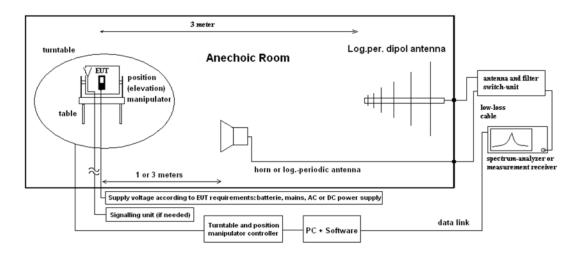
Tools used in 'P1M1'

4.1.8 Legend

Note / remarks	Interval of calibration & Verification
12M	12 months
24M	24 months
36M	36 months
10Y	10 Years

Abbreviation Check Type	Description
cnn	Calibration and verification not necessary
cal	Calibration
calchk	Calibration plus intermediate Verification
chk	Verification
сри	Verification before usage

TR22-1-0097501T13a 11/18



4.2 Radiated field strength emissions above 1 GHz

4.2.1 Description of the general test setup and methodology, see below example:

Evaluating the emissions have to be done first by an exploratory emissions measurement and a final measurement for most critical frequencies. The tests are performed in a CISPR 18-1-4:2010 compliant fully anechoic room (FAR) recognized by the regulatory commission. The measurement distance was set to 3 meter for frequencies up to 18 GHz and 2 meter above 18 GHz. A logarithmic periodic antenna is used for the frequency range 30 MHz to 1 GHz. Horn antennas are used for frequency range 1 GHz to 40 GHz. The EUT is aligned within 3 dB beam width of the measurement antenna with three orthogonal axis measurements on the EUT.

Schematic:

Testing method:

The measurement is made according to relevant reference clauses: (See Tables Summary of Test Results and Summary of Test Methods on page 5)

Exploratory, preliminary measurements

The EUT and its associated accessories are placed on a non-conductive position manipulator (tipping device) of 1.55 m height which is placed on the turntable. By rotating the turntable (range 0° to 360°, step 15°) and the EUT itself either on 3-orthogonal axis (portable equipment) or 2-orthogonal axis (defined operational position of EUT) the emission spectrum and its characteristics was recorded with an EMI-receiver, broadband antenna and software.

The measurements are performed in horizontal and vertical polarization of the measurement antennas. The results are documented in a diagram. Critical frequencies (low margin to limit) are saved within a table for further investigations. If various operating modes are supported, further investigations are made to find the worst-case of them. Also the interconnection cables and equipment position were varied in order to maximize the emissions.

Final measurement on critical frequencies

Based on the exploratory measurements, the most critical frequencies are re-measured by main-taining the EUT's worst-case operation mode, cable position, etc.

First a frequency zoom around the critical frequency is done to locate the frequency more precisely. After this step, for all identified critical frequencies, the maximum peak was determined.

Following parameters were varied: the turntable angle continuously in the range 0 to 360 degree, the EUT itself over 3-orthogonal axis and the height for EUT with large dimensions or three axis scan for portable/small equipment.

TR22-1-0097501T13a 12 / 18

On the determined worst-case position, a final measurement with necessary bandwidth and detector according standard has been carried out.

Formula:

 $E_C = E_R + A_F + C_L + D_F - G_A$ (1) $E_C = E_C + E_C +$

E_R = Receiver reading

 $M = L_T - E_C (2) M = Margin$

 $L_T = Limit$

 A_F = Antenna factor

C_L = Cable loss

D_F = Distance correction factor (if used) G_A = Gain of pre-amplifier (if used)

All units are dB-units, positive margin means value is below limit.

4.2.2 Sample calculation

Raw- Value [dBuV/m]	Antenna factor	Distance Correction [dB]	Cable Loss + Preamplifier	Resulting correction value [dB]	Final result [dBuV/m]	Remarks
29.37	41.20		24.28	16.92 EMC32: 17.0 dB laut Software	46.3	CableLoss and PreAmp data in one data correction file

Remark: This calculation is based on an example value at 10 GHz

4.2.3 Test receiver / spectrum analyzer settings

Detector	Peak	Average
Min. attenuation	10 dB	10 dB
Resolution bandwidth	1 MHz	1 MHz
Dector Meas-time	Pre-measurement 10 ms	Pre-measurement 10 ms
Dector Meas-time	Final measurement 1 s	Final measurement 1 s
Step size	Pre-measurement: 400 kHz	Pre-measurement: 400 kHz
3tep 3ize	Final measurement: selected frequencies	Final measurement: selected frequencies
Droomn	Off below 6 GHz	Off below 6 GHz
Preamp	30 dB above 6 GHz	30 dB above 6 GHz

4.2.4 Measurement Location

Test site	120907 - FAC2 - Radiated Emissions
-----------	------------------------------------

4.2.5 Limit

Radiated emissions limits (3 meters)								
Frequency Range [MHz]	Limit [μV/m]	Limit [dBµV/m]	Detector	RBW / VBW [kHz]				
Above 1000	500	54	Average	1000 / 3000				
Above 1000	5000	74	Peak	1000 / 3000				

TR22-1-0097501T13a 13 / 18

4.2.6 Result

Diagram	Set-up	Mode	Maximum Level [dBμV/m] Frequency Range 1 – 12.4 GHz	Result
4.01a	01	01	47.91	pass

Remark: for more information and graphical plot see annex A1 TR22-1-0097501T13a-A1

Diagram	Set-up	Mode	Maximum Level [dBμV/m] Frequency Range 12.4 – 18 GHz	Result
4.01b	01	01	52.24	pass

Remark: for more information and graphical plot see annex A1 TR22-1-0097501T13a-A1

Diagram	Set-up	Mode	Maximum Level [dBμV/m] Frequency Range 18 –40 GHz	Result
4.01c	01	01	52.52	pass

Remark: for more information and graphical plot see annex A1 TR22-1-0097501T13a-A1

TR22-1-0097501T13a 14/18

4.2.7 Measurement Location and Equipment list

ID	Description	Manufacturer	SerNo	CheckType	Last Check	Interval	Next Check
	120907 - FAC2 - Radiated Emissions			chk			
					chk: 2023-Feb-27	chk: 12M	chk: 2024-Feb-27
20005	AC - LISN 50 Ohm/50µH ESH2-Z5	Rohde & Schwarz Messgerätebau GmbH /	861741/005	cal	cal: 2022-May-19	cal: 12M	cal: 2023-May-19
		Memmingen					
20133	Horn Antenna 3115 (Meas 1)	EMCO Elektronik GmbH	9012-3629	cal	cal: 2020-Apr-08	cal: 36M	cal: 2023-May-08
20302	Horn Antenna BBHA9170 (Meas 1)	Schwarzbeck Mess-Elektronik OHG / Schönau	155	cpu			
					chk: 2020-Apr-15	chk: 12M	
20412	Fully Anechoic Chamber 2	ETS-Lindgren Gmbh / Taufkirchen	without	cnn	cal: -	cal: -	cal: -
					chk: -	chk: -	chk: -
20729	FS-Z140	Rohde & Schwarz Messgerätebau GmbH	101004	cal	cal: 2020-May-26	cal: 36M	cal: 2023-May-26
20730	FS-Z110	Rohde & Schwarz Messgerätebau GmbH	101468	cal	cal: 2020-Jun-19	cal: 36M	cal: 2023-Jun-19
20731	FS-Z75	Rohde & Schwarz Messgerätebau GmbH /	101022	cal	cal: 2022-May-18	cal: 36M	cal: 2025-May-18
		Memmingen					
20732	Signal- and Spectrum Analyzer FSW67	Rohde & Schwarz Messgerätebau GmbH /	104023	cal	cal: 2022-Jun-08	cal: 12M	cal: 2023-Jun-08
		Memmingen					
20733	Harmonic Mixer FS-Z220	RPG-Radiometer Physics GmbH	101009	cal	cal: 2021-May-27	cal: 36M	cal: 2024-May-27
20734	Harmonic Mixer FS-Z325	RPG-Radiometer Physics GmbH	101005	cal	cal: 2021-May-27	cal: 36M	cal: 2024-May-27
20765	Pickett-Potter Horn Antenna FH-PP 40-60	RPG-Radiometer Physics GmbH / Meckenheim	010001	cal	cal: 2020-Sep-15	cal: 36M	cal: 2023-Sep-15
20767	Pickett-Potter Horn Antenna FH-PP 140-220	RPG-Radiometer Physics GmbH / Meckenheim	010011	cnn	cal: -	cal: -	cal: -
					chk: -	chk: -	chk: -
20811	Horn Antenna ASY-SGH-124-SMA	Antenna Systems Solutions S.L	29F14182337	cal	cal: 2021-Oct-20	cal: 36M	cal: 2024-Oct-20
20812	Pickett-Potter Horn Antenna FH-PP-325	RPG-Radiometer Physics GmbH	10024	cnn	cal: -	cal: -	cal: -
					chk: -	chk: -	chk: -
20813	Pickett-Potter Horn Antenna FH-PP 075	RPG-Radiometer Physics GmbH / Meckenheim	10006	cal	cal: 2020-Sep-09	cal: 36M	cal: 2023-Sep-09
20814	Pickett-Potter Horn Antenna FH-PP 140	RPG-Radiometer Physics GmbH	10008	cnn	cal: -	cal: -	cal: -
					chk: -	chk: -	chk: -
20815	Pickett-Potter Horn Antenna FH-PP 110	RPG-Radiometer Physics GmbH	10014	cal	cal: 2020-Sep-04	cal: 36M	cal: 2023-Sep-04
20816	SGH Antenna SGH-26-WR10	Anteral S.L.	1144	cnn	cal: -	cal: -	cal: -
					chk: -	chk: -	chk: -
20817	Waveguide Rectangular Horn Antenna SAR- 2309-22-S2	ERAVAN	13254-01	cal	cal: 2020-Jul-29	cal: 36M	cal: 2023-Jul-29
20836	1-18 GHz Amplifier	Wright Technologies, Inc., Inc.	0001	chk	cal: 2020-Jul-29	cal: 36M	cal: 2023-Jul-29
20913	Phase Amplitude Stable Cable Assembly DC-	RF-Lambda Europe GmbH	AC19040001	cnn	cal: -	cal: -	cal: -
	40GHz				chk: -	chk: -	chk: -
25457	DRG Horn Antenna SAS-574	A.H. Systems, Inc. / Chatsworth	383	cal	cal: 2022-Mar-28	cal: 36M	cal: 2025-Mar-28

Tools used in 'P2M1'

4.2.8 Legend

Note / remarks	Interval of calibration & Verification
12M	12 months
24M	24 months
36M	36 months
10Y	10 Years

Abbreviation Check Type	Description
cnn	Calibration and verification not necessary
cal	Calibration
calchk	Calibration plus intermediate Verification
chk	Verification
сри	Verification before usage

TR22-1-0097501T13a 15/18

5	Results from external laboratory					
No	one	-				
6	Opinions and	interpretations				
No	one	-				
7	List of abbrevi	iations				
No	one					

TR22-1-0097501T13a 16/18

8 Measurement Uncertainty valid for conducted/radiated measurements

The reported uncertainties are calculated based on the standard uncertainty multiplied with the appropriate coverage factor \mathbf{k} , such that a confidence level of approximately 95% is achieved. For uncertainty determination, each component used in the concrete measurement set-up was taken in account and it contribution to the overall uncertainty according its statistical distribution calculated.

Measurement type		Calculated Uncertainty based on confidence level of 95.54%	Remarks	
Magnetic field strength	0.009	30	4.86	Magnetic loop antenna, Pre-amp on
RF-Output power (eirp) Unwanted emissions (eirp) [dB]	30 100 100 1000 1 1000 1 1000 1 18000 3 33000 5 40000 7 75000 1 190000 1 140000 2 225000 3 3	100 100 1000 1000 18000 18000 33000 550000 10000 10000 40000 225000 300000	4.57 4.91 4.02 4.26 4.36 5.23 4.92 4.17 4.69 4.06 4.17 5.49 6.22 7.04 8.84	without Pre-Amp with PreAmp with PreAmp without Pre-Amp with PreAmp Schwarzbeck BBHA9170 (#20302) Antenna set-up non-waveguide antenna) Set-up for Q-Band (WR-22), non-wave guide antenna Set-up U-Band (WR-19), non-waveguide antenna External Mixer set-up V-Band (WR-15) External Mixer set-up W-Band (WR-6) External Mixer set-up F-Band (WR-8) External Mixer set-up G-Band (WR-5) External Mixer set-up (WR-3) External Mixer set-up (WR-2.2)
Radiated Blocking [dB]	18000 3 33000 5 50000 7	18000 33000 50000 75000 10000	2.85 4.66 3.48 3.73 4.26	Typical set-up with microwave generator and antenna, value for 7GHz calculated Typical set-up with microwave generator and antenna WR-22 set-up WR-15 set-up WR-6 set-up
Frequency Error [kHz]		77000 7000	276.19 33.92	calculated for 77 GHz (FMCW) carrier calculated for 6.5GHz UWB Ch.5
TS 8997 conducted Parameters	30 30 30 30 30 30 30 30 30 30 518 518 530 30 30 30 518 518 518 518 518 518 518 518 518 518	6000 6000 7500 30 2.48 5.825 5.825 6000 6000	1.11 1.20 1.20 1.20 1.20 2.56 1.95 ppm 7.180 ppm 1.099 ppm 0.11561µs 1.85 1.62	Power measurement with Fast-sampling-detector Power measurement with Spectrum-Analyzer Power Spectrum-Density measurement Conducted Spurious emissions: Conducted Spurious emissions: Sea. Bandwidth / 2-Marker Method for 2.4GHz ISM Bandwidth / 2-Marker Method for 5GHz WLAN Frequency (Marker method) for 5GHz WLAN Redium-Utilization factor / Timing Blocking-Level of companion device Blocking Generator level
Conducted emissions	0.009	30	3.57	

TR22-1-0097501T13a 17 / 18

9 Versions of test reports (change history)

Version	Applied changes	Date of release
	Initial release	2023-Oct-09

End Of Test Report

TR22-1-0097501T13a 18/18